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Goss’s bacterial wilt and leaf blight of corn (Zea mays L.), causal agent 

Clavibacter michiganensis subsp. nebraskensis, was first confirmed in Dawson County, 

NE in 1969. Disease incidence decreased in the 1980’s due to various management 

strategies and disease developed sporadically until the early 2000’s when it re-emerged 

and was economically important. A Midwest, multistate survey conducted in 2011 

suggested farming practices that may have contributed to the pathogen’s re-emergence. 

The use of agricultural pesticides was associated with Goss’s wilt. Since spray adjuvants 

are often used with pesticides, and physical characteristics of these adjuvants may enable 

infection of the leaf by epiphytic C. michiganensis subsp. nebraskensis, greenhouse and 

field studies were conducted to assess the effect of adjuvants on Goss’s wilt severity. A 

preliminary greenhouse study was conducted to determine if an epiphytic population of 

C. michiganensis subsp. nebraskensis could be established and initiate infection. The 

population became established and disease severity was higher when plants were less 

mature. To evaluate the effect of adjuvants on disease development with adjuvants, a 

greenhouse study was established. Adjuvants tested did not cause a consistent increase in 



iii 
 

disease severity between trials. An inhibition test was designed to determine if spray 

adjuvants inhibited bacterial growth in vitro at different concentrations. Results showed 

minimal inhibition at label rate for NIS, and consistent inhibition at 10X label rate for 

NIS with some inhibition for MSO and COC. Field studies were conducted in southwest 

Nebraska in 2014 and 2015. Disease severity was lower in adjuvant treatments in 2014. 

In 2015, no differences for disease severity or systemically infected plants were detected 

among treatments. These data indicate that spray adjuvants commonly used in corn 

production are not causing an increase in Goss’s wilt severity. Rather, adjuvants at higher 

rates may reduce the population of epiphytic C. michiganensis subsp. nebraskensis to 

below levels required for infection. Further research is needed before recommending non-

label rate of these adjuvants under field conditions.  
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History of Corn 

In 1492, Zea mays (L.) was first discovered by Columbus’ men in Cuba and has 

been classified as dent corn, popcorn, waxy corn, flint corn, sweet corn, pod corn, and 

flour corn (Gibson and Benson 2002). While corn may be grown throughout the world, it 

possesses different names. Corn is also called maize or Indian corn in the United States, 

but may be referred to as wheat in England or oats in Scotland and Ireland (Gibson and 

Benson 2002). It is believed to have been domesticated in the Tehuacan Valley, Mexico 

where 80,000 year old pollen grains were discovered (Gibson and Benson 2002). 

Historically, corn has been grown as far north as North Dakota, south to Argentina and 

Chile, on both sides of the St. Lawrence Valley, and located in the high valleys of the 

Andes Mountains (Gibson and Benson 2002). Once settlers arrived and cleared wooded 

areas, corn was grown in Ohio, Iowa, Indiana, and Illinois and neighboring states (Gibson 

and Benson 2002).  

Yield potential was low when corn was first grown in the United States. 

According to Gibson and Benson (2002), 62 million acres of corn were grown in the 

1880’s. This escalated to 95 million acres by 1900, 100 million acres by 1910, and a 

record total of 111 million acres in 1917 (Gibson and Benson 2002). Prior to 1940, U.S. 

yield averaged 31.7 bushels per acre (Gibson and Benson 2002). Mass production of corn 

was not as abundant until technological advances occurred. Yield increases began in the 

1940’s and 1950’s, which rose to an average 109.5 bushels per acre in 1979 (Gibson and 

Benson 2002). Increased yield potential is due not only to breeding efforts, but the 

production and use of fertilizers after World War II. Excess nitrogen left over from bomb 

assemblies was applied as ammonium nitrate pellets in the 1940’s (Ganzel and Reinhardt 
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n.d.). Due to its explosive nature, pellet use declined and anhydrous ammonia was 

applied in the 1960’s (Ganzel and Reinhardt n.d.). After these developments, agricultural 

fertilizers became accessible and essential to reach high yield potential. 

Corn prices have fluctuated over time depending on supply and demand, 

economy, and the environment. Corn prices averaged $2.00 per bushel from 1972 to 2005 

(United States Department of Agriculture 2010) and increased to $5.00 from 2006 to 

2009 (Wise and Mueller 2011), particularly with the use of corn for ethanol production. 

There are many industrial uses for corn including grain products, silage, food, and 

industrial products (Gibson and Benson 2002). Corn is an important commodity in our 

society and without it, many of our household items would not be available. 

Unfortunately, plant diseases can be detrimental to corn production if not managed. One 

of the most important diseases of corn during recent years is Goss’s bacterial wilt and 

leaf blight. 

Goss’s Bacterial Wilt and Blight 

Goss’s bacterial wilt and leaf blight was first identified in 1969 in Dawson 

County, Nebraska near Lexington (Wysong et al. 1973). Goss’s wilt has also been 

referred to as Nebraska leaf freckles and wilt, bacterial leaf freckles and wilt, bacterial 

leaf blight and wilt, Nebraska wilt and leaf freckles (Schuster 1975; Jackson et al. 2007a), 

and leaf freckles and wilt (Jackson et al. 2007a). Goss’s wilt received its official name 

after former Department of Plant Pathology chair, and first dean of the Graduate College 

at the University of Nebraska-Lincoln, Dr. R.W. Goss, who was considered to pioneer 

modern plant pathology in Nebraska (Jackson et al. 2007a).  
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Since its discovery, the abundance of susceptible corn hybrids in corn growing 

areas made it easy for the pathogen to spread. By 1975, the disease was confirmed in 

neighboring states (Vidaver et al. 1981). Disease was present in 54 counties in Nebraska 

and five of the six bordering states including Iowa, Kansas, Colorado, South Dakota, 

Wyoming, Illinois, and Wisconsin (Jackson et al. 2007a). Goss’s wilt was reported in 

western Iowa in 1971, Kansas in 1973, Colorado and South Dakota in 1974 (Schuster, 

1975), Illinois in 1980, and Wisconsin in 1981 (Wysong et al. 1981). Management 

practices allowed for a reduction in disease incidence and severity, but it continued to 

develop sporadically in susceptible varieties (Jackson et al. 2007b). However, after nearly 

two decades this pathogen re-emerged in the U.S. Corn Belt. The reasons for Goss’s wilt 

re-emergence is not fully understood, but a combination of favorable conditions are 

probable causes (Jackson et al. 2007b). Historically, reduced tillage and continuous corn 

were heavily utilized prior to 1969 (Schuster 1975). Goss’s wilt had not been confirmed 

state-wide across Nebraska for nearly two decades prior to 2008 (Jackson 2009). It is 

possible that its re-emergence was a result of a lack of hybrid screening for disease 

resistance after the seeming disappearance of the disease for decades (Jackson et al. 

2007a; b). 

Since its re-emergence, the disease has developed in the Midwest U.S. corn 

growing states, as well as the Canadian provinces of Alberta (Howard et al. 2015), 

Manitoba, and Ontario (Desjardins 2010). Goss’s wilt has been the predominant disease 

since 2005 in western Nebraska, southeast Wyoming, and northeast Colorado (Jackson 

2008). Reports of disease development in new areas have become increasingly common 

during recent years. In August 2008, leaf samples from hybrid corn and popcorn from 
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Pulaski and Jasper counties, respectively, in Indiana were confirmed to be infected with 

the Goss’s wilt pathogen (Ruhl et al. 2009). This was the first report of Goss’s wilt in 

Indiana (Ruhl et al. 2009). In Nebraska, the pathogen was confirmed in 24 counties in 

August 2009 (Jackson 2009). Goss’s wilt was also reported in two Minnesota fields in 

Stephens and Chippewa counties in 2009 (Malvick et al. 2010). Samples submitted to the 

Plant and Pest Diagnostic Clinic at the University of Nebraska-Lincoln from Dallam 

County, Texas presented symptomatic lesions in 2009. This was also the first report of 

Goss’s wilt in Texas (Korus et al. 2011). North Dakota State University Plant Diagnostic 

Lab confirmed the Goss’s wilt pathogen in 2011 (Friskop et al. 2014). It has also been 

confirmed in areas of Michigan (Jackson-Ziems et al. 2012; Howard et al. 2015). Goss’s 

wilt was confirmed in Montana (2013) and Louisiana in 2013 (Singh et al. 2015). This 

pathogen was also found in Holt County, Missouri when samples were submitted to the 

University of Missouri Plant Diagnostic Clinic for testing (Sweets and Hosack 2014). 

While symptoms may be quite characteristic, diagnosis can be difficult due to other 

diseases with similar appearances. Goss’s wilt is commonly misidentified in the field as 

Stewart’s wilt or northern corn leaf blight (Robertson and Jesse 2008). Thus, it is quite 

possible that farmers were unable to differentiate the disease and made misdiagnoses. 

The common and scientific name has changed since this pathogen was first 

reported. Corynebacterium michiganense subsp. nebraskense (Vidaver and Mandel 1974) 

Carlson and Vidaver 1982, comb. nov. had its name changed to Clavibacter 

michiganensis subsp. nebraskensis corrig (Vidaver and Mandel 1974) Davis et al. 1984, 

comb. nov. The pathogen was reclassified based on the presence of these 

phytopathogenic coryneform bacteria having peptidoglycans with 2,4-diaminobutyric 
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acids (Davis et al. 1984). The genus Corynebacterium was changed to Clavibacter by 

regrouping the bacteria (Eichenlaub and Gartemann 2011). Clavibacter only contains one 

species within Microbacteriaceae, being Clavibacter michiganensis (Eichenlaub et al. 

2006; Evtushenko and Takeuchi 2006). C. michiganensis is divided into five subspecies 

based on host specificity: C. michiganensis subsp. michiganensis, C. michiganensis 

subsp. sepedonicus, C. michiganensis subsp. insidiosus, C. michiganensis subsp. 

nebraskensis, and C. michiganensis subsp. tessellarius (Waleron et al. 2011). Questions 

still remain on the origin of C. michiganensis subsp. nebraskensis. Schuster (1975) 

speculated that Corynebacterium insidiosum, causal agent of bacterial wilt of alfalfa, 

could have mutated or transformed from pesticide use or other farming practices.  

Pathogen Biology and Ecology 

Morphological and physical characteristics of C. michiganensis subsp. 

nebraskensis have been described. The bacteria are gram-positive, catalase-positive, 

oxidase-negative (Vidaver and Mandel 1974), coryneform-shaped, non-motile rods which 

produce fluidal orange-yellow colonies on nutrient broth yeast extract (NBY) and 

Corynebacterium nebraskense selective (CNS) agars (Gross and Vidaver 1979). They 

have also been described as non-acid fast, pleomorphic rods, lacking endospore 

formation, non-motile, obligate aerobes, not producing tyrosinase, lipase, or urease, not 

utilizing nitrite, and not reducing nitrate (Davis et al. 1984). According to Eichenlaub and 

Gartemann (2011), there is also no type three secretion system used by other bacterial 

pathogens. 

Bacterial morphology includes circular, convex, butyrous, glistening colonies 

with entire margins, which may differ in diameter or presence of an outer margin 
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(Vidaver and Mandel 1974). Carotenoid pigments give the bacteria an orange color, and 

exopolysaccharides make them appear mucoid (Evtushenko and Takeuchi 2006). It has 

also been reported that thiamine is an essential component for orange pigmentation and 

growth of the bacteria (Schuster 1975). Morphology is not the same for all bacterial 

strains. Smidt and Vidaver (1987) reported four types of bacterial strains that differed in 

morphology, fluidity, and pigmentation. Differences in bacteria morphology may be 

contributed to the time span between collections (Smidt and Vidaver 1987). 

Symptoms and Epidemiology 

Strain variability may be related to host range. Although bacteria in C. 

michiganensis are typically host specific, they may infect and present similar symptoms 

on other hosts (Waleron et al. 2011). C. michiganensis subsp. nebraskensis infects 

popcorn, sweet corn, dent corn, and food-grade corn (Jackson et al. 2007a). Alternative 

hosts include teosinte (Euchlaena mexicana Schrad.), green foxtail (Setaria viridis (L.) 

Beauv.), grain sorghum (Sorghum bicolor (L.) Moench), sudangrass (Sorghum bicolor 

(L.) Moench ssp. drummondii (Nees ex Steud.) de Wet and Harlan), sugarcane 

(Saccharum officinarum L.), shattercane (Sorghum bicolor (L.) Moench ssp. 

arundinaceum (Desv.) de Wet and Harlan) (Schuster 1975), and barnyard grass 

(Echinochloa crus-galli (L.) Beauv.) (Wysong et al. 1981; Jackson et al. 2007a; 

Robertson and Jesse 2008).  

There is no known vector for transmitting C. michiganensis subsp. nebraskensis 

(Jackson et al. 2007a; b), but wounds are often utilized to initiate infection (Schuster 

1975). Wounding may occur from heavy rains, hailstorms, sandblasting, or wind 

(Rocheford et al. 1985; Claflin 1999). However, infection is most prevalent following a 
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hail storm (Jackson et al. 2007a; b). While injury allows for infection, other ways are 

possible. Stomata are a natural entry for the bacteria (Schuster 1975; Mallowa et al. 2012; 

Mallowa et al. 2014; Mallowa et al. 2015). Typically, water is desired for disease 

development, but Goss’s wilt can be present in both irrigated and dryland fields (Jackson 

et al. 2007a). The bacteria are not able to travel long distances on their own, so it is 

assumed they are present when wounding occurs (Jackson 2009). This conclusion is 

supported by Smidt and Vidaver (1986) who reported leaf washings from asymptomatic 

plants harbored the bacteria, suggesting an epiphytic living strategy. Schuster et al. 

(1983) reported that greenhouse grown plants had epiphytic bacteria. In more recent 

studies, Marcell and Beattie (2002) demonstrated that C. michiganensis subsp. 

nebraskensis adhered to leaf surfaces. Therefore, the epiphytic living strategy of the 

pathogen has been well supported. 

Not all bacteria cause a similar effect during infection. Bacteria infecting the 

vascular system can cause systemic infection and premature death of the host plant 

(Jackson et al. 2007a; b; Robertson and Jesse 2008). While this pathogen typically resides 

in the vascular tissue, it is suggested that it may invade surrounding parenchyma cells 

which leads to the formation of “freckles" (Schuster 1975), or discontinuous water-

soaked spots (Schuster 1975; Wysong and Doupnik 1984; Wysong et al. 1981). Wilting 

may be attributed to vascular tissue impediment, but other plant defense responses also 

occur. Wounding triggers a xylem-blocking response by secreting phenolic compounds 

and mucilage into the xylem (Crews et al. 2003) in an effort to slow the spread of bacteria 

in the plant. 
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Systemic wilt and leaf blight are two major phases of disease (Jackson et al. 

2007a; b; Agarkova et al. 2011). The leaf blight phase is more common, but systemic wilt 

is severe and can cause plant death (Jackson 2008). According to Calub et al. (1974) and 

Schuster (1975), infected plants may appear stunted. These characteristics are not the 

same for all infected plants. Goss’s wilt development is affected by hybrid, inoculum 

present, and favorable weather conditions (Wysong and Doupnik 1984). Systemic 

infection can kill seedlings and mature plants any time during infection, and may result in 

50% yield loss (Claflin 1999).  

The bacteria have been isolated from all parts of the plant including roots, stems, 

leaves, sheaths, tassels, husks, silks, cobs, and kernels (Schuster 1975). Bacteria have 

been reported in the vascular bundles of the cob, ear shank, and the inner and outer 

vascular bundle ring which can be transported to the developing kernel (Schuster 1975). 

Bacterial ooze and water-soaked lesions may be found in the husks of infected ears 

(Schuster 1975). While bacteria may be carried on seeds, it can also be found inside the 

kernel between the scutellum and endosperm, and near the embryo where it can remain 

viable for up to 12 months (Schuster 1975). Typically, bacteria are spread via infected 

residue, but other ways are possible. Seed transmission of the bacteria is possible, but the 

rate of transmission is typically 0.1-0.4% (Biddle 1990; Biddle et al. 1990; Shepherd 

1999). This might explain how C. michiganensis subsp. nebraskensis was reported in 

new areas.   

Leaf infections are the most common and exhibit distinct symptoms. Gray to 

yellow lesions, wavy margins, water-soaking, dark green to black discontinuous water-

soaked spots (Schuster 1975; Wysong and Doupnik 1984; Wysong et al. 1981) that may 
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be parallel to the leaf venations (Calub et al. 1974), shiny bacterial exudate (Calub et al. 

1974; Schuster 1975; Treat and Tracy 1990; Jackson et al. 2007a; b), in addition to brown 

root and stalk rot, wilting, and stunting (Treat and Tracy 1990) have all been reported as 

potential symptoms. Bacteria have been confirmed in the vascular bundles, intercellular 

spaces, adjacent to vessels, and on the leaf surface (Schuster 1975). Leaf lesions are large 

and may be elliptical or V-shaped (Robertson 2009). As these lesions continue to grow, 

they coalesce to blight leaves (Jackson et al. 2007a; Jackson 2009). It is important to 

recognize all of these symptoms for correct diagnosis. 

Inoculation Techniques 

C. michiganensis subsp. nebraskensis infection can occur in different ways. Corn 

stubble is a primary source of inoculum (Schuster 1975). However, bacteria are not 

capable of entering the host without either a natural opening or wound. Schuster (1975) 

found that inoculated seedlings did not show any symptoms until they were puncture-

wounded. There are many ways of inoculating plants to initiate infection. According to 

Schuster (1975), spraying cut leaves with a bacterial suspension or injecting seedlings 

one inch above the soil line with a hypodermic syringe resulted in infection. Disease 

incidence may differ between seedlings and more mature plants. Schuster (1975) found 

that older leaves may be less susceptible than younger leaves with the cut-spray method. 

Epiphytic populations are natural inoculum sources since the bacteria can wait until 

wounding occurs or infect through stomata (Mallowa et al. 2015).  

Other inoculation methods are more direct. Smidt and Vidaver (1987) performed 

pathogenicity tests by stabbing sterile toothpicks with C. michiganensis subsp. 

nebraskensis colonies into four- to five-leaf stage Golden Cross Bantam (GCB) sweet 
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corn plants. Vidaver (1977) used the needle-eye method by inserting the eye of a number 

eight sewing needle with inoculum into the stem. Other methods include multiple-needle 

inoculators. Laurence and Aluisio (1981) inoculated plants by wounding the second leaf 

with a small grouping of needles. Schuster (1975) infected 10 day old plants with a multi 

needle inoculator submerged in a bacterial suspension. All methods resulted in different 

amounts of disease severity. 

Plant age at inoculation is another important characteristic to consider. Plant age 

is important when analyzing resistant and susceptible hybrids with a syringe inoculation 

(Calub et al. 1974). Infection rate was greater for seedlings compared to more mature 

plants (Suparyono and Pataky 1986). Suparyono and Pataky (1989) found that tolerant 

plants had less disease compared to susceptible plants when inoculated at the three- to 

five-leaf stage of development. They also reported that plants inoculated at the five- to 

seven- or seven- to nine-leaf stage did not have as severe disease as the three- to five-leaf 

stage plants. Inoculation site may also contribute to disease severity. Calub et al. (1974) 

showed that plants inoculated in the upper half of the stem exhibited symptoms earlier 

than those inoculated in the lower half. They also found that higher inoculum density had 

greater disease incidence. Thus the method, application timing, inoculum placement, and 

bacterial density may alter disease severity. 

The epiphytic strategy of C. michiganensis subsp. nebraskensis is important for 

disease development. Different methods have been used to simulate the epiphytic 

population (Schuster et al. 1983; Mallowa et al. 2012; Mallowa et al. 2014; Mallowa et 

al. 2015). Infection rates may have been low in these studies, but evidence of stomatal 

entry may be possible for the bacteria to initiate infection (Mallowa et al. 2012; Mallowa 
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et al. 2014; Mallowa et al. 2015). Thus, more research may be needed to study the 

importance of epiphytic populations on disease development. 

Management 

Use of crop rotation to non-hosts, tillage to promote degradation of infected crop 

debris, and planting partially resistant hybrids are effective management strategies for 

this pathogen (Schuster 1975; Jackson et al. 2007a; b; Jackson 2009). The bacteria 

overwinter in infected crop residue and will continue to be problematic in following 

growing seasons if not managed properly (Schuster 1975; Jackson et al. 2007a; Jackson 

2009). This infected residue provides an inoculum source in continuous corn (Jackson et 

al. 2007b). A reduction in tillage practices may have contributed to increased disease 

incidence during recent years. Reduced tillage minimizes residue breakdown which has 

contributed to inoculum availability (Jackson et al. 2007b). Historically, disking and 

cultivation controlled available inoculum and reduced disease severity in subsequent 

years (Wysong and Doupnik 1984). Schuster (1975) found that infected leaf residue 

buried eight inches deep for 10 months did not allow bacterial survival. At different soil 

depths, bacteria are more likely to survive in stems, ears, and cobs instead of leaves 

(Schuster 1975).  

Fungicides have been beneficial in controlling many fungal plant pathogens. 

However, seed treatments and fungicides are not beneficial in controlling C. 

michiganensis subsp. nebraskensis (Schuster 1975; Agarkova et al. 2011). The use of 

partially resistant hybrids is the most effective management strategy for this pathogen 

(Jackson et al. 2007a; b; Agarkova et al. 2011; Langemeier et al. 2015) which can be 

difficult when companies do not advertise Goss’s wilt ratings (Jackson et al. 2007a; b).   
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Widespread use of management practices led to a decrease in disease incidence 

after 1974 (Vidaver et al. 1981). Disease developed sporadically with most reports 

coming from susceptible and injured popcorn, sweet corn, and field corn (Jackson et al. 

2007b). However, complete resistance to this pathogen has not been identified in any 

hybrid or inbred (Schuster 1975). Disease severity depends on plant susceptibility. 

Suparyono and Pataky (1989) found that disease development was not as severe in plants 

moderately susceptible to infection opposed to ones highly susceptible. Many hybrids are 

grown for their exceptional qualities including germination, vigor, ear shape, kernel 

development, and kernel weight (Suparyono and Pataky 1989) which contribute to yield 

potential (Pataky et al. 1988). However, these varieties may be more susceptible to C. 

michiganensis subsp. nebraskensis infection and Goss’s wilt development (Suparyono 

and Pataky 1989). Resistant hybrids often yield 10 to 15 bushels per acre less than 

susceptible hybrids (Vidaver et al. 1981). This may have increased disease incidence 

since farmers were more likely to plant susceptible hybrids with better yield potential 

(Vidaver et al. 1981). Disease severity has a direct correlation with yield potential. 

Infection of the Goss’s wilt pathogen may reduce yield by 50% in severe cases (Wysong 

and Doupnik 1984).  Plants may become infected at any time and die (Schuster 1975), 

but susceptibility based on maturity is not uniform for all varieties (Calub et al. 1974). 

Therefore, no single management strategy provides complete disease control. 

Misdiagnosis of Goss’s wilt is common, and allows the disease to spread and 

increase in severity and incidence, resulting in greater yield loss. Lesions can be mistaken 

for drought injury (Schuster 1975) since it has often been reported with early senescence 

(Jackson 2008). Goss’s wilt is often confused with Stewart’s wilt and other disease due to 
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similar symptoms (Jackson et al. 2007a; b). And, the bacteria was first mistakenly 

described as a more virulent form of the bacteria causing Stewarts’s wilt (Schuster 1975). 

Northern corn leaf blight could easily be mistaken for Goss’s wilt due to the presence of 

elliptical lesions, except the causal agent is a fungal pathogen (Robertson 2009). 

Therefore, proper disease identification is essential for effective disease management. 

Langemeier et al. (2015) conducted a multistate survey on the re-emergence of 

the Goss’s wilt pathogen in the Midwest. The objective of the survey project was to 

identify farming practices that had the greatest impact on disease development, including 

crop rotation, tillage, irrigation, nutrient management, field history, pesticide use, etc. In 

addition to some of the management practices mentioned throughout this literature 

review, pesticide use was moderately ranked among other farming practices in the 

survey, especially the use of common herbicides containing the active ingredient 

glyphosate and foliar fungicides (Langemeier et al. 2015). This correlation needs to be 

investigated in further depth to understand what may be causing an increase in Goss’s 

wilt incidence. 

Glyphosate Background and Mode of Action 

Glyphosate [(N-phosphonomethyl)glycine] is a post-emergence, broad-spectrum, 

non-selective herbicide (Kremer and Means 2009) that targets the enzyme 5-

enolpyruvylshikimate-3-phosphate synthase (EPSPS) (Steinrücken and Amrhein 1980; 

Herrmann 1995; Dill 2005). The inhibition of EPSPS starves amino acid synthesis 

(Jaworski 1972; Grossbard and Atkinson 1985; Cerdeira and Duke 2006; Tuffi Santos et 

al. 2011). Different methods were utilized when producing glyphosate resistant products, 

but the introduction of an insensitive EPSPS was eventually used (Dill 2005). Changes in 
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the amino acid sequence make it impossible for glyphosate to bind properly (Dill 2005) 

which makes this mode of action quite effective. 

It has been said that plants are more susceptible to disease with the inhibition of 

the shikimate pathway (Johal and Rahe 1988). The shikimic acid pathway is used to 

make precursors of plant defense amino acids, such as phenolic compounds (Moesta and 

Griesbach 1982; Sharon et al. 1992; Dill 2005) including coumarins, tannins, 

isoflavonoids, anthocyanins, flavonoids, phytoalexins, lignin, and salicylic acid 

(Srivastava 2001). Glyphosate chelates manganese, a cofactor for the EPSPS enzyme, 

and inhibits this pathway in plants and microorganisms (Jaworski 1972; Grossbard and 

Atkinson 1985; Cerdeira and Duke 2006). Fungi and bacteria may also possess this 

pathway and have adverse effects with glyphosate (Kishore and Shah 1988; Feng et al. 

2005). Thus, it is possible that glyphosate may affect plants, fungi, and bacteria. 

There are many different compounds used when applying glyphosate, but the 

active ingredient is essential for weed control. Glyphosate acid is the active ingredient 

that results in herbicide activity (Armstrong and Lancaster n.d.). According to Martin and 

Green (2004), there are more than 30 different glyphosate formulations which may have 

an additional surfactant or use different salts. Formulations may include ammonium, 

diammonium, dimethylammonium, isopropylamine, and potassium salts (Armstrong n.d.; 

Armstrong and Lancaster n.d.). It is not the type of salt which affects weed control, but 

rather the formulation (Armstrong n.d; Armstrong and Lancaster n.d.). There are many 

different glyphosate products on the market, and each have unique formulations. Products 

labeled as ‘fully loaded’ mean that an adjuvant has already been added (Armstrong and 
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Lancaster n.d.). This is the most common method for applying glyphosate, but some 

farmers still prefer tank mixing.  

Tank mixing and alternating application times have an increased profit return on 

corn production (Blandino et al. 2012). Tank mixing allows for effective burndown of 

existing weeds in no-till or reduced-till corn (Liebl et al. 2008). One of the disadvantages 

to using glyphosate is herbicide resistance. Fortunately, resistance can be avoided if 

properly managed. Wilson et al. (2007) reported that herbicide rotation, crop rotation, 

herbicide tank-mixing, and soil applied herbicides are recommended strategies for 

managing weed shifts for glyphosate resistance. 

Glyphosate tolerant crops are desirable for broad use applications. Since 

glyphosate is harmful to crops, it was necessary to develop plants that could withstand 

applications (Dill et al. 2008). This was accomplished by inserting a glyphosate-resistant 

clone CP4-EPSPS to allow proper function of the shikimate pathway (Dill et al. 2008). 

Most of the commercial glyphosate-resistant corn has CP4, a bacterial EPSPS which was 

isolated from a species of Agrobacterium (Dill 2005). These products have been 

continuously scrutinized over the years. Over-expression, expression of insensitive target 

enzymes, and detoxification of glyphosate were all tested before introducing these crops 

(Dill 2005).  

Broad spectrum applications were popularized with herbicides in the 1990’s 

(Wise and Mueller 2011). These applications were more economical to farmers and 

allowed them to spray herbicides when needed while reducing pre- and post-emergence 

weed control (Kremer and Means 2009). According to Monsanto (2007), glyphosate 

products are approved in more than 100 crops, and are registered in more than 130 
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countries. The adoption of glyphosate-resistant crops occurred for production efficiency, 

economic benefits, and conservation tillage efforts (Dill 2005). Since its release in 1996, 

glyphosate-resistant crops have become an important management practice for cotton 

(Gossypium spp. L.), soybeans (Glycine max L.), canola (Brassica spp. L.), corn (Dill 

2005), and sugar beets (Beta vulgaris L.) (Gianessi 2005). Glyphosate-resistant corn 

became available to farmers in 1997, and estimates have shown that approximately 50% 

of all corn in the U.S. is sprayed with glyphosate (United States Department of 

Agriculture 2007). Glyphosate-resistant corn is the second highest commodity of these 

crops grown (Dill et al. 2008).  

There are many components that affect glyphosate activity. Environment, weed 

susceptibility, rates of application (Zhou et al. 2007), herbicide delivery, deposition, 

retention, and penetration are all important characteristics for herbicide efficacy (Beckett 

et al. 1992). Absorption and active ingredient adhesion increase with a longer wetting 

period for systemic pesticides (Knoche and Bukovac 1994; Knoche et al. 2000). 

Glyphosate is a systemic herbicide, so a longer wetting period would increase herbicide 

absorption. Weeds should be sprayed when they are less than four inches tall for optimal 

herbicide efficacy (Armstrong and Lancaster n.d.). Early applications allow crops to be 

more competitive against late emerging weeds by killing early season weeds first 

(O’Sullivan and Bouw 1997). Glyphosate has no residual activity (Sprankle et al. 1975; 

Noruma and Hilton 1977), so late-emerging weeds may be problematic before harvest 

(Ferrell and Vencill 2003). It is important to use glyphosate properly for effective weed 

control. 
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Some studies have shown that glyphosate use can cause a reduction in certain 

plant disease. Tuffi Santos et al. (2011) reported that rust severity on eucalyptus 

(Eucalyptus grandis. Hill ex Maiden) plants decreased with increased glyphosate dose. A 

reduction in urediniospore formation was caused by blocking the shikimic acid pathway 

(Tuffi Santos et al. 2011). Kuklinshy-Sobral et al. (2005) reported that pre-plant 

applications of glyphosate on soybean fields can change endophytic bacterial 

communities. Other studies have shown that glyphosate applications have increased 

disease incidence.  

Glyphosate use has been considered a causal agent for the re-emergence of 

pathogens (Campbell and Altman 1977; Mekwatanakarn and Sivasithamparam 1987). 

Metabolic inhibition and destruction of plant defense mechanisms make tomatoes more 

prone to Fusarium crown and root rot after glyphosate use (Bramhall and Higgins 1988). 

Glyphosate is available to rhizosphere and soil microbes which increases activity and 

biomass (Haney et al. 2000; Wardle and Parkinson 1990). Therefore, its activity may be 

expanding beyond weed control.  

The systemic nature of glyphosate allows for the root system to be infected more 

easily. After glyphosate applications, root colonization of soil pathogens aid herbicidal 

activity (Johal and Rahe 1984), which may increase plant susceptibility (Baley et al. 

2009). This is known as a ‘glyphosate synergistic response’ and has been reported in 

Pythium species (Lévesque and Rahe 1990; Lévesque and Rahe 1992; Lévesque et al. 

2000) in addition to Fusarium species (Johal and Rahe 1984; Levésque et al. 1993). 

These compounds remain intact while being translocated throughout the plant, allowing it 

to target action sites and cause impact during translocation before degradation or 



19 
 

symptom development (Cerdeira and Duke 2006). Glyphosate can have a negative impact 

on nutrient uptake through the roots. According to Eker et al. (2006), glyphosate reduces 

uptake and translocation of soil nutrients including copper, iron, and manganese. This 

adds to its excellent weed control by reducing nutrient uptake. 

Fungicide Background 

Many factors have increased the use of foliar fungicides. Hybrids are often 

selected for yield potential instead of disease resistance (Wise and Mueller 2011), higher 

market prices in 2007 lowered yield response for application costs (Bradley and Ames 

2010), higher demands for ethanol production and industrial uses (Wise and Mueller 

2011), reports of enhanced yields, disease control, increased growth, and stress tolerance 

at VT applications have all caused an increase in fungicide applications (Elmore 2000). 

According to Wise and Mueller (2011), over four million corn hectares planted in 2011 

were sprayed with fungicides in the U.S. Some farmers are using fungicides in the 

absence of disease. “Insurance applications” of fungicides disregard integrated pest 

management (IPM) strategies (Wise and Mueller 2011). Many factors are used to 

determine if fungicide applications are necessary. Corn markets, fungicide cost, yield 

potential, hybrid susceptibility, and disease severity are all important factors (Blandino et 

al. 2012). Applications may also increase production costs (Mulrooney 2009). Hybrid 

susceptibility is important, and if environmental conditions are suitable for disease 

development, a properly timed fungicide application may be profitable (Wegulo et al. 

1997). 

Application timing, fungicide type, and foliar coverage are all important factors 

for disease control (Edwards 1992). Growth stage at application, fungicide cost, disease 
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intensity, and number or frequency of applications are important to consider (Wegulo et 

al. 1997). Studies on soybean rust have shown that fungicides are most economical when 

applied during reproductive development (Miles et al. 2003; Yang and Robertson 2005). 

Shah and Dillard (2010) reported that New York sweet corn processors benefit from a 

single fungicide application for common rust and northern corn leaf blight control if 

disease severity thresholds exceed 20% leaf coverage. Fungicide trials in Nebraska 

between 2005 and 2009 indicate that applications made between VT and R4 result in a 

positive yield increase in about 90% of fungicides tested (Wise and Mueller 2011). 

Fungicide applications with low disease severity may encourage resistance and selection 

pressure (Mulrooney 2009). In an effort to reduce fungicide resistance, it is recommended 

to limit applications, use recommended dosages, and mix modes of action (Brent 1995).  

One of the most difficult decisions is deciding when fungicides should be applied. 

Timing is crucial since grain fill lasts approximately 55-65 days (Robertson 2008). It is 

recommended to apply fungicides as soon as disease is detected (Munkvold 2006). Later 

applications of fungicides have also caused a larger decline in disease pressure compared 

to earlier applications (Blandino et al. 2012). These decisions may depend on application 

cost and diseases present. 

Strobilurin Background and Mode of Action 

Strobilurin fungicides are Quinone outside Inhibitors (QoI) and are produced from 

fungicidal derivatives including strobilurin A, oudemansin A, and myxothiazol A 

(Bartlett et al. 2002). Azoxystrobin and kresoxim-methyl were first introduced in 1992 

(Godwin et al. 1992), but it wasn’t until 1996 when these products were available for 

public use (Mavroeidi and Shaw 2006). QoI fungicides were available to corn growers in 
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the mid-2000’s (Wise and Mueller 2011). Initially discovered as fungicidal derivatives, 

companies like BASF began to synthesize analogues of these products (Leroux 1996). 

Early applications are efficacious as preventive fungicides and can be beneficial if 

applied early for curative affects (Bartlett et al. 2002). Application timing is critical for 

effective control and avoiding resistance. QoI fungicides are a concern for developing 

disease resistance from selection pressure and fungal population shifts (Walker et al. 

2009). Studies have also shown potential plant benefits in addition to disease control. 

According to Mulrooney (2009), strobilurins increase disease tolerance and improve 

plant health. Therefore, applicators may be applying them for more reasons than disease 

control. 

Strobilurins move translaminar (Godwin et al. 1992; Yepma and Gold 1999) to 

provide disease control within the plant (Wong and Wilcox 2001). Strobilurins are 

mitochondrial respiration inhibitors (Mavroeidi and Shaw 2006; Mizutani et al. 1995). 

Mitochondrial inhibition occurs in the inner membrane of the Qo site of cytochrome b in 

cytochrome bc1 complex by inhibiting electron transport at the quinol oxidation site 

preventing 5’-triphosphate formation to disrupt energy production (Ammermann et al. 

2000; Bartlett et al. 2002).  

Strobilurins have been beneficial in disease management. They have been used on 

wheat (Triticu aestivum L.) for extended flag leaf greenness to increase yield potential 

(Dimmock and Gooding 2002a) and protein content in grain (Dimmock and Gooding 

2002b). However, extensive use may lead to resistance. The Fungicide Resistance Action 

Committee (FRAC) rated QoI fungicides as being high risk when analyzing possible 

resistance development (Wise and Mueller 2011). Preventive fungicides are best applied 
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early before infection occurs to inhibit spore germination (Bartlett et al. 2002; Miles et al. 

2007).  

It has been suggested that strobilurins have plant health benefits. Modifications to 

ethylene and auxin production and delayed leaf and canopy senescence are associated 

with early fungicide applications (Grossmann and Retzlaff 1997; Grossmann et al. 1999) 

due to the inhibition of respiration and by-product formation (Grossmann and Retzlaff 

1997). Pyraclostrobin has increased leaf greenness, photosynthesis, chlorophyll content, 

water usage, and delayed senescence (Grossmann and Retzlaff 1997; Grossmann et al. 

1999). In the absence of disease, applications have increased wheat and barley (Hordeum 

vulgare L.) yield potential (Grossman and Retzlaff 1997; Grossman et al. 1999). 

Therefore, it is important to understand the properties and uses of these products for 

disease control. 

Triazole Background and Mode of Action 

Triazoles are also used to control plant pathogens. Triazoles are sterol 

demethylation inhibitors (DMI) that were introduced in the late 1960’s (Mavroeidi and 

Shaw 2006). They act on gibberellin synthesis, ethylene production, and increase 

cytokinin production by inhibiting the isoprenoid pathway in plants (Graebe 1987; Zhou 

and Leul 1998). Like strobilurins, there are many benefits to applying triazoles. 

Fungicides that inhibit ergosterol synthesis, such as triazole, imidazole, or triazolinthione, 

were beneficial when applied for Fusarium head blight and are active against DON 

contamination (Haidukowski et al. 2005; Ioos et al. 2005). Applications of chlorothalonil, 

mancozeb, or propiconazole for common rust of corn increased yield potential (Wegulo 

et al. 1998). 
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It is common for farmers to tank mix fungicides with different modes of action. 

One recommended practice in particular is to mix triazoles with strobilurins. However, 

researchers who study the effects of fungicides either mixed or separate are finding 

interesting results. Triazoles performed better than strobilurins when applied alone 

instead of being combined (Scherm et al. 2009). There are still benefits to mixing 

fungicide modes of action though. To combat fungicide resistance, alternating fungicides 

may be beneficial (Kable and Jeffery 1980). Skylakakis (1981) preferred mixing 

fungicides to slow selection pressures, as was confirmed by Mavroeidi and Shaw (2006). 

Physiological effects with triazoles and strobilurins include: increase production of 

chlorophyll, thicker tissues, delayed senescence, increased alkaloid production, enlarged 

chloroplasts, increased ratio of roots to shoots, and increased antioxidant activity (Ruske 

et al. 2003a; Ruske et al. 2004; Zhang et al. 2010). Strobilurins and triazoles delay leaf 

senescence and reduce oxidative stress (Wu and von Tiedemann 2001). Therefore, there 

are many benefits to applying a combination product.  

Less defoliation and rust infection on soybean occurs when applying a 

combination product (Miles et al. 2007). Soybean rust was controlled better with 

applications of triazole or strobilurin + triazole which increased yield (Miles et al. 2007). 

Soybean rust severity was higher in fields that used strobilurins compared to triazoles, but 

yields were also higher (Miles et al. 2007). Application timing is also important for 

fungicides with mixed modes of action and may have an impact on yield potential. 

Applications of DMI and QoI fungicides between mid-stem elongation and flowering 

increased yield potential (Blandino et al. 2012).  
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Fungicide use to delay leaf senescence of wheat can increase nitrogen uptake and 

use for grain fill (Ruske et al. 2003b). The majority of products available for corn are 

only effective for 2-3 weeks (Robertson 2008). In addition to timing, the number of 

applications are important for disease management. Disease control is best if fungicides 

are applied early, and consecutively at least three times in corn (Wegulo et al. 1998). 

Before disease is visible, the first application should be made for maximum yield 

potential (Scherm et al. 2009). Yield increases after fungicide application have been 

reported (Mulrooney 2009) which may be attributed to crop standability (Wise and 

Mueller 2011). Yield results from fungicide applications vary from study to study. 

Bradley and Ames (2010) showed that corn yield was not affected significantly from 

fungicide applications. Swoboda and Pedersen (2009) reported that addition of fungicides 

with the absence of disease did not help soybean physiology or yield potential. This may 

depend on crop or disease pressure. 

While there are many benefits to applying fungicides, specific formulations or 

tank mixes may cause crop damage. Phytotoxicity can be related to temperature during 

applications (Robertson 2008). If plants are severely damaged, it can decrease yield 

potential. Phytotoxicity, absence of disease, or low disease incidence can result in profit 

loss (Wegulo et al. 1997). Also, since the plant’s main objective is to reproduce, it will 

utilize its own resources to complete grain fill. Cannibalism is possible if fungal infection 

occurs during grain fill, which can reduce stalk strength (Mulrooney 2009). A loss in 

stalk strength decreases standability, which could reduce yield potential. Therefore, it is 

important to consider all possible outcomes before making a fungicide application.  
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Pesticide Spray Additives Background and Efficacy 

 Spray additives are often added to pesticides to increase their efficacy. These 

additives often include different kinds of adjuvants. Adjuvants are used with pesticides to 

increase efficacy or operation (Khan et al. 2007). They allow chemicals to remain in 

solution, and consequently aid in penetration and absorption (Xu et al. 2010b). Increased 

pesticide uptake is correlated with increased droplet spread (Xu et al. 2010b), which 

enhances rainfastness and translocation (Shaner et al. 2006). Activator adjuvants include 

surfactants, nitrogen fertilizers, and oils (Xu et al. 2010b). Efficacy can be influenced by 

the surfactant concentration (Xu et al. 2010b) and type (Wang and Liu 2007). Adjuvants 

may increase efficacy while reducing pesticide rates, which is desirable from an 

environmental and economic standpoint (Harker 1995; Xu et al. 2010a).  

Adjuvants are used to modify physical properties or increase spray performance 

(Hazen 2000; Thacker 2001). They can either be special-purpose or activator adjuvants 

(Xu et al. 2010b) and are classified by their class, function, or affect (Spanoghe et al. 

2007). Examples include buffers, deposition aids, stabilizers, drift retardants, and 

defoaming agents (Xu et al. 2010b). These are special-purpose adjuvants that are used to 

modify the spray’s physical characteristics (Hazen 2000). Functional adjuvants include 

stabilizers, buffers, spreaders, antifoaming agents, defoaming agents, stickers, or wetting 

agents (Hazen 2000; Woznica 2001; Heinrichs 2002). These additives are also classified 

by application and are described as utility modifiers, spray modifiers, or activators 

(Spanoghe et al. 2007). There are many benefits to using spray additives. They can lower 

surface tension, increase spray retention time, and adjust solution pH (Stein and Storey 

1986; Stock and Holloway 1993; Liu 2004; Singh and Singh 2008). Droplet size and 
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characteristics may be altered by spray adjuvants. Droplet size is important for spray 

mixtures, and its spread may increase with petroleum oils, water-insoluble emulfisiers, 

crop oils, and surfactants (Spanoghe et al. 2007). Organosilicones are used to lower 

droplet contact angle and surface tension to promote water adhesion (Sharma and Singh 

2000), and increase droplet spread (Monaco et al. 2002).  

Surfactants increase wetting, spreading, dispersal, and absorption while 

decreasing phototransformation (Penner 2000). Gimenes et al. (2013) reported that 

wettability was highest with methylated seed oil (MSO), followed by crop oil concentrate 

(COC), nonionic surfactant (NIS), and oil surfactant blend (OSB). 

Surfactants are amphiphilic molecules with a hydrophilic and hydrophobic end 

(Rodriguez-Cruz et al. 2006). A lipophilic surfactant has a low hydrophilic-lipophilic 

balance (HLB) number, and a hydrophilic surfactant has a high HLB number (Griffin 

1949; 1954). Surfactants with low HLB numbers are emulsifiers, while ones with higher 

values are detergents (Griffin 1949). Each adjuvant has different characteristics that make 

them desirable to use. 

Surfactants can be anionic, organosilicones, nonionic, silicones, or cationic (Xu et 

al. 2010b). COC products are paraffinic, non-phytotoxic oils with 15 to 20% surfactant 

(Bunting et al. 2004). MSO products are esterified fatty acids extracted from seed oils 

(Miller and Westra 1996). NIS products are commonly used to reduce surface tension of 

a spray solution (Bunting et al. 2004). Adjuvant use is driven from their desired effect. 

Adjuvants are added to increase diffusion through the plant cuticle, and may have 

sticking, wetting, or spreading capabilities (Noack et al. 2011). The desired effect 
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depends on pesticide type and plant species. Wetted areas on waxy leaves were improved 

with adjuvants compared to droplets without additives (Xu et al. 2010b). Oil-based 

adjuvants aid in absorption and penetration through thick, waxy cuticles (Xu et al. 

2010b). MSO and NIS adjuvants are more effective in droplet spread, which decreased 

evaporation and increased absorption (Xu et al. 2010b). Oil-based adjuvants, including 

crop oils, seed oil concentrates, and crop oil concentrates are used for penetration through 

waxy cuticles (Xu et al. 2010b).  

Surfactants may be added for modifying the plant cuticle, or preparing an 

infection court (Weaver et al. 2009). Surfactants, oils, and adjuvants work as solvents to 

dissolve waxy plant cuticles that act as hydrophobic barriers (Gimenes et al. 2013). 

Marcell and Beattie (2002) reported that surface wax directly affects bacterial 

colonization in a species-dependent manner. The cuticle is thinnest over the stomatal 

pores (Currier and Dybing 1959) which may allow better absorption of foliar pesticides. 

Penetration is enhanced with the cuticle removed (Jenks and Ashworth 1999; Kirkwood 

1999). No single adjuvant, spray volume, or rate will increase spread, delay drying, or 

increase cuticle permeability (Noack et al. 2011). This explains why pesticide 

formulations typically contain multiple adjuvants.  

Different methods can be used to apply pesticides, which may include tank 

mixing or formulated solutions. Formulated pesticides ensure proper adjuvant volumes 

compared to manual additions (Mulqueen 1990). Even though formulated pesticides are 

commonly used, some need to be diluted for proper application. Adjuvants must be added 

in a particular order to a tank mix. Careless tank mixing leads to crop injury, reduced 
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efficacy, and possible off-target effects (Campbell 1978; Hancock et al. 1984; Grichar 

and Boswell 1987).  

Herbicide Activity with Adjuvants 

Water is the most common carrier for pesticide applications. However, carrier 

ions may interfere with pesticide efficacy. Hard water ions such as calcium, magnesium, 

and other cations interact with glyphosate molecules forming complexes the plant cannot 

absorb (Ellis et al. 2002). Additives can be used with tank mixing to reduce the effect of 

hard water ions. AMS is an important additive for its ability to overcome antagonistic 

cations such as calcium, sodium, potassium, and magnesium (Nalewaja and Matysiak 

1993a; b; Nalewaja et al. 1995).  

Positively charged salts interact with negatively charged glyphosate molecules 

forming antagonistic glyphosate-salt complexes (Nalewaja and Matysiak 1991; Thelen et 

al. 1995). Addition of AMS reduces antagonistic ion activity interacting with glyphosate 

molecules (Thelen et al. 1995). For example, AMS binds with calcium ions to form 

calcium—sulfate while the ammonium combines with glyphosate to form a glyphosate—

ammonium salt that can be absorbed by the plant (Thelen et al. 1995). Glyphosate—

ammonium complexes are absorbed more readily compared to glyphosate—calcium or 

glyphosate—sodium complexes (Nalewaja et al. 1992). This adjuvant is beneficial since 

a lot of the U.S. water probably has hard water ions.  

Adjuvants are typically used when making glyphosate applications. Surfactants 

allow pesticides to permeate the cuticle and move into the apoplast (Riechers et al. 1994). 

Modified epidermal waxes could aid in herbicide absorption (McWhorter and Barrentine 
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1988; Shaner et al. 2006). Some studies have shown that adjuvants have not increased 

pesticide efficacy. Deen et al. (2006) found that neither crop tolerance nor weed control 

were affected from tank mixing glyphosate with adjuvants. This could depend on many 

variables though. 

Adjuvants either aid in spreading and wetting of herbicides, or penetration 

through cuticles, waxes, or membranes (Harker 1995). Adjuvants used to reduce surface 

tension of droplets and increase retention and spread of herbicides include surfactants, 

crop oils, and ammonium fertilizers (Sanyal et al. 2006). Surfactants are necessary for 

optimal absorption and activity (Sanyal et al. 2008) and they are ideal for avoiding 

herbicide desorption (Rodriguez-Cruz et al. 2006). Surfactant type may affect herbicide 

activity.  

Pesticide enhancement with a surfactant depends on formulation and active 

ingredient (Sanyal et al. 2008). Some glyphosate products may not have additional 

surfactants, but one may be needed to increase product efficacy (Armstrong and 

Lancaster n.d.). The three most common adjuvants for agricultural purposes are NIS, 

MSO, and COC (Bunting et al. 2004). Other adjuvants like organosilicons may also be 

used (Vanhaecke 2000). NIS products are typically polyethoxylated aliphatic oils, but 

they may have fatty acids which aid in herbicide penetration (Bunting et al. 2004). 

Nonionic surfactants have linear or non-phenyl alcohols with or without fatty acids that 

are both lipophilic and hydrophilic, and can interact with similar herbicides (Monaco et 

al. 2002). These surfactants are recommended when applying glyphosate, whereas COCs 

and MSOs are not, due to a lack in weed control (Armstrong and Lancaster n.d.). Crop oil 

concentrates are used with clethodim, atrazine, sethoxydim, quizalofop, bentazon, 
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fluazifop, and fenoxaprop (Monaco et al. 2002). COCs delay herbicide crystallization, 

enhance absorption, and reduce volatile and photodegredative losses (Monaco et al. 

2002).  

Adjuvants are added to increase herbicide efficacy (Khan et al. 2007), including 

glyphosate (Leaper and Holloway 2000). Efficacy is related to adjuvant use, 

concentration, comparison, composition, and weed species controlled (Chen and Penner 

1985), which may aid in absorption (Weed Science Society of America 1982), 

penetration, and translocation (Weed Science Society of America 1982). Specific 

adjuvants may have an effect on herbicide action. Knezevic et al. (2010) reported that 

weed control was highly influenced by adjuvant type and application timing. It is possible 

that there may be an interaction occurring between specific herbicides and surfactants 

which directly affect weed species (Molin and Hirase 2005). Surfactants not only 

decrease surface tension of the solution, but they allow permeability into the cuticle, 

plasma membrane, or both, which increases absorption and potential phytotoxicity 

(Riechers et al. 1994).  

Certain types of surfactants may perform differently than others when applying 

herbicides. The result from increased contact between the solution and plant surface may 

disrupt the cuticle. Surfactants increase penetration and movement of glyphosate by 

disrupting the cuticle and epidermal cells (Kirkwood et al. 2000). Once contact has been 

made, not all surfactants have the same spreading capabilities. Xu et al. (2010b) reported 

that surfactant adjuvants did not have as much uniformity in spread compared to oil-

based adjuvants.  
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Adjuvant combinations may have a different effect on herbicide activity. Zhou et 

al. (2007) found that the addition of MSO and AMS to glyphosate did not aid in 

velvetleaf control compared to AMS alone, but that AMS with NIS did control stressed 

velvetleaf. Addition of MSO and petroleum oil concentrate to glyphosate did not improve 

efficacy when used for velvetleaf control (Zhou et al. 2007). Liu (2004) demonstrated 

that glyphosate mixed with AMS and NIS improved uptake. There are multiple 

components to consider in an herbicide solution for effective control. 

In some cases, adjuvants are not beneficial for herbicide activity. Nurse et al. 

(2008) found that AMS added to glyphosate did not affect the control of redroot pigweed 

(Amaranthus retroflexus L.) or common lambsquarters (Chenopodium album L.). The 

environment could also directly affect herbicide activity. A study on quackgrass 

(Elytrigia repens L.) by de Ruiter et al. (1996) demonstrated that field plots sprayed with 

glyphosate and AMS had less control compared to plants sprayed in the greenhouse. 

Herbicide rate may cause an increase or decrease in herbicide activity. The effect of AMS 

on plants may decrease as glyphosate rate increases (de Ruiter et al. 1996).  

While there are many benefits with adjuvants, damage of non-target species can 

occur. Toxic effects cannot be placed solely on the active ingredient, carrier, or the 

adjuvants for many herbicides (Weaver et al. 2009). Phytotoxicity may be species-

specific and depend on adjuvant use (Khan et al. 2007). Feng et al. (1998) reported that 

tissue necrosis was visible at the application site 24 hours after treatment due to 

surfactant use. Pesticide damage can lead to decreased yield potential. 

Not all adjuvants cause the same amount of damage. Surfactants and AMS 

increase phytotoxicity with glyphosate application while oil adjuvants are antagonistic 
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(Nalewaja and Matysiak 1993a; Leaper and Holloway 2000). According to Harker 

(1995), AMS can increase herbicide phytotoxicity. In environmental chambers, 

phytotoxicity caused by sethoxydim and AMS marginally increased (Smith and Born 

1992) whereas sethoxydim caused more phytotoxicity under greenhouse conditions 

(Hazen and Krebs 1992). Wyrill and Burnside (1977), in addition to Riechers (1992), 

reported that cationic surfactants are more effective in increasing phytotoxicity compared 

to nonionic surfactants.  

Specific weed species are affected more than others when applying pesticides. 

Leaf damage and glyphosate efficacy increased with ethoxylated tallow amine on 

velvetleaf (Abutilon theophrasti Medic.) (Feng et al. 1998; Ryerse et al. 2004) suggesting 

that the cuticle and epidermal layer may have been damaged (Shaner et al. 2006). 

Damage has also been reported on corn plants when herbicides are used with adjuvants. 

Soltani et al. (2009) reported that saflufenacil applied post-emergence to two- to three-

leaf corn with adjuvants caused injury and yield loss. However, Nurse et al. (2008) found 

that alone or with AMS, glyphosate did not cause visible damage or injury to corn plants 

(Nurse et al. 2008). When applications of formasulfuron with MSO were made, plant 

injury was more apparent, which indicates that adjuvant selection had more impact on 

corn production than herbicide rate (Bunting et al. 2004). It is crucial to understand 

adverse effects that can happen before making these applications.  

Fungicide Activity with Adjuvants 

Fungicides enhanced with adjuvants have been beneficial in controlling plant 

pathogens. Adjuvants added to pyraclostrobin may provide better control when disease is 

present (Khan et al. 2000). Adjuvants added to pyraclostrobin had better disease control 



33 
 

on sugar beets than applications of pyraclostrobin without adjuvants (Khan et al. 2007). 

Some adjuvants have adverse effects on fungal growth (Steiner and Watson 1965; Lacy 

1974) including cationic surfactants that inhibit fungal and bacterial growth (Grant et al. 

1990). Below et al. (2009) described that adjuvants added to strobilurins may affect 

hollow husk symptoms in corn from its impact on ethylene production. Adjuvants may 

cause a negative impact on plant growth and yield potential too. Khan et al. (2007) found 

that increased adjuvant rates caused higher phytotoxicity on sugar beets than 

pyraclostrobin applied alone. This caused a reduction in yield potential in some instances.  

Blunt ear syndrome in corn had been reported from post-emergence herbicide, 

insecticide, fungicide, or adjuvant use (Nielsen 2007). Blunt ear syndrome may be caused 

by chemical or environmental stresses present on corn plants between V7 through V15 

(Nielsen 1996), and is different from kernel tip back (Thomison and Geyer 2007). 

Another name for blunt ear syndrome is arrested ear development. More recently, 

Schmitz et al. (2011) determined that arrested ear development is caused by alkylphenol 

ethoxylate, a chemical component found in many NIS formulations. This affects yield 

potential when applied between vegetative stages V10 and V14, when ear length is being 

determined. These negative impacts have an undesirable effect on yield potential.  

Summary of Literature Review 

Historically, corn has been grown throughout the world and is produced heavily 

in the United States. Since its initial discovery in Nebraska, C. michiganensis subsp. 

nebraskensis spread to other corn growing areas. The pathogen often requires a wound to 

initiate infection, but this might not always be necessary as the bacteria can overwinter in 

infected residue, live epiphytically, and be introduced through natural openings. Lesions 
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develop after infection occurs, characterized with a shiny bacterial exudate and 

discontinuous water-soaked spots. Symptoms can either be localized lesions, leaf blight, 

or systemic wilt. Research has been conducted to understand the bacteria’s biology, 

ecology, and re-emergence. A multistate survey on the pathogen’s re-emergence showed 

a correlation between pesticide use, specifically fungicides and herbicides, and disease 

incidence.  

Glyphosate was created as a broad spectrum herbicide to ease chemical 

applications. This product has been effective in controlling undesirable weed species 

while having minimal effects on crops. Other effects have been reported including 

disease impacts from plant pathogens, increasing glyphosate resistance in weeds, and 

phytotoxicity from glyphosate misuse or adjuvant use.  

Farmers did not rely on fungicides until the 2000’s because they were neither 

profitable nor affordable. An increase in demand for corn products caused an increase in 

fungicide use. Strobilurins and triazoles are two commonly used fungicide classes. These 

fungicides have been successful in controlling fungal pathogens and, in some cases, 

providing plant benefits. However, some studies have reported fungal resistance, 

phytotoxicity, and yield decreases caused by application timing, rate, fungicide, and 

adjuvant use.  

Questions remain about this pathogen and more have been raised from results 

obtained by a Langemeier et al. (2015) survey, conducted in 2011. The purpose of this 

research is to observe Goss’s wilt development in the field and greenhouse while 

studying C. michiganensis subsp. nebraskensis in the lab to fully understand if disease is 

correlated to spray adjuvant use. 
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Abstract 

 A field study was conducted in 2015 to investigate the effect of spray adjuvants 

used in corn (Zea mays L.) production on disease severity of Goss’s bacterial wilt and 

leaf blight, caused by Clavibacter michiganensis subsp. nebraskensis. Three field 

locations in southwest Nebraska were used that had a history of this disease; two in 

Madrid and one in Gothenburg. Infected residue served as a source of inoculum. One 

susceptible hybrid with a 111 day relative maturity (RM) was used to test the effect of 

spray adjuvants on Goss’s bacterial wilt and leaf blight development. These plots were 

surrounded by a resistant hybrid (115 RM) to reduce disease spread to neighboring fields 

at all three locations. Plots were sprayed with one of five spray adjuvants, one fungicide 

(azoxystrobin), one herbicide (glyphosate), one bactericide (copper hydroxide), or a 

negative control (water) at V6 growth stage. Separate plots were sprayed at R1 with one 

of two spray adjuvants, three different fungicides (azoxystrobin, propiconazole, or 

azoxystrobin + propiconazole), copper hydroxide, or a negative control. Visual estimates 

of disease severity, systemically infected plants, and yield data were all collected. Results 

for the V6 and R1 applications showed that there were no differences in disease severity 

among adjuvant treatments at all three locations for disease severity over time. Systemic 

infection results at Gothenburg V6 applications neared significance for nonionic 

surfactant (NIS) treatment (P = 0.1151), but this was the only treatment at any of the 

spray times or locations to near significance. Yield data showed no treatment effect from 

adjuvant use.  These results are important because they disagree with the initial 

hypothesis that spray adjuvants increase disease severity. Since spray adjuvants are 

widely used in corn production, further research is needed to determine if environmental 

conditions were the only contributing factor to disease severity in this study.  
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Introduction 

Goss’s bacterial wilt and leaf blight, which is caused by Clavibacter 

michiganensis subsp. nebraskensis, is an economically important disease of corn (Zea 

mays L.) (Vidaver and Mandel 1974). As the name suggests, there are two phases 

commonly observed with this diease. Typical symptoms of Goss’s leaf blight include 

chlorosis, necrosis, water-soaked margins, shiny bacterial exudate (Jackson et al. 2007a; 

b), and discontinuous water-soaked spots (Wysong and Doupnik 1984; Wysong et al. 

1981). Less common symptoms of the systemic phase of infection include stunting 

(Calub et al. 1974), lack of ear production, plugged vascular tissue, and even death 

(Claflin 1999).  

C. michiganensis subsp. nebraskensis can be spread by seed (Biddle 1990; Biddle 

et al. 1990; Shepherd 1999), rain splash from infected residue, or leaf rubbing (Wysong 

et al. 1981). The pathogen also has the capability of living epiphytically without initiating 

infection (Schuster et al. 1983; Smidt and Vidaver 1986; Marcell and Beattie 2002). 

Therefore, the pathogen may not be evident until symptoms develop.  

It was first reported in Dawson County, Nebraska in 1969 (Wysong et al. 1973). 

By 1975, the disease was confirmed in neighboring states, infecting corn growing areas 

(Vidaver et al. 1981). The pathogen was present in 54 counties in Nebraska and five of 

the six bordering states including Iowa, Kansas, Colorado, South Dakota, and Wyoming 

in addition to Illinois and Wisconsin (Jackson et al. 2007a).  

During the early 1980’s, farmers began implementing tillage to promote 

degradation of crop debris, crop rotation to non-hosts, and selecting partially resistant 
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hybrids to manage C. michiganensis subsp. nebraskensis. These methods were effective 

for the next 20 years as disease developed sporadically in susceptible popcorn or 

sweetcorn fields (Jackson et al. 2007b). During the early 2000’s, farming practices 

changed to support the increased need of corn production for ethanol and the growing 

population (Wise and Mueller 2011). Less crop rotation was implemented, and the use of 

no-tillage for soil and water conservation was more popular (Jackson et al. 2007b). 

Farmers started using high yielding varieties that did not contain the resistance package 

against the bacterial pathogen that causes Goss’s wilt (Jackson et al. 2007b). These 

factors probably allowed for the re-emergence of the disease in the Midwest.  

While we understand some of the farming practices that were being used before 

the pathogen re-emerged, we are uncertain what other practices were being implemented 

that allowed for its rapid spread to other corn producing states and provinces. A Midwest, 

multistate survey by Langemeier et al. (2015) was conducted in 2011 to assess production 

agriculture practices that might contribute to the re-emergence of the pathogen. Results 

from the survey mentioned hybrid selection, tillage, rotation, planting density, pesticide 

use, etc. The use of agricultural pesticides was interesting because its use has increased 

since the late 1990’s to early 2000’s; about the time when C. michiganensis subsp. 

nebraskensis re-emerged. It may be possible that the use of these pesticides or additives, 

including adjuvants, may be contributing to disease development. 

Many pesticides are used in agricultural production. The introduction of 

genetically modified crops has allowed for easier pesticide use without detrimental crop 

damage. For example, Roundup Ready® corn was introduced in 1997 and resulted in 

increased production efficiency, improved weed control, conservation tillage, and 
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economic benefits (Dill 2005; Gianessi 2005). The adoption of glyphosate resistant crops 

has saved U.S. growers billions of dollars while reducing herbicide use by millions of 

pounds every year (Gianessi 2005).  

Fungicides have also impacted corn production since the early 2000’s. The active 

ingredients of most foliar fungicides currently in use in corn come from two fungicide 

classes, the strobilurins and triazoles. The increased need for corn production during the 

early 2000’s and profitable corn prices made it appealing for farmers to spray fungicides 

(Wise and Mueller 2011).  

When pesticides are applied, an adjuvant is typically added to increase pesticide 

efficacy (Khan et al. 2007). Some of the more common adjuvants used in corn production 

include nonionic surfactant (NIS), ammonium sulfate (AMS), crop oil concentrate 

(COC), high surfactant oil concentrate (HSOC), and methylated seed oil (MSO). Each 

adjuvant has different properties that make them desirable for use with specific pesticides 

or applications. For example, oils are typically used to allow pesticide penetration 

through cuticle layers (Xu et al. 2010). Thus, it is possible that bacteria living 

epiphytically may gain easier access when oil-based adjuvants damage the cuticle layer. 

Surfactants like NIS are added to reduce surface tension of the spray mix for better 

coverage (Bunting et al. 2004). This reduction in surface tension could facilitate entry of 

C. michiganensis subsp. nebraskensis into the plant if epiphytic populations are washed 

towards stomata through which they could enter (Mallowa et al. 2012; Mallowa et al. 

2014; Mallowa et al. 2015). Another additive that is more commonly used with 

herbicides is AMS. It reduces antagonistic ion activity interacting with glyphosate 
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molecules (Thelen et al. 1995) and consequently allows for better uptake and weed 

control. 

However, there have also been negative effects associated with adjuvants. For 

example, Schmitz et al. (2011) determined that arrested ear development is caused by 

alkylphenol ethoxylate, a chemical component found in many NIS formulations. Crop 

damage, such as phytotoxicity, may also occur with the use of spray adjuvants (Knezevic 

et al. 2010). 

 The objectives of this experiment was to evaluate the affect of spray adjuvants in 

corn production on Goss’s wilt severity under field conditions.  

Methods and Materials 

Field description, management, and preparation. A field experiment was 

conducted at three location: two were located in southwest Nebraska near Madrid, and 

one was located at the Monsanto Water Utilization Learning Center in Gothenburg. The 

two location in Madrid, NE will be referred to as Madrid North and Madrid South, and 

the location in Gothenburg, NE will be referred to as Gothenburg for the remainder of 

this paper. C. michiganensis subsp. nebraskensis infected residue from the previous 

growing season was used as a source of inoculum at all three locations. Each field was 

irrigated.  

A Goss’s wilt susceptible hybrid with a 111 day relative maturity (RM) was bulk 

planted at Madrid North and Madrid South on 30 April 2015 at 79,100 plants ha-1. A 

resistant hybrid with a 115 RM was planted as a boarder around the susceptible plots to 

reduce the spread of the pathogen to surrounding fields. Previous crop rotation at Madrid 
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North (40.889046°N, 101.513116°W) was corn-on-corn for many years and irrigation 

was provided via a Reinke center pivot irrigation system (Reinke Manufacturing 

Company, Inc., Deshler, NE) in addition to natural rainfall. The field was irrigated 12 

times over the course of the growing season by applying 2.54 cm each date. Strip tillage 

was also implemented for residue management. Additional field preparation for fertilizer 

included 319 kg of 3200 nitrogen with no starter fertilizer. Previous crop rotation at 

Madrid South (40.799722°N, 101.622884°W) was corn-on-corn and the field was 

irrigated via a Reinke center pivot irrigation system (Reinke Manufacturing Company, 

Inc., Deshler, NE) in addition to natural rainfall. The field was watered 10 times over the 

course of the growing season by applying 2.54 cm each date. Field preparation included 

chisel plowing and additional fertilizer included 79 kg of actual nitrogen, 49 kg of 10-34-

0 pre-plant ammonia, and 48 kg of 32-0-0 nitrogen fertilizer. No starter fertilizer was 

used at planting. Pre-emergence herbicides were applied to both locations on 19 May 

2015 with 1.88 kg ha-1 S-metolachlor, 0.19 kg ha-1 mesotrione, and 0.71 kg ha-1 atrazine 

(Lumax® EZ).  

The same field layout was used at the Monsanto Water Utilization Learning 

Center in Gothenburg (40.882556°N, 100.149728°W) and was planted on 13 May 2015 

with a population density of 84,000 plants ha-1. Previous crop rotation was corn-on-corn. 

This location received 12.7 cm of water in addition to natural rainfall during the growing 

season. Water was applied via a T-L lateral irrigation system (T-L Irrigation Co., 

Hastings, NE) on five dates, applying 2.54 cm of water each time. Field preparation 

included fertilizer applications of 90.72 kg nitrogen prior to strip tillage, then added 18.14 

kg phosphorus and 9.07 kg sulfur by strip tillage on 2 May 2015. Pre-plant herbicides 
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were applied with 0.11 kg ha-1 mesotrione (Callisto®), 1.12 kg ha-1 atrazine (Atrazine® 

4L), 2.45 kg ha-1 acetochlor (Harness®), and 1.12 kg ha-1 glyphosate (Roundup®). 

Experimental design and spray applications. Experimental design was a 

repeated measure with treatments arranged in randomized complete blocks with eight 

replications per treatment. Three separate locations were used to replicate the field trial in 

space. Plot dimensions were cut to 3 m wide and 9 m long at Madrid North and Madrid 

South. Plot dimensions at Gothenburg were 3 m wide and 6 m long. Differences in plot 

size were due to planting equipment at the Monsanto Learning Center. Plots were four 

row plots with 76.2 cm row spacing. All four rows were sprayed, but data was only 

collected from the middle two rows. The V6 treatment list can be found in Table 1, and 

the R1 treatment list can be found in Table 2. All V6 treatments were on one half of the 

field and all R1 treatments were located at the other end of the field. Treatments were 

applied at maximum label rate. Copper hydroxide was added as a treatment due to 

differing results from previous studies on Goss’s wilt control and product efficacy (Korus 

et al. 2010; Oser et al. 2013; Wise et al. 2014; Mehl et al. 2015). Commonly used 

pesticdes will also be used for observational purposes. 

All V6 applications were made with a CO2-pressurized backpack sprayer with a 

six nozzle TeeJet® AIXR110025 (Spraying Systems Co., Wheaton, IL) boom spaced 50.8 

cm apart at 94 L ha-1, 0.016 L sec-1, and 159 kPa. All R1 applications were made with a 

CO2-pressurized backpack sprayer with a six nozzle TeeJet® AIXR110015 (Spraying 

Systems Co., Wheaton, IL) boom spaced 50.8 cm apart at 94 L ha-1, 0.016 L sec-1, and 

159 kPa.  
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Spray applications for V6 and R1 were made at Madrid North on 17 June 2015, 

and 21 July 2015 respectively. Applications for V6 and R1 were made at Madrid South 

on 17 June 2015 and 22 July 2015. Both applications made at Gothenburg were done on 

18 June 2015 and 23 July 2015 for V6 and R1, respectively.  

Disease assessment, data collection, and statistical analysis. Disease severity 

was measured on a continuous scale (0 to 100%) as a percentage of leaf damage per plot 

(Pataky et al. 2011). Disease data were collected 14, 28, and 42 days after spraying at 

each location. The number of systemically infected plants was also recorded at each 

assessment time. This was done with visual assessment by identifying key symptoms that 

indicate systemic infection described earlier. After visually calibrating for systemically 

infected plants, data was collected for statistical analysis. Yield data was collected at each 

location by harvesting the middle two rows of each plot. Harvest occurred on 9 

November 2015 at Madrid North, 9 November 2015 at Madrid South, and 16 November 

2015 at Gothenburg.  

Disease severity and the number of systemically infected plants were analyzed 

using area under the disease progress curve (AUDPC) to determine differences between 

treatments over the growing period. Mean values were separated using a one-way 

analysis of variance (ANOVA) with PROC GLIMMIX. Yield was subjected to a one-

way analysis of variance (ANOVA) using PROC GLIMMIX to determine if yield was 

affected by spray adjuvant use. Blocks were treated as random and disease severity 

collected at different rating times was used for the repeated measure. Statistical analyses 

were tested at α = 0.10 and were completed using SAS 9.4 (SAS Institute Inc., Cary, 

NC).   
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Results 

Goss’s wilt developed at all locations and disease severity increased throughout 

the growing season after infection occurred. AUDPC results from Madrid North showed 

that there were no differences between treatments for disease severity over the growing 

season for V6 application times (P = 0.2560; Table 3; Figure 1). There were also no 

treatment differences for the number of systemically infected plants (P = 0.2404). Results 

from the R1 applications showed that there was a signficiant treatment effect over time 

for disease severity (P = 0.0831). The COMB treatment had the greatest disease severity 

(133.00), but none of the adjuvants tested had significant amount of disease present 

(Table 4; Figure 2). There were no differences between treatments over the growing 

season for plants that became systemically infected (P = 0.7122).   

AUDPC results from Madrid South showed that there were no differences 

between treatment for disease severity over the growing season for V6 application times 

(P = 0.9218; Table 5; Figure 3). There were also no treatment differences for the number 

of systemically infected plants (P = 0.9781). For the R1 application times at Madrid 

South, there were no differences between treatment for disease severity over the growing 

season (P = 0.2506; Table 6; Figure 4). There were also no treatment differences for the 

number of systemically infected plants (P = 0.2395). 

Field results using AUDPC at the Gothenburg location showed that there were no 

differences between treatment for disease severity over the growing season for V6 

application times (P = 0.2389; Table 7; Figure 5). Results from the systemic infection 

data neared significance (P = 0.1551) with NIS treated plots having the highest number 

of systemically infected plants throughout the growing season (26.25; Table 8; Figure 6). 
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For the R1 application times at Gothenburg, there were no differences between treatment 

for disease severity over the growing season (P = 0.5435; Table 9; Figure 7). There were 

also no treatment differences for the number of systemically infected plants (P = 0.5971). 

 Yield data collected from Madrid North showed that there were no differences 

between treatments for yield potential for V6 (P = 0.9242) and R1 (P = 0.2195), 

respectively . Madrid South also showed no significant differences between treatments 

applied at either V6 (P = 0.5567) or R1 (P = 0.1228) application time. Finally, yield data 

at Gothenburg showed that there were no significant differences between treatments for 

either V6 (P = 0.6844) or R1 (P = 0.4770) application time.  

Discussion  

 No treatment effects were reported with the use of spray adjuvants for increasing 

disease severity at either application time. Once the bacteria entered the plant, they were 

able to initiate infection. The plants may have been more susceptible to bacterial invasion 

at V6 compared to R1 application times. Vegetative characteristics of younger, less 

mature plants include short, narrow leaves, no trichomes or bulliform cells, and a thin 

cuticle layer with an epicuticular wax (Abedon et al. 1996). Characteristics of an older, 

more mature corn plant include long, wide leaves, bulliform cells, trichomes, and a thick 

cuticle with no epicuticular wax (Abedon et al. 1996). Therefore, even though the V6 

plants were grown in a natural environment and exposed to environmental conditions, 

they still may not have been developed enough to avoid bacterial infection when they 

were less mature. 

Similarities between treatment results indicate that spray adjuvants did not cause 

differences in the bacteria’s capability to infect the plants based on which adjuvant was 
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applied. Adjvuants also did not decrease bacterial virulence once inside the plant. There 

were no differences between adjuvant treatments tested for systemically infected plants at 

V6 applications, but the number of systemically infected plants increased during the 

growing season at all three locations. This is understandable because Madrid North had 

sandy soil texture that would allow for microabrasions and potential entry of bacteria 

(Rocheford et al. 1985). Madrid North and South both experienced wind and hail damage 

during the growing season. Early hail damage, in addition to high winds, may have 

contributed to disease development (Rocheford et al. 1985; Claflin 1999). Wind damage 

was apparent at the Madrid South location, but the main concern at this field was hail 

damage shortly before V6 applications. When an epiphytic population has become 

established, wounding enables bacterial entry (Wysong et al. 1981; Rocheford et al. 

1985; Claflin 1999). Hail damage especially allows for bacterial entry and the start of 

infection (Jackson et al. 2007a; b). While there was no severe hail damage reported in 

2015, Gothenburg also had an increase of infection over time for both disease severity 

and systemically infected plants per plot. These results are understandable since the 

adjuvants did not impact bacterial virulence once inside the plant. 

There were some differences in disease severity present between field locations 

that may have allowed for more systemic infection at one location compared to another. 

The Gothenburg field site was used during the previous growing season and was spray 

inoculated with C. michiganensis subsp. nebraskensis inoculum. The plants were not 

wounded during inoculation to establish an epiphytic population. However, this field 

sustained significant hail damage at least three times in 2014. Heavy disease severity 

caused early senescence. The 2015 field preparation only included strip tillage, which did 
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not allow for sufficient residue degradation. However, this residue was desirable to 

establish an epiphytic population by planting corn into this infected residue. This agrees 

with Eggenberger et al. (2015), which stated that point sources of infected residue on the 

soil surface may establish an epiphytic population and spread of the pathogen.   

The use of a susceptible hybrid and available inoculum from the previous growing 

season allowed for optimal infection to develop. Studies have shown that susceptible 

varieties harbor higher epiphytic populations than resistant ones (Schuster et al. 1983). 

Hybrids that are more susceptible to C. michiganensis subsp. nebraskensis infection 

(Suparyono and Pataky 1989) may often yield 10 to 15 bushels per acre more than 

resistant hybrids (Vidaver et al. 1981), which is why farmers often plant them. High 

inoculum density and potential environmental factors would allow for more systemic 

infection to occur at Gothenburg compared to the other two locations. Even though 

significant hail damage was not reported, this field may have experienced wind damage, 

which would allow for bacterial entry (Rocheford et al. 1985; Claflin 1999).  

Madrid North and Madrid South had C. michiganensis subsp. nebraskensis the 

previous growing season, however, it is undetermined how severe infection was in 2014. 

Madrid North has a sandy soil texture with a history of planting susceptible hybrids for 

many years. Inoculum build up is also substantial at this location because only strip 

tillage is used for soil conservation purposes. Eggenberger et al. (2015) stated that 

gradual buildup of inoculum with minimal tillage, continuous corn, and using susceptible 

hybrids allow for an increase in disease incidence. It is difficult to make assumptions 

from these field results at Madrid North because hail damage was sustained during the 

2015 growing season. Hail damage may have contributed to the lack of differences 
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between treatments at Madrid North. Madrid South had more tillage for residue 

management which may have contributed to less disease severity. Disking and cultivation 

often control inoculum levels (Wysong and Doupnik 1984) because the bacteria are 

probably not able to live in shredded, buried residue. Mehl et al. (2013) found that deeper 

tillage methods allowed for better control of infected residue and decreased the amount of 

Goss’s wilt present. Personal communication with the cooperator indicated uncertain 

amounts of disease pressure from the previous growing season in the current study 

location. The cooperator was able to confirm that the field had experienced Goss’s wilt in 

2014 though. Percent residue at planting was not collected at any of the locations used in 

2015. 

Results from yield data collected show that at both Madrid locations, there were 

no significant differences in yield between treatments applied. It is difficult to determine 

from these locations how effective these adjuvants were due to hail damage. Madrid 

North had wind and minimal hail damage when the plants were smaller, and the field 

sustained hail damage about one week prior to R1 spray applications. Madrid South had 

substantial hail damage immediately before V6 applications. The data from the R1 

application at this field showed that copper hydroxide had the highest yield followed by 

WATER. This is to be expected because copper hydroxide is a contact product that might 

control the epiphytic population (Kennelly et al. 2007). WATER would allow for more 

disease than copper hydroxide, and if the hypothesis of adjuvants increasing disease 

severity is true, yield would be higher for WATER and lower for the adjuvants tested. 

However, WATER was not statistically different than the other adjuvants tested. Muddy 

conditions and deep pivot tracks made this field difficult to harvest with a two row plot 
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combine. However, with all of the harvesting errors, the data still showed no significant 

differences in disease severity between treatments applied. Yield data from Gothenburg 

also showed no significant differences in disease severity in yield between treatments 

applied. This field sustained a lot of hail damage during 2014 and disease incidence was 

relatively uniform across the field. Minor hail and wind damage was reported for 2015 

and natural inoculum from infected field residue was used, allowing for even inoculum 

distribution. The uniformity between all three locations for yield purposes indicate that 

adjuvants are not causing an increase in disease severity.  

While disease was present at each location used in 2015, the amount of available 

inoculum varied at each location due to farming practices. Differences between tillage 

methods may have reduced the amount of inoculum available compared to a field that 

had minimum tillage. Also, hail damage sustained at different locations also contributed 

to differences between disease severity or the amount of systemic infection present at 

certain locations. These factors contributed to the differences that may be occurring 

between field locations. 

This study showed that the use of agriculture spray adjuvants commonly applied 

in corn production are not having a major impact on Goss’s wilt development. There 

have been some negative effects reported with the use of adjuvants (Knezevic et al. 2010; 

Schmitz et al. 2011), but in this particular study, nothing was reported. It is unfortunate 

that hail damage was sustained on two field locations which may have impacted disease 

severity. Differences in residue management may have contributed to disease uniformity 

within each respective field. Soil texture may have also contributed to disease spread as 

in the Madrid North field location where sandblasting might allow bacterial entry. A 
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greenhouse study with a more controlled environment may be needed to successfully test 

this hypothesis of increased infection from C. michiganensis subsp. nebraskensis with 

spray adjuvants.  
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Table 1. Chemical list for V6 spray applications at Madrid, NE and Gothenburg, NE. 

Trade Name Active 

Ingredient 

Reference 

Name 

Rate Manufacturer 

Information 

V6-V7 Application 

DuPont™Kocide®

3000 

copper 

hydroxide 

KOCIDE®

3000 

4.26 kg ha-1 

 

DuPont, 

Wilmington, DE 

Water H2O WATER 93.53 L ha-1 N/A 

Touchdown 

HiTech® 

glyphosate GLY 1.20 kg ha-1 Syngenta Crop 

Protection, LLC 

Greensboro, NC 

Quadris® azoxystrobin AZO 0.26 kg ha-1 Syngenta Crop 

Protection, LLC 

Greensboro, NC 

Bronc® ammonium 

sulfate 

AMS 5.0% v/v Wilbur-Ellis 

Company, 

Fresno, CA 

ROC® crop oil 

concentrate 

COC 1.0% v/v Wilbur-Ellis 

Company, 

Fresno, CA 

High Load® high surfactant 

oil concentrate 

HSOC 0.5% v/v Wilbur-Ellis 

Company, 

Fresno, CA 

Super Spread 

MSO® 

methylated 

seed oil 

MSO 1.0% v/v Wilbur-Ellis 

Company, 

Fresno, CA 

R11® nonionic 

surfactant 

NIS 0.25% v/v Wilbur-Ellis 

Company, 

Fresno, CA 
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Table 2. Chemical list for R1 spray applications at Madrid, NE and Gothenburg, NE. 

Trade Name Active 

Ingredient 

Reference 

Name 

Rate Manufacturer 

Information 

R1 Application 

DuPont™Kocide®

3000 

copper 

hydroxide 

KOCIDE®

3000 

4.26 kg ha-1 

 

DuPont, 

Wilmington, DE 

Water H2O WATER 93.53 L ha-1 N/A 

Quilt Xcel® azoxystrobin 

+ 

propiconozole 

COMB 0.14 kg ha-1 +  

0.13 kg ha-1 

Syngenta Crop 

Protection, LLC 

Greensboro, NC 

Quadris® azoxystrobin AZO 0.26 kg ha-1 Syngenta Crop 

Protection, LLC 

Greensboro, NC 

Tilt® propiconozole  PRO 0.13 kg ha-1 Syngenta Crop 

Protection, LLC 

Greensboro, NC 

ROC® crop oil 

concentrate 

COC 1.0% v/v Wilbur-Ellis 

Company 

Fresno, CA 

R11® nonionic 

surfactant 

NIS 0.25% v/v Wilbur-Ellis 

Company 

Fresno, CA 
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Table 3. AUDPC values for all treatments tested for Goss’s wilt severity over the 

growing season for V6 spray applications at the Madrid North field location. 

Treatment AUDPC 

KOCIDE®3000 55.13b* 

WATER 56.00b 

GLY 65.63a 

AZO 54.25b 

AMS 65.63a 

COC 58.00ab 

HSOC 58.63ab 

MSO 63.00ab 

NIS 60.00ab 

*Means separated by letters are significant at α = 0.10. 
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Table 4. AUDPC values for all treatments tested for Goss’s wilt severity over the 

growing season for R1 spray applications at the Madrid North field location. 

Treatment AUDPC 

KOCIDE®3000 105.88b* 

WATER 111.00b 

COMB 133.00a 

AZO 114.63b 

PRO 113.00b 

COC 113.75b 

NIS 109.38b 

*Means separated by letters are significant at α = 0.10. 
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Table 5. AUDPC values for all treatments tested for Goss’s wilt severity over the 

growing season for V6 spray applications at the Madrid South field location. 

Treatment AUDPC 

KOCIDE®3000 55.13b* 

WATER 56.00b 

GLY 65.63a 

AZO 54.25b 

AMS 65.63a 

COC 58.00ab 

HSOC 58.63ab 

MSO 63.00ab 

NIS 60.00ab 

*Means separated by letters are significant at α = 0.10. 
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Table 6. AUDPC values for all treatments tested for Goss’s wilt severity over the 

growing season for R1 spray applications at the Madrid South field location. 

Treatment AUDPC 

KOCIDE®3000 105.88b* 

WATER 111.00b 

COMB 133.00a 

AZO 114.63b 

PRO 113.00b 

COC 113.75b 

NIS 109.38b 

*Means separated by letters are significant at α = 0.10. 
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Table 7. AUDPC values for all treatments tested for Goss’s wilt severity over the 

growing season for V6 spray applications at the Gothenburg field location. 

Treatment AUDPC 

KOCIDE®3000 55.13b* 

WATER 56.00b 

GLY 65.63a 

AZO 54.25b 

AMS 65.63a 

COC 58.00ab 

HSOC 58.63ab 

MSO 63.00ab 

NIS 60.00ab 

*Means separated by letters are significant at α = 0.10. 
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Table 8. AUDPC values for all treatments tested for systemic Goss’s wilt development 

over the growing season for V6 spray applications at the Gothenburg field location. 

Treatment AUDPC 

KOCIDE®3000 55.13b* 

WATER 56.00b 

GLY 65.63a 

AZO 54.25b 

AMS 65.63a 

COC 58.00ab 

HSOC 58.63ab 

MSO 63.00ab 

NIS 60.00ab 

*Means separated by letters are significant at α = 0.10. 
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Table 9. AUDPC values for all treatments tested for Goss’s wilt severity over the 

growing season for R1 spray applications at the Gothenburg field location. 

Treatment AUDPC 

KOCIDE®3000 105.88b* 

WATER 111.00b 

COMB 133.00a 

AZO 114.63b 

PRO 113.00b 

COC 113.75b 

NIS 109.38b 

*Means separated by letters are significant at α = 0.10. 
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Figure 1. AUDPC with means separation for Goss’s wilt disease severity over the 

growing period for V6 spray applications at the Madrid North field location.  

*Means separated by letters are significant at α = 0.10. 
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Figure 2. AUDPC with means separation for Goss’s wilt disease severity over the 

growing period for R1 spray applications at the Madrid North field location.  

*Means separated by letters are significant at α = 0.10. 
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Figure 3. AUDPC with means separation for Goss’s wilt disease severity over the 

growing period for V6 spray applications at the Madrid South field location.  

*Means separated by letters are significant at α = 0.10. 
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Figure 4. AUDPC with means separation for Goss’s wilt disease severity over the 

growing period for R1 spray applications at the Madrid South field location.  

*Means separated by letters are significant at α = 0.10. 
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Figure 5. AUDPC with means separation for Goss’s wilt disease severity over the 

growing period for V6 spray applications at the Gothenburg field location.  

*Means separated by letters are significant at α = 0.10. 
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Figure 6. AUDPC with means separation for systemic Goss’s wilt development over the 

growing period for V6 spray applications at the Gothenburg field location.  

*Means separated by letters are significant at α = 0.10. 
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Figure 7. AUDPC with means separation for Goss’s wilt disease severity over the 

growing period for R1 spray applications at the Gothenburg field location.  

*Means separated by letters are significant at α = 0.10. 
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Abstract 

A greenhouse study was conducted to investigate the potential impacts of 

pesticide adjuvants commonly used in corn (Zea mays L.) production on disease severity 

of Goss’s bacterial wilt and leaf blight, caused by Clavibacter michiganensis subsp. 

nebraskensis. A bacterial suspension of C. michiganensis subsp. nebraskensis at 1 x 109 

CFU ml-1 in 10 mM potassium phosphate buffer was spray-inoculated on Golden Cross 

Bantam (GCB) sweetcorn plants using an air-pressurized canister at V1. An inoculated 

wound (WOUND) control was to ensure bacterial virulence. A non-wounded, spray 

inoculated control (SPRAY) was used, but these plants were not treated with adjuvants. 

Inoculated plants were sprayed with one of five spray adjuvants 48 hours after 

inoculation. A negative control (WATER), a positive control (copper hydroxide), and a 

potassium phosphate control (BUFFER) were also used. Percent disease severity was 

estimated as a repeated measure at 7, 10, 13, 17, and 21 days after spray applications. The 

experiment was repeated once. Results from area under the disease progress curve 

(AUDPC) indicated that there were differences between treatments applied in disease 

severity over time. The WOUND treatment consistently had the greatest disease severity 

over time while the BUFFER control had the lowest disease severity for both 

experimental trials. However, all of the adjuvant treatments had similar disease severity 

throughout the experiment compared to the SPRAY control. These results are important 

because of the widespread use of spray adjuvants with pesticides and the potential for 

impacts on disease severity in production agriculture. Overall, it does not appear that 

adjuvants are contributing to Goss’s wilt development in the greenhouse. Further research 

is needed to determine if differences in chemical composition within adjuvant groups or 

varying adjuvant concentrations have similar impacts.  
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Introduction 

Goss’s wilt and leaf blight, caused by Clavibacter michiganensis subsp. 

nebraskensis, is an economically important disease of corn (Zea mays L.) (Vidaver and 

Mandel 1974). Physical wounding such as hail, wind, sandblasting, or mechanical 

damage will often facilitate infection if bacteria are present (Wysong et al. 1981; 

Rocheford et al. 1985; Claflin 1999). There are currently no known vectors that transmit 

the bacteria to initiate infection (Jackson et al. 2007a; b). 

Symptom development can vary depending on the variety, hybrid, or type of corn. 

Typical symptoms include chlorosis, necrosis, lesions with water-soaked margins 

(Jackson et al. 2007a; b), and discontinuous water-soaked spots (Wysong and Doupnik 

1984; Wysong et al. 1981). The bacteria often exude out the lesions, dry on the leaf 

surface, and appear shiny (Jackson et al. 2007a; b). This strategy allows for the bacteria 

to reside on the leaf surface until they spread to another host through water splashing or 

leaf rubbing (Wysong et al. 1981). However, the presence of bacteria does not always 

ensure infection. Smidt and Vidaver (1986) found that C. michiganensis subsp. 

nebraskensis can live epiphytically without initiating infection and suggested the 

population density needs to reach an optimal threshold for infection and disease 

development to occur. Symptom development may depend on hybrid genetics where 

infection might not be as severe in moderately susceptible hybrids compared to ones that 

are highly susceptible (Suparyono and Pataky 1989). Disease severity usually refers to 

the leaf blight phase depending on partial hybrid resistance. If bacteria enter the vascular 

system, they can move systemically and mimic drought stress or injury (Wise et al. 

2010). Systemically infected plants are typically stunted (Calub et al. 1974) and may not 
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produce an ear (Claflin 1999). If an ear is produced, harvested yield is typically less than 

for plants not infected with the pathogen.  

Wounding is not the only way for bacterial introduction. Studies have shown that 

the epiphytic nature of this bacteria allow them to get into the plant through natural 

openings, like stomata, and initiate infection (Schuster et al. 1983; Mallowa et al. 2012; 

Mallowa et al. 2014; Mallowa et al. 2015). Disease may develop slower when infection 

occurs via stomata (Mallowa et al. 2012; Mallowa et al. 2014), but it is important to 

understand that wounding may not be required for infection and that C. michiganensis 

subsp. nebraskensis may go undetected until a disease outbreak occurs (Eggenberger et 

al. 2015).  

Goss’s wilt was first confirmed in Dawson County, Nebraska in 1969 (Wysong et 

al. 1973), and the pathogen eventually spread to neighboring counties and states (Wysong 

et al. 1973; Jackson et al. 2007a). In the 1980’s, new farming practices were implemented 

to manage inoculum levels. Bacterial spread and disease pressure slowed until it 

developed sporadically within susceptible varieties for the next 20 years (Jackson et al. 

2007b). During the early 2000’s, management practices changed to increase corn 

production. As a result, the pathogen re-emerged in western Nebraska, southeastern 

Wyoming, and eastern Colorado (Jackson 2008). The bacteria then spread to other corn 

growing areas of the Great Plains and Midwest (Ruhl et al. 2009; Malvick et al. 2010; 

Korus et al. 2011). It is not fully understood what farming practices were being used that 

allowed for pathogen re-emergence.  

A Midwest multistate survey was conducted by Langemeier et al. (2015) in 2011 

on farming practices for Goss’s wilt and bacterial re-emergence in the Midwest. There 
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were many management and farming practices used including disease ratings, planting 

population, crop rotation, etc. One interesting practice reported was the use of 

agricultural pesticides. Pesticides have been used for many years, especially with the 

introduction of Roundup Ready® corn in 1997 (Dill 2005). The increased use of 

pesticides and spray adjuvants since the late 1990’s and early 2000’s is interesting 

because this occurred approximately when the Goss’s wilt pathogen re-emerged. It is 

possible that these products may have contributed to pathogen re-emergence in the 

Midwest.  

While herbicides have advanced in the industrial market, fungicides have also 

become more prevalent for disease control since the early 2000’s (Munkvold et al. 2008). 

There are two main fungicide classes which are heavily relied upon for disease 

management: strobilurins and triazoles. Fungicides have been beneficial controlling 

diseases during the growing season.  

Spray adjuvants are commonly used to improve pesticide efficiency (Khan et al. 

2007). Numerous adjuvants can aid in pest control. These include, but are not limited to, 

nonionic surfactant (NIS), ammonium sulfate (AMS), crop oil concentrate (COC), high 

surfactant oil concentrate (HSOC), and methylated seed oil (MSO). Depending on 

pesticide application or crop restrictions, these adjuvants have different properties that 

contribute to pesticide efficacy. According to Wang and Liu (2007), adjuvants allow for 

better coverage, uptake, and movement throughout the plant with minimal crop damage. 

However, some negative effects, like crop injury resulting in yield loss (Knezevic 

et al. 2010) and arrested ear development from NIS derivatives (Schmitz et al. 2011) have 

been reported. Epiphytic bacteria may be introduced more easily into the plant due to 
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adjuvant physical properties if the bacteria are being moved towards stomata or gain 

access through damaged cuticles.  

A field study was conducted in 2015 to determine if adjuvants could affect 

disease severity. If C. michiganensis subsp. nebraskensis is living epiphytically, and 

adjuvants enable infection via stomata or damage to the cuticle, it may explain why the 

pathogen re-emerged and spread after evident inactivity. Micro-abrasions may allow 

bacterial entry if they are living epiphytically (Rocheford et al. 1985). Although a 

preliminary field study in 2014 indicated reduced disease severity with the use of 

adjuvants, a field trial in 2015 that was conducted at three locations in Nebraska indicated 

that surfactants had no affect on Goss’s wilt disease development. However, since wind, 

hail, and heavy rain damage occurred at these field sites, this may have confounded the 

data. Therefore, the hypothesis of increased disease severity from spray adjuvants must 

be tested in a controlled greenhouse environment.  

Results from the Langemeier et al. (2015) survey and our current knowledge on 

Goss’s wilt development, management, re-emergence, and changes in farming practices 

have raised questions on the effect of pesticide, specifically adjuvant, use on disease 

development. Therefore, a greenhouse experiment was designed to evaluate the affect of 

spray adjuvants on Goss’s wilt development. Greenhouse studied would avoid 

environmental factors that occur in the field and confound the data.  

Methods and Materials 

Bacterial isolate selection and inoculum preparation. An isolate of C. 

michiganensis subsp. nebraskensis collected in 2011 from Hall County, NE (225C) was 

used for this experiment. This isolate was identified as C. michiganensis subsp. 
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nebraskensis based on an ImmunoStrip® (ELISA) test kit (Agdia Inc. Elkhart, IN) (Korus 

et al. 2010b) for C. michiganensis subsp. michiganensis, AFLP and BOX-PCR analysis 

(Langemeier et al. 2014) for C. michiganensis subsp. nebraskensis, and greenhouse 

bioassays to acertain virulence of the isolate.  

Isolate 225C was stored on beads in a Microbank™ vial (Pro-Lab Diagnostics 

Inc. Toronto, Canada) in cold storage (Langemeier et al. 2015). It was removed from cold 

storage at -80°C and streaked onto Corynebacterium nebraskense selective medium 

(CNS). This medium was developed to selectively isolate C. michiganensis subsp. 

nebraskensis (Gross and Vidaver 1979). The bacteria were subcultured to ensure culture 

purity and then transferred onto nutrient broth yeast extract (NBY) agar (Vidaver 1967) 

approximately every 4-6 days until a full plate of bacteria was grown.  Full plates of 

bacteria were gently scraped from the agar surface with a sterile plastic scraper, 

suspended in 10 mM potassium phosphate buffer (pH 7.1) (Carlson et al. 1979), read on a 

Spectrophotometer (Heλios α Spectophotometer, Thermo Electron Corporation, Beverly, 

MA, USA) at OD 600 nm (Beattie and Marcell 2002), and adjusted to reach an average 

concentration of 1 x 109 CFU ml-1 across trials. 

Sweet corn seed. Golden Cross Bantam (GCB) sweet corn with a relative 

maturity of 76 days was planted, two seeds per 15.2 cm pot in a steam pasteurized 

soilless mix. This particular sweet corn hybrid was selected because it is very susceptible 

to C. michiganensis subsp. nebraskensis, and because it has been used in previous Goss’s 

wilt studies. The seed was planted at a depth of 3.75 cm. Pots were planted 16 February 

2015 and 23 March 2015 for each respective trial, and thinned to one plant per pot once 

they grew to V1.  
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Greenhouse conditions and experimental design. The experimental design for 

this study was a repeated measure with treatments arranged in randomized complete 

blocks. There were 10 treatments tested, 5 adjuvants and 5 controls, as can be found in 

Table 1. This experiment was conducted at the University of Nebraska-Lincoln Plant 

Pathology greenhouse in Lincoln, NE in Spring 2015 and was repeated during that same 

season. Greenhouse day / night temperature was 28 / 22°C with 16 hours of artificial light 

and eight hours of darkness within a 24 hour period. Pots were fertilized every day when 

watered. Plants were initially watered once daily and then twice as needed. Several 

controls were included in the trial. A buffer (BUFFER) control was to confirm bacterial 

virulence; a spray (SPRAY) control was to confirm that infection of corn by C. 

michiganensis subsp. nebraskensis can occur in the absence of wounding; copper 

hydroxide (positive control) was used to manage disease; a negative (WATER) control 

was used to test the effect of the adjuvants on Goss’s wilt development, and a wound-

inoculated control (WOUND) was used to also confirm bacterial virulence. Copper 

hydroxide was added as a treatment due to conflicting results from previous studies on 

Goss’s wilt control and product efficacy (Korus et al. 2010a; Oser et al. 2013; Wise et al. 

2014; Mehl et al. 2015).  

Inoculations and spray applications. Once plants reached V1, they were 

inoculated with a suspension of C. michiganensis subsp. nebraskensis (1 x 109 CFU ml-1). 

The growth stage at which inoculation was performed was determined from preliminary 

greenhouse studies conducted on GCB at the University of Nebraska-Lincoln Plant 

Pathology greenhouse and the University of Nebraska West Central Research and 

Extension Center in North Platte, NE (data not shown). The C. michiganensis subsp. 
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nebraskensis suspension was applied to the plants with an air pressurized canister (Sure 

Shot® Sprayer, Milwaukee Sprayer Manufacturing Co., Inc., Menomonee Falls, WI), 

pressurized with a Zéfal Air Max floor pump (Todson, Inc, Attleboro, MA), and 

calibrated between 517 kPa and 690 kPa to give an output of approximately 10 ml for 3 

sec. The spray canister was held 30.5 cm to 45.7 cm away from leaf canopy. Trial 1 

inoculations took place on 4 March 2015 and Trial 2 inoculations occurred on 31 March 

2015.  

Plants were sprayed with different adjuvants 48 hours after inoculation using a 

CO2 pressurized backpack sprayer at 172 kPa, 94 L ha-1, 5.6 kph to 6.4 kph, and a two 

nozzle boom on 76.2 cm centers with TeeJet® AIXR110025 nozzles (Spraying Systems 

Co., Wheaton, IL). This time frame was selected using results from a study by Beattie 

and Marcell (2002) who reported that the epiphytic population levels increase 48 hours 

after inoculation. Spray applications were made on 6 March 2015 for Trial 1 and 2 April 

2015 for Trial 2.  

Data collection and statistical analysis. Disease severity was observed by 

collecting visual estimates of the percentage of the leaf area showing Goss’s wilt 

symptoms 7, 10, 13, 17, and 21 days after adjuvant applications. This was done by 

visually estimating disease severity as the percent lesion area of total leaf area on a 

continuous percentage scale (0 to 100%) (Mueller et al. 2009) with the help of a training 

program (Corn Pro version 3.4, F. W. Nutter Jr., Iowa State University, Ames, IA) 

(Bhatia and Munkvold 2002). Measurements were averaged based on the vegetative 

growth stage. After 21 days, leaves were randomly selected from different treatments to 

confirm infection by observing bacterial streaming and re-isolation onto NBY.  
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Measurements were analyzed using area under the disease progress curve 

(AUDPC) to determine differences between treatments over the growing period. Mean 

values were separated using a one-way analysis of variance (ANOVA) with PROC 

GLIMMIX. Adjuvant treatments were compared against one another and the SPRAY 

control. Blocks were treated as random and disease severity collected at different rating 

times was used for the repeated measure. Statistical analyses were tested at α = 0.05 using 

SAS 9.4 (SAS Institute Inc., Cary, NC).  

Results 

Goss’s wilt developed in both experimental trials. Disease was first observed 

anywhere from 5-8 days after inoculation with minimal symptom development initially. 

Results from Trial 1 showed that there were differences between treatments in disease 

severity during the growing period (P <0.0006). WOUND had the greatest disease 

severity (127.07) and BUFFER had the lowest disease severity (0). The SPRAY control 

(99.06) had a similar amount of disease compared to all of the other treatments tested 

(Figure 1). All AUDPC values for Trial 1 are summarized in Table 2. 

 Results from Trial 2 also showed that there were differences between treatments 

in disease severity during the growing period (P < 0.0075). WOUND had the greatest 

disease severity (332.87) and BUFFER had the lowest disease severity (0). NIS had 

interesting an interesting amount of disease severity over the growing season (232.31), 

but it was similar to the SPRAY control (129.96). All other treatments tested were similar 

to the SPRAY control (Figure 2). All AUDPC values for Trial 2 are summarized in Table 

3.  
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 Slight phytotoxicity also developed on the lower plant leaves after adjuvants were 

applied. Only two of the treatments applied showed phytotoxicity: HSOC and NIS. 

However, this damage did not appear to have an effect on disease development. 

Discussion  

Field observations by agronomists in Nebraska and Iowa, and data from a survey 

of Goss’s wilt in 2011 (Langemeier et al. 2015) suggested that adjuvants used in 

pesticides commonly applied to corn during production may increase the risk of Goss’s 

wilt developing. In this current study, spray adjuvants had no effect on Goss’s wilt 

development in the greenhouse. It is possible that the method of inoculation used in this 

study allowed for bacterial entry prior to adjuvant use. Spray droplet size of the Sure 

Shot® Sprayer may have been small enough to allow for bacterial entry. The average size 

of this cornyform bacteria is 0.5 μm in width and 2.5 μm in length (Claflin 1999). This 

would average to around 1.25 μm2. According to Kiesselbach (1949), the average 

stomatal aperture size when fully turgid is 51.3 μm2 for most Nebraska hybrids. There are 

an average of 50,000 stomata per square inch on the upper leaf surface and 60,000 

stomata per square inch on the lower leaf surface of corn plants (Kiesselbach 1949). 

Therefore, if the stomata were open, and the droplet size was small enough, the bacteria 

could have been directly introduced during inoculation. 

Wounding techniques including sterile toothpicks (Smidt and Vidaver 1987), 

needle-eye method (Vidaver 1977), and multi-needle inoculators (Laurence and Aluisio 

1981) all provide great ways of initiating infection in the greenhouse. SPRAY 

inoculations to observe the epiphytic population and infection development have been 
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performed and disease incidence is not typically as high compared to the wound-type 

inoculations (Mallowa et al. 2012; Mallowa et al. 2014).  

It is possible that the bacteria could have accumulated around stomata, trichomes, 

or leaf hairs (Mallowa et al. 2012; Mallowa et al. 2014; Mallowa et al. 2015) that would 

have allowed for entry during early morning guttation (Eichenlaub et al. 2006), watering, 

or adjuvant use. Adjuvants like HSOC and NIS may allow for the bacteria to flood into 

the stomata, since the surface tension of the carrier is being compromised (Curran and 

Lingenfelter 2009). Further testing is desirable to confirm or deny this hypothesis.  

Cuticle thickness of greenhouse grown plants may not be hardy enough to resist 

bacterial introduction. Vegetative characteristics of juvenile plants include short, narrow 

leaves, no trichomes or bulliform cells, and a thin cuticle layer with an epicuticular wax 

(Abedon et al. 1996). Characteristics of more mature corn plant include long, wide 

leaves, bulliform cells, trichomes, and a thick cuticle with no epicuticular wax (Abedon et 

al. 1996). Plants might be hardier in the field compared to the greenhouse due to 

environmental conditions. This might explain why adjuvant phytotoxicity was seen for 

some of the treatments tested in the greenhouse, but not in the field (Figure 3). Plant age 

at inoculation and spray adjuvants may have contributed to visible phytoxicity. This 

might also contribute to higher disease incidence and severity than expected. Some of the 

products tested have oil properties, including MSO, COC, and HSOC, that would allow 

for cuticle penetration (Curran and Lingenfelter 2009). If the bacteria were living 

epiphytically 48 hours after infestation, the adjuvants may have damaged the cuticle and 

allowed the bacteria to gain access into the plant. Further testing with leaf microscopy 

would be desirable to test this hypothesis. 
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Treatments may not have had any effect on bacterial entry. There was sufficient 

infection in the SPRAY control, and there were not consistent differences between other 

treatments in both trials. This is important because it shows that once the bacteria get into 

the plant, these adjuvants do not have an effect on pathogenicity or virulence. Korus et al. 

(2010a) found that copper hydroxide reduced disease development, but it was not 

statistically significant compared to the non-treated plots that were wound inoculated. 

Copper hydroxide is a contact product (Kennelly et al. 2007) which may have an effect 

on the epiphytic population. However, once the bacteria get into the plant, copper 

hydroxide may not be effective in controlling its growth (Kennelly et al. 2007).  

Higher disease severity was observed in this greenhouse trial compared to a field 

trial conducted in 2015 that also evaluated the effects of adjuvants on Goss’s leaf blight 

severity. The most plausible reason for this is the sweet corn hybrid used in the 

greenhouse study was more susceptible to infection by C. michiganensis subsp. 

nebraskensis than the hybrid used in the field trials.  

Adjuvants are commonly added to pesticides that are applied to field crops. Data 

from a survey of Goss’s wilt in 2011 (Langemeier et al. 2015) as well as observations by 

agronomists suggested applications of pesticides may increase the risk of Goss’s wilt. 

There are more than 36.4 million corn hectares grown in the United States (United States 

Department of Agriculture 2015). In 2011 alone, four million of those hectares had foliar 

fungicide applications (Wise and Mueller 2011). In 2007, approximately 877 million 

pounds of active ingredients used in pesticides were applied to U.S. crops, costing $7.9 

billion (United States Department of Agriculture 2012). Although adjuvants have many 

beneficial qualities, it is important to understand any damaging effects that may occur 
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(Knezevic et al. 2010; Schmitz et al. 2011). These greenhouse studies, as well as field 

studies conducted in 2015, suggest that Goss’s wilt severity does not increase by the use 

of spray adjuvants.  

Overall, spray adjuvants tested in this study do not show an increase in disease 

severity. Therefore, it is difficult to conclude if spray adjuvants contributed to Goss’s wilt 

re-emergence. It is desirable, however, to understand why there is a slight decline in 

disease severity from preliminary field data with these same adjuvants (data not shown). 

Further research is needed to determine if spray adjuvants are decreasing disease severity 

instead of increasing it, as originally hypothesized.  
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Table 1. Chemical list for adjuvant treatments used to determine increased disease 

severity for Goss’s wilt. 

Trade Name Active 

Ingredient 

Reference 

Name 

Manufacturer 

Information 

Rate *Per 1 L Mix 

Bronc® ammonium 

sulfate 

AMS Wilbur-Ellis 

Company, 

Fresno, CA 

5.0% v/v 50 ml mix-1 

ROC® crop oil 

concentrate 

COC Wilbur-Ellis 

Company, 

Fresno, CA 

1.0% v/v 10 ml mix-1 

High Load® high 

surfactant oil 

concentrate 

HSOC Wilbur-Ellis 

Company, 

Fresno, CA 

0.5% v/v 5 ml mix-1 

R11® nonionic 

surfactant 

NIS Wilbur-Ellis 

Company, 

Fresno, CA 

0.25% v/v 2.5 ml mix-1 

Super Spread 

MSO® 

methylated 

seed oil 

MSO Wilbur-Ellis 

Company, 

Fresno, CA 

1.0% v/v 10 ml mix-1 

aWater H2O WATER N/A 94 L ha-1 1000 ml mix-1 
bDuPont™ 

Kocide®3000 

copper 

hydroxide 

KOCIDE® 

3000 

DuPont, 

Wilmington, 

DE 

4.26 kg ha-1 

 

0.046 kg mix-1 

cSpray  N/A SPRAY N/A N/A N/A 
dWound  N/A WOUND N/A N/A N/A 
eBuffer  10mM 

potassium 

phosphate 

buffer 

BUFFER N/A N/A N/A 

aWater as a negative (-) control. 
bDuPont™ Kocide®3000 as a positive (+) control. 
cInoculation control, no wounding, no adjuvants applied. 
dInoculation spray control, wounding, no adjuvants applied. 
e10mM potassium phosphate buffer control, no bacterial spray, no wounding, no adjuvants applied (also a 

negative control). 
*All applied with a CO2 backpack sprayer at 94 L ha-1, 172 kPa with an AIXR110025 nozzle. 
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Table 2. AUDPC values for all treatments tested for Goss’s wilt development over the 

growing period in Trial 1 greenhouse study. 

 Trial 1  

Treatment AUDPC 

SPRAY 99.06ab* 

BUFFER 0.00c 

WOUND 127.07a 

KOCIDE®3000 71.34b 

WATER 76.64b 

AMS 87.50ab 

COC 84.48ab 

HSOC 58.22b 

MSO 94.33ab 

NIS 92.41ab 

*Means separated by letters are significant at α = 0.05. 
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Table 3. AUDPC values for all treatments tested for Goss’s wilt development over the 

growing period in Trial 2 greenhouse study. 

 Trial 1  

Treatment AUDPC 

SPRAY 129.96bc* 

BUFFER 0.00c 

WOUND 332.87a 

KOCIDE®3000 130.26bc 

WATER 119.26bc 

AMS 112.09bc 

COC 154.77b 

HSOC 128.61bc 

MSO 155.59b 

NIS 232.31ab 

*Means separated by letters are significant at α = 0.05. 
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Figure 1. AUDPC with means separation for Goss’s wilt disease severity over the 

growing period in Trial 1 greenhouse study.  

*Means separated by letters are significant at α = 0.05. 
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Figure 2. AUDPC with means separation for Goss’s wilt disease severity over the 

growing period in Trial 2 greenhouse study.  

*Means separated by letters are significant at α = 0.05. 
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Figure 3. Phytotoxicity from spray adjuvants applied to Golden Cross Bantam sweet 

corn. 
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INHIBITORY EFFECTS OF SPRAY ADJUVANTS TESTED ON 

CLAVIBACTER MICHIGANENSIS SUBSP. NEBRASKENSIS IN 

VITRO 
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Abstract 

Field studies on disease severity of Goss’s bacterial wilt and leaf blight of corn 

(Zea mays L.) with spray adjuvants yielded different results between experiments. A 

decrease in disease severity raised questions of spray adjuvants inhibiting Clavibacter 

michiganensis subsp. nebraskensis growth in vitro. The bacteria were grown in nutrient 

broth yeast extract (NBY) broth and aliquots of the bacterial suspension were plated onto 

NBY agar. Filter disks were soaked in one of five adjuvants at one of three 

concentrations (0.1, 1.0, and 10 x recommended rate) or two controls. Zones of inhibition 

around the filter disks were measured. Chi-square analyses indicated that the magnitude 

of inhibition varied for all treatments at each concentration for bacterial growth. A 

positive control (copper hydroxide) had the greatest frequency of bacterial inhibition 

among treatments at the three concentrations. Corn producers are encouraged to include 

adjuvants at 1.0 x recommended rate and results from this study indicate that the nonionic 

surfactant (NIS) decreased C. michiganensis subsp. nebraskensis growth in vitro for Trial 

1 and Trial 2 compared to the rest of the adjuvants. Adjuvant concentrations at 10 x 

recommended rate inhibited bacterial growth the most for all three trials. NIS inhibited 

growth more than the positive control in Trial 2. There was some inhibition for other 

treatments including methylated seed oil (MSO) and crop oil concentrate (COC) as seen 

in Trial 2 and Trial 3, but they were not as consistent across trials as the inhibition caused 

by NIS. These suggest that epiphytic populations of the pathogen may be reduced by 

spray adjuvants commonly used in corn production. Further research is needed to 

determine if these effects can be demonstrated in the field and whether differences in 

chemical composition within an adjuvant group have an effect on C. michiganensis 

subsp. nebraskensis growth.  
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Introduction 

Clavibacter michiganensis subsp. nebraskensis is a gram-positive bacterium and 

causal agent of Goss’s bacterial wilt and blight of corn (Zea mays L.) (Vidaver and 

Mandel 1974). The bacteria can enter the plant in multiple ways, but a wounding event is 

usually associated with infection (Claflin 1999). Physical wounding can occur through 

hail, wind, sandblasting, or even mechanical damage (Wysong et al. 1981; Rocheford et 

al. 1985; Claflin 1999).  

Bacteria are believed to be water splashed from infected residue, or moved by leaf 

rubbing and live ephiphytically (Wysong et al. 1981). This ephiphytic strategy allows for 

the bacteria to be present and may lead to infection if wounding occurs (Schuster et al. 

1983). It has been reported that more susceptible varieties can support higher populations 

of epiphytic C. michiganensis subsp. nebraskensis (Schuster et al. 1983; Smidt and 

Vidaver 1986). Studies have also shown that the bacteria may be able to infect without 

physical injury by entering the stomata (Schuster et al. 1983; Mallowa et al. 2012; 

Mallowa et al. 2014; Mallowa et al. 2015).  

Goss’s wilt has not always been a severe problem since its first confirmation. This 

disease was first observed in Dawson County, Nebraska in 1969 (Wysong et al. 1973), 

and has gone through periods of evident inactivity where it developed sporadically in 

susceptible hybrids, popcorn, and sweet corn varieties where wounding occurred 

(Jackson et al. 2007). The pathogen’s re-emergence in the early 2000’s raised questions 

as to what farming practices were being used to increase disease incidence and severity. 

A 2011 survey, conducted by Langemeier et al. (2015), assessed the contribution of 
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farming practices to the re-emergence of Goss’s wilt in the Midwest. Results of the study 

suggested that its re-emergence may be correlated with pesticide use.  

Spray adjuvants are often mixed with pesticides to improve pest control (Khan et 

al. 2007). Common spray adjuvants in corn production include methylated seed oil 

(MSO), nonionic surfactant (NIS), crop oil concentrate (COC), ammonium sulfate 

(AMS), and high surfactant oil concentrate (HSOC). Adjuvants allow for better coverage, 

absorption, and translocation with minimal negative crop effects (Wang and Liu 2007). 

MSO, NIS, and COC adjuvants increased control of velvetleaf (Abutilion theophrasti 

Medic.) with foramsulfuron through better coverage and penetration (Bunting et al. 

2004).  

Adjuvants have also been beneficial in fungicide applications. Khan et al. (2000) 

reported applications of pyraclostrobin amended with adjuvants resulted in better control 

of Cercospora leaf spot (CLS), caused by Cercospora beticola, on sugar beets (Beta 

vulgaris L.). Similarly, Gent et al. (2003) reported the addition of adjuvants increased 

absorption of contact fungicides, such as azoxystrobin, when spraying onions (Allium 

spp. L.) and potatoes (Solanum tuberosum L.). Negative effects have also been associated 

with adjuvant use. Knezevic et al. (2010) found that POST applications of saflufenacil to 

winter wheat (Triticum aestivum L.) alone, or combined with COC or NIS, caused crop 

injury and yield loss. Arrested ear development of corn was shown to be caused by 

alkylphenol ethoxylate, a chemical component found in many NIS formulations (Schmitz 

et al. 2011).  

In preliminary field trials conducted in 2014 in Nebraska, Goss’s wilt severity 

was reduced when certain adjuvants were tested (data not shown). These data suggest 
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that adjuvants may directly affect C. michiganensis subsp. nebraskensis. Since the 

pathogen is capable of living epiphytically (Smidt and Vidaver 1986; Mallowa et al. 

2012; Mallowa et al. 2014; Mallowa et al. 2015), populations would be exposed to 

pesticides and adjuvants. Since fungicides and herbicides have no affect on a bacterial 

pathogen like C. michiganensis subsp. nebraskensis, it is conceivable that the adjuvant 

may be having an impact on bacterial growth. However, there is little published research 

describing the effect of spray adjuvants on bacterial growth and development. 

Consequently, a lab-based experiment was designed to determine if spray adjuvants 

inhibit growth of C. michiganensis subsp. nebraskensis in vitro.   

Methods and Materials 

Bacterial isolate selection. An isolate of C. michiganensis subsp. nebraskensis 

collected in 2011 from Hall County, NE (225C) was used for this experiment. This 

isolate was identified as C. michiganensis subsp. nebraskensis based on an ImmunoStrip® 

(ELISA) test kit (Agdia Inc. Elkhart, IN) (Korus et al. 2010b) for C. michiganensis subsp. 

michiganensis, AFLP and BOX-PCR analysis (Langemeier et al. 2014) for C. 

michiganensis subsp. nebraskensis, and greenhouse bioassays to acertain virulence of the 

isolate.  

Bacterial suspension preparation. Isolate 225C was stored on beads in a 

Microbank™ vial (Pro-Lab Diagnostics Inc. Toronto, Canada) in cold storage 

(Langemeier et al. 2015). It was removed from cold storage at -80°C and transferred onto 

nutrient broth yeast extract (NBY) agar (Vidaver 1967). Plates were incubated at 27°C 

for six days, one colony was selected, transferred to a new NBY plate, and incubated to 

ensure a pure culture was used. A single colony was selected and suspended into a 250 



118 
 

ml Erlenmeyer flask containing 100 ml of sterile NBY broth. The stock flask was placed 

on a rotary shaker at 160 rpm in a dark incubator and grown at 27°C for 29 hours. This 

experiment was repeated two more times.  

A Spectrophotometer (Heλios α Spectophotometer, Thermo Electron Corporation, 

Beverly, MA, USA) was used to measure the initial OD reading at 600 nm (Beattie and 

Marcell 2002) for each flask with an average reading of 1.818±0.097. Flasks of bacteria 

were not adjusted to reach a specific final concentration for this experiment. Full plates of 

bacteria were desired in order to observe any inhibitory effects from spray adjuvants, if 

present.  

Experimental design, adjuvant treatments, and plate preparation. A split plot 

design was used for this experiment with concentration as the main plot and plate as the 

subplot. An experimental unit was each filter plate imbibed with different treatments, and 

25 plates containing the individual treatments were used for each concentration tested. 

Adjuvants used in the study are listed in Table 1. All adjuvants were selected based on 

their physical properties and desired effects when applying pesticides within one 

chemical company (Wilbur-Elis Company, Fresno, CA). Adjuvants were diluted to reach 

a desired concentration in sterile distilled water. Concentrations of 0.1 x, 1.0 x, and 10 x 

recommended rates were used for this experiment. Dilutions were prepared this way to 

mimic tank clean-out or rain dilution after spraying (0.1 x recommended rate), 

recommended application (1.0 x recommended rate), and carrier evaporation after 

application (10 x recommended rate).  

Modifying the methods of Prabuseenivasan et al. (2006), 500 μl aliquots of 

bacterial suspension were plated onto dry NBY plates using spread plate techniques. The 
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plates were allowed to dry with the bacterial suspension for four to five hours, and an 

additional 30 min with the lids cracked in a sterile fume hood to ensure sufficient drying. 

Using the disk diffusion method modified from Prabuseenivasan et al. (2006), filter paper 

disks were cut, 7 mm in size, autoclaved, and soaked in three separate adjuvant 

concentrations. Filter papers were aseptically transferred to labeled plates, and incubated 

for four days at 27°C. Treatments were color coded for easy identification (Table 2).  

Plates were not Parafilmed or turned upside down during incubation. Filter papers 

remained on the plates after drying for data collection.  

Data collection and statistical analysis. After four days, zones of inhibition were 

measured with a ruler from the edge of the filter disk, to the edge of the inhibition zone in 

millimeters (mm). Chi-square analysis was used to report frequency of inhibition for each 

concentration. Measurements were subjected to a two-way analysis of variance 

(ANOVA) to report differences between adjuvant treatments and concentration. 

Statistical analysis was performed with α = 0.05 using SAS 9.4 (SAS Institute Inc., Cary, 

NC).  

Results 

Inhibition of the growth of C. michiganensis subsp. nebraskensis varied across all 

concentrations tested for all three trials. Chi-square analysis detected significant 

inhibitory effects (P < 0.0001) for all tests (Table 3). This was due to the positive control 

(copper hydroxide) which consistently had the greatest frequency of inhibition. Copper 

hydroxide was maintained at maximum recommended rate throughout this experiment. 

None of the adjuvants showed inhibitory effects when tested at 0.1 x recommended rate 

for all trials. At 1.0 x recommended rate, a few treatments caused inhibition, but this was 
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not consistent across trials. The highest frequency of adjuvant inhibition was at 10 x 

recommended rate for most of the trials (Table 3). 

For Trial 1, there is a significant interaction effect for concentration and treatment 

(P = 0.0007) with copper hydroxide having the most inhibition overall (Figure 1). The 

most significant interaction effect for adjuvants tested was NIS at 10 x label rate. This 

was the only adjuvant that showed significant inhibition when tested at any concentration 

(Figure 1). In Trial 2, there was a significant interaction effect for concentration and 

treatment (P < 0.0001) with NIS having the highest overall effect at 10 x recommended 

rate followed by copper hydroxide and MSO, which were statistically similar, and COC 

all at 10 x recommended rate (Figure 2). Trial 3 also had a significant interaction effect 

(P < 0.0001) with copper hydroxide having the largest overall effect followed by NIS and 

MSO maintained at 10 x recommended rate (Figure 3). Tabular description of these 

results can be found (Table 4). Plates with zones of inhibition can be seen in Figure 4. 

Discussion  

Copper hydroxide has consistent inhibitory effects on C. michiganensis subsp. 

nebraskensis growth in vitro when used at the maximum recommended rate. Since 

copper hydroxide was maintained at one rate across all trials, it shows that bacterial 

inhibition is consistent with the use of this product at maximum recommended rate. 

These findings are significant because copper hydroxide is used as a positive control in 

this lab study, but its efficacy in managing disease is not consistent in field trials. Both 

Oser et al. (2013) and Wise et al. (2014) did not find copper hydroxide to be efficacious 

in controlling Goss’s wilt in field studies. However, Korus et al. (2010a) found that 

copper hydroxide reduced Goss’s wilt severity. Copper hydroxide is a contact product 
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(Kennelly et al. 2007) and if the bacteria live epiphytically, bacterial growth may be 

affected. However, when the plant is wounded, the bacteria have a way to infect the 

plant, reducing copper hydroxide’s efficacy (Kennelly et al. 2007). While these results 

are important for field studies, minimal work has been done in vitro. Further research 

needs to be conducted on copper hydroxide efficacy to find specific rates that would 

inhibit C. michiganensis subsp. nebraskensis growth in vitro.  

Adjuvants tested in this study did not have consistent inhibitory effects at lower 

concentrations compared to the ones tested at recommended rate or 10 x recommended 

rate. The Prabuseenivasan et al. (2006) study on essential oils with antibacterial 

properties, determined that some oils had greater bacterial inhibition at higher 

concentrations compared to more diluted concentrations. Therefore, it may be necessary 

to use higher rates of spray adjuvants to have an effect on C. michiganensis subsp. 

nebraskensis.  

These results are important because they show that some adjuvants have more 

inhibitory effects on this pathogen than others which are frequently used in corn 

production. It is also important because the bacteria can live epiphytically, which might 

lead to increased pesticide exposure. However, it is crucial to understand the chemical 

makeup of these adjuvants. NIS used in this experiment contains butyl alcohol and 

alkylphenol ethoxylate (Young 2012). Depending on the chemical company, these 

compounds may or may not exist in all NIS formulations. These compounds are often 

found in cleaning agents, detergents, surfactants, and industrial products (Ying et al. 

2002), which may contribute to killing C. michiganensis subsp. nebraskensis. However, 

alkylphenol ethoxylate also contributes to arrested ear development, which can be 
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detrimental to yield (Schmitz et al. 2011). Also, as mentioned earlier, some spray 

adjuvants can cause phytotoxicity (Knezevic et al. 2010). These effects are not desirable 

for corn producers. 

While inhibitory effects were observed in vitro, greenhouse studies did not show a 

decrease in disease severity (data not shown). Preliminary field results showed a decrease 

in disease present per plot, especially for the NIS treatment (data not shown). However, 

these results were not repeatable under greenhouse conditions. A field study did not show 

any differences between adjuvant treatments for disease severity either (data not shown). 

Contributing factors may include differences in hybrids, method of inoculation, lack of 

plant hardiness, or other environmental factors. 

Minimal inhibition at recommended rate occurred for some treatments, but 

inhibition was not consistent across trials. Results obtained from the 10 x recommended 

rate treatment resulted in some adjuvants inhibiting bacterial growth. While these 

findings are important, they are not currently realistic due to potential crop damage 

(Knezevic et al. 2010; Schmitz et al. 2011). We can hypothesize that epiphytic 

populations exposed to spray adjuvants at recommended rate, may inhibit their growth 

and potential for disease development. It has been found that the bacteria may reside on 

the leaf surface, surrounding the stomata (Mallowa et al. 2014; Mallowa et al. 2015), on 

epidermal junctions, cuticle depressions, and around the base of trichomes (Mallowa et 

al. 2015). More research is needed to determine what treatments can be effectively 

applied to these areas to control the bacteria.  

In conclusion, it is difficult to recommend the use of these adjuvants to decrease 

disease incidence in the field from a lack of consistency between studies even though 
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significant inhibition occurs in vitro. While the results are fascinating and encouraging 

that research is uncovering potential means of controlling this pathogen, it is uncertain 

what affect non-recommended adjuvant rates may have one corn yield. Further research 

is needed to determine inhibitory effects on products within similar chemical families of 

these treatments that showed bacterial inhibition. It would be necessary to test these 

adjuvants with different formulations across multiple chemical companies. It is also 

desirable to continue testing products that inhibit C. michiganensis subsp. nebraskensis 

growth in vitro to determine methods to decrease disease incidence and severity in the 

greenhouse and field. 
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Table 1. Chemical list for spray adjuvant treatments used in vitro. 

Trade Name Active 

Ingredient 

Reference 

Name 

Rate Manufacturer 

Information 

Bronc® ammonium 

sulfate 

AMS 5.0% v/v Wilbur-Ellis 

Company, Fresno, 

CA 

ROC® crop oil 

concentrate 

COC 1.0% v/v Wilbur-Ellis 

Company, Fresno, 

CA 

High Load® high 

surfactant oil 

concentrate 

HSOC 0.5% v/v Wilbur-Ellis 

Company, Fresno, 

CA 

R11® nonionic 

surfactant 

NIS 0.25% v/v Wilbur-Ellis 

Company, Fresno, 

CA 

Super Spread 

MSO® 

methylated 

seed oil 

MSO 1.0% v/v Wilbur-Ellis 

Company, Fresno, 

CA 

N/A H2O WATER 10 ml N/A 

DuPont™ 

Kocide®3000 

copper 

hydroxide 

KOCIDE®3000 0.21 g 10 ml-1 DuPont, 

Wilmington, DE 
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Table 2. Chemical list for spray adjuvant treatments applied at 0.1 x, 1.0 x, and 10 x label 

rate in vitro.  

Reference Name Color  Trade Name Manufacturer  0.1 x 

Rate*  

1.0 x 

Rate** 

10 x 

Rate*** 

AMS  Bronc® Wilbur-Ellis 0.05 ml 0.5 ml 5 ml 

COC  ROC® Wilbur-Ellis 0.01 ml 0.1 ml 1 ml 

HSOC  High Load® Wilbur-Ellis 0.005 ml 0.05 ml 0.5 ml 

NIS  R11® Wilbur-Ellis 0.0025 ml 0.025 ml 0.25 ml 

MSO  Super Spread 

MSO® 

Wilbur-Ellis 0.01 ml 0.1 ml 1 ml 

aWATER  N/A N/A 10 ml 10 ml 10 ml 
bKOCIDE®3000  DuPont™ 

Kocide®3000 

DuPont 0.21 g 

10ml-1 

0.21 g 

10ml-1 

0.21 g 

10ml-1 

aWATER is a negative control. 
bKOCIDE®3000 is a positive control. Rates remained constant across all concentrations. 
*0.1 x rate denoted as C1.  
**1.0 x rate denoted as C2. 
***10 x rate denoted as C3. 
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Table 3. Chi-square analysis at 0.1 x, 1.0 x, and 10 x label rate for spray adjuvant 

concentration reported as percent inhibition of C. michiganensis subsp. nebraskensis 

growth (α = 0.05). 

0.1 x Label Rate 

Treatment Trial 1 Trial 2 Trial 3 

 N Y N Y N Y 

AMS  100 0 100 0 100 0 

COC  100 0 100 0 100 0 

HSOC  100 0 100 0 100 0 

KOCIDE®3000  0 100 4 96 32 68 

MSO  100 0 100 0 100 0 

NIS  100 0 100 0 100 0 

WATER  100 0 100 0 100 0 

p-value P  < 0.0001 P  < 0.0001 P  < 0.0001 

    

1.0 x Label Rate 

Treatment Trial 1 Trial 2 Trial 3 

 N Y N Y N Y 

AMS  100 0 100 0 96 4 

COC  100 0 76 24 100 0 

HSOC  100 0 100 0 96 4 

KOCIDE®3000  4 96 0 100 4 96 

MSO  100 0 96 4 96 4 

NIS  100 0 8 92 76 24 

WATER  100 0 100 0 100 0 

p-value P  < 0.0001 P  < 0.0001 P  < 0.0001 

    

10 x Label Rate 

Treatment Trial 1 Trial 2 Trial 3 

 N Y N Y N Y 

AMS  96 4 100 0 92 8 

COC  100 0 4 96 76 24 

HSOC  100 0 96 4 84 16 

KOCIDE®3000  8 92 0 100 0 100 

MSO  96 4 8 92 40 60 

NIS  52 48 0 100 0 100 

WATER  100 0 100 0 100 0 

p-value P  < 0.0001 P  < 0.0001 P  < 0.0001 
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Table 4. Inhibitory effects of C. michiganensis subsp. nebraskensis for spray adjuvant 

treatments in all three trials at 0.1 x, 1.0 x, and 10 x label rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

* WATER is a negative control. 
**KOCIDE®3000 is a positive control. Rates remained constant across all concentrations. 
***All values indicated by (-) are equivalent to no bacterial inhibition. 

Values are mean inhibition zone (mm) ± standard deviation of all 25 replications. 

Means within each respective trial separated by letters are significant at α = 0.05. 

 

 

 

 

Adjuvant Trial 1 

Concentration 0.1 x 1.0 x 10 x 

AMS ***-d - d 0.10±0.05 d 

COC -d - d - d 

HSOC -d - d - d 
**KOCIDE®3000 0.89±0.38b 1.13±0.55c 0.88±0.66b 

MSO - d - d 0.01±0.05 d 

NIS - d - d 0.21±0.27c 

*WATER - d - d - d 

    

Adjuvant Trial 2 

Concentration 0.1 x 1.0 x 10 x 

AMS -f - f - f 

COC - f 0.12±0.26 f 1.71±0.73d 

HSOC - f - f 0.08±0.4 f 
**KOCIDE®3000 1.74±0.72d 2.68±0.86b 2.61±0.78b 

MSO - f 0.04±0.2 f 2.28±1.35c 

NIS - f 1.24±0.54e 3.16±1.29a 

*WATER - f - f - f 

    

Adjuvant Trial 3 

Concentration 0.1 x 1.0 x 10 x 

AMS -e 0.01±0.05 e 0.02±0.07 e 

COC - e - e 0.06±0.11 

de 

HSOC - e 0.03±0.15 e 0.04±0.09 e 
**KOCIDE®3000 0.75±0.68c 1.00±0.59b 1.26±0.55a 

MSO -e 0.06±0.22 

de 

0.19±0.18d 

NIS - e 0.06±0.11 

de 

0.93±0.36b 

*WATER - e - e - e 
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Figure 1. Inhibition results of C. michiganensis subsp. nebraskensis for all treatments in 

Trial 1 at 0.1 x, 1.0 x, and 10 x label rate.  
*Means separated by letters are significant at α = 0.05. 
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Figure 2. Inhibition results of C. michiganensis subsp. nebraskensis for all treatments in 

Trial 2 at 0.1 x, 1.0 x, and 10 x label rate.  
*Means separated by letters are significant at α = 0.05. 
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Figure 3. Inhibition results of C. michiganensis subsp. nebraskensis for all treatments in 

Trial 3 at 0.1 x, 1.0 x, and 10 x label rate.  

*Means separated by letters are significant at α = 0.05. 
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Figure 4. Inhibition plates for 1.0 x label rate (top) and 10 x label rate (bottom) for Trial 2 

data.  

 

 

 

 

 

 

 

 

 

 



135 
 

 

 

 

 

 

APPENDIX I 

 

 

 

PRELIMINARY FIELD STUDY INTERACTIONS OF GOSS’S WILT 

DEVELOPMENT AND SPRAY ADJUVANTS 
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Abstract 

 A preliminary field study was conducted to investigate any impacts on disease 

severity of Goss’s wilt, causal agent Clavibacter michiganensis subsp. nebraskensis, 

when applying spray adjuvants and select active ingredients used in corn (Zea mays L.) 

production. Two field locations in southwest Nebraska were used. Two different 

susceptible hybrids were planted, an 87 day relative maturity (RM) hybrid at Madrid and 

a 107 RM hybrid at Gothenburg. Plots were sprayed with one of five adjuvants, one 

fungicide (azoxystrobin), one herbicide (glyphosate), or one negative control (water) at 

V6 growth stage. Separate plots were sprayed at R1 with one of two spray adjuvants, 

three separate fungicides (azoxystrobin, propiconazole, or azoxystrobin + propiconazole), 

or a negative control. Visual estimates of disease severity, systemically infected plants, 

and yield data were all collected for analysis. Results from Madrid indicated a decrease in 

disease severity with slight differences between treatments at V6 application timing. At 

R1 application timing, there were no differences between treatments in disease severity 

over the growing season. There were no difference between treatments for the number of 

systemically infected plants that developed for either application timing. There were also 

no differences between treatments for harvested yield. These results are important 

because they disagree with the initial hypothesis of spray adjuvants increasing disease 

severity. Results showed a decrease in disease severity compared to the control plots. 

There is a widespread use of spray adjuvants in corn production and further research is 

needed to determine if these results are repeatable, or if environmental factors were 

contributing to disease severity.   
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PRELIMINARY GREENHOUSE STUDY ON INOCULATION 

TIMING OF CLAVIBACTER MICHIGANENSIS SUBSP. 

NEBRASKENSIS  
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Abstract 

 A preliminary greenhouse study was conducted to determine if inoculations of 

Clavibacter michiganensis subsp. nebraskensis, causal agent of Goss’s wilt and leaf 

blight of corn (Zea mays L.), at specific growth stages allow for an increase in disease 

severity. Bacterial suspensions of C. michiganensis subsp. nebraskensis were made with 

either 10% tryptic soy broth (TSB) or 10 mM potassium phosphate buffer (Buffer) with 

bacterial density of 2.85 x 107 CFU ml-1 or 6.10 x 107 CFU ml-1, respectively. Spray 

inoculations occurred on Golden Cross Bantam (GCB) sweetcorn plants with an air-

pressurized canister at different growth stages. Disease severity was recorded 7 and 14 

days after inoculation. Results indicated that disease severity was different between 

treatments and rating times, with TSB Trial 1 and Trial 2, having significant disease 

severity at the second rating time. For the Buffer experiment, both Trial 1 and Trial 2 also 

had significant disease pressure at the second rating time. These results are important 

because, it shows that plants can be infected with epiphytic populations of C. 

michiganensis subsp. nebraskensis when they are less mature, resulting in higher disease 

severity. This information can be used for future studies on the epiphytic population of C. 

michiganensis subsp. nebraskensis.  
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