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Transgenic Virus Resistance in Crop-Wild Cucurbita pepo Does Not Prevent
Vertical Transmission of Zucchini yellow mosaic virus

H. E. Simmons, Seed Science Center, Iowa State University, Ames, IA 50011; and Department of Biology, The Pennsylvania State University,
University Park, PA 16802;H. R. Prendeville, School of Biological Sciences, University of Nebraska, Lincoln, NE 68588; and Department of
Biology, University of Virginia, Charlottesville, VA 22904; J. P. Dunham, Molecular and Computational Biology, University of Southern
California, Los Angeles, CA 90033;M. J. Ferrari and J. D. Earnest, Department of Biology, The Pennsylvania State University, University
Park, PA 16802;D. Pilson, School of Biological Sciences, University of Nebraska, Lincoln, NE 68588;G. P.Munkvold, Seed Science Center,
Iowa State University, Ames, IA 50011;E. C. Holmes,Department of Biology, The Pennsylvania State University, University Park, PA 16802;
and Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Medical School,
The University of Sydney, NSW 2006, Australia; and A. G. Stephenson, Department of Biology, The Pennsylvania State University, Univer-
sity Park, PA 16802

Abstract

Simmons, H. E., Prendeville, H. R., Dunham, J. P., Ferrari, M. J., Earnest, J. D., Pilson, D.,Munkvold, G. P., Holmes, E. C., and Stephenson, A. G. 2015.
Transgenic virus resistance in crop-wild Cucurbita pepo does not prevent vertical transmission of Zucchini yellow mosaic virus. Plant Dis. 99:1616-1621.

Zucchini yellow mosaic virus (ZYMV) is an economically important patho-
gen of cucurbits that is transmitted both horizontally and vertically. Although
ZYMV is seed-transmitted inCucurbita pepo, the potential for seed transmis-
sion in virus-resistant transgenic cultivars is not known. We crossed and
backcrossed a transgenic squash cultivar with wild C. pepo, and determined
whether seed-to-seedling transmission of ZYMV was possible in seeds har-
vested from transgenic backcrossed C. pepo. We then compared these trans-
mission rates to those of non-transgenic (backcrossed and wild)C. pepo. The
overall seed-to-seedling transmission rate in ZYMV was similar to those
found in previous studies (1.37%), with no significant difference between

transgenic backcrossed (2.48%) and non-transgenic (1.03%) backcrossed
and wild squash. Fewer transgenic backcrossed plants had symptom devel-
opment (7%) in comparisonwith all non-transgenic plants (26%) andmay be
instrumental in preventing yield reduction due to ZYMV. Our study shows
that ZYMV is seed transmitted in transgenic backcrossed squash, whichmay
affect the spread of ZYMV via the movement of ZYMV-infected seeds.
Deep genome sequencing of the seed-transmitted viral populations revealed
that 23% of the variants found in this study were present in other vertically
transmitted ZYMV populations, suggesting that these variants may be nec-
essary for seed transmission or are distributed geographically via seeds.

Transgenic crops are currently grown in 27 countries on approxi-
mately 175 million ha (James 2013). In the United States alone, the
use of transgenic crops has increased dramatically since they were
first implemented in 1992 (James 2013), increasing from 1.7 to
125 million ha in 12 years (James 2008). Although the vast majority
of transgenic crops confer herbicide or insect resistance and/or toler-
ance, there are those that provide transgenic protection to viruses. It is
thought that resistance, which can be achieved through conventional
breeding or trangenesis, is the most effective method to mitigate the
effects of viral pathogens in agricultural crops (Fuchs and Gonsalves
2007). Mitigating viral pathogens is important as they can have sig-
nificant impacts on agricultural crops and can impair plant growth
by affecting photosynthesis, metabolism, and resource allocation
(Matthews 1991; Radwan et al. 2007; Tecsi et al. 1996), resulting
in dramatic losses in crop yields (Oerke 2006; Oerke et al. 1994; Pico
et al. 1996).
There are, however, agronomic and ecological risks associated

with the use of transgenic crops (Fuchs and Gonsalves 2007; Pilson
and Prendeville 2004; Tepfer 2002). Gene flow from cultivars to wild
plants is common (Ellstrand 2003), and there are concerns that crop-
wild hybridization and introgression of transgenes into wild popula-
tions may enhance plant fitness, thereby increasing weediness of wild
plants (Fuchs et al. 2004; Fuchs and Gonsalves 2007; Laughlin et al.

2009; NCR 2002; Pilson and Prendeville 2004). Transgenic crops
also have the potential to affect nontarget species (Fuchs et al.
2004; Fuchs and Gonsalves 2007; Laughlin et al. 2009; NCR
2002; Pilson and Prendeville 2004). There are additional risks asso-
ciated with the use of virus-resistant transgenic crops. These include
complementation of the viral transgene by an invading virus
(Osbourn et al. 1990), which can theoretically lead to the compensa-
tion of defects in viral long distance movement (Callaway et al.
2004), the inhibition of gene silencing (Qu et al. 2003; Thomas
et al. 2003), and the potential for an expanded host range (Latham
and Wilson 2008; Spitsin et al. 1999). When functional structural
genes are expressed by the virus, there is also a risk that heteroencap-
sidation of the incoming viral RNA by the coat protein of a different
plant virus can occur. This has been demonstrated in Cucurbita pepo
where the coat protein ofWatermelon mosaic virus (WMV) was able
to transmit Zucchini yellow mosaic virus (ZYMV) at low levels (2%)
(Fuchs et al. 1999). An additional risk associated with the use of
transgenic crops with virus resistance is the possibility of cryptic
seed-to-seedling virus transmission.
Virus-resistant transgenic crops vary in their response to virus in-

fection, including immunity, resistance, or tolerance (Lindbo and
Dougherty 1992) (here, immunity is defined as complete resistance
that prevents virus replication, in contrast to partial resistance or tol-
erance, which is defined as reduced virus replication and disease
effects), along with virus replication. In particular, there are a number
of studies in which transgenic plants have displayed mild symptoms
and tested positive for virus infection (Fuchs et al. 2004; Sasu et al. 2009,
2010; Sikora et al. 2006; Tricoli et al. 1995). Since virus-resistant trans-
genic crops vary in response to virus infection, seed-to-seedling trans-
mission could occur, which may be of both agronomic and ecological
consequences if transgenic seeds are distributed without testing.
ZYMV is a single-stranded, positive-sense RNA virus for which

natural infection appears to be limited to members of the Cucurbitaceae
(e.g., squash, melon, and cucumber) (Desbiez and Lecoq 1997).
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ZYMV symptoms include severe stunting of the plant, distinctive
yellow mottling of leaves, and fruit deformities (Desbiez and Lecoq
1997), such that ZYMV is a significant crop pathogen (Blua and Perring
1989). Although ZYMV can be transmitted by seed, it is primarily
transmitted horizontally by a variety of aphids (Katis et al. 2006)
in a non-persistent manner (Lisa et al. 1981). Seed transmission
occurs in approximately 15% of the viruses in the family Potyviridae
(Simmons and Munkvold 2014), including ZYMV in cultivars
(Coutts et al. 2011; Davis and Mizuki 1986; Fletcher et al. 2000;
Muller et al. 2006; Robinson et al. 1993; Schrijnwerkers et al.
1991; Tobias and Palkovics 2003), and symptomless seed-to-
seedling transmission of ZYMV has previously been found to occur
at 1.6% in wild (non-transgenic) C. pepo (Simmons et al. 2011). Wild
C. pepo in North America is thought to be either the progenitor of do-
mestic squash, or an early escape from cultivation (Decker and Wilson
1987; Decker-Walters et al. 2002; Lira et al. 1995). Squash (also
C. pepo) cultivation occurs within the native range of wild C. pepo and
cultivated alleles have been found in wild populations (Arriaga et al.
2006; Decker-Walters et al. 1993; Kirkpatrick and Wilson 1988; Wilson
et al. 1994). To understand the risk of virus spread from wild-crop hybrid
plants with a virus-resistant transgene, we examined seed transmission
in virus-resistant, transgenic crop × wild C. pepo hybrids. Virus-
resistant, transgenic cultivars of yellow crookneck squash was the first
such plant deregulated by the United States Department of Agriculture
(USDA). Transgenic squashwas engineered to express a dual coat pro-
tein (CP) gene construct that conferred resistance toWMV and ZYMV
(Asgrow, ZW-20) and WMV, ZYMV, and Cucumber mosaic virus
(CMV; CZW-3) (USDA 1994, 1996).
To evaluate the risk of disease spread associated with seed trans-

mission in crop-wild hybrids, we investigated if ZYMV can be trans-
mitted from ZYMV-infected transgenic backcrossed plants to their
seedlings. We examined the seed-to-seedling transmission of ZYMV
from seeds harvested from transgenic (C. pepo ssp. ovifera var. Destiny
III) × wild plants (C. pepo ssp. texana or spp. ozarkana). We compared
the transmission rate from seeds harvested from non-transgenicC. pepo
(bothwildC. pepo ssp. texana and ssp. ozarkana as well as backcrossed
non-transgenic) in the same experimental field. Finally, to assess the ge-
netic variation of ZYMV transmitted to seedlings and to compare this
variation to previously sequenced populations of ZYMV,we undertook
deep (Illumina) genome sequencing of ZYMV from two infected seed-
lings, one harvested from a transgenic plant the other from a non-
transgenic (wild) plant.

Methods
Backcross generation two squash (BC2). We developed back-

cross generation two (BC2) squash that segregates for the virus-
resistant transgene construct (Fuchs et al. 2004). We collected fruits
from wild C. pepo from four populations located in the state of Mis-
sissippi near the towns of Eagle Lake (referred to as Eagle; C. pepo
spp. ozarkana), Vaiden (C. pepo spp. ozarkana), Yazoo City (re-
ferred to as Yazoo; C. pepo spp. ozarkana), and Onward (C. pepo
spp. texana). Wild C. pepo from Vaiden and Yazoo were each
crossed with C. pepo ssp. ovifera var. Destiny III (Seminis Vegetable
Seeds, Inc., Saint Louis, MO) and then backcrossed within popula-
tion to develop BC2 squash with virus resistance. Destiny III is a va-
riety of virus-resistant transgenic squash with a CWZ-3 transgene
construct (hemizygous) that confers resistance to ZYMV, WMV,
and CMV and that also possesses a selectable marker, neomycin
phosphotransferase II, which confers aminoglycoside antibiotic re-
sistance. Pollen from Destiny III was used to hand pollinate wild
C. pepo plants to produce F1 seeds. This movement of pollen from
virus resistant transgenic squash to wild C. pepo simulates the most
likely direction of crop-wild hybridization and introgression into
wild populations. We germinated F1 plants and identified those with
the transgene using PCR (Prendeville et al. 2012; Spencer 2001;Wall
et al. 2004) and then backcrossed the transgenic F1 plants to wild
C. pepo to create a backcross one generation (BC1). BC1 plants are
hemizygous for the transgene construct. Again, PCR was used to
identify BC1 plants with the transgene, which were backcrossed into
wildC. pepo to create the BC2 generation. BC2 plants segregated 1:1

for the transgene and each BC2 was tested for the transgene using
PCR. To minimize the potential effects of particular genetic back-
grounds, individual F1 and BC1 plants were crossed with different
individuals. All crosses were completed in greenhouses at the Univer-
sity of Nebraska-Lincoln. To independently verify transgene status, leaf
samples from all BC2 plants were sent to GeneSeek Inc. (Lincoln, NE).
GeneSeek Inc. conducted PCR using primers to amplify a portion of the
transgene construct (Wall et al. 2004) and amplicons were viewed with
an infrared fluorescent system (LI-Cor Inc., Lincoln, NE). Similar
results were obtained by our laboratory work and GeneSeek Inc.
Common garden experiment. In March 2007, we planted a com-

mon garden experiment at the Delta Conservation Demonstration
Center in Metcalfe, MS, using BC2 squash segregating for the virus-
resistant transgene and wildC. pepo. Using a randomized block design,
we plantedBC2 (i.e., BC2-Vaiden andBC2-Yazoo) and seeds from dif-
ferent wild populations (i.e., Onward, Eagle, and Vaiden). To limit the
mechanical transmission of ZYMV, we separated experimental plants
by 6 m. However, plants did experience competition from other plant
species (non-cucurbits) present in the field. In cultivated squash and
other crops in the southeastern United States, aphid transmission of vi-
rus is common in summer and fall (Chalfant et al. 1977; Wosula et al.
2013). For this reason, we mechanically inoculated when plants were
established (approximately 75 leaves on average) in July. We mechan-
ically inoculated with virus by rubbing two to three new, not yet ex-
panded leaves (at the tip of the vine) with approximately 1 ml of
phosphate buffer with celite and homogenized squash leaf tissue in-
fected with ZYMV (ZYMV-CT strain, kindly provided by the Provvi-
denti lab at Cornell University, Ithaca, NY) on 14 to 15 July. Rows
between plants were mowed to provide access to experimental plants.
To assess virus infection, on 10 August 2007 we recorded the pres-

ence of visual symptoms of infection such as mosaic patterns and leaf
deformities. Then we collected new leaves (at the tip of the vine that
had not yet fully expanded) on 7 October and leaf material was dried
in individual 50 ml screw cap tubes with desiccant up to the 20 ml mark
(Drierite, W. A. Hammond Drierite Co. LTD., Xenia, OH). Dried leaf
material (15 to 20 mg) samples in a 96-well plate with a glass bead in
each well were sent to Agdia Inc. (Elkhart, IN) to assay for ZYMV us-
ing their antigen-coated plate (ACP)-ELISA with an alkaline phospha-
tase label. We included a positive control for ZYMV and three negative
controls to whichAgdiawas blind. Agdia added a second set of positive
controls for ZYMV and two negative controls. Agdia homogenized and
analyzed samples for ZYMV by ELISA.
Detection of vertical transmission. To determine if ZYMV seed-

to-seedling transmission rates differ due to the presence of the virus-
resistant transgene in the maternal plant, we randomly sampled fruits
on two BC2 transgenic squash, two BC2 non-transgenic squash, and
six wild C. pepo plants, all of which tested positive for ZYMV. In
total, 49 fruits were collected: 11 from BC2-Vaiden and BC2-
Yazoo with the virus-resistant transgene, 11 from BC2-Vaiden and
BC2-Yazoo without the virus-resistant transgene, and the remaining
27 from wild C. pepo (Eagle, Vaiden, and Onward). Seeds were
extracted from fruits, removed from pulp, and dried in a drying oven
for 24 h at 55�C. These seeds were planted in flats in a greenhouse at
the Pennsylvania State University and 2,026 seedlings emerged.
Transgenic maternal plants are hemizygous for the transgene; there-
fore, approximately 50% of offspring should possess the transgene.
The seedlings were not assayed for the virus-resistant transgene,
but are referred to as transgenic (T) or non-transgenic (NT) to indi-
cate the genotype of the maternal parent as we were interested in de-
termining the vertical transmission rates of ZYMV in seedlings
grown from seeds harvested from transgenic versus non-transgenic
plants. At the third true leaf stage, a leaf tissue sample was collected
and frozen at –80°C until used for analysis.
Seedlings from each fruit were pooled together and then batched

into groups of 10 (or less if there were any remainders) for RNA ex-
traction, cDNA synthesis, and PCR, as described below. Using a cal-
culation for pooled samples based on the binomial model, the
percentage of seedlings that tested positive for ZYMV in RT-PCR was
estimated (Block et al. 1999; Chiang and Reeves 1962). The percentage
of infected seedlings (P) was calculated as P = 100 × (1 – (1 – Q)1/n),
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where n is the number of seedlings per pool (10) andQ is the propor-
tion of positive pools. The value Q is the number of positive pools
(i.e., groups containing at least one infected seedling) divided by
the total number of groups tested. Estimates were made for all seed-
lings (217 pools), seedlings from transgenic plants (54 pools), seed-
lings from non-transgenic plants (163 pools), seedlings from each
population by transgene type (BC2-Vaiden T, 43 pools; NT, 40
pools; BC2-Yazoo T, 11 pools; NT, 8 pools) and seedlings from each
wild population (i.e., Vaiden, 48 pools; Eagle, 47 pools; Onward, 19
pools).
RNA isolation, RT-PCR, and sequencing of seedlings. The

methods used for RNA isolation, ZYMV specific RT-PCR and Illu-
mina sequencing of the seedling samples are as previously described
(Simmons et al. 2012) with the exceptions that we used the E.Z.N.A.
RNA isolation kits (Omega Bio-Tek, Inc. Nocross, GA) to isolate
RNA from frozen leaf samples, and the specific primers used for
RT-PCR targeted the Helper Component protein and were: forward,
TTTTGTCAGGCTCTATTCCCAGT; reverse, GCAACATCCAT
CAACGAAGGC. Extracts of two of the samples that tested positive
via RT-PCR were prepared for Illumina sequencing following the
protocol outlined in Dunham and Friesen (2013) and were submitted
for Illumina (deep amplicon) sequencing at the University of Southern
California on an Illumina GAIIx; ZYMV from a seedling harvested
from a transgenic parent (T; BC2-Vaiden with virus-resistance) and
ZYMV from a seedling collected a non-transgenic parent (NT; wild
C. pepo-Vaiden).
Alignment of raw reads, variant calling, and sequence analysis.

Alignments were performed using the Burrows Wheeler aligner
(BWA) version 0.6.2 allowing 10 mismatches (Li and Durbin 2009)
with the NCBI reference strain of ZYMV (GenBank Accession No.
NC_003224.1). BAM to SAM file conversion and filtering was per-
formed with Samtools version 0.1.18 (Li et al. 2009). Varscan (version
2.3.2) (Koboldt et al. 2012) was used to call the minor mutational var-
iants (i.e., those present beneath the consensus). To ensure that any
false positives were eliminated, we conservatively only retained var-
iants that occurred at greater than 100× coverage (all reads combined),
had a frequency of 1%or greater, had a quality score of 30 or greater, and
possessed a minimum of 10 reads (per variant) at a particular nucleotide
position. The strand filter was also applied to eliminate any strand bias.
The consensus nucleotide sequences generated here have been

submitted to GenBank and assigned accession numbers KJ875864-5.
Statistical analysis. Since ZYMV was detected in seedlings from

transgenic backcrossed plants, we compared the presence and ab-
sence of ZYMV across all seedlings per plant from plants with the
virus-resistant transgene to plants without the transgene (i.e., wild
C. pepo populations and BC2 squash without the virus-resistance
transgene). A generalized linear model was used with a beta error dis-
tribution to examine the fixed effects of plant population and

transgene, with plant as random effects, on the presence of ZYMV
in seedlings (PROC GLIMMIX, SAS 9.4 for Windows, SAS Insti-
tute Inc. Cary, NC). To evaluate the fixed effects of population and
the presence of the transgene on visual symptoms of virus infection
in maternal plants, a generalized linear model with a binomial error
distribution was used (PROC GLIMMIX).

Results
There were 28 groups of 10 seedlings that tested positive for

ZYMV out of a total of 217 groups (2,026 seedlings total). This equa-
tes to a ZYMV seed transmission rate of 1.37% (Fig. 1). This is in gen-
eral accordance with the seed transmission rate previously reported
from a population non-transgenic wild C. pepo in Pennsylvania
(1.6%) (Simmons et al. 2011). Of the 28 groups of seedlings that
tested positive for ZYMV, 12 groups were from seeds harvested from
transgenic plants (T). The ZYMV seed transmission rate for seeds
harvested from transgenic plants was 2.48% (12 of 54 groups; 505
seedlings), while the ZYMV seed transmission rate for seeds har-
vested from all non-transgenic plants (NT) was 1.02% (16 of 164
groups; 1,512 seedlings). The seed-to-seedling transmission rate of
ZYMV for seeds harvested from BC2 non-transgenic plants was
0.21% (1 of 48 groups; 441 seedlings) and for wild plants it was
1.38% (15 of 116 groups; 1,071 seedlings). Notably, the frequency
of ZYMV seed-to-seedling transmission rate did not differ among
plant populations (F4,7 = 0.50, P = 0.737). Likewise, there was no ef-
fect of the virus-resistant transgene on ZYMV seed-to-seedling trans-
mission rate (F1,7 = 1.03, P = 0.344). A comparison of visual
symptoms (i.e., mosaic patterns and leaf deformities) among plants
inoculated with ZYMV revealed no difference in visual symptoms
among populations (F1,65 = 2.00,P= 0.162), although there was a dif-
ference in visual symptoms due to the transgene with fewer trans-
genic plants having visual symptoms (7%) than all non-transgenic
plants (BC2 and wild 26%; F1,65 = 4.17, P = 0.045).
To compare genetic variation between the ZYMV populations se-

quenced in this study with those that were sequenced previously from
Pennsylvania, we performed sequence analysis of two viral populations
(one from a transgenic backcrossed plant and the other from a non-
transgenic wild plant). The average coverages were 13,115× for the
ZYMV sample sequenced from a non-transgenic parent and 240× for
the ZYMV sample sequenced from a transgenic parent. The amount
of the ZYMV genome sequenced was 99.48% from the seedling har-
vested from transgenic plants and 98.02% for the seedling harvested
from non-transgenic plants. Analyses of these data revealed a total of
53 variants, 32 of which are non-synonymous, 14 synonymous, six har-
bored frameshifts, and there was a single mutation leading to a stop co-
don. Twelve of the 53 variants were shared between the seedlings from
T and NT parents comprising nine non-synonymous (i.e., 75% of the
total) and three synonymous mutations. In total, 26 of the variants were
found only in the seedling grown from seed harvested from transgenic
plants while 15 were only found in the seedling grown from seed har-
vested from non-transgenic plants (Table 1). Notably, 29 of the variants
described here were also found in ZYMV populations of vertically
transmitted samples from Pennsylvania that we sequenced previously
(Simmons et al. 2013).

Discussion
The presence of a virus-resistant transgene did not prevent the ver-

tical transmission of ZYMV in BC2 C. pepo. In particular, we found
no significant difference between the frequency of seed-to-seedling
transmission between transgenic and non-transgenic crop × wild
C. pepo. These results clearly show that seeds from plants with the
virus-resistant transgene cannot be assumed to be virus-free; thus,
seed quality should be assessed through testing for ZYMV. ZYMV
seed transmission occurs in cultivated cucurbits (Fletcher et al.
2000; Schrijnwerkers et al. 1991; Tobias and Palkovics 2003) and
conventional-bred ZYMV resistance does not currently exist, such
that conventional seeds are tested for ZYMV. However, it is unclear
if virus-resistant transgenic squash are tested as growers may falsely
assume the lack of visual symptoms indicates complete resistance to
ZYMV. Evidently, without testing seeds for ZYMV, vertical transmission

Fig. 1. ZYMV vertical transmission in BC2 crop-wild hybrids and wild populations of
Cucurbita pepo with the virus-resistant transgene (BC2 Vaiden and BC2 Yazoo)
and without the transgene (non-transgenic: BC2 Vaiden, BC2 Yazoo, Vaiden, Eagle,
and Onward). There was no statistical difference in ZYMV seed transmission
among populations (F4,7 = 0.50, P = 0.737) or due to the presence or absence of
the virus-resistant transgene (F1,7 = 1.03, P = 0.344).
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of ZYMV may occur in transgenic virus-resistant squash, which in
turn may affect virus epidemiology in crops and adjacent wild plant
populations. It is also important to note that that horizontal transmis-
sion of ZYMV by aphids can occur from vertically infected plants
(Simmons et al. 2011). Although transmission rates were not signif-
icantly different in the presence or the absence of the transgene, more
extensive research is needed to determine if the presence of the virus-
resistant transgene affects virus movement that may facilitate ZYMV
seed-to-seedling transmission.
Virus-resistant transgenic crop × wild hybrids are able to transmit

ZYMV to their progeny. This unexpected finding indicates that the
virus-resistance transgene does not provide complete immunity,
but instead confers partial resistance or tolerance (Gaba et al. 2004).
Previous field studies of transgenic C. pepo × wild C. pepo (Fuchs
et al. 2004; Laughlin et al. 2009; Sasu et al. 2009, 2010) found that
the transgene effectively decreases symptoms of target viruses and
increases yield in the face of virus infection. However, several studies
have found transgenic plants with mild symptoms that tested positive
for ZYMV (Fuchs et al. 2004; Sasu et al. 2009, 2010; Sikora et al.
2006; Tricoli et al. 1995). Together these studies indicate that virus re-
sistance in transgenic squash only confers partial resistance or toler-
ance to ZYMV infection. Thus, ZYMV infection could occur through
maternal vertical transmission to ovules or embryos. Although the use
of transgenic plants is instrumental in reducing yield losses to ZYMV
(Fuchs et al. 1998), our findings demonstrate that ZYMV is seed trans-
mitted in virus-resistant transgenic squash × wild hybrids.
ZYMV seed-to-seedling transmission has important implications

for agriculture (i.e., cultivated squash and its associated seed indus-
tries) as well as wild plant populations. For this reason, it is important

for growers to monitor virus-resistant transgenic plants for virus and
seed transmission since virus infection is not visually apparent. In
wild plants, ZYMV may be seed-transmitted from tolerant plants to
offspring, which could affect the epidemiology of ZYMV as virus
transmission to neighboring non-transgenic plants (wild or crop) via
aphids could occur. It has been reported that aphids are preferentially
attracted to the volatile organic compounds produced by virus-infected
plants, but after probing the plant, the aphids are more likely to depart
without feeding (Mauck et al. 2010). Because transgenic plants can be-
come infectedwithZYMV, and because aphids are preferentially attracted
to ZYMV-infected plants (Salvaudon et al. 2013), it is possible that this
may increase the exposure/transmission rate in the host population. The
exposure/transmission rate in a virus-resistant transgenic population will
likely be greater than zero since virus-resistance transgene construct does
not confer complete immunity, yet the exposure/transmission rate will
likely be less than conventional plants (Klas et al. 2006). It is unclear
how ZYMV seed-to-seedling transmission may affect wild C. pepo pop-
ulations. ZYMV and other viruses reduce fecundity in wild C. pepo in
comparison with transgenic introgressives (Fuchs et al. 2004; Laughlin
et al. 2009; Sasu et al. 2009, 2010), which indicates a selective advantage
for the transgene as it introgresses intowild populations.However, ZYMV
inoculation did not reduce fecundity in a field experiment with wild pop-
ulations of C. pepo from sites used in this study (Prendeville et al. 2014).
Also, ZYMV inoculation affected traits other than fecundity, which
resulted in an increase in population growth rate in comparison with no
virus inoculation for C. pepo from Vaiden, MS (Prendeville et al. 2014).
An assessment of the next generation sequencing data revealed

that 29 of the 53 variants observed in this study had been previ-
ously documented in nine vertically-transmitted ZYMV populations

Table 1. Nucleotide positions of the variants observed in two samples: ZYMV
from one seedling harvested from a transgenic (T) plant and one seedling harvested
from a non-transgenic (NT) plant. The first column indicates the viral polyprotein
(the nucleotide positions the protein encompasses are noted in bold) and the specific
nucleotide position at which themutation occurred, as well as the type of nucleotide
change. The next two columns are the plants in which the variants were found, and
the percentage of the reads that occurred for that variant. The penultimate column
indicates whether the mutation was S: synonymous, NS: nonsynonymous, FS:
a frameshift, or S: a stop, and the last column indicates the amino acid change.

Mutation NT (%) T (%) Type AA change

P1 (138-1068)
372 (G→C) 1.12 NS Arg → Ser
380 (G→A) 1.55 NS Arg → Gln
390 (G→T) 3.93 NS Met → ile
395 (A→G) 1.35 NS Lys → Arg
399 (G→A) 1.35 S Val
404 (A→G) 1.40 1.66 NS Lys → Arg
408 (T→C) 1.45 S Gly
412 (A→G) 1.11 1.55 NS Ser → Gly
414(T→G) 1.75 2.43 NS Ser → Arg
425(T→C) 3.81 NS Val → Ala
428(T→C) 3.98 NS Leu → Pro
432(C→A) 1.90 S Arg
452(T→C) 1.16 NS Val → Ala
541 (G→T) 1.55 NS Ala → Ser
625 (A→G) 1.17 NS Arg → Gly
627 (G→) 7.52 FS
631(A→G) 1.32 NS Lys → Glu
HC-Pro (1069-2436)
1071(G→A) 27.81 43.18 S Ser
1412 (C→T) 8.33 NS Ser → Phe
1697 (G→A) 4.47 NS Arg → Lys
P3 (2437-3474)
2490 (T→C) 19.44 S Phe
3364 (C→A) 5.10 NS Gln → Lys
3472 (C→A) 2.73 NS Gln → Lys
6K1 (3475-3630)
3555(A→G) 2.45 2.99 S Arg

(continued in next column)

Table 1. (continued from preceding column)

Mutation NT (%) T (%) Type AA change

CI (3631-5532)
3661 (G→C) 2.69 NS Asp → His
3708 (T→A) 52.17 24.58 NS His → Gln
3735 (T→C) 1.98 S Phe
3742 (T→G) 2.81 2.91 NS Trp → Gly
3743 (G→A) 2.81 2.92 NS Trp to Stop
3850 (G→T) 8.23 NS Ala → Ser
3913 (T→C) 12.71 S Leu
5193 (G→A) 9.71 24.22 S Lys
5501 (G→) 8.77 FS
6K2 (5533-5691)
5625 (C→) 5.63 FS
5627 (A→T) 9.46 NS Tyr → Phe
5628 (T→A) 8.64 Stop Tyr → stop
5633 (G→) 47.92 FS
5635 (T→G) 48.45 6.81 NS Trp → Gly
5641 (G→T) 38.50 6.12 NS Val → Phe
5643 (C→) 45.04 FS
5821 (G→A) 1.61 NS Val → Ile
5888 (T→G) 1.45 NS Val → Gly
NIa-Vpg (5692-6261)
6080 (G→A) 1.04 NS Gly → Asp
NIa-Pro (6262-6990)
6419 (G→A) 1.27 NS Gly → Asp
6677 (A→) 1.18 FS
6753 (A→T) 3.29 S Ile
Nib (6991-8541)
7029 (G→A) 1.02 S Gly
7317 (C→T) 18.94 S Cys
7320 (A→T) 1.60 S Arg
7387 (A→G) 2.45 NS Arg → Gly
7477 (C→T) 1.84 24.74 NS His → Tyr
7776 (C→T) 5.61 S Asn
CP (8542-9378)
8899 (G→A) 1.75 NS Gly → Arg
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(seed-to-seedling) from Pennsylvania (Simmons et al. 2013). As the
samples sequenced herein were from a geographically disparate area
(they were inoculated with the ZYMV-CT strain), these data are
compatible with the notion that seed transmission selects for specific
variants. Based on a phylogenetic analysis of the coat protein region,
it would appear that although all the American ZYMV isolates ap-
pear to share a common ancestor, there do appear to be sequence dif-
ferences between the Pennsylvania strains and the Connecticut strain
(Simmons et al. 2008). Similarly, we previously sequenced 24 hori-
zontally transmitted populations of ZYMV in Pennsylvania (Simmons
et al. 2012), and 13 of the variants found in this study were also ob-
served in the ZYMV populations sequenced here. Twelve muta-
tions were found in all three populations; that is, this study, the
previously sequenced seed-to-seedling transmitted populations
(Simmons et al. 2013), and the horizontally transmitted populations
(Simmons et al. 2012). Interestingly, six of the variants found in all
three studies are also present as polymorphic sites in the 25 ZYMV
full genome sequences on GenBank (3708, 5193, 6753, 7029,
7317, and 7776). What effect, if any, these mutations have on the
seed (or horizontal) transmission of this viral pathogen has yet to
be determined, and it is possible that these variants are being distrib-
uted geographically via seeds or vectors (although vectors are short-
lived). Additional viral populations from other regions would need to
be investigated to address this question.
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