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Repeated effects of the neurotensin receptor agonist PD149163 
in three animal tests of antipsychotic activity: assessing for 
tolerance and cross-tolerance to clozapine

Shinnyi Chou, Collin Davis, Sean Jones, and Ming Li*

Department of Psychology, University of Nebraska-Lincoln, USA

Abstract

Neurotensin is an endogenous neuropeptide closely associated with the mesolimbic dopaminergic 

system and shown to possess antipsychotic-like effects. In particular, acute neurotensin receptor 

activation can inhibit conditioned avoidance response (CAR), attenuate phencyclidine (PCP)-

induced prepulse inhibition (PPI) disruptions, and reverse PCP-induced hyperlocomotion. 

However, few studies have examined the long term effects of repeated neurotensin receptor 

activation and results are inconsistent. Since clinical administration of antipsychotic therapy often 

requires a prolonged treatment schedule, here we assessed the effects of repeated activation of 

neurotensin receptors using an NTS1 receptor selective agonist, PD149163, in 3 behavioral tests 

of antipsychotic activity. We also investigated whether reactivity to the atypical antipsychotic 

clozapine was altered following prior PD149163 treatment. Using both normal and prenatally 

immune activated rats generated through maternal immune activation with 

polyinosinic:polycytidilic acid, we tested PD149163 in CAR, PCP (1.5 mg/kg)-induced PPI 

disruption, and PCP (3.2 mg/kg)-induced hyperlocomotion. For each paradigm, rats were first 

repeatedly tested with vehicle or PD149163 (1.0, 4.0, 8.0 mg/kg, sc) along with vehicle or PCP for 

PPI and hyperlocomotion tests, then challenged with PD149163 after 2 drug-free days. All rats 

were then challenged with clozapine (5.0 mg/kg, sc). During the repeated test period, PD149163 

exhibited antipsychotic-like effects in all three models. On the PD149163 challenge day, prior 

drug treatment only caused a tolerance effect in CAR. This tolerance in CAR was transferrable to 

clozapine, as it enhanced clozapine tolerance in the same group of animals. Although no tolerance 

effect was seen in the PD149163 challenge for the PCP-induced hyperlocomotion test, the 

clozapine challenge showed increased sensitivity in groups previously exposed to repeated 

PD149163 treatment. Our findings suggest repeated exposure to NTS1 receptor agonists can 

induce a dose-dependent tolerance and cross-tolerance to clozapine to some of its behavioral 

effects but not others.
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INTRODUCTION

Neurotensin (NT) is an endogenous 13-amino acid neuropeptide ubiquitous in the central 

nervous system (CNS) (Carraway and Leeman, 1973, 1975). The neurotransmitter and its 

two main receptor subtypes, the NTS1 and NTS2 G protein-coupled receptors, are especially 

highly distributed in the hypothalamus, amygdala, and the nucleus accumbens, and are 

associated with the mesolimbic dopaminergic system (Boudin et al, 1996; Chalon et al, 

1993; Cooper et al, 1981; Mazella et al, 1996; Tanaka et al, 1990; Vita et al, 1996). Within 

the CNS, NT is involved in an array of processes, including the activation of intracellular 

signaling pathways (Hermans et al, 1993), modulation of cytokine expression (Wang et al, 

2006), stress-induced analgesia (Dobner et al, 2001; Gully et al, 1993, 1997; Maeno et al, 

2004; Pettibone et al, 2002; Remaury et al, 2002), and the sensitization to psychostimulant 

drugs (Betancur et al, 1998; Costa et al, 2001; Horger et al, 1994; Panayi et al, 2002, 2005). 

NT has also been implicated in both the etiology and treatment of schizophrenia. Clinical 

studies have shown that some schizophrenic patients have reduced levels of NT in the 

cerebrospinal fluid, and treatment with antipsychotic drugs (APDs) is able to restore NT 

levels (Breslin et al, 1994; Garver et al, 1991; Lindström et al, n.d.; Nemeroff et al, 1989; 

Sharma et al, 1997; Widerlöv et al, 1982). In addition, NT signaling seems to play a crucial 

role in mediating the central actions of available APDs. Treatment of patients with APDs 

has been shown to increase NT levels in specific brain regions (Govoni et al, 1980; Kinkead 

et al, 2000), and both NT- and NT receptor-null mouse models have demonstrated defects in 

APD response compared to controls (Kinkead et al, 2005). Numerous studies have further 

examined the possibility of NT as an exogenous atypical APD (Boules et al, 2001; Feifel et 

al, 1997, 1999; Hertel et al, 2002; Li et al, 2010b; Shilling and Feifel, 2008; Shilling et al, 

2003), a classification generally given to therapeutics effective in alleviating psychotic 

symptoms without causing severe extrapyramidal side effects (Wadenberg and Hicks, 1999). 

Receptor stimulations with NT or agonists have produced APD-like effects in models with 

high predictive validity of efficacy (Gleason and Shannon, 1997; Natesan et al, 2006; 

Wadenberg, 2010), including the attenuation of phencyclidine (PCP) and d-amphetamine 

induced hyperactivity (Boules et al, 2001; Li et al, 2010b), disruptions in the conditioned 

avoidance response (CAR) (Hertel et al, 2001), and the reversal of prepulse inhibition (PPI) 

deficits induced by d-amphetamine (Shilling et al, 2003), as well as dopamine, serotonin, 

and α-1 adrenoreceptor agonists (Feifel et al, 1999, 2003; Shilling et al, 2003, 2004).

PD149163 (PD) is an NTS1 receptor-selective agonist that crosses the blood-brain barrier 

and is shown to have APD-like properties in animal studies (Petrie et al, 2004). Acute 

systemic injections of PD exhibit diminished CAR without generating catalepsy (Holly et al, 

2011), and improve the reduction of PPI in Brattleboro rats and by amphetamine, 

dizocilpine, and serotonin 2A and α-1 adrenoreceptor agonists (Feifel et al, 2009). However, 

as most APD regimens require a repeated and chronic administration, it is clinically relevant 
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to investigate the chronic effects of PD. Previous research using the NT analogue NT69L 

suggests the emergence of a tolerance phenomenon in both CAR and amphetamine-induced 

hyperactivity (Feifel et al, 2007; Hertel et al, 2001, 2002; Norman et al, 2008a), while more 

recent studies of repeated PD exposure seem to contradict the tolerance effect using 

amphetamine-induced hyperactivity and Brattleboro PPI models (Feifel et al, 2008). These 

discrepancies may be due to the choice of dosage, as earlier work has observed dose-

dependent effects of NT infusion (Feifel et al, 1997), or perhaps the chosen time points. In 

order to resolve these discrepancies, in the present study, we assessed the long-term repeated 

effects of PD in three distinct animal tests of antipsychotic activity: the repeated CAR, PCP-

induced hyperlocomotion, and PCP-induced PPI models. For each model, we employed a 

behavioral paradigm similar to those used for the study of psychomotor sensitization 

(Robinson et al, 1998; Stewart and Badiani, 1993). The procedure involves inducing 

changes in behavioral sensitivity to APDs over days through repeated drug administration, 

then assessing the expression of the long term behavioral alterations in a subsequent 

challenge test. We have shown that in the CAR test, the typical APD haloperidol and the 

atypical APD olanzapine (OLZ) both cause long term sensitization effects (Li et al, 2007, 

2010a; Mead and Li, 2010; Qiao et al, 2013b; Qin et al, 2013; Sun et al, 2009; Zhang and 

Li, 2012; Zhao et al, 2012), while clozapine (CLZ) induces a tolerance effect during the 

challenge trial following repeated drug exposure (Feng et al, 2013; Li et al, 2011; Qiao et al, 

2013a, 2013b). Furthermore, we have recently established that the long term modulation of 

behavioral sensitivity induced by one APD can affect the behavioral sensitivity to another 

APD not previously exposed to the animal (Qin et al, 2013). In light of these findings, we 

also examined whether prior PD treatment would alter drug sensitivity to CLZ.

MATERIALS AND METHODS

Animals

Subject rats were mixed groups of female Sprague-Dawley adult offspring (> P75 days old) 

of pregnant dams from Charles River (Portage, MI; gestation day [G] 6 on delivery date) 

that were injected with either the immunostimulant polyinosinic:polycytidilic acid (PolyI:C, 

4.0 mg/kg, intravenous [iv]) (Sigma-Aldrich, St. Louis, MO) or vehicle (VEH, 0.9% saline). 

Previous work suggests that maternal immune activation (MIA) with gestational PolyI:C 

treatment reproduces many behavioral abnormalities resembling symptoms of schizophrenia 

(Piontkewitz et al, 2009; Zuckerman and Weiner, 2005). Thus far only a few studies have 

investigated the effects of APDs using prenatally immune activated animals. We postulated 

that we would obtain more clinically relevant behavioral effects of PD by testing it in this 

model. PolyI:C 4.0 mg/kg was dissolved in 0.9% saline. This dose of PolyI:C was chosen 

based on previous studies using the same dose and route of administration to generate 

schizophrenia-like phenotypes (Piontkewitz et al, 2009, 2012; Wolff and Bilkey, 2008, 

2010; Yee et al, 2012; Zuckerman and Weiner, 2005; Zuckerman et al, 2003). Prenatal 

PolyI:C treatment was performed on G13-15, when pregnant dams were anesthetized with 

3% isoflurane (Fisher Scientific, Denver, CO) in 98% O2 and given a single iv injection at 

the tail vein. Siblings of pups born from these mothers and not used in the current study 

displayed abnormally low maternal separation-induced pup ultrasonic vocalizations (USVs, 

unpublished observation), indicating that these MIA animals do exhibit schizophrenia-like 
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phenotypes. For all experiments, rats were assigned such that the MIA and control offspring 

were distributed across each drug testing condition, and offspring from the same litter were 

assigned to different groups to minimize litter effects as a confound (Zorrilla, 1997). Table 1 

summarizes the experimental groups and treatment conditions in each experiment.

Subjects were housed two per cage upon weaning (postnatal day [P] 21), in 182 × 50 × 

188.1cm transparent polysulfone individually ventilated cages under 12h light/dark 

conditions (light on between 0630 and 1830 h). Room temperature was maintained at 22 ± 

1°C with a relative humidity of 45–60%. Food and water was available ad libitum. Animals 

remained in their home cages until the time of the experiments (~P 75–95). All experiments 

were run during the light cycle. All procedures were approved by the Institutional Animal 

Care and Use Committee at the University of Nebraska-Lincoln.

Drugs and choice of doses

PD (Sigma-Aldrich, St. Louis, MO) was dissolved in 0.9% saline. Three doses of PD were 

tested: 1.0, 4.0 and 8.0mg/kg (subcutaneous [sc]). These doses of PD were chosen based on 

previous studies related to systemic injections of PD in CAR, PPI and hyperlocomotion tests 

(Feifel et al, 1999, 2003, 2004, 2007, 2008, 2010, 2011; Holly et al, 2011; Shilling and 

Feifel, 2008; Shilling et al, 2004). CLZ (5.0 mg/kg, sc) was dissolved in distilled sterile 

water with 1.0–1.5% glacial acetic acid. The dose of CLZ acutely inhibits CAR, PCP-

induced disruption of PPI, and PCP-induced hyperlocomotion based on our previous work 

(Feng et al, 2013; Li et al, 2004, 2007, 2009, 2010a; Mead and Li, 2010; Sun et al, 2009; 

Zhang and Li, 2012). The injection solution of PCP (gift from National Institute on Drug 

Abuse Chemical Synthesis and Drug Supply Program) was obtained by mixing the drug 

with 0.9% saline. The doses of PCP (3.2 mg/kg for experiment 2; 1.5 mg/kg for experiment 

3, sc) were chosen based on our previous work (Feng et al, 2013; Li et al, 2012a; Sun et al, 

2009; Zhang and Li, 2012; Zhao and Li, 2010). These doses of PCP are shown to induce 

robust hyperlocomotion and disruptions in PPI without causing severe stereotypy (Gleason 

and Shannon, 1997; Kalinichev et al, 2008, 2009). All drugs were administrated at 1.0 

ml/kg.

Two-way avoidance conditioning apparatus

Eight identical two-way shuttle boxes custom designed and manufactured by Med 

Associates (St. Albans, VT) were used. Each box was housed in a ventilated, sound-

insulated isolation cubicle (96.52 cm W × 35.56 cm D × 63.5 cm H). Each box was 64 cm 

long, 30 cm high (from grid floor), and 24 cm wide, and was divided into two equal-sized 

compartments by a partition with an arch style doorway (15 cm high × 9 cm wide at base). A 

barrier (4 cm high) was placed between the two compartments, so the rats had to jump from 

one compartment to the other. The grid floor consisted of 40 stainless-steel rods with a 

diameter of 0.48 cm, spaced 1.6 cm apart center to center, through which a scrambled 

footshock (unconditioned stimulus [US], 0.8mA, maximum duration: 5 s) was delivered by a 

constant current shock generator (Model ENV-410B) and scrambler (Model ENV-412). The 

rat location and crossings between compartments were monitored by a set of 16 photobeams 

(ENV-256-8P) affixed at the bottom of the box (3.5 cm above the grid floor). Illumination 

was provided by two houselights mounted at the top of each compartment. The conditioned 
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stimulus (CS, i.e. 76 dB white noise) was produced by a speaker (ENV 224 AMX) mounted 

on the ceiling of the cubicle, centered above the shuttle box. Background noise 

(approximately 74 dB) was provided by a ventilation fan affixed at the top corner of each 

isolation cubicle. All training and testing procedures were controlled by Med Associates 

programs running on a computer. In each CAR box, an USV microphone (P 48/Emkay 

Microphone, Avisoft Bioacoustics, Berlin, Germany) was mounted on the ceiling of the two-

compartment chamber. The microphone was connected via an E-MU 0404 USB Audio 

device to a computer. Acoustic data were displayed in real time by the Avisoft 

RECORDER, a multi-channel triggering hard-disk recording software (version 3.4; Avisoft 

Bioacoustics), and were recorded at a sampling rate of 192 kHz in 16 bit format and 

analyzed by Avisoft SASLab Pro (version 4.51; Avisoft Bioacoustics).

Prepulse inhibition of acoustic startle reflex apparatus

The PPI test was performed using six Startle Monitor Systems (Kinder Scientific, Julian, 

CA). Each system, controlled by a PC, was housed in a compact sound attenuation cabinet 

(36 cm wide × 28 cm deep × 50 cm high). A speaker (diameter: 11 cm) mounted on the 

cabinet’s ceiling was used to generate acoustic stimuli (70 dB–120 dB). The startle response 

was measured by a piezoelectric sensing platform on the floor, which was calibrated daily. 

During testing, rats were placed in a rectangular box made of transparent Plexiglas (19 cm 

wide × 9.8 cm deep × 14.6 high) with an adjustable ceiling positioned atop the box, 

providing only limited restraint while prohibiting ambulation.

Locomotor activity monitoring apparatus

This apparatus has been described before (Feng et al, 2013; Sun et al, 2009; Zhao and Li, 

2010). Sixteen activity boxes were housed in a quiet room. The boxes were 48.3 cm × 26.7 

cm × 20.3 cm transparent polycarbonate cages, each equipped with a row of 6 photocell 

beams (7.8 cm between two adjacent photobeams) placed 3.2 cm above the floor of the 

cage. A computer with recording software (Aero Apparatus Sixbeam Locomotor System 

v1.4) was used to detect the disruption of the photocell beams and recorded the number of 

beam breaks.

Experiment 1: Assessment of PD149163 tolerance using the conditioned avoidance 
response test

This experiment examined whether repeated PD treatment could induce a tolerance effect in 

adult female rats in the CAR model as previously found with CLZ in adult male rats (Feng 

et al, 2013; Li et al, 2010a; Qiao et al, 2013a). It consisted of four phases: avoidance 

training, repeated PD testing, PD challenge test and CLZ challenge test.

Avoidance training—35 rats (~P 75) were first habituated to the CAR boxes for 2 days 

(30 min/day) and then trained for conditioned avoidance responding for 10 consecutive 

days/sessions. Each session consisted of 30 trials. Every trial started by presenting a white 

noise (CS) for 10 s, followed by a continuous scrambled foot shock (0.8 mA, US, maximum 

duration = 5 s) on the grid floor. If a subject moved from one compartment into the other 

within the 10 s of CS presentation, it avoided the shock and this shuttling response was 

recorded as avoidance. If the rat remained in the same compartment for more than 10s and 
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made a crossing upon receiving the footshock, this response was considered as escape. If the 

rat did not respond during the entire 5 s presentation of the shock, the trial was terminated 

and escape failure was recorded. The total number of avoidance responses was recorded for 

each session. Intertrial intervals varied randomly between 30 and 60 s.

Repeated PD testing—At the end of the training session (~P 87), rats were assigned to 

one of four groups: VEH (0.9% saline, n = 9), PD 1.0 mg/kg (PD 1.0, n = 9), PD 4.0 mg/kg 

(PD 4.0, n = 9), and PD 8.0 mg/kg (PD 8.0, n=8) and tested daily for avoidance response for 

5 consecutive days. The CS-only (no shock, 30 trials/daily session) condition was used to 

eliminate any relearning effect caused by the presence of the US. During each drug test, rats 

were first injected with PD or VEH. Thirty min later, they were placed in the CAR boxes 

and tested. USV at the 22 kHz range (20–32 kHz) – an established assay for fear and anxiety 

(Mead et al, 2008; Sun et al, 2010a) – were also recorded for the first 10 min of the testing 

using Avisoft Recorder software (Version 3.4). Settings included sampling rate at 192 kHz, 

format 16 bit. For acoustical analysis, recordings were transferred to Avisoft SASLab Pro 

(Version 4.51) and a fast Fourier transformation (FFT) was conducted. Spectrograms were 

generated with an FFT-length of 256 points and a time window overlap of 50% (100% 

Frame, FlatTop window). The spectrogram was produced at a frequency resolution of 750 

Hz and a time resolution of 0.6667 ms. Call detection was provided by an automatic single 

threshold-based algorithm (threshold: −20 dB) and a hold-time mechanism (hold time: 0.02 

s).

PD challenge test—One day after the last drug test day, all rats were retrained drug-free 

for one day under the CS-only (no shock) (~P 92) condition and one day under the CS-US 

condition (~P 93) to ensure all groups had a comparable level of avoidance responding 

before the tolerance assessment. PD tolerance was assessed 1 day later (~P 94), when all rats 

were injected with a challenge dose of PD 1.0 mg/kg and tested for avoidance performance, 

22 kHz USV and intertrial crossing in the CS-only condition (30 trials) 30min later. This 

procedure of using a lower challenge dose of the same drug has been successfully used in 

our previous studies with many APDs (Feng et al, 2013; Li et al, 2010a, 2012b; Qiao et al, 

2013a; Sparkman and Li, 2012; Swalve and Li, 2012; Zhang and Li, 2012). It also avoided 

the floor effect (i.e. a high dose may cause a maximal avoidance disruption, leaving no room 

to show a sensitization or tolerance effect).

CLZ challenge test—After the PD challenge test, all rats were once again retrained for 2 

drug-free sessions, the first under the CS-only condition and the second under the CS-US 

condition, then challenged with CLZ 5.0 mg/kg 1 day later, when they were injected with 

CLZ and tested 1 h later for avoidance performance in the CS-only condition (30 trials).

Experiment 2: Assessment of PD149163 tolerance using the phencyclidine-induced 
hyperlocomotion test

This experiment examined whether repeated PD treatment could induce a tolerance effect in 

adult female rats in PCP-induced hyperlocomotion. It consisted of three phases: repeated 

PD testing, PD challenge test and CLZ challenge test.
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Repeated PD testing—Forty six rats were first habituated to the locomotor activity 

apparatus for 2 days (~ P95, 30min/day). Following habituation rats were assigned to one of 

six groups: VEH+VEH (n=7), PCP+VEH (n=8), PD 1.0+PCP (n=8), PD 4.0+PCP (n=8), PD 

8.0+PCP (n=8), or VEH+PD 4.0 (n=7), and tested daily for locomotor activity for 5 

consecutive days. During each session, rats were first injected with PD or VEH and 

immediately placed in the boxes for 30 min. At the end of the 30 min period, they were 

taken out and injected with PCP 3.2 mg/kg or VEH and placed back in the boxes for another 

60 min. Locomotor activity (number of photobeam breaks) was measured in 5min intervals 

throughout the entire 90-min testing session.

PD challenge test—Two days after the last drug test day, all rats were rehabituated to the 

locomotor activity boxes (~ P103, 30 min) and PD tolerance was assessed 1 day later (~ 

P104), when all rats were injected with both PD 1.0 mg/kg and PCP 3.2 mg/kg and tested 

for locomotor activity.

CLZ challenge test—After the PD challenge test, all rats were once again rehabituated to 

the locomotor activity boxes then challenged with CLZ 5.0 mg/kg + PCP 3.2 mg/kg 1 day 

later.

Experiment 3: Assessment of PD149163 tolerance using the phencyclidine-induced 
disruptions of prepulse inhibition test

This experiment examined whether repeated PD treatment induces a tolerance effect in adult 

female rats in PCP-induced disruption of PPI. It consisted of three phases: repeated PD 

testing, PD challenge test and CLZ challenge test.

Repeated PD testing—Forty six rats were first habituated to the prepulse inhibition 

apparatus for 2 days (~ P75, 10min). Following habituation rats were assigned to one of five 

groups: VEH+VEH (n=10), PCP+VEH (n=9), PD 1.0+PCP (n=9), PD 4.0+PCP (n=9), or 

PD 8.0+PCP (n=9), and tested daily for PPI for 3 consecutive days. During each session, 

rats were first injected with PD or VEH, followed 20 min later with an injection of PCP 1.5 

mg/kg or VEH, then placed in the PPI boxes and tested 10 min later. PPI test procedures 

were adapted from Culm and Hammer (2004). The PPI session lasted approximately 18 min 

and began with a 5 min period of 70 dB background noise (which continued throughout the 

duration of the session) followed by four different trial types: PULSE ALONE trials and 

three types of PREPULSE+PULSE trials, which consisted of a 20 ms 73, 76, or 82 dB 

prepulse (3, 6, and 12 dB above background) followed 100 ms later by a 120 dB pulse. Each 

session was divided into 4 blocks. Blocks 1 and 4 were identical, each consisting of 4 

PULSE ALONE trials. Blocks 2 and 3 were also identical and each consisted of 8 PULSE 

ALONE trials and 5 of each PREPULSE+PULSE trial type. A total of 54 trials were 

presented during each test session. Trials within each block were presented in a 

pseudorandom order and were separated by a variable intertrial interval averaging 15 s 

(ranging from 9 to 21 s). Startle magnitude was defined as the maximum force (measured in 

Newtons) applied by the rat to the startle apparatus recorded over a period of 100 ms 

beginning at the onset of the pulse stimulus. Between each stimulus trial, 100 ms of activity 

was recorded when no stimulus was present. These trials were called NOSTIM trials and 
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were not included in the calculation of intertrial intervals. Responses recorded during 

NOSTIM trials are considered a measure of gross motor activity within the PPI boxes. 

Startle responses from testing blocks 2 and 3 were used to calculate percent prepulse 

inhibition (%PPI) for each acoustic prepulse trial type:

PD challenge test—Two days after the last drug test day, all rats were rehabituated to the 

PPI apparatus (~P81) and PD tolerance was assessed 1 day later (~ P82), when all rats were 

injected with both the intermediate dose of PD 4.0 mg/kg and PCP 1.5 mg/kg and tested for 

PPI. Due to animal illness, only 9 rats were used for the VEH+VEH group during the PD

+PCP challenge.

CLZ challenge test—After the PD challenge test, all rats were once again rehabituated to 

the PPI chambers (~P 84) then challenged with CLZ 5.0 mg/kg 1 day later, when they were 

injected first with CLZ, followed 50 min later with PCP 1.5 mg/kg, and tested 10min later 

for PPI. Due to procedural errors, only data from 8 rats in the VEH+VEH group were used 

for the CLZ challenge.

Statistical analysis

All data are expressed as mean ± SEM. In the case where no group differences were found 

between control and MIA animals, the data are combined. Avoidance data in experiment 1 

and motor activity data in experiment 2 from the five drug test sessions were analyzed using 

a factorial repeated measures analysis of variance (ANOVA) with the between-subjects 

factor being drug group and the within-subjects factor being test day, followed by post hoc 

LSD tests. Data from the predrug and challenge test days were analyzed by one-way 

ANOVA followed by post hoc LSD tests. As there was no significant interaction between 

the three prepulse intensities and PD treatment, percent PPI data for the three drug days in 

experiment 3 were reported as the average of the three prepulse intensities (e.g. 73, 76 and 

82 dB). The magnitude of the acoustic startle reflex (ASR) was calculated as the average 

response on the PULSE ALONE trials, excluding the first and last block of 4 PULSE 

ALONE trials. The general activity was calculated as the average response on the NOSTIM 

trials. Percent PPI, ASR and activity data from the drug test period were first analyzed using 

repeated measures ANOVAs with the drug treatment group as a between subjects factor and 

test day as a within-subjects factor, followed by post hoc LSD tests. For all analyses, p<0.05 

was considered statistically significant.

RESULTS

Experiment 1: Assessment of PD149163 tolerance using the conditioned avoidance 
response test

Avoidance training and repeated PD testing—Figure 1a shows the percentage of 

avoidance responses on the last training (predrug) day and the five drug test days. There was 

no group difference on the last training day. Throughout the drug test phase, PD treatment 
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consistently disrupted avoidance response. Repeated measures ANOVA revealed a main 

effect of group, F(3,31)=144.654, p<0.001 and a significant group × day interaction, 

F(12,90)=2.655, p=0.004. Post hoc LSD tests revealed that the three PD groups all made 

significantly less avoidances than the VEH group, all p<0.001, although they did not differ 

significantly from each other.

22 kHz USV—Figure 1b shows the number of 22 kHz USVs on the last training (predrug) 

day and the five drug test days. There was no group difference on the last training day. 

Throughout the drug test phase, PD treatment persistently suppressed the number of 22 kHz 

USVs. Repeated measures ANOVA revealed a main effect of group, F(3,30)=9.244, 

p<0.001. Post hoc LSD tests revealed that the three PD groups all emitted significantly less 

vocalizations than the VEH group, all p<0.001, although they did not differ significantly 

from each other.

PD challenge test—Figure 1c shows the percentage of avoidance responses on the 

second retraining (predrug) day and the PD tolerance challenge day. There was no group 

difference on the predrug day. When all rats were given PD 1.0 mg/kg on the challenge day, 

one-way ANOVA revealed a significant effect of group, F(3,30)=7.011, p=0.001. Post hoc 

LSD tests showed that the PD 4.0 and 8.0 groups made significantly more avoidances than 

the VEH group, p=0.005 and p<0.001, respectively. The PD 8.0 group also showed 

significantly higher levels of avoidance than the PD 1.0 group, p=0.005. No significant 

group difference was detected on the number of 22 kHz USVs on the predrug or challenge 

day.

CLZ challenge test—Figure 1d shows the percentage of avoidance responses on the 

predrug day and the CLZ challenge test day. Before the CLZ challenge, there was no 

significant group difference. On the challenge day when all rats were given CLZ 5.0 mg/kg, 

one-way ANOVA revealed a significant effect of group, F(3,27) = 4.365, p=0.012. Post hoc 

LSD tests showed that the PD 4.0 and 8.0 groups made significantly fewer avoidances than 

the VEH group, p=0.003 and 0.004, respectively, as well as fewer avoidances than the PD 

1.0 group, p=0.036 and 0.042, respectively. Statistical analysis also revealed a significant 

effect of prenatal treatment, F(1,27)=6.195, p=0.019, as well as a significant group × 

prenatal treatment interaction, F(3,27)=3.890, p=0.020 (figure 1e). Post hoc LSD analysis 

showed that prenatally immune activated animals previously exposed to VEH or PD 1.0 

showed significantly higher numbers of avoidances compared to the non-prenatally 

challenge animals that were also exposed to VEH and PD, p=0.001 and 0.043, respectively. 

No significant group difference was detected on the number of 22 kHz USVs on the predrug 

or challenge day.

Experiment 2: Assessment of PD149163 tolerance using the phencyclidine-induced 
hyperlocomotion test

Repeated PD test: 30 min before PCP—Figure 2a shows the mean locomotor activity 

during the 30-min test period after the PD or VEH injection throughout the five days of drug 

testing. Repeated measures ANOVA revealed a main effect of group, F(5,40)=24.952, 

p<0.001 and day, F(4,37)=5.652, p=0.001, and a significant group × day interaction, F(20, 
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160)=2.701, p<0.001. Post hoc LSD tests showed that, except on day 1, the PCP+VEH 

group has significantly lower locomotor activity than the VEH+VEH group, p=0.007. The 

PD 1.0, 4.0, and 8.0+PCP groups also showed significantly lower activities than the PCP

+VEH group, all p<0.001. Additionally, except on day 1, the VEH+PD 4.0 group showed 

significantly higher levels of activity than the PD 1.0 and 4.0+PCP groups, both p<0.01.

Repeated PD test: 60 min after PCP—Figure 2b shows the mean locomotor activity 

during the 60-min test period after the PCP or VEH injection throughout the five days of 

drug testing. Repeated measures ANOVA revealed a main effect of group, F(5,40)=17.506, 

p<0.001 and day, F(4,37)=6.788, p<0.001. Post hoc LSD tests showed that the PCP+VEH 

group had significantly higher locomotor activities than all other groups, all p<0.001, while 

the PD 4.0+VEH group showed significantly lower levels of activity than the VEH+VEH 

group, p=0.016.

PD challenge test—Figure 2c shows the mean locomotor activity during the 

rehabituation (predrug) and PD challenge test day. One-way ANOVA revealed a significant 

main effect of group during the predrug day, F(5,40)=6.193, p<0.001. Post hoc LSD tests 

showed that the PD 1.0, 4.0 and 8.0+PCP groups all displayed significantly lower levels of 

activity than the VEH+VEH group, all p<0.002. The PD 1.0 and 8.0+PCP groups also 

showed significantly lower activity levels than the PCP+VEH group, p=0.013 and 0.007, 

respectively. There was no significant difference between groups throughout the duration of 

the challenge test, when all groups were given PCP and PD 1.0 mg/kg.

CLZ challenge test—Figure 2d shows the mean locomotor activity during the 

rehabituation (predrug) and CLZ challenge test day. One-way ANOVA revealed a 

significant main effect of group only for the 60-min test period after the PCP or VEH 

injection, F(5,40)=2.644, p=0.037. Post hoc LSD test for the 60-min test period on the CLZ 

challenge test day showed that the PD 1.0 and 4.0+PCP groups showed significantly 

suppressed activities compared to the VEH+VEH group, p=0.020 and 0.028, respectively. 

The VEH+PD 4.0 group also saw a significantly lower level of locomotor activity than both 

the VEH+VEH and PCP+VEH groups, p=0.006 and 0.019, respectively. There was no 

significant difference between the groups for the predrug day or the 30-min test period after 

the CLZ 5.0 mg/kg or VEH injection during the CLZ challenge test day. There was also no 

significant difference between prenatal treatments across all phases of the PCP-induced 

hyperlocomotion testing.

Experiment 3: Assessment of PD149163 tolerance using the phencyclidine-induced 
disruptions of prepulse inhibition test

Repeated PD testing: PPI—Figures 3a shows the percentage of PPI on the three drug 

test days. Statistical analysis revealed a main effect of day, F(2,40)=3.308. p=0.047, and a 

main effect of group, F(4,41)=14.092, p<0.001. Post hoc LSD tests showed that the PD 1.0, 

4.0 and 8.0+PCP groups all displayed higher PPI than the VEH+VEH and the PCP+VEH 

groups, p=0.002 for PD 1.0+PCP and p<0.001 for 4.0 and 8.0. While we observed a 

significantly lower PPI in the PCP+VEH group compared to VEH+VEH on the first day of 

PCP administration (multivariate ANOVA of PCP × PD: F(4,45)=9.044, p<0.001, post hoc 
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LSD of VEH+VEH versus PCP+VEH, p=0.033), this effect was abolished following the 

second and third day of PCP administration.

Repeated PD testing: ASR—Figure 3b shows the startle magnitudes on the three drug 

test days. Repeated measures ANOVA revealed a main effect of group, F(4,41)=7.788, 

p<0.001 and day, F(2,40)=3.343, p=0.045. Post hoc LSD tests showed that the PD 1.0, 4.0, 

and 8.0+PCP groups all had significantly lower startle responses than the PCP+VEH group, 

all p=0.001. PD 4.0 and 8.0+PCP groups also showed significantly lower startles than the 

VEH+VEH group, p=0.012 and 0.003, respectively.

Repeated PD testing: General motor activity—Figure 3c shows the general motor 

activity recorded during the NOSTIM trials on the three drug test days. Repeated measures 

ANOVA revealed a main effect of group, F(4,41)=5.064, p=0.002 and a significant group × 

day interaction, F(8,82)=2.629, p=0.013. Post hoc LSD tests showed that the PD 4.0 and 

8.0+PCP groups had significantly lower activity than the VEH+VEH and PCP+VEH 

groups, p<0.01 for all groups.

PD challenge test—Figure 4a shows the PPI percentage on the rehabituation (predrug) 

and PD challenge test day. There was no significant difference in PPI or ASR on the predrug 

day. However, one-way ANOVA of general motor activity on the predrug day revealed a 

main effect of group, F(4,35)=4.176, p=0.007 (figure 4b). Post hoc LSD tests showed that 

the PD 4.0 and 8.0+PCP groups generated significantly lower magnitudes than the VEH

+VEH group, p=0.005 and 0.001, respectively, and additionally the PD 8.0+PCP group’s 

general motor activity was significantly lower than the PCP+VEH group as well, p=0.030. 

No significant difference was found between the groups in PPI, ASR or general motor 

activity on the PD challenge day, when all rats were given PD 4.0+PCP.

CLZ challenge test—Figure 4c shows the percentage of PPI on the rehabituation 

(predrug) and CLZ challenge test day. There was no significant difference in PPI or ASR on 

the predrug day. However, one-way ANOVA of general motor activity during the predrug 

day again showed a main effect of group, F(4,34)=2.882, p=0.037 (figure 4d). Post hoc LSD 

tests showed that the PD 8.0+PCP group displayed significantly reduced general motor 

activity compared to the VEH+VEH, PCP+VEH, and PD 1.0+PCP groups, p=0.010, 0.011, 

and 0.013, respectively. No significant difference was found between the groups in PPI, 

ASR or general motor activity on the CLZ challenge day, when all rats were given CLZ 5.0 

mg/kg+PCP. There was no significant difference between prenatal treatments across all 

phases of the PCP-induced PPI deficits testing.

DISCUSSION

This study investigated the acute and chronic effects of the NT analogue PD149163 (PD) 

using three validated preclinical assays of antipsychotic (APD) efficacy, conditioned 

avoidance response (CAR), phencyclidine (PCP)-induced hyperlocomotion, and PCP-

induced disruptions in prepulse inhibition (PPI). PD (Lys(CH2NH)Lys-Pro-Trp-tLe-Leu-

OET) is a NT analogue selective for the NTS1 receptor (Petrie et al, 2004) with structural 

modifications that makes it less prone to enzymatic degradations when injected peripherally 
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(Banks et al, 1995). Using the two-phase paradigm that our group has established for 

assessing APD sensitization and tolerance (i.e. increased and decreased behavioral response 

to a drug due to past drug exposure), we confirmed the tolerance effect of PD in the CAR 

test in the higher doses tested, and saw APD-like effects in other well established tests 

without tolerance development over days of treatment. The discrepancy among different 

tests suggested that differences in sensitivities for assessing effects of chronic APD 

treatments exist across different behavioral measurements.

In accordance with previous studies on NT receptor activation using both central (Norman et 

al, 2008a) and systemic (Feifel et al, 2003; Shilling et al, 2003) administrations, our results 

showed that acute PD treatment at three different doses (1.0, 4.0, and 8.0 mg/kg) were able 

to inhibit CAR, reverse the PPI disruptions produced by PCP, and suppress PCP-induced 

hyperlocomotion. These acute effects were most likely due to central mechanisms of NT 

receptor activation after peripheral injection. As the inhibition of CAR by APDs has been 

suggested to be mediated by blockade of dopamine (DA) D2 receptors in the 

mesocorticolimbic DA pathway (Wadenberg and Hicks, 1999), the therapeutic mechanism 

of NT receptor stimulation might be related to its close association with the mesolimbic DA 

system (Binder et al, 2001). NTS1 is found to co-localize with DA D2 receptors, and 

activation of these receptors on DAergic neurons in the ventral tegmental area (VTA) has 

been shown to increase DAergic neuronal activity (Mercuri et al, 1993; Nalivaiko et al, 

1998; Wu and Wang, 1995). In addition, NT in the prefrontal cortex (PFC) can also increase 

VTA DAergic neuronal activity (Fatigati et al, 2000; Rompré et al, 1998), and peripheral 

NT can enhance DA efflux in both the nucleus accumbens and the medial PFC (mPFC), 

similar to atypical APDs (Prus et al, 2007). Furthermore, it has been suggested that the 

mechanism of PCP-induced hyperactivity involves increased DA output in the mesolimbic 

area as well as a rise in extracellular DA concentration in the mPFC, and systemic pre-

treatment of animals with the NT analogue NT69L prevented the DA increase (Li et al, 

2010b).

Previous work only reports PD’s tolerance effect in the induction phase (the repeated drug 

testing phase) in which PD gradually loses its ability to inhibit CAR. In the present study, 

we were able to demonstrate it in the expression phase, when the previously drug treated 

groups were compared directly with the vehicle (VEH) control group. This finding provided 

a better and cleaner demonstration of tolerance as it was supported by a between-group 

comparison – that the PD groups and VEH group were not different on the predrug days, but 

only showed differences under the PD challenge. We showed PD 4.0 and 8.0 mg/kg were 

able to induce a partial tolerance effect in the CAR model. After five days of PD treatment, 

the effect of PD in the challenge test using the lowest dose of PD (1.0 mg/kg) tested during 

the repeated drug days was severely reduced, resulting in a high level of avoidance response 

in rats previously exposed to PD compared to drug naïve rats. It is important to note that 

many previous studies investigating PD saw APD-like effects in doses lower than 1.0 

mg/kg, suggesting the higher doses of 4.0 and 8.0 mg/kg may have activated other non-NT 

systems within the brain. However, since there is no guidance currently on the clinically 

relevant doses of PD, our dosing choices were based on previous work by Holly et al, 2011 

showing that while doses below 1.0 mg/kg were able to rescue drug-induced PPI deficits in 
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other literature, PD was unable to induce acute CAR disruption at doses below 1.0 mg/kg, 

and even at 8.0 mg/kg was only able to produce a 60% disruption of CAR.

Our present result of PD tolerance in CAR is similar to our previous work showing that prior 

repeated clozapine (CLZ) administration causes a decreased response to the APD in a 

challenge test compared to control (Feng et al, 2013; Li et al, 2011; Qiao et al, 2013a). It 

also agrees with results using another NT analogue, NT69L, by Hertel et al, 2002, although 

in that study tolerance was assessed at only one time point, at the end of twice daily 

treatments for seven days. Using our unique CS-only test procedure allowed us to identify 

true avoidance responses that are not contaminated by US-induced learning that might occur 

throughout the test sessions. This paradigm allowed us to note that with both CLZ and PD, 

there was no gradual development of tolerance throughout the five repeated test days in 

CAR under the drug condition. Instead, tolerance was only expressed during the challenge 

test after two days of CAR retraining under the drug free condition. The mechanism of this 

phenomenon possibly involves the down-regulation of NTS1 receptors. Cell and tissue 

culture studies have shown that NT receptor stimulation with agonists causes receptor 

desensitization and internalization (Hermans et al, 1997; Vanisberg et al, 1991), as well as a 

decrease in cyclic GMP formation (Gilbert et al, 1988; Hermans et al, 1996), although no 

studies have looked at the time course of receptor down-regulation in vivo. It is thus possible 

that a time-dependent delay of onset accompanies the development of this behavioral 

tolerance.

PD has also been implicated as a potential anxiolytic (Shilling and Feifel, 2008), hence we 

also compared the 22 kHz ultrasonic vocalizations (USVs) – a measure of negative affect 

(Brudzynski and Chiu, 1995; Tonoue et al, 1986) – in CAR. Although repeated PD 

treatment reduced 22 kHz USVs, no tolerance was seen during challenge. These results 

contradicted those by Prus et al, 2013, where repeated PD administration decreased the 

number of conditioned footshock-induced 22 kHz USVs. Since the mentioned study 

administered PD 1.0 mg/kg for ten consecutive days, it is possible that the discrepancy is 

due to the longer time period required for tolerance to develop in 22 kHz USV-related 

behaviors.

The drug-induced hyperlocomotion model has been extensively used in reporting the 

chronic effects of NT receptor activation (Boules et al, 2003; Feifel et al, 2008; Hertel et al, 

2001; Meisenberg and Simmons, 1985; Norman et al, 2008a; Rompré, 1997). Using our 

previously established model (Feng et al, 2013; Li et al, 2011; Qin et al, 2013; Sun et al, 

2009, 2010b; Zhang and Li, 2012; Zhao et al, 2012), after five days of repeated combined 

administration of PD and PCP, we saw no tolerance in the subsequent challenge test, as low 

dose PD (1.0 mg/kg) challenge resulted in the same level of PCP hyperlocomotion reduction 

between drug naïve animals and those with prior PD exposure at all doses. However, we did 

see a decrease in spontaneous locomotor activity under the drug free condition for groups 

that received repeated PD treatment in conjuction with PCP, suggesting that the drug 

treatment did induce lasting behavioral changes that persisted in the drug free system. In 

terms of PD’s tolerance phenomenon in the drug-induced hyperactivity model, discrepancies 

exist among current literature. This could largely be attributed to variations in experimental 

designs. For example, repeated intracerebroventricular (ICV) NT infusions for four and 21 
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days sensitized rats to amphetamine-induced hyperactivity using an amphetamine-only 

challenge (Rompré, 1997), while ICV PD infusions for seven days exhibited tolerance under 

the amphetamine-only challenge, with the acute PD attenuation of amphetamine-induced 

hyperlocomotion abolished after seven days of PD infusion (Norman et al, 2008b). Other 

studies saw tolerance development in NT agonism’s suppression of spontaneous motor 

activity (Meisenberg and Simmons, 1985). Finally, Boules et al, 2003 and Feifel et al, 2008 

both concluded no change in behavioral sensitivity using the two commonly studied NT 

analogues, NT69L and PD, respectively. Our model included daily testing of PD’s 

suppression of PCP-induced hyperlocomotion, which more accurately captured the time 

course of the drug effect. In addition, most of the previous studies only tested one dose of 

the drug, while here we compared three different doses and saw no dose-dependent 

response.

In the hyperlocomotion experiment, it is also important to note that while the PD4+VEH 

group exhibited low baseline locomotion, suggesting a sedating effect of this dose of PD, it 

is indisputable that general sedating effects can occur with any drugs suggested to induce 

APD-like effects, especially atypical drugs such as CLZ and olanzapine (OLZ). Our 

previous work showed that the sedative effect of an APD drug could not account for its 

avoidance disruptive effect. In our CAR experiment, we saw a general decrease in intertrial 

crossing (a measurement of gross motor activity) under the influence of currently 

established APDs (Qiao et al. 2013). However, this does not imply a lack of APD efficacy. 

Therefore, while the sedating effect of PD may exist, we do not believe that it diminished 

the significance of the results presented here. In our opinion, the sedative effect and putative 

APD effect of PD all contributed to its avoidance disruptive effect, and both effects may 

undergo a tolerance development with different time courses. Future research is needed to 

tease out their individual contributions in various behavioral tests.

Unlike CAR and PCP-induced hyperlocomotion, as a preclinical model of APD efficacy and 

schizophrenia pathology, few studies have utilized PPI to capture the time course effects of 

APD actions. Feifel et al, 2007 have attempted to evaluate the tolerance development of PD 

using PPI and found that 16 days of continuous PD 1.0 mg/kg administration in the naturally 

PPI-deficient Brattleboro rats resulted in the same level of PPI enhancement as the first day 

of PD treatment, indicating a lack of tolerance or sensitization over time. However, as the 

study only examined the drug’s effect on PPI at the beginning and end of the treatment 

period, it was unable to assess the changes that might have occurred throughout the 

treatment duration. In our experiment, we gave daily injections of PD at three different 

doses (1.0, 4.0, and 8.0 mg/kg), and tested the animals’ PPI each day. Although our results 

also saw an absence of development over days in PPI, similar to our hyperlocomotion 

results, we again saw a decrease in the gross motor activity under the drug free condition for 

groups that received repeated PD treatment in conjunction with PCP. The results from drug 

free days in the PPI and hyperlocomotion experiments pointed to the likelihood that this 

long lasting change requires the combined action of PD with PCP. In support of this result, 

previous NT agonism studies have shown that there is a possible dose dissociation amongst 

various behaviors (Feifel et al, 1997; Prus et al, 2007), and the optimal effective dose may 

differ between behaviors.
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Our group has previously investigated the phenomenon of sensitization cross-transfer (Li et 

al, 2007; Mead and Li, 2010; Qiao et al, 2013b). In a recent study on the repeated treatment 

effects of the atypical APD asenapine (ASE) (Qin et al, 2013), our group evaluated whether 

sensitization induced by ASE could be transferred to other atypical APDs such as OLZ and 

CLZ. We showed that the behavioral sensitization induced by ASE did in fact transfer to a 

subsequent OLZ challenge. Similarly, here we saw a transfer of the tolerance induced by PD 

in CAR in a subsequent CLZ challenge. In addition to our previous work showing CLZ to be 

the only atypical APD that produces a tolerance effect in our repeated CAR assessment 

paradigm (Feng et al, 2013; Qiao et al, 2013a, 2013b; Zhao et al, 2012), the results here of 

PD’s tolerance in CAR and its tolerance cross-transferring to CLZ suggest the possibility 

that the therapeutic mechanisms of PD might be similar to those of the atypical APD CLZ. It 

is also interesting to note that while no tolerance was seen in the PD challenge for PCP-

induced hyperlocomotion, the subsequent CLZ challenge actually showed an increased 

sensitivity to CLZ in groups previously repeatedly treated with PD and PCP. Though the 

reason for this finding is currently unclear, it adds strength to the idea that PD and CLZ 

might share unique similarities, and supports the notion that NTS1 receptor agonists might 

be therapeutically efficacious due to the production of similar behavioral response as CLZ in 

a preclinical test of high predictive validity for APD efficacy.

In addition to assessing the repeated effects of PD using three distinct preclinical models, we 

also examined the generalizability of our findings by including both wild type animals and 

prenatally immune activated ones. Maternal immune activation (MIA) is widely accepted as 

a preclinical model for the neuroinflammatory theory of schizophrenia (Piontkewitz et al, 

2009; Zuckerman and Weiner, 2005). In this study, we saw no difference in repeated PD 

treatments between the MIA and control animals. However, we did see some differences 

within the CLZ challenges. The cause for this observation is uncertain, but conceivably 

involves differences in receptor levels. Various work regarding MIA animals have 

implicated DA dysfunction as a possible cause of phenotypic abnormalities (Meyer et al, 

2010; Vuillermot et al, 2010; Zuckerman and Weiner, 2003). For example, Zuckerman, et. 

al. showed that prenatally immune activated animals displayed increased sensitivity in the 

amphetamine-induced hyperlocomotion test and increased striatal DA release, while Ozawa 

et al, 2006 found increased striatal DA metabolites, 3,4-dihydroxyphenylacetic acid and 

homovanillic acid, in MIA animals using high-performance liquid chromatography. It seems 

likely that while APDs may still alter baseline functions in these animals as seen in the 

current work, the DAergic disruption results in differences of drug effects on this population 

relative to controls.

It is possible that our choices of experimental parameters produced results that are different 

compared to other previous work. Our choice of using female subjects provided novel 

findings of PD’s APD-like effects in females. However, this also limited the ability for 

comparison with previous work in male rats. For example, previous studies have shown that 

there are significant sex differences in behavioral response to MK-801, an NMDA 

antagonists with similar behavioral disruptions to PCP (Zhao et al. 2013), and human studies 

have clearly shown a sex difference in PPI response (Aasen et al. 2005). Thus, the use of 

female subjects, inclusion of both control and prenatally immune activated animals, choice 
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of dosage, numbers of test days, and challenge dose might have all contributed to 

differences in our study. Regardless, in summary, the findings we present here provide novel 

observations of PD’s tolerance properties and contribute data to the increasing body of 

knowledge supporting NT receptor agonists as possible novel APDs.
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Highlights

1. The NTS1 receptor agonist PD149163 produces tolerance in CAR in adult 

female rats.

2. PD149163 tolerance cross-transfers to clozapine challenge in CAR.

3. PD149163 acutely attenuates PCP-induced hyperlocomotion but shows no 

tolerance.

4. PD149163 acutely rescues PCP-induced PPI deficits in but shows no tolerance.
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Figure 1. 
Assessment of PD149163 (PD) tolerance in conditioned avoidance response: (a) The 

percentage of avoidance responses and (b) 22kHz ultrasonic vocalizations made by rats from 

vehicle (VEH), PD 1.0, 4.0, and 8.0 mg/kg groups on the last training day (predrug) and 

throughout the five drug test days. *p<0.01 relative to the VEH group. (c) The percentage of 

avoidance responses made by rats on the retraining day (predrug) and the PD tolerance 

assessment day. *p<0.01 relative to the VEH group; #p<0.01 relative to the PD 1.0 group. 

(d) The percentage of avoidance responses made by rats on the second retraining day 

(predrug) and the clozapine (CLZ) tolerance assessment day. *p<0.01 relative to the VEH 

group; #p<0.05 relative to the PD 1.0 group. (e) Effects of prenatal treatment on CLZ 

tolerance. Percentage avoidance responses made by rats from the two prenatal treatment 

groups. *p<0.01 for the prenatally immune-activated group relative to control in the VEH 

condition and #p<0.05 in the PD 1.0 condition. All values are expressed as mean + SEM.

Chou et al. Page 24

Pharmacol Biochem Behav. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Assessment of PD149163 (PD) tolerance using phencyclidine-induced hyperlocomotion: (a) 

Mean locomotor activity during the 30-min test period after the PD or vehicle (VEH) 

injection and (b) the 60-min test period after the phencyclidine (PCP) or VEH injection 

made by rats from the VEH+VEH, PCP+VEH, PCP+PD 1.0, PCP+PD 4.0, PCP+PD 8.0, 

and VEH+PD 4.0 groups throughout the five drug test days. *p<0.01 relative to the PCP

+VEH group; &p<0.01 relative to the PD 1.0+PCP and PD 4.0+PCP groups; **p<0.01 

relative to all groups; #p<0.05 relative to the VEH+VEH group. (c) Mean locomotor activity 

during the rehabituation day (predrug), 30-min test period after the PD or VEH injection, 

and 60-min test period after the PCP or VEH injection made by rats on the PD tolerance 

assessment day and (d) clozapine tolerance assessment day are expressed as mean + SEM. 

*p<0.01 relative to the VEH+VEH group; #p<0.05 relative to the PCP+PD1.0 and PCP

+PD8.0 groups; &p<0.05 relative to the VEH+VEH group. All values are expressed as mean 

+ SEM.
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Figure 3. 
Repeated PD149163 (PD) administration in phencyclidine (PCP)-induced disruption of 

prepulse inhibition (PPI): (a) Percentage of PPI, (b) startle magnitude in Newtons, and (c) 

general motor activity in Newtons made by rats from the vehicle (VEH)+VEH, PCP+ VEH, 

PCP+PD 1.0, PCP+PD 4.0, and PCP+PD 8.0 groups throughout the three drug test days are 

expressed as mean + SEM. #p<0.01 relative to both the VEH+VEH and PCP+VEH groups; 

*p<0.05 relative to the VEH+VEH group alone; &p<0.01 relative to the PCP+VEH group 

alone.
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Figure 4. 
Assessment of PD149163 (PD) tolerance in phencyclidine (PCP)-induced disruption of 

prepulse inhibition (PPI): (a) Percentage of PPI during the rehabituation day (predrug) and 

the PD tolerance assessment. (b) General motor activities in Newtons during the 

rehabituation day prior to the PD tolerance assessment. **p<0.01 relative to the VEH+VEH 

group; #p<0.05 relative to the PCP+VEH group. (c) Percentage of PPI during the 

rehabituation day (predrug) and the clozapine (CLZ) tolerance assessment day. (d) General 

motor activities in Newtons during the rehabituation day prior to the CLZ tolerance 

assessment. #p<0.05 relative to the VEH+VEH, PCP+VEH, and PCP+PD 1.0 groups. All 

values are expressed as mean + SEM.
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