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Abstract

One problem with using component-based software devel-
opment approach is that once software modules are reused
over generations of products, they form legacy structures
that can be challenging to understand, making validating
these systems difficult. As such, tools and methodologies
that enable engineers to see interactions of these software
modules will enhance their ability to make these software
systems more dependable. To address this need, we propose
SimSight, a framework to capture dynamic call graphs in
Simics, which is a widely adopted commercial full-system
simulator. Simics is a software system that simulates com-
plete computer systems. As such, it performs nearly identi-
cal tasks to a real system but at a much lower speed while
providing greater execution observability. We have imple-
mented SimSight to generate dynamic call-graphs of stati-
cally and dynamically linked functions in x86/Linux envi-
ronment. We then evaluate its performance using 12 integer
programs from SPEC CPU2006 benchmark suite.

1. Introduction

Today’s software systems are usually constructed with many
software components implemented by different teams of
software developers. In building an embedded system, for
example, a team of developers may work exclusively on
building or updating a runtime system to manage devices
(e.g., Hardware Abstraction Layer or HAL). Another team
may work on porting an operating system. Different teams
within the company or third-party developers develop appli-
cations and libraries. Eventually, these software components
interact to perform computing tasks. One major benefit of
using this component-based approach is that a team of devel-

[Copyright notice will appear here once ’preprint’ option is removed.]

opers can leverage their expertise to build specific software
components that are reusable.

On the other hand, such practice can also lead to some
dependability issues especially in systems that reuse many
software components or modules over multiple generations
of products. Software engineers have found that once these
modules are integrated into generations of systems, they
form legacy structures that can be challenging to under-
stand [41]. As these structures evolve, the effects of changes
in system components, programming, and configurations
can be difficult to predict, making further validation more
difficult. As an example, consider software problems that
caused some Toyota Priuses from 2004/2005 to stall or shut
down while driving at high speed [41]. To isolate software
errors that cause this problem, Toyota engineers need a com-
plete view of interactions and dependencies among these
legacy and newly developed modules that make up the drive-
train system. However, they had no tools to obtain such view,
so they had to spend a large amount of time to isolate and
identify the cause of this problem [41].

Obtaining a complete view of module interactions is chal-
lenging in this scenario because: (i) many of these software
modules are legacy, so engineers that fully understand the
heuristics and features of these components may no longer
be available to provide necessary debugging information; (ii)
many of the interactions are implicit, meaning that the mod-
ule dependencies are not clear; (iii) many modules evolve
over time, and thus, part of the code base may be obsolete,
making combing through the source code a tedious and cum-
bersome process; (iv) in systems that comprise of third party
or legacy software modules, the source code of these mod-
ules may not be readily available; and (v) proprietary sys-
tems such as the one controlling the Prius’ drive-train often
use in-house software components and development tools
instead of off-the-shelf products; hence, finding compatible
tools to support testing and debugging can be difficult.

These five characteristics make most existing techniques
inadequate to address this module interaction problem be-
cause these techniques only work for particular types of
modules but do not work across all types of modules. For
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example, most instrumentation-based approaches only work
at source-code level so they cannot capture interactions in
modules of which source code cannot be instrumented. Dy-
namic call graph tools such as latrace or instrumentation
frameworks such as DTrace are operating system depen-
dent so they do not work on systems utilizing unsupported
or no operating systems. According to industry observers,
this type of devices accounts for about 60% of all embed-
ded devices or 2.5 billion units shipped in 2006 [9]. Dy-
namic instrumentation frameworks such as Pin can provide
such information through binary instrumentation. However,
such instrumentation is intrusive since it adds code that may
change system states. Furthermore, such binary instrumen-
tation tools only support a subset of processor architectures
and operating systems.

Additionally, most of existing tools do not provide in-
frastructure for device modeling. As such, these tools may
not work with executables using low-level hardware-specific
code such as device drivers. To ensure dependability of these
complex component-based software systems, new tools and
methodologies that can provide interaction information are
needed [41]. These new methodologies should be developed
to meet the following two objectives:

1. must capture interactions among all software modules,
regardless of types, without perturbing the system states
and

2. must be applicable to embedded systems containing
device-specific software components and can be easily
adopted by system developers to enhance software de-
pendability.

This work. We explore the use of a full-system simulator,
Simics, as a way to provide module interactions in the form
of dynamic call graphs (DCGs). We choose Simics because
(i) similar to other full-system simulators, Simics provides
functional and behavioral characteristics similar to those of
the target hardware system, enabling software components
to be developed, verified, and tested as if they are execut-
ing on the actual systems; (ii) through a rich set of Simics
APIs, software developers have the ability to non-intrusively
observe various system behaviors without ever needing the
source code; (iii) due to its powerful device modeling infras-
tructure, Simics already plays a critical role in hardware/-
software (HW/SW) co-designs; therefore, adding the capa-
bility to observe module interactions to it will enable adop-
tion without requiring much efforts [36]; and (iv) licensing
of Simics is free for academic institutions, making it a good
platform for research.

In the first part of this work, we describe the implementa-
tion details of SimSight, our proposed framework to capture
dynamic call graphs in Simics. This includes the implemen-
tations of both the tracing and parsing functions. In the sec-
ond part, we evaluate the cost of generating dynamic call
graphs using the proposed SimSight. We employ SimSight

in a complex computing environment using an advanced op-
erating system and 12 non-trivial benchmarks. We then com-
pare the execution time of each benchmark on SimSight with
the execution time on the actual system, and the execution
time on Simics without SimSight. When compared to the
unmodified Simics, SimSight takes 4 to 28 times longer to
execute. As such, it can incur the overheads ranging from 27
to 475 times slower than executing the benchmark programs
on the actual system.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes existing tools that can generate dynamic
call-graphs. Section 3 describes the overall design of Sim-
Sight and discusses implementation details of our SimSight
prototype for x86/Linux environments. Section 4 reports
the results of our experiments to evaluate the runtime over-
head of SimSight using 12 benchmark programs from SPEC
CPU2006 suite and our analyses of these results. Section
5 provides a usability study using two examples. Section
6 highlights related research efforts that utilize virtual plat-
forms to gather runtime information. Section 7 discusses our
plan to improve SimSight.

2. Approaches to Construct Dynamic Call
Graphs

A dynamic call graph is a record of a program execu-
tion [34]. Dynamic call graphs have played an important
role in helping software developers test and debug their
programs[16, 33]. As an example, dynamic call graphs can
be used to measure function coverage, identify unreachable
functions [14], and determine code dependency [12]. Fur-
thermore, they can help with program understanding [29].
There are several existing approaches that can generate
dynamic call graphs. Some of these employ source code in-
strumentation, while others work on executables. In this sec-
tion, we focus specifically on approaches that (i) work on
executables; (ii) are capable of tracking functions in dynam-
ically linked libraries; and (iii) must be publicly available.
Next, we describe the capabilities of these approaches.

2.1 OS Integrated Tools

In this approach, instrumentation frameworks are built into
operating system (OS) kernels. DTrace, an advanced dy-
namic tracing framework designed to improve the observ-
ability of software systems [7], is an example of this ap-
proach. Both Solaris and Mac OS have incorporated DTrace
as a core component on their development and administra-
tion tools. DTrace enables users to observe system behaviors
by exporting various runtime probes, implemented and man-
aged by providers. The fbt (Function Boundary Tracing) and
pid providers support function tracing in the kernel and user-
space. These providers allow tracing of any function entries
and exits by attaching a trap immediately before each call
instruction. DTrace is notified when this trap hits and auto-
matically executes the user-defined actions. Because DTrace
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can instrument programs with low overhead, it is suitable for
production environments.

Although such approaches are powerful and high-performance,

they are tightly integrated with kernels and therefore, can
only work in the kernels that support such features. Conse-
quently, such tools do not work in a large class of embedded
devices because they rarely use operating systems with such
support.

2.2 OS Interface Tools

In this approach, tools are built to exploit OS and runtime
interfaces to capture dynamic call graphs. As an example,
Itrace or library trace is a debugging utility in Linux [17] that
works with fork and clone system calls to perform func-
tion tracing. Currently, Itrace only intercepts the first func-
tion call to dynamically linked libraries. It traces neither the
function calls between shared libraries nor statically linked
function calls in programs. Moreover, ltrace only works in
Linux.

To address some of these limitations, latrace extends
Itrace to support tracing of dynamic function calls between
shared libraries at runtime [13]. It is implemented on top of
LD_AUDIT, which is the GNU dynamic linker audit feature.
However, no dynamic library call can be traced if one of
the shared libraries does not include a relocation Procedure
Linkage Table (.rel.plt) in the ELF binary. Both Itrace
and latrace can operate with low overhead.

2.3 Dynamic Binary Instrumentation

Binary instrumentation can generate dynamic call graphs by
inserting code snippets at the beginning of functions. How-
ever, in doing so, additional code is generated, which can re-
sult in some differences in runtime states when compared to
native code with no instrumentation. As an example, Pin is
an open-source binary instrumentation framework that has
been widely used in debugging, profiling, and evaluating
performance [25]. Pin provides several APIs so that develop-
ers can customize their own Pintools to perform tasks such
as counting executed instructions and collecting function
call information [25]. Currently, Pin can instrument Linux,
Mac OS X, and Windows executables for several architec-
tures. Recent work by Hazelwood and Klauser [18] shows
that the overhead of Pin ranges from 1.5 to 8 times slower
than native execution. Currently, Pin can support basic hard-
ware devices, but it provides no functionality for developers
to model their own devices. As such, its use in HW/SW co-
design is still limited.

Another example is Valgrind, an instrumentation frame-
work that can be used to build dynamic analysis tools. It cur-
rently works in Linux and Mac OS X. One of the tools in
Valgrind that can be used to generate dynamic call graphs is
Callgrind. Tt is an extension of Cachegrind, a cache profiler.
Callgrind augments Cachegrind with call graph information
so that it can generate call graphs for both statically and dy-

namically linked libraries [39]. The overhead of Callgrind
ranges from 20 to 100 times slower than native execution.

2.4 Full System Simulators

Unlike typical instruction set simulators, which do not sim-
ulate I/O components, full-system simulators can be mod-
eled to simulate complete computer systems with I[/O com-
ponents, bus interconnects, processors, and memory subsys-
tems. Therefore, they provide virtual platforms that can run
complex software systems (e.g., applications and OS ker-
nels) without any modifications.

We conduct preliminary investigation to evaluate the suit-
ability of two full system simulators, QEMU and Simics, as
part of this work [6, 38]. In terms of performance QEMU is
faster than Simics [32]. It also has Trace Generation, which
is a component that works in conjunction with Dinero IV, a
memory reference tracing simulator, to generate execution
traces and perform analysis [11]. However, QEMU lacks the
capability to allow developers to model a full range of hard-
ware devices. As such, QEMU is not as widely used in com-
mercial HW/SW codesign projects as Simics [32].

Simics, on the other hand, provides infrastructure for de-
velopers to model and use hardware devices in their simula-
tions. The modeling process is fast so engineers can have a
new virtual platform up and running several months before
the completion of the hardware prototype. As a commercial
product, it also supports many advanced features and inter-
faces that developers can use to create their own instrumen-
tation and dynamic analysis tools. However, there are cur-
rently no tools in Simics toolkit that can generate dynamic
call graphs. Based on our experience working with Simics,
its execution overhead can range from 3 times (for processor
intensive applications) to 30 times (for I/O intensive appli-
cations) slower than native execution.

2.5 Discussion

We believe that full-system simulators provide an attractive
platform to carry out our work for three reasons.

Non-intrusive Instrumentation of executables. Instrumen-
tation occurs at binary-level and without disturbing execu-
tion or affecting the virtualized state of a system. Therefore,
it can simulate and profile systems accurately in the presence
of instrumentation. Furthermore, these simulators can col-
lect the exact profile data instead of relying on sampling or
probability. As such, the profiled information is more com-
plete. For the problem we try to address, this is an important
consideration.

Support more types of executables. Full-system simulators
support executables with or without operating systems. This
is different than other approaches, which are operating sys-
tem dependent (e.g., Pin can only work on Linux or Mac OS
X binaries). As such, our approach can work in diverse ap-
plications and systems ranging from executables running in
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stand-alone embedded devices with no operating systems to
executables running in large computing clusters.

Popularity. HW/SW co-design is a widely adopted method
to create computer systems. As such, full-system simulators
especially Simics already play a prominent role in the devel-
opment process. As such, developers who already use Sim-
ics for codesign can easily and effortlessly integrate the pro-
posed extension as part of their testing and debugging toolk-
its.

In the next section, we discuss our implementation of
SimSight, a dynamic call graph generator for Simics. We
choose Simics over QEMU mainly due to its widespread
adoption to support HW/SW co-design.

3. Introducing SimSight

The goal of SimSight is to provide greater observability
at the cost of degraded performance. We believe that this
trade-off is acceptable since we envision that SimSight will
be used during the software development process and not
in deployed environment. Furthermore, because Simics is
already widely used to support software development during
HW/SW codesign period, developers should be accustomed
to the practice of achieving functional correctness and not
absolute performance by using such a development tool.

Because Simics can simulate different processor architec-
tures and system configurations, the actual implementation
of SimSight is system dependent. However, the overall ap-
proach is generic; i.e., there are essential components and
steps required to implement a version of SimSight. We de-
scribe them in this section. We then discuss an actual im-
plementation to support generating dynamic call graphs for
x86/Linux executables. We choose x86/Linux due to the fol-
lowing four reasons.

1. The execution model of Linux is more complex. As such,
our implementation of SimSight must support many non-
trivial features such as focusing on particular processes
and supporting both statically and dynamically linked
modules.

2. Existing tools such as latrace can serve as an oracle to
validate our dynamic call graph construction algorithm.

3. There are a large number of standardized benchmarks
that can run on this platform.

4. Our solutions to deal with the complexity of this platform
would yield higher runtime overhead, which is likely to
represent the worst-case overhead for our system.

Note that we have also implemented a version of Sim-
Sight that works with MicroC/OS-II real-time operating sys-
tem. In this implementation, MicroC/OS-II is running on
MS-DOS, which acts as the resource and I/O manager for
MicroC/OS-II. However, there are not many publicly avail-
able benchmarks that can be used for performance evalua-
tion. As such, it is not evaluated in this paper.

SimSight generates call graphs in three steps: (1) initial
parsing of executables, which is accomplished by SimAna-
lyzer; (2) tracing of function call related instructions, which
is accomplished by SimTracer; and (3) parsing the trace in-
formation to generate call graphs, which is accomplished
by SimAnalyzer and SimParser. Next, we describe the main
functionality and implementation of each of these three com-
ponents.

Executable
SimAnalyzer Binary
A
o 6 7| Info
Y SimTracer
Binary traces instructions

Info in simulatorb

- Y
SimParser
Log
e Files

Dynamic Call Graph

A

Figure 1: Basic workflow in SimSight. Note that gray circles
indicate which component is used in a particular step in the
workflow.

3.1 SimAnalyzer

SimSight is a symbolic function-tracing framework that op-
erates on instruction traces generated by Simics virtual plat-
form. Therefore, mapping of low-level information to high-
level information is necessary. In most binary executable
formats, storage and function information is provided to as-
sist the dynamic linker and sometimes debugger. For exam-
ple, both Portable Executable/Common Object File Format
(PE/COFF) [27] and Executable and Linking Format (ELF)
[21, 5] define a symbol table section embedded in the binary.
The proposed SimAnalyzer is used to extract such pertinent
information to perform this mapping.

Furthermore, dynamic linking systems such as that used
in Linux also define relocation table, which contains infor-
mation used to resolve addresses of dynamically linked func-
tions. Our SimAnalyzer extracts the symbol names and ad-
dresses for statically and dynamically linked functions by
parsing the symbol tables and relocation tables. This ex-
tracted information is stored for future use by SimTracer to
filter out unwanted events and focus on wanted events.

In addition, SimAnalyzer also extracts information from
dynamically linked libraries referenced by the main module.
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This information is used by SimParser to match late bind-
ing addresses recorded by our tracer to the actual symbolic
function names as part of call-graph construction. As such,
SimAnalyzer is first used to generate binary information for
SimTracer (Step 1) in Figure 1. In addition, SimAnalyzer is
also used during the parsing phase of our framework (shown
as Step 3 in Figure 1).

3.1.1 Supporting x86/Linux Executables.

Our analyzer extracts the address of each function from
x86/Linux executables. For statically linked functions, the
address can be easily found in the symbol table of that bi-
nary. Note that it is possible for the symbol table to be
stripped from a Linux executable. This is not the case in
Solaris which requires this information to support tracing
frameworks such as DTrace. Fortunately, in all executables
that we evaluate, we find that symbol tables are still in-
cluded.

For dynamically linked functions in shared libraries, the
address calculation is more complicated. In Linux, shared
libraries are compiled as position independent code (PIC),
which can be mapped to any memory location prior to ex-
ecution. These shared libraries are loaded as programs are
being launched but the dynamically linked functions are re-
solved on demand by looking up in the Procedure Linkage
Table (PLT) and patching the Global Offset Table (GOT).
The algorithms to calculate function addresses are summa-
rized below and illustrated in Figure 2.

1. Statically Linked

(a) Main: st_value

(b) Library: st _value + map_base
2. Dynamically Linked

(a) Main: plt base + (si+l) = 16

(b) Library: p1t base + (si+l) x 16 + map_base

For functions that are statically linked to the main module
(la), st_value is the value field of a function’s entry in
the symbol table (. sym). For statically linked functions to a
library (1b), map_base is the memory address where the
library is loaded. For dynamically linked functions called
from main or other libraries (2a) and (2b), plt_base is
the start address of the procedure linkage table (p1t); and
s1 is the index of the function in the dynamic symbol table
(.dynsym). The multiplier 16 is the size of each entry in
the plt section. The calculated addresses are then stored
in a Hash Table, which will then be used by SimTracer and
SimParser. In addition, the analysis tool also creates a data
structure to store additional information such as symbolic
name and resident library.

3.2 SimTracer

Most modern architectures have specialized instructions to
support procedure calls. For instance, x86 and SPARC sup-

port procedure calls by the call instruction. Similarly,
MIPS architecture offers the jal (jump-and-link) instruc-
tion for making procedure calls. This, together with the ad-
vance in simulation technology, provides a golden opportu-
nity for tracking any procedure call by targeting this type
of instructions issued by virtual processors. Our proposed
SimTracer is designed based on this simple idea.

In sophisticated virtual platforms such as Simics, dy-
namic tracing of memory accesses and instructions are al-
ready supported. As such, our SimTracer is built on top of
this feature to selectively monitor instructions related to pro-
cedure calls. However, filtering is also needed since some
traced instructions do not always indicate function calls. As
an example, in our x86/Linux implementation, instruction
push is only traced when it is used for address resolution
of dynamically linked functions. Thus, we need to exclude
the occurrences of push for other purposes. As such, Sim-
Tracer evaluates information generated by SimAnalyzer to
identify these extraneous instructions.

A major limitation of such trace-based approach is that
the overhead is proportional to the amount of trace being
generated. As will be shown later on, this overhead can
sometimes be several orders of magnitude in very large pro-
grams. Furthermore, porting SimTracer to a new system
(e.g., MicroC-OSII running on ARMY) will require thorough
knowledge of function calling conventions of the architec-
ture and possibly the OS.

3.2.1 Supporting x86/Linux Executables.

SimTracer extends the functionality of the tracer module
provided by Simics. The module is responsible for inter-
cepting and dissembling x86 instructions related to function
calls. It also extracts other important runtime information
from registers such as stack pointers, frame pointers, and
privilege levels. The information for each application is con-
tinuously recorded into a compressed binary file.

In x86 architecture, stack is commonly used for param-
eter passing and the registers are used for returned values.
This is due to limited number of general-purpose registers.
In x86, a typical procedure call is made through the call
and ret instructions. The stack frame is maintained using
two special registers: ebp and esp, which store the current
base frame pointer and stack pointer.

According to the x86 calling convention, when a proce-
dure call is made, the caller’s frame pointer is pushed onto
the stack and a new stack frame is created for the callee.
Therefore, the current ebp will be the value of old esp
decremented by 4 (32-bit) or 8 (64-bit) bytes, and current
stack pointer points to the top of the stack. When a proce-
dure returns, the callee’s stack frame is unwound and the
saved caller’s ebp is popped off the stack, which indicates
the end of a procedure. Thus, we can detect procedure-call
events by monitoring these two registers.

For dynamically linked functions in shared libraries,
tracking invocation information is more difficult. This is be-
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.symtab (main) address space
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main
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libfoo.so
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(2b)
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1 |/ . (map_base)

(b)

Figure 2: (a) illustrates address calculation for statically linked functions and (b) illustrates calculation for dynamically linked

functions.

cause the target address of a procedure call instruction does
not directly point to the real code of the invoked function.
Instead, it initially points to “stub” code, which determines
if the procedure has already been resolved. If it has not, the
stub code invokes a runtime function to search for the shared
library, patches the GOT table with the actual address of the
dynamic function, and then performs an unconditional jump
to that address. By monitoring registers, target addresses of
function calls, and actual addresses of dynamic functions,
our SimTracer can generate information that can be used to
construct call-graphs with complete calling contexts.

To automate the process, we create a Python script that
uses Simics APIs to issue commands through the Command-
Line Interface (CLI). The script sets up the Linux-process-
tracker and SimTracer and registers callbacks for function-
call related instructions. The Linux-process-tracker is a
Simics-provided module that allows tracking user-specified
processes by either process id (pid) or file name in Linux.
If the running process is an instance of the target program,
we enable the tracer until the next context switch. The tracer
is disabled when a different process is scheduled. Linux-
process-tracker is essential for SimTracer to select instruc-
tion traces from only the target process.

3.3 SimParser

Once the runtime traces have been generated, our proposed
SimParser is used to process the information. By following
the static and dynamic calling conventions of the simulated
system (e.g., processor-specific calling conventions or OS-
specific dynamic linking convention), SimParser constructs
dynamic call graphs by analyzing the values of instruction
pointers and stack frame updates. Note we can perform pars-
ing during tracing or as a separate process.

In our implementation, we choose to parse separately to
reduce the tracing overhead. This is because tracing must
be done in a virtualized platform; however, parsing can be
done on a real system that has been configured to have
the same runtime environment as the virtualized platform.
This similarity is required to ensure library consistency of
dynamically linked functions. In this scenario, parsing can
take very little time. On the other hand, if a system with
the same runtime environment as the virtualized platform
is not available, parsing has to be done in the virtualized
platform. In this scenario, parsing can take much longer due
to inefficient I/O and slower processor speed in simulators.
Section 4 reports the parsing time for both scenarios.

3.3.1 Supporting x86/Linux Executables.

In most UNIX-like operating systems, a proc pseudo file
system exposes runtime information of each process. In ad-
dition, the file /proc/<pid>/maps reports the detailed
memory mappings of the process identified by <pid> when
queried. It is worth noting that there are alternative mecha-
nisms such as LD_AUDIT [15], Library Interposer [28] for
Linux and GNU runtime linker that can be used to obtain the
same information. However, we did not use these approaches
because they require calling additional methods that are not
part of the traced programs, which can pollute the traced in-
structions.

As stated earlier, we leverage the relationship between
base pointer (ebp) and stack pointer (esp) to compute the
level of each function in the calling hierarchy. Thus, Sim-
Parser maintains a virtfual stack that is pushed and popped
synchronously as the instruction traces are being processed.
It follows the x86/cdecl calling convention!. Specifically, the
parser memorizes the ebp and esp of each call instruction

1'x86 calling conventions http://en.wikipedia.org/wiki/x86_calling_conventions
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on the virtual stack. As it parses to the next call, if both ebp
and esp are decremented (stack grows downward in x86),
the parser concludes that the call is one level lower in the call
graph and pushes its (ebp, esp) onto the stack. If the ebp
and esp at this function are greater than the top-of-stack
value, it indicates multiple calls have returned. Thus, the
parser also unwinds its virtual stack by popping the virtual
stack until it reaches the direct caller of the current callee.
The caller function can be found by repeatedly comparing
the current (ebp, esp) with those on the virtual stack. Next,
we present our algorithm used by SimParser to construct dy-
namic call graphs.

Algorithm 1 SimParser Algorithm

Require: trace log: 1og
Require: library mappings: maps
Require: program binary: bin
Ensure: dynamic call graph: G
symtab « SimAnalyzer.read (bin)
H <« SimAnalyzer.process (bin, symtab)
for 1ib in maps do
symtab « SimAnalyzer.read(lib)
H+ SimAnalyzer.process (lib, symtab)
end for
for rec in logdo
level = convention (rec.ebp,
rec.esp)
G.add (H[rec.addr], level)
end for
return G

As shown in Algorithm 1, SimParser takes an executable
as well as a trace log and library mapping, which were gen-
erated by SimTracer as inputs, returning the corresponding
dynamic call graph G. SimAnalyzer is also used in this pro-
cess to generate symtab and a function hash table (H) in-
dexed by runtime addresses for functions in both the main
module and dynamic linked libraries. These data structures
are used for mapping traced callee addresses to the actual
function information.

Once the hash table is created, for each record in the trace
log, we retrieve the base pointer bp and stack pointer sp
from each record. A platform-specific subroutine conven-
tion is invoked to compute the level of the procedure call
with respect to the calling convention. Then the graph is
repeatedly constructed by appending the function informa-
tion H[rec.addr] with the computed level in the call-
ing chain. In the end, the algorithm returns the dynamic call
graph G to the user. Based on this algorithm, a snippet of
call-graph generation is presented in Figure 3.

Call graphs that are too complex may not provide de-
velopers with sufficient insight to debug software prob-
lems. This is because complex call graphs are difficult to
comprehend. As such, our implementation of SimParser for
x86/Linux also includes features to allow developers to fo-

printf (0x80483a4) [/lib/libc-2.4.s0]

_dl_fixup (0x9a350b8) [/lib/1d-2.4.s0]
__i686.get_pc_thunk.bx (0x9abldb) [/lib/1d-2.4.s0]
_dl_lookup_symbol_x (0x99f44c) [/lib/1d-2.4.s0]

__1686.get_pc_thunk.bx (0x9abldb) [/lib/1d-2.4.so0]
do_lookup_x (0x99f12b) [/1lib/1d-2.4.s0]

__1686.get_pc_thunk.bx (0x9abldb) [/lib/1d-2.4.s0]

strcmp (0x9aad00) [/lib/1d-2.4.so0]
strcmp (0x9aad00) [/lib/1d-2.4.s0]
_dl_name_match_p (0x9a4210) [/lib/1d-2.4.s0]

__1686.get_pc_thunk.bx (0x9abldb) [/lib/1d-2.4.s0]

strcmp (0x9aad00) [/lib/1d-2.4.so0]
strcmp (0x9aad00) [/lib/1d-2.4.so0]

. Omitted ...

viprintf (0x9ed0£f9) [/lib/libc-2.4.s0]

__i686.get_pc_thunk.bx (0x9c8650) [/lib/libc-2.4.s0]

__find_specmb (0xa06564) [/lib/libc-2.4.s0]

__1686.get_pc_thunk.bx (0x9c8650) [/lib/libc-2.4.s0]
__1686.get_pc_thunk.bx (0x9c8650) [/lib/libc-2.4.s0]
__1686.get_pc_thunk.bx (0x9c8650) [/lib/libc-2.4.s0]

_TI0_doallocbuf (0xal2bf2) [/lib/libc-2.4.s0]

Figure 3: A snippet of call-chain information

cus on particular modules and their interactions with other
modules. In this mode, only call graphs that originate from
these modules are generated. We also provide commands so
that developers can only focus statically linked functions or
dynamically linked functions. Our parser can also profile the
number of invocations of each function in a program.

3.4 Additional Features

As stated earlier, our host and guest systems are not exactly
the same. By default Linux programs linked shared libraries
dynamically. As such, our parser needs to run in the guest
system to locate the correct libraries for analyzing. On the
other hand, if a native system is set up to be identical in terms
of kernel, libraries, and processor architecture to the guest
system, it is possible to run SimParser natively, lowering the
parsing time.

Besides constructing dynamic call graphs, our implemen-
tation of SimSight also supports invocation counting and
privilege auditing as two extra features. We can accomplish
the latter feature by extending SimTracer to record privi-
lege level information. The information is then used to detect
privilege escalation attacks by malicious software [31].

3.5 Limitations

Currently, our implementation only works with function call
instructions (e.g., call, jal). It does not work with calls made
by simple jump instructions. It also does not work with
stripped binaries, in which symbol tables are not included.

4. Overhead of SimSight

In this section, we report results of our empirical evaluation
to determine the overhead of SimSight. We implemented
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SimSight on the Simics 4.0.40 simulator with x86-440bx-
4.0.4 as the virtualized target. The host machine is equipped
with an 2.66GHz Intel Core 2 Duo CPU and 4GB of main
memory. It runs Mandriva Linux with 2.6.27.24 multiproces-
sor kernel. The virtualized or guest machine is configured to
run the tango image provided by Simics, which is based on
Fedora Core 5 Linux with 2.6.15 kernel. The guest system is
configured to be a single-core 2.2GHz with 512MB of main
memory.

In typical Linux distributions, GNU dynamic linker (/d),
and ELF are the default runtime linker and binary file for-
mat, respectively. We also set up native machine to have a
similar software configuration and hardware environment to
match the virtualized platform. This native machine is used
to perform parsing. We then use 12 benchmarks from SPEC
CPU2006 Integer, a standardized CPU-intensive benchmark
suite for evaluating performance of system’s processor,
memory subsystem and compiler. Table 1 describes each
benchmark and its size, which ranges from 1.5K lines to
over 250K lines.

[ Benchmark | Description [ LOC(K) ]

libquantum | Simulates a quantum computer 2.65
running Shor’s factorization algorithm.

perlbench Derived from Perl V5.8.7 126
interpreting various workload.

h264ref An implementation of H.264/AVC 36
encoding a videostream.

gobmk Go plays the game of Go (Al). 157.65

astar Pathfinding library for 2D maps. 4.28

mcf Uses a network simplex algorithm 1.57
to schedule public transport.

hmmer Protein sequence analysis using 20.66
profile hidden Markov models.

gce Based on gcc Version 3.2, 236.27
generates code for Opteron.

omnetpp Uses the OMNet++ simulator 19.99
to model a large Ethernet network.

bzip2 Julian Seward’s bzip2 version 1.0.3 5.73
modified to do most work in memory.

xalancbmk | Transforms XML documents 267.32
to other document types.

sjeng A highly-ranked chess program 10.54
that also plays several chess variants.

Table 1: Describes the basic characteristic of each SPEC
CPU2006 benchmark.

There are four sources of overhead in our proposed tech-
nique. The first source is the overhead of the simulation,
which is incurred by simply using Simics. This overhead can
vary significantly. As shown in Table 2, the simulation times
on Simics range from 6 to 33 times greater than the execu-
tion times of these benchmarks on a native system. Note that
we set up our native system to have a similar configuration
to that of the virtual platform. It has a 2.6 GHz Pentium 4
CPU with 512MB of memory. It also runs the same Fedora
Core 5 Linux with the same 2.6.15 kernel.

Execution Time (seconds)
Benchmark | Real System [ Simics Slowdown (times)
libquantum 5.98 144.79 24.21
perlbench 24.22 575.79 23.77
h264ref 49.21 850.77 17.29
gobmk 65.59 980.41 14.95
astar 27.88 296.88 10.65
mcf 21.11 181.36 8.59
hmmer 14.78 387.04 26.15
gcc 10.98 274.81 25.03
omnetpp 7.43 248.37 33.43
bzip2 57.11 347.65 6.09
xalancbmk 6.46 172.16 26.65
sjeng 17.91 339.70 18.98

Table 2: Simulation overheads of Simics.

The second source is SimAnalyzer, which performs ini-
tial analysis of executable. The analysis is performed on a
native machine so the amount of time needed to complete
this process is negligible.

The third source is SimTracer, which adds significant
overhead to the process. According to Table 3, the overheads
of SimTracer range from 3.5 to 28 times slower than execu-
tion times of Simics without it. Note that this overhead is in
addition to the simulation overhead reported in Table 2. As
such, the execution times of SimSight range from 27 times
(bzip2) to 475 times (h265ref) slower than those of the native
system. The sizes of generated log files range from 120KB
to about 1GB.

log size | W/O SimSight | W SimSight | Slowdown
Benchmark (MB) (seconds) (seconds) (times)
libquantum 0.12 144.79 499.06 3.44
perlbench 4.1 575.59 2280.14 3.96
h264ref 65.4 850.77 23894.40 28.09
gobmk 1024 980.41 13799.93 14.07
astar 60.5 296.88 8215.06 27.67
mcf 7.2 181.36 2169.33 11.96
hmmer 13.6 387.04 2540.31 6.56
gcc 61.8 274.81 2301.20 8.37
omnetpp 45 223.27 2086.44 9.34
bzip2 8.3 347.65 1550.40 4.46
xalancbmk 23.8 172.16 743.58 4.32
sjeng 112.1 339.70 43584 12.83

Table 3: Tracing overhead for each benchmark and the gen-
erated size of each log file.

There are three major components in SimTracer. The first
component is the tracing module, which is provided by Sim-
ics. By using this module, we find the execution to be 3 to
5 times slower than Simics without the tracing module. The
second component is the implementation of our algorithms
to filter instructions and identify function addresses. The last
component is to log the tracing information into a file. Fig-
ure 4 provides detailed distribution of the overhead based on
these three runtime components.
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As shown in the figure, in most applications, process-
ing function addresses dominates the execution overhead.
In each of the four benchmarks that has small slow-down
(libquantum, perlbench, bzip2, and xalancbmk), the time
spent by Simics’s tracing module heavily contributes to the
overhead. We also find that the logging component has very
negligible effect on the overall overhead even when size of
the compressed log is over 1GB. For the two applications
with the greatest slow-down (h264ref and astar), the cost of
processing function addresses dominates the overhead.

100%
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Figure 4: Overhead distribution of SimSight for each bench-
mark.

The last source of overhead is SimParser. As stated ear-

lier, SimParser can run on a native system if it is configured
to be the same as the virtualized system. On the other hand,
if such a native system is not available, SimParser must run
in the virtualized system, which can result in much longer
parsing time.
Running in a virtualized system. SimParser takes 61 sec-
onds to parse the trace log of libquantum (less than 1MB
of compressed information), 16 minutes to parse the log of
perlbench (4 MB), 61 minutes to parse the log of h264ref
(65MB), and nearly 3 hours to parse the log of gobmk (1GB).
These long parsing times are mainly due to inefficient file
I/0O in Simics.

Running in a native system. The performance of Sim-
Parser is 10 to 73 times faster than virtualized execution.
It only takes 1 second, 13 seconds, 6 minutes, and 17 min-
utes to parse the logs of libquantum, perlbench, h264ref, and
gobmk, respectively.

In summary, parsing time is not a major performance
factor if there is a system with a similar runtime environment
to that of the virtualized system. On the other hand, if such
a system is not available, the parsing time of a large log file
can be many hours longer than that in a native machine.

5. Usability Studies

In this section, we evaluate the usefulness of SimSight to aid
developers to increase program understanding and isolate
sources of programming errors.

5.1 Improved Program Understanding

Modern computer systems often employ advanced runtime
systems to perform tasks that can make execution faster [19],
overcome binary incompatibilities [4], ease the management
of computing resources [20], and increase programmer pro-
ductivity [10]. For example, a dynamic translator can be
used to translate an architecture specific executable to run
on another architecture or dynamically optimize an exe-
cutable that may have been compiled for a previous pro-
cessor architecture [8, 4]. Runtime systems such as Hard-
ware Abstraction Layers [3] and garbage collectors [20] are
used to simplify the management of hardware components
and memory, accordingly. Dynamic loaders and linkers are
used to simplify the task of managing shared binary ob-
jects such as libraries that are commonly used by applica-
tions [10, 23, 22, 1].

On the other hand, these runtime systems can make un-
derstanding program execution more difficult. This is be-
cause their executions often interleave with the application
execution. For example, reference counting, an automatic
dynamic memory management technique used in Perl and
Visual Basic, performs accounting tasks to track changes
in the object reference graph and increments and decre-
ments references while a program is running [20]. A dy-
namic loader and linker loads a dynamically linked object
the first time it is accessed [1]. It also needs to update the ref-
erence so that subsequent accesses can be done directly. In
these two examples, the time spent executing these runtime
systems accounts for part of the overall execution time of
an application. Furthermore, many of these runtime systems
can change application behaviors (e.g., less efficient mem-
ory management techniques can suffer from out-of-memory
errors or cause memory leaks). As such, understanding when
and how often these runtime systems are invoked can be
helpful to application developers who have to test and de-
bug these systems.

In SimSight, any procedure call information related to
an application is automatically captured. This information
includes any calls made by the application and calls made
by runtime systems to support the application. For exam-
ple, our implementation can log any calls to dynamic linker
and loader (calls to 1d-2.4.s0) and any calls made by
1d. so to its helper functions, allowing developers to ob-
serve when these runtime systems execute and determine
module and function-call dependencies. Figure 5 shows
the dynamic call graph of a program. Note that functions
_dl_fixup, _dl_lookup_symbol_x, and do_lookup x are used to
access dynamically linked functions.
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5.2 Improved Debugging Capability

It is a common practice for software developers to rely on ex-
isting software components to perform some tasks for their
applications. Unfortunately, these common components of-
ten have their own complex module dependencies that can
result in hard-to-understand and possibly conflicting module
dependencies. As such, maintaining library compatibility in
systems that use dynamic link libraries is a challenging prob-
lem [10].

libfoo.so libbar.so
executable : : libc.so
&
program L foo( ) R bar( )
. // H ’,
main( ) ; : K : strepy( )
1 4 4 .
h call bar( ) call barz( ) /
N 1
call foo( ) : ; /
1
1
1
barz( ) ,'
1
call strepy( )

Figure 5: Dependency of our sample program

Figure 5 depicts a simple example that utilizes three

shared libraries: 1ibfoo.so, libbar.so,and 1ibc. so.

Note that a solid arrow represents a function call to a stat-
ically linked library. A dotted arrow represents a function
call to a dynamically linked library. As shown in Figure 5,
main () calls foo (), which is part of the shared library
libfoo.so. Within foo (), there is a function call to
bar (), which is part of the shared library 1ibbar. so.
In bar (), there is a static function call to barz (), and
within barz (), there is a call to st rcpy (), which is part
of the shared library 1ibc. so. In this dependency struc-
ture, it might be possible that a libc.so upgrade can cause
this program to fail. In this example, when we try to execute
this program, “Segmentation fault” occurs.

Typically, this type of the error message appears with-
out providing the precise location that causes the error. One
option is to use SimSight to generate a call graph that in-
cludes both statically and dynamically linked libraries. Fig-
ure 6 shows the result from SimSight. In this case, the error
is in function st rcmp located inside 1d2-4. so.

In summary, developers can use SimSight to assist with
identifying difficult errors such as library incompatibility
and achieve greater system observability.

6. Related Work

In academic research, virtual platforms such as Simics are
often used to simulate new research ideas in hardware. For
example, numerous researchers have used virtual platforms
to model new memory organization or cache optimiza-

~ libc start main [/lib/libc-2.4.so] [D]
_dl fixup [/1lib/1d-2.4.s0] [S]
~dl lookup symbol x [/lib/ld-2.4.so] [S]
do_lookup x [/lib/1d-2.4.so] [S]
strecmp [/1lib/1d-2.4.s0] [S]

foo [/usr/lib/libfoo.so0.1.0] [D]
~dl fixup [/lib/1ld-2.4.so] [S]
_dl_lookup_symbol_x [/1lib/1d-2.4.so0] [S]
do_lookup x [/lib/1d-2.4.so] [S]

strcmp [/1lib/1d-2.4.s0] [S]

strcmp [/1lib/1d-2.4.s0] [S]

strcmp [/1lib/1d-2.4.s0] [S]
bar [/usr/lib/libbar.so.1.0] [D]

_dl_fixup [/lib/1d-2.4.so] [S]
~dl lookup symbol x [/1ib/1d-2.4.s0] [S]
do lookup x [/lib/1ld-2.4.so0] [S]
strcmp [/1lib/1d-2.4.s0] [S]

strcmp [/1lib/1d-2.4.s0] [S]
0x0049eldc [-] [-]
~dl fixup [/lib/1d-2.4.so] [S]
_dl_lookup_symbol_x [/lib/1d-2.4.so] [S]
do lookup x [/lib/1ld-2.4.so] [S]
strcmp [/1lib/1d-2.4.s0] [S]

barz [/usr/lib/libbar.so.1.0] [S]
strcpy [/lib/libc-2.4.s0] [D]
~dl fixup [/lib/1d-2.4.s0] [S]
~dl lookup symbol x [/lib/1d-2.4.so] [S]
do_lookup x [/lib/1ld-2.4.so] [S]
strcmp [/1lib/1d-2.4.s0] [S]

strcmp [/1lib/1d-2.4.s0] [S]

Figure 6: Dynamic Call Graph of our sample program

tion [42, 26, 24] then evaluate their effectiveness by running
benchmark programs in the virtual platforms [35, 40].

In addition, researchers also use these virtual platforms
to observe low-level runtime behaviors that can be difficult
to obtain in real hardware. For example, Wright et al. [40]
uses Simics to observe the behaviors of the HotSpot JVM.
The goal is to be able to achieve non-disruptive inspection
of the JVM states. As part of this work, they create a service
that can relate low-level events back to JVM activities. For
example, they create a service module that can map virtual
addresses to symbolic names. Li et al. uses full system sim-
ulation to characterize the behaviors of SPECjvm98, a stan-
dardized Java benchmarks at that time [24]. In their work,
they profile execution time of JIT compiler and interpreter,
cache behavior, paging behavior, and instruction-level paral-
lelism characteristic.

Albertson introduces Holistic Debugging as a method for
observing execution of complex software systems [2]. Sim-
ics was used to non-intrusively gather low-level runtime in-
formation. The holistic debugger framework then maps this
low level information to higher abstraction level observation
tools such as debugger. A prototype was built on Simics to
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map low level storage information to application level data
such as variables and types. This is accomplished by pars-
ing the data structures of the operating system and virtual
platform. One major difference between the standard debug-
ger and holistic debugger is the use of Simics non-intrusive
probing to support debugging. Our work shares a similar mo-
tivation with that of [2, 40]; that is, we want to take advan-
tage of the non-intrusive probing and execution observability
in virtual platforms to improve software quality. As such, it
should be acceptable to suffer significant runtime overhead
in favor of greater visibility and completeness.

7. Future Work

We plan to experiment with on-demand tracing to reduce
overhead and increase applicability. An example situation
that can benefit from on-demand tracing mode is when a
program crashes after a certain period of execution or when
a certain human detectable event occurs. In such scenarios,
a subset of the call graphs leading up to the failure may be
more interesting. To support on-demand tracing, we exploit
the snapshot feature of Simics. A snapshot is a set of files
that contain enough information about the system and the
processes running on the system to enable restart [37, 30].
In the on-demand tracing mode, SimSight begins tracing
from the snapshot location. By starting close to an execution
point of interest, we can significantly reduce the tracing
overhead by eliminating unnecessary tracing efforts while
still generating meaningful interaction information. We will
also explore an event-based technique to initiate tracing.

We are also working on extending SimSight to generate
data-flow information. At the present time, we have built a
prototype based on MicroC/OS-II running on MS DOS that
can capture any data accesses to global variables. Our next
step is to capture any accesses to variables on the stack. Ad-
ditionally, we will extend SimSight to capture accesses to
hardware devices (e.g., communication buses and I/O com-
ponents) by a particular program. We imagine that such in-
formation can be useful in determining sources of resource
sharing that may lead to contentions and some forms of con-
currency errors such as priority inversions and deadlocks.
Ultimately, we want to use SimSight as a tool to support
testing and debugging of embedded systems.

Because the overhead to run SimSight can be quite large,
efficient large-scale data management can play an important
role in allowing the generated information to be quickly
accessed by users. We are exploring an option to store the
generated results in a database system so that developers can
easily query the results.

8. Conclusions

We have described SimSight, a framework for generating dy-
namic call-graph based on virtualization. The motivation for
introducing the proposed framework is to take advantage of
the non-intrusive probing and execution observability in vir-

tual platforms to improve software quality. While our ap-
proach suffers from significant runtime overhead, we con-
sider it acceptable since our tool is designed to be used dur-
ing software development and not deployment. Furthermore,
we believe that the overhead is a reasonable trade-off as vir-
tual platforms can provide unparalleled observability at both
the hardware and software layers.

We then implement a prototype in Simics full system
simulator to support x86/Linux executables. To evaluate the
overhead to capture function call information, we use 12
programs from SPEC CPU2006 benchmark suite. The result
indicates that tracing function calls can make SimSight run 4
to 28 times slower than Simics with no tracing. As such, the
execution times of SimSight are 27 to 475 times slower than
those of a native machine. We also find that the parsing time
is also not significant if it can be accomplished in a native
system.
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