
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department of

2009

Quarantine: Java Heap Protection in the Presence
of Native Code
Du Li
University of Nebraska-Lincoln, dli@cse.unl.edu

Witawas Srisa-an
University of Nebraska-Lincoln, witawas@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csetechreports

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Li, Du and Srisa-an, Witawas, "Quarantine: Java Heap Protection in the Presence of Native Code" (2009). CSE Technical reports. 134.
http://digitalcommons.unl.edu/csetechreports/134

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/33146968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports/134?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages

Quarantine: Java Heap Protection in the Presence of Native Code

Du Li and Witawas Srisa-an
Department of Computer Science and Engineering

University of Nebraska-Lincoln
256 Avery Hall

Lincoln, NE 68588-0115
dli@cse.unl.edu and witty@cse.unl.edu

Abstract
By using Java Native Interface (JNI), programmers can in-
tegrate Java programs with legacy systems or third-party li-
braries written in other languages (e.g., C, C++, and Pascal).
However, the use of JNI may violate Java type safety fea-
ture because these native programs are not type-safe. As a
result, such integration can cause memory errors that can be
difficult to isolate.

In this paper, we propose Quarantine, a runtime system
that preserves memory safety of Java objects in spite of in-
tegration with native code. The goal of Quarantine is ensur-
ing that no native threads can directly access objects in the
Java heap. We provide a formal proof that our technique can
achieve this goal. We then implement a prototype of Quar-
antine in the OpenJDK 1.7 running in interpreter mode. To
evaluate the feasibility of our prototype, we conduct exper-
iments to measure the runtime overhead of Quarantine. Be-
cause our current implementation is unoptimized, the over-
head can be as high as 42%. We then discuss ways to reduce
this overhead and perform a case study of using Quarantine
to avoid heap corruption due to out-of-bound writes.

Categories and Subject Descriptors D.3.4 [Programming
Language]: Processors—Memory management (garbage
collection)

General Terms Experimentation, Languages, Performance

1. Introduction
Foreign Function Interface (FFI) provides a facility for
higher-level languages to interface with lower-level lan-
guages [20, 8, 13, 6]. As an example, Java Native Interface
[12] provides a standardized way for Java programs to in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© 2009 ACM . . . $5.00

{ {
t

a b { {a b

Initial
heap state

Heap state after native
method modifies t

Invalid
address

Header of b
is corrupted

X

Native method
errorneously

modifies tHeap Heap

Figure 1. Native method corrupting Java heap

terface with native libraries written in languages such as C,
C++, FORTRAN, Pascal, and COBOL. Such interfaces are
needed for various reasons including obtaining system ser-
vices, integrating with legacy libraries, and achieving higher
system performance.

While the use of JNI can significantly reduce the redevel-
opment time of existing native or legacy libraries, its usage
also incurs significant penalties that include additional code
complexities, less powerful exception mechanisms, and in-
creased memory errors, which is the main focus of our work.
By design, Java language is type-safe. However, when a Java
program interacts with software components written in un-
safe languages, that Java program is no longer type-safe.
As a result, data accesses by these unsafe components can
corrupt the heap, possibly causing the Java Virtual Machine
(JVM) to fail.

Previous work by Chiba [4, 5] has shown that once Java
programs suffer from this type of errors, they can be very
difficult to debug. This is because the sources of such errors
lie in native libraries. Moreover, the corrupted data may
not manifest itself for a long time, making isolating the
component that causes the error challenging. We provide an
illustration of this type of errors in Figure 1.

In this example, field t in object a holds a 32-bit reference
to a ThreadLocal object. There is a native method modifyObj
that is written in C. The reference to object a is exported to

proyster2
Typewritten Text
Department of Computer Science & Engineering, University of Nebraska-Lincoln, Technical Report, TR-UNL-CSE-2009-0018

this native method. The native method then manipulates field
t and incorrectly assigns a 64-bit value to it. In doing so,
t no longer contains a valid heap reference. Moreover, the
header of its neighboring object, object b, is also corrupted.
As a result, whenever the program tries to access object b
or field t in object a, it would crash. This simple example
clearly shows a type-safety violation instigated by a native
thread. Past studies and reports have shown that this type of
memory errors occurs quite frequently in large servers that
use heterogeneous components [4, 5, 18, 20].

As shown in the example, object a is unsafe as soon as it
is manipulated by the native method. We refer to this type of
objects as unsafe objects because they have interactions with
native methods and in turn, act as gateways for native meth-
ods to possibly corrupt other Java objects in the heap (i.e.,
object b in the previous example). In a typical server appli-
cation, the number of created objects can be several hundred
million; however, the number of these unsafe objects is a
fraction of the total objects. Such a disparity in the numbers
of unsafe objects and total objects can make identifying un-
safe objects difficult because there are only a few of them to
be discovered.

On the other hand, the ability to identify these unsafe ob-
jects provides an opportunity for better isolation. For exam-
ple, these unsafe objects can be hosted in a separate memory
region that only contains this type of objects. (We refer to
this region as a quarantine site.) Quarantining these unsafe
objects provides at least three important benefits:

1. Simplify debugging. As in the example above, the JVM
throws an exception when it tries to access field t. The
provided address of the object that contains the invalid
reference would indicate that it resides in the quarantine
site. Thus, it is likely that the source of error is due to
improper access by a native method.

2. Limit contagiousness. By isolating unsafe objects, im-
proper accesses to them are less likely to corrupt the
neighboring objects (such as in the case of out-of-bound
writes), which can cause the virtual machine to fail due to
invalid references or corrupted headers. Neighboring ob-
ject corruptions make debugging very difficult because
the corrupted objects are often not the ones that were ini-
tially accessed by native methods.

3. Better heap protection. A small number of unsafe objects
when compared to the total number of objects means
that the quarantine site should also be relatively small.
Thus, existing heap protection techniques [1, 14] that
have shown to work well in moderately sized heaps but
might incur too much overhead for large heaps can be
feasibly applied to make the Java program more tolerable
to certain classes of memory errors such as out-of-bound
writes and object header corruptions.

This work. We evaluate the feasibility of a proposed run-
time technique called Quarantine, which enforces a simple

runtime property that no native methods can ever access ob-
jects in the nursery and mature spaces of Java heap. Instead,
any access to an object by a native method must be done in
a quarantine site that is specifically created to hold objects
that can possibly be corrupted. Our technique extends the
JVM to identify any objects that have been exported to na-
tive methods. These objects and their transitive closures are
then moved to the quarantine site before the native meth-
ods can access them. The proposed technique has been im-
plemented in the OpenJDK 1.7 (running in the interpreter
mode only) from Sun Microsystems. The initial result indi-
cates that Quarantine can successfully enforce the desired
property but at a cost of about 42% overhead when com-
pared to the performance of OpenJDK’s interpreter without
Quarantine.

We then try to reduce the number of copied objects by
exploiting an observation that native methods rarely access
descendant objects that are referenced by fields inside an ex-
ported object. To exploit this observation, we modify Quar-
antine to copy objects in a reference graph based on a speci-
fied level. For example, when the level is set to 2, Quarantine
only copies an exported object (i.e., the first level) and any
objects that can be directly referenced from the exported ob-
ject (i.e., the second level). When we set the level to 1, the
overhead is reduced to 15%.

Lastly, we conduct a case study that applies an 8-byte
padding to the end of each object in the quarantine site.
This padding is used to neutralize out-of-bound writes so
that they cannot corrupt the neighboring objects. We find that
the space overhead to support padding is only 0.044% of the
entire heap space, making it a feasible candidate for more
complex heap protection mechanisms. For future work, we
discuss optimization techniques that can further reduce the
overhead of our proposed system.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the proposed Quarantine. Section 3 dis-
cusses our prototyping effort. Section 4 elaborates on our
methodology to evaluate Quarantine. Section 5 reports the
result of our overhead investigation. Section 6 describes our
case study to handle out-of-bound writes in Quarantine. Sec-
tion 7 discusses related work. The last section concludes this
paper.

2. Introducing Quarantine
The goal of Quarantine is to eliminate the presence of unsafe
objects in the nursery and mature space that are managed
by the JVM. We take this approach because native code
can potentially corrupt objects it manipulates as well as the
neighboring objects. Therefore, preventing native code from
manipulating objects in the heap can make the heap more
robust.

We design Quarantine as a runtime system so that it can
provide heap protection without the need to analyze and
recompile the native programs. We believe that our approach

is appealing to large heterogeneous systems because often
times, the source code of many legacy libraries may not be
available or be too antiquated to recompile. With Quarantine,
all the work to identify and segregate unsafe objects is done
entirely during runtime by the JVM.
Unsafe objects. An object is considered unsafe when it
is accessible by native code. There are two possible ways
for this to happen. First, an object is created by the native
code. This object is typically created in the JVM managed
heap; and therefore, it intermingles with the rest of the Java
objects. In most JVMs, a native method is executed as a
thread that share the same virtual address space as Java
threads. Thus, creating objects in the heap allows native
threads and Java threads to communicate easily. On the other
hand, allowing native threads to directly create objects in
the Java heap makes the entire heap unsafe. In Quarantine,
we handle this situation by simply creating such objects
directly in the quarantine site. (From now on, we will refer
to quarantine site as JNI space.)

Second, an object created by a Java thread is exposed to
native threads through Java Native Interfaces. When this oc-
curs, Quarantine intercepts the object’s address and moves
this object and its transitive closure to the JNI space. It then
leaves a forwarding address in the data portion of each orig-
inal object for the JVM to update existing stale references to
point to the new locations. In Listing 1, object newV al at
line 5 is created by native thread. In Listing 2, object value
at line 4 is created by a Java thread and then passed as an
argument to a native method. Furthermore, every object that
is directly or indirectly referenced by value is considered
unsafe.

1 JNIEXPORT void JNICALL
2 Java E xam ple m odi fyObj (JNIEnv ∗env , j o b j e c t obj1 ,

j o b j e c t ob j2) {
3 j c l a s s o b j C l a s s = (∗ env)−>G e t O b j e c t C l a s s (env , ”

j a v a / l a n g / O b j e c t ”) ;
4 jmethodID c i d = (∗ env)−>GetMethodID (env ,

o b j C l a s s , ”< i n i t >” , ” ()V”) ;
5 j o b j e c t newVal = (∗ env)−>NewObject (env ,

o b j C l a s s , c i d) ;
6 j c l a s s c l s = (∗ env)−>G e t O b j e c t C l a s s (env , ob j2) ;
7 j f i e l d I D f i d = (∗ env)−>G e t F i e l d I D (env , c l s , ”

foo ” , ” L java / l a n g / O b j e c t ; ”) ;
8 (∗ env)−>S e t O b j e c t F i e l d (env , obj2 , f i d , newVal) ;
9 }

10 . . .

Listing 1. Example.c

1 c l a s s Example{
2 p u b l i c O b j e c t foo ,
3 p u b l i c vo id m() {
4 Example v a l u e = new Example () ;
5 modifyObj (v a l u e) ;
6 }
7 p u b l i c n a t i v e vo id modifyObj (Example o) ;
8 . . .
9 }

Listing 2. Example.java

2.1 Formal Proof
This section presents a proof that quarantine can enforce the
desired property that no native threads can directly access
any object in the nursery and the mature space of a Java
heap. To enforce this property, we assume that native threads
can only get reference to a Java object through Java Native
Interface. We make this assumption because this is the most
common and safest way for Java methods and native meth-
ods to interact. Quarantine does not work in the case that JNI
is not used to expose an object to a native method.

2.2 Basic Definitions
DEFINITION 2.1. (access function). Let T be a thread rep-
resenting a native method and B is the set of objects which
are accessible by T . The access function Fa is defined as:
Fa(T) = B.

DEFINITION 2.2. (export function). Let f be a function call
to a native method (e.g., line 7 in Listing 2) and C is the set of
objects that are exported by f as parameters or receiver ob-
jects to the native method. The export function Fe is defined
as: Fe(f) = C.

DEFINITION 2.3. (reference function). Let o be an object
and D is the set of Java objects that can be referenced from
o. The reference function Fr is defined as: Fr(o) = D.

DEFINITION 2.4. (reference tree). Let f be a call to a native
method, o be an object, andF∗

r (o) = Fr(Fr(...Fr(o))). The
reference tree is defined as:

Π(f) =
⋃

β∈Fe(f)

F∗
r (β)

.

DEFINITION 2.5. (moving function). Let o be an object in a
Java heap, o′ is the identical copy of o in the JNI space and
all Java objects in Fr(o′) are in the JNI space. The moving
function is defined as: Mv(o) = o′.

2.3 Interface Formats
There are four possible formats for making native method
calls from Java programs: (i) static method without instance
parameters; (ii) static method with instance parameters; (iii)
non-static method without instance parameters; and (iv) non-
static method with instance parameters. These four formats
are presented in Table 2.3 with the following representation:
C: class, M: method, O: object, bi: basic type parameters,
and ii: instance parameters.

In Quarantine, the two formats with instance parameters
and one format with non-static method are represented be-
low. Note that the format of static method without instance
parameters remains unchanged.

static method without instance parameters C.M(b1, b2, ..., bn)
static method with instance parameters C.M(i1, i2, ..., in, b1, b2, ..., bn)
non-static method without instance parameters O.M(b1, b2, ..., bn)
non-static method with instance parameters O.M(i1, i2, ..., in, b1, b2, ..., bn)

Table 1. Four formats of Java Native Interfaces

C.M(i1, i2, ..., in, b1, b2, ..., bn) ≡
C.M(Mv(i1),Mv(i2), ...,Mv(in), b1, b2, ..., bn)

O.M(b1, b2, ..., bn) ≡ Mv(O).M(b1, b2, ..., bn)

O.M(i1, i2, ..., in, b1, b2, ..., bn) ≡
Mv(O).M(Mv(i1),Mv(i2), ...,Mv(in), b1, b2, ..., bn)

2.4 Proof
AXIOM 2.1. Let Ω be the set of all the native methods, Θ be
the set of all the native method calls in a Java program,

⋃

T ∈Ω

Fa(T) = Σc +
⋃

F∈Θ

Π(F)

LEMMA 2.1. In Quarantine, objects created by native meth-
ods, denoted as Σc, are in the JNI space.

Proof: Lemma 2.1 is trivial because Quarantine satisfies any
allocation requests from native methods in the JNI space.

LEMMA 2.2. Let F be a native method call in a Java pro-
gram, all Java objects in the set Π(F) are in the JNI space.

Proof: As mentioned earlier, Java Native Interfaces can be
any of the four formats.
Case 1: F is static method without instance parameters.
C.M(b1, b2, ..., bn) ≡ C.M(b1, b2, ..., bn)
⇒ Π(F) = φ, therefore no parameters need to be in the JNI
space.

Case 2: F is static method with instance parameters.
C.M(i1, i2, ..., in, b1, b2, ..., bn) ≡
C.M(Mv(i1),Mv(i2), ...,Mv(in), b1, b2, ..., bn)
⇒ Π(F) = F∗

r (Mv(i1))+F∗
r (Mv(i2))+...+F∗

r (Mv(in))
For any k ∈ [1..n],F∗

r (Mv(ik)) are in the JNI space ac-
cording to the definition of moving function, so Π(F) are in
the JNI space.

Case 3: F is non-static method without instance parameters.
O.M(b1, b2, ..., bn) ≡ O.M(b1, b2, ..., bn)
⇒ Π(F) = F∗

r (Mv(O))
All Java objects (i.e., receivers) in F∗

r (Mv(O)) are in the
JNI Space according to the definition of moving function, so
Π(F) are in the JNI space.

Case 4: F is non-static method with instance parameters.

O.M(i1, i2, ..., in, b1, b2, ..., bn) ≡
O.M(Mv(i1),Mv(i2), ...,Mv(in), b1, b2, ..., bn)
⇒ Π(F) = F∗

r (Mv(O))+F∗
r (Mv(i1))+F∗

r (Mv(i2))+
... + F∗

r (Mv(in))
All objects in Mv(O) and F∗

r (Mv(ik))(k ∈ [1..n]) are in
the JNI space according to the definition of moving function,
so Π(F) are in the JNI space.

All Java objects in set Π(F) are in the JNI space in these
four cases.

THEOREM 2.1. Invariant
Let be Ω is the set of all native methods in a program

M =
⋃

f∈Ω

Fa(f),

all objects in M are in the JNI space.

Proof : According to Lemma 2.1, Σc are all in the JNI space.
According to Lemma 2.2, for any native method call F ,
Π(F) are also in the JNI space.

⇒ All Java objects in
⋃

F∈Θ

Π(F)

are in the JNI space.

⇒ All Java objects in

Σc +
⋃

F∈Θ

Π(F)

are in the JNI space.

⇒ Accoding to Axiom 2.1,

M = Σc +
⋃

F∈Θ

Π(F)

Therefore, all objects in M are in the JNI space.

3. Prototyping Quarantine
We prototype Quarantine on the OpenJDK 1.7 b24 [19] with
Linux Fedora 8 operating system. As a prototype system, our
goal is to validate our design and evaluate whether Quaran-
tine can be implemented to enforce the desired runtime prop-
erty. Thus, we implement Quarantine in the HotSpot’s C++
interpreter. We discuss the ramifications of this implementa-
tion choice in Section 4.1.

Figure 2. Heap layout

Currently, our prototype can successfully run a few
benchmarks that include SPECjbb2005 and a subset of
SPECjvm98. To activate Quarantine, a JVM option “Use-
JNIHeap” must be set. Recently, we have begun to port our
implementation to the JIT compiler in HotSpot. We plan
to report the result of our implementation and performance
analysis in the subsequent version of this paper.

In the next few subsections, we discuss the implementa-
tion details to support Quarantine in HotSpot.

3.1 Heap Layout
To support Quarantine, we add JNI space, a new memory
area to hold unsafe objects (see Figure 2). We can customize
the size of this memory area using a command line option.

3.2 JNI Modifications
As stated earlier, there are two types of objects that are
hosted in the JNI space: objects created by native methods
and objects that are exposed to native methods. For objects
created by native methods, Quarantine uses a modified mem-
ory allocator instead of the typical allocator to create these
objects directly in the JNI space. This is accomplished by
modifying the implementation of the JNI interface that cre-
ates objects in the Java heap. For other unsafe objects cre-
ated by Java code but then exported to native code, Quaran-
tine copies these objects and their transitive closures from
Java heap to the JNI space as soon as the objects are ex-
ported but before they are accessed by native methods. We
support object moving by modifying the interpretation of
the following bytecodes: invoke interface, invoke special,
invoke static, and invoke virtual. Quarantine checks the to-
be-executed method whether it is native method or not. If it
is a native method, Quarantine copies the object parameters
and receiver objects, if any, to the JNI space according to
the method signature. At the same time, our modified inter-
preter also leaves a forwarding address in the data portion
of an original object. It also modifies its object’s header to
indicate that this object is now a forwarding object and not
the actual object.

3.3 Supporting Forwarding References
As stated above, we need to distinguish actual objects from
forwarding objects. To accomplish this task, Quarantine
steals two unused bits from the object header as a status
tag of the object. The meaning of the tag is defined in Table
2.

3.4 Read and Write Barriers
Once these unsafe objects have been moved, the program
may still have references to the stale objects. These stale
references must be updated to maintain correct execution
states. To lazily update these stale references, we modify the
write barrier mechanism in HotSpot to check the status tag in
the object header. If a write attempt is made to a forwarding
object, the reference is first updated with the forwarding
address so that the reference is now made to the copied
object in the JNI space, then the write is performed.

Unfortunately, HotSpot does not have read-barrier mech-
anism. Therefore, we have to implement our own version.
Our read barrier works as follows: when a read attempt is
made, our barrier checks whether the read attempt is to a
regular object or a forwarding object. For an actual object,
our read barrier does nothing. For a forwarding object, our
read barrier takes the forwarding address and updates the
reference to point to the new location and the read opera-
tion is performed. We then install our read barrier in all the
bytecode interpretations that perform read accesses into the
heap. Furthermore, we also install our read-barrier at the fol-
low execution locations.

• Popping objects from execution stack. When a method
is executed, all the parameters and receiver objects, if any,
are popped from the execution stack. Quarantine checks
the status of each object when it is popped from the stack
and ready to be used by some methods.

• Dereference Java object handles. There are some han-
dles in HotSpot that contain references to Java objects.
These handles may contain stale references if these han-
dles are constructed before we moved unsafe objects. It
is necessary to check and update these handles when they
are dereferenced.

• Tracing phase of garbage collection. The garbage col-
lector needs to be cognizant of forwarding objects. If the
collector encounters a forwarding object during tracing,
it then forwards the reference to the new location.

Once all the stale references to an original object have
been updated, the object is automatically garbage collected
in the next collection cycle.

3.5 Modifying Garbage Collector in HotSpot
To collect dead objects in the JNI space, we modify the se-
rialized generation collector in HotSpot [17, 10]. Specifi-
cally, we extend the full collector, which is a mark-compact
scheme [10], to also perform collection of this new space.

Tag bits Status of objects
00 regular Java object
01 object in JNI space
10 forwarding object
11 undefined

Table 2. Object tagging

There are currently two ways to trigger JNI space collection.
First, the space is collected when the mature generation is
full. Second, the space is collected when the JNI space is
full.

In both instances, the entire heap collection is performed.
As part of this process, the full collector works the entire
Java heap while the JNI collector only works the JNI space.
While this approach incurs high collection overhead, it is
also much simpler because the entire heap is scanned for
live objects. There is no need to maintain a list of intergener-
ational references [21], which is needed by a typical minor
or nursery collection. During a collection of the JNI space,
the collector simply slides live objects toward the lowest ad-
dress of the JNI space. Once an object is hosted in the JNI
space, it stays in the space until it dies.

3.6 Native Method Selection
HotSpot also invokes several native methods through JNI
as part of its initialization and execution. In this work, we
consider these methods as “trusted” methods since they are
provided by Sun as part of HotSpot. These trusted methods
are not considered by Quarantine to create unsafe objects,
and therefore, objects accessible by these “trusted” native
methods are not moved to the JNI space.

On the other hand, any native methods directly called
by applications are considered “unsafe” by Quarantine. Any
objects accessible by these methods reside in the JNI space.

4. Evaluation Methodology
We conduct a preliminary experiment to analyze the runtime
overhead of Quarantine. In terms of benchmark selection,
we are limited by two factors. First, there are currently no
benchmarks that have been designed specifically to measure
JNI performance. Thus, our focus turns toward benchmarks
that have been commonly used in academic research. Sec-
ond, Quarantine still has some issues running newer bench-
marks. Currently, it can run a subset of SPECjvm98 and
SPECjbb2005. We evaluate these benchmarks that can run
on Quarantine. Small benchmarks tend to have very small
percentages of native method invocations (fewer than five
percents). The only large benchmark that can currently run
on Quarantine is SPECjbb2005, which is a standardized
benchmark from SPEC that has been designed to measure
performance of the middle tier (business logic) in a three-tier
client server architecture [16]. In a four-warehouse setting,
SPECjbb2005 invokes 420 million methods. Out of these,

about 40 million or 9.7% are native method invocations. It
also allocates over 20 million objects.

4.1 Threats to Validity
Similar to most prototype systems, Quarantine is currently
implemented to perform correctly but not efficiently. Our
choice to implement Quarantine in the C++ interpreter of
HotSpot makes the system performs very slowly due to
high interpretation overhead. Typically, the performance of
C++ interpreter is about 10 times slower than that of the
fastest execution in HotSpot (combining interpretation and
compilation). However, the use of C++ interpreter allows
us to implement our prototype relatively quickly due to a
much higher level of abstraction. Thus, the result of our
performance evaluation that is reported in the next section
has to be taken with a “grain of salt”. Our performance
comparisons are done using the runtime performance of the
unmodified C++ interpreter and that of the modified C++
interpreter. This means that the result may not reflect the
performance of Quarantine in a high-performance VM that
utilizes dynamic compilation.

In addition, we have not fully optimized our implemen-
tation so the reported overhead is likely to be higher than
the lowest possible value for this particular interpreter. Fur-
thermore, our current implementation still contains errors
that sometimes interfere with the HotSpot’s finalizer when
benchmarks such as DaCapo and SPECjvm2008 are used.
We are currently working to overcome these small but an-
noying errors and expect to have Quarantine be fully com-
pliant with the latest JDK and JNI specifications by the next
revision of this paper.

4.2 Experimental Methodology
We execute SPECjbb2005 five times and report the best, the
worst, and the average scores. The average scores are also
used to provide graphical illustrations in the next section.
For garbage collection performance, we obtain information
by running the benchmark one time on the modified HotSpot
and another time on the unmodified HotSpot with the corre-
sponding instrumentation. For method invocation profile, we
instrument the unmodified HotSpot to capture method invo-
cation information.

4.3 Hardware Platform
We conduct our experiment on a PC with dual-core Athlon-
64 running at 2.0 GHz. The system has 3GB of physical
memory.

5. Results
In this section, we report the runtime overhead of Quaran-
tine when running SPECjbb2005. We also report the effects
of Quarantine on garbage collection performance. In our ex-
periment, we set the workload to four warehouses. With this
workload, the heap usage is 274MB. The nursery is set to

26MB. The mature space is set to 233MB and 210MB for the
default HotSpot and Quarantine, respectively. The mature
space for Quarantine is smaller because we allocate 23MB
of the mature space for the JNI space. HotSpot also has a
permanent space to store various permanent data structures.
That space is set to 16MB.

5.1 Runtime Overhead
As stated earlier, we run the benchmark five times. Table 3
reports the lowest, average, and highest throughput perfor-
mances of SPECjbb2005. The table shows that Quarantine
degrades the throughput performance by 42% (based on the
average throughput performances).

Default Quarantine
Lowest Highest Average Lowest Highest Average

1157 1215 1190.80 671 711 689.4

Table 3. Comparing throughput performances between
HotSpot with C++ interpreter and Quarantine when running
SPECjbb2005

5.2 Effects on Garbage Collection
Because garbage collection in the JNI space also invokes
full collection, we investigate the effects of Quarantine on
garbage collection behavior. To fairly compare the behav-
iors of the two systems, we modify SPECjbb2005 to provide
consistent allocation pressure. As suggested by Blackburn
et al. [2], measuring throughput performance does not pro-
vide a fair environment to evaluate garbage collection per-
formance. This is because system that is less efficient (such
as Quarantine in this case) performs less work in a given
amount of time. Less work often means fewer allocated ob-
jects than those in a more efficient system. This difference
can result in different garbage collection behaviors.

To ensure fairness, we observe the garbage collection
performance of our two systems given the same number of
allocation requests. We first execute the default system and
record the number of objects that have been allocated during
its run. This number is then used by Quarantine to determine
the amount of work that must be done. We then compare
the garbage collection behavior once Quarantine reaches the
same amount of work as the unmodified HotSpot.

Default Quarantine
Minor Full Minor Full

75 2 76 2

Table 4. Comparing GC behaviors between HotSpot with
C++ interpreter and Quarantine when running SPECjbb2005

As shown in the table, Quarantine has very little effect on
garbage collection. It invokes one additional minor collec-
tion and the same number of full collection. The amount of

O1

O2 O3

O5O4

Level 1

Level 2

Level 3

Level N

Figure 3. An illustration of exported object and its descen-
dant

memory that we allocate to the JNI space is plenty to handle
the unsafe object and it does not get fill up during execution.

5.3 Optimization Opportunities
The two dominating costs of our implementation are read-
/write barriers and copying. By porting our implementation
to a dynamic compilation system, we should be able to sig-
nificantly reduce the barrier costs. Past studies have shown
that efficient implementations of barriers can be quite cheap
[9, 3]. On the other hand, the cost of copying will likely re-
main high even when a dynamic compiler is utilized.

During our investigation, we observe that native code
rarely accesses descendant objects (i.e., objects that are ac-
cessible via fields in an exported object). Intuitively, such an
observation makes sense because native code does not have
thorough knowledge of the structure of an object. Therefore,
it tends to access the exported object and a few of its de-
scendants. As a result, it may not be necessary to copy its
transitive closure.

To exploit this observation, we modify Quarantine to only
copy a specific level of descendant objects. As shown in
Figure 3, when level is set to one, only the exported object,
O1, is copied. When the level is set to two, O1, O2, and
O3 are copied to the JNI space. When the level is set to N,
the transitive closure of O1 is copied. Figure 4 illustrates the
saving that can be obtained by exploiting this observation.

As seen in the Figure 4, when we set the level to one, the
runtime overhead of our approach (based on the average of
five run) is only 14.88% higher than that of HotSpot without
Quarantine.

6. Case Study: Handling Out-of-Bound
Writes

Over the past few years, there have been numerous tech-
niques that have been introduced as a way to increase heap
robustness [1, 14, 15]. As a simple case study, we investigate
the space overhead to add padding to the end of each object
in the JNI space. We use this padding to avoid instances of
neighboring object corruptions.

0

 5

 10

 15

 20

 25

 30

 35

 40

 45

N 3 2 1

Copying Level

Ru
nt

im
e

O
ve

rh
ea

d
(%

)

Figure 4. Reduction in runtime overhead

object object

objectobject

object

object

object

object

object

object

object

object

object corruption
due to out-of-bound

write

object

object

object

object

object

object

object

object

no neighboring corruption!
out-of-bound

write is neutralized

gap

gap

gapgap

gap

gap

gap

gap

(a) Out-of-bound write in Java heap (b) Out-of-bound write in Quarantine

Figure 5. Comparing the effects of out-of-bound writes in
Java heap and Quarantine

To do so, we create a fault injection system that acts as na-
tive methods that perform out-of-bound writes and possibly
corrupt neighboring objects (see Figure 5(a)). Our injector
can be configured to randomly pick a percentage of unsafe
objects to corrupt.

In our experiment, we configure the injector to corrupt
5% of all unsafe objects. When we apply our fault injec-
tion to SPECjbb2005 running on the unmodified HotSpot, it
crashes every time due to invalid references.

To neutralize the effects of memory corruption, we sim-
ply add 8 bytes to the end of every object in the JNI space
(see Figure 5(b)). In doing so, our Java program can better
tolerate this type of memory errors and run to completion. It
is arguable that the same treatment can be applied to every
object in the Java heap but the space overhead of such an ap-
proach would be very high. It is also possible to customize
the padding size for each object. For example, we can set a
the padding size, Spadding using the following formula:

Spadding = �α ∗ Sobject + β�(α, β ≥ 0),

where Sobject is the size of the object.
Obviously, larger padding may provide better safety,

but at a cost of large space overhead. By using an 8-byte
padding, we discover that our space overhead is less than
128KB, which only accounts for 0.044% of the entire heap.

6.1 Discussion
By using Quarantine, it is feasible to add memory padding
to unsafe objects. Since these unsafe objects are only a
fraction of the total objects, the space overhead for padding
is negligible. Such a low space overhead provides a golden
opportunity to fine tune coefficients like α, β to achieve
greater memory safety. For example, we can easily set α as
2 in Quarantine, the memory cost is still acceptable, but in
regular JVM, it will double the usage of Java heap, which is
likely to be infeasible in heavy load servers.

In addition, low space overhead also provides an oppor-
tunity to apply more complex techniques to protect the JNI
space. As part of future work, we will experiments with other
techniques (e.g., randomized heap [1], redundant heap [14])
and identify a few real-world programs that contain JNI re-
lated memory bugs to be used as experimental subjects.

7. Related Work
There have been several research efforts to analyze for faults
in JNI applications [7, 20, 11]. In these techniques, the
source code is required and the analysis is done on the native
code. For example, work by Kondoh and Onodera [11] ap-
plies static analysis to find bugs such as exception handling
errors, resource leaks, and invalid references in applications
that utilize on JNI. Work by Tan et al. [20] proposes a Safe-
JNI framework to ensure type-safety in heterogeneous ap-
plications using Java and C components. The work performs
analysis to the C source code and modifies the code to ensure
type-safety.

Work by Hirzel and Grimm [8] create a new language
design for better integration of Java and C. The goal is to
streamline code, enable static error detection, and simplify
dynamic resource management, allowing JNI-based appli-
cations to be developed with less complexities and greater
safety.

While these efforts can achieve better type safety and
greater reliability for JNI applications, they are only appli-
cable to applications with source code. They cannot work
with Legacy libraries that may only be available in the bi-
nary form. Our technique, on the other hand, can work with
binary libraries. However, our main focus is to identify un-
safe objects and then segregate them. The goal of our work
is not to identify bugs; instead our goal is to make debug-
ging easier and make JNI based applications more tolerable
to memory errors.

Work by Chiba [4, 5] attempts to ease the debugging
process in JNI based applications by isolating memory errors
due to invalid accesses by native code as they happen and

then identify the sources of errors in the native code. His
proposed system relies on page protection mechanism in the
operating system to prevent native code from writing directly
to the heap. When an illegal reference occurs, an page-fault
exception is thrown and the address of the code that attempts
to make the invalid reference is reported. Currently, his work
can accomplish more than ours because it can identify the
sources of errors. Our system should be able to provide a
similar debugging feature by associating native methods to
exported objects and their descendants when the VM is run
in debug-mode.

8. Conclusions
In this paper, we present a prototype of Quarantine, a run-
time system to identify unsafe objects in JNI-based appli-
cations and then segregate them into a quarantine site. The
main goal of Quarantine is to prevent native methods from
directly accessing objects in the nursery and mature space in
a Java heap. In doing so, we can prevent native threads from
corrupting Java objects that happen to be neighbors of unsafe
objects. The basic mechanism of Quarantine is to satisfy al-
location requests from native methods in a special memory
area called JNI space. It also moves any object in the Java
heap that are accessible by native methods.

As part of this work, we provide a proof that Quaran-
tine can enforce its runtime goal. We also implement a pro-
totype system in the C++ interpreter of OpenJDK 1.7 and
test the prototype using SPECjbb2005, a server benchmark
from SPEC. The initial result indicates that Quarantine re-
quires about 42% of overhead to operate. However, by se-
lectively copying only objects that are directly accessible
by native threads but not their descendants, we can reduce
the overhead to about 15%. We also conduct a case study
to show that we can easily apply additional padding space
to every object in JNI space to increase robustness without
incurring substantial overhead (about 0.04%). In doing so,
SPECjbb2005 can better tolerate memory errors due to out-
of-bound writes.

For future work, we will refine our implementation to fur-
ther reduce overhead. We are in the process of porting our
implementation to the high performance dynamic compiler
in HotSpot. We anticipate a significant reduction in the run-
time overhead. In addition, we are also identifying more op-
portunities to further optimize our implementation.

References
[1] E. D. Berger and B. G. Zorn. Diehard: probabilistic memory

safety for unsafe languages. In PLDI ’06: Proceedings of the
2006 ACM SIGPLAN conference on Programming language
design and implementation, pages 158–168, New York, NY,
USA, 2006. ACM.

[2] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. Eliot, B. Moss, A. Phansalkar, D. Stefanović,

T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development
and analysis. In OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages
169–190, Portland, Oregon, USA, 2006.

[3] S. M. Blackburn and A. L. Hosking. Barriers: friend or foe?
In ISMM ’04: Proceedings of the 4th international symposium
on Memory management, pages 143–151, Vancouver, BC,
Canada, 2004.

[4] Y. Chiba. Heap protection for java virtual machines. In
PPPJ ’06: Proceedings of the 4th international symposium
on Principles and practice of programming in Java, pages
103–112, Mannheim, Germany, 2006.

[5] Y. Chiba. Java heap protection for debugging native methods.
Science of Computer Programming, 70(2-3):149–167, 2008.

[6] D. J. Dimmich and C. L. Jacobsen. A Foreign Function
Interface Generator for occam-pi. In Communicating
Process Architectures 2005, pages 235–248, Amsterdam,
The Netherlands, September 2005. IOS Press.

[7] M. Furr and J. S. Foster. Checking type safety of foreign
function calls. SIGPLAN Not., 40(6):62–72, 2005.

[8] M. Hirzel and R. Grimm. Jeannie: granting java native
interface developers their wishes. In OOPSLA ’07: Pro-
ceedings of the 22nd annual ACM SIGPLAN conference
on Object-oriented programming systems and applications,
pages 19–38, Montreal, Quebec, Canada, 2007. ACM.

[9] U. Hölzle. A Fast Write Barrier for Generational Garbage
Collectors. In OOPSLA’93 Garbage Collection Workshop,
Washington D.C., October 1993.

[10] R. Jones and R. Lins. Garbage Collection: Algorithms for
automatic Dynamic Memory Management. John Wiley and
Sons, 1998.

[11] G. Kondoh and T. Onodera. Finding bugs in java native
interface programs. In ISSTA ’08: Proceedings of the 2008
international symposium on Software testing and analysis,
pages 109–118, New York, NY, USA, 2008. ACM.

[12] S. Liang. Java Native Interface: Programmer’s Guide and
Reference. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[13] Manuel Chakravarty. Haskell 98 Foreign Function Interface
1.0. On-Line Documentation, 1998.
http://www.cse.unsw.edu.au/ chak/haskell/ffi/.

[14] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: Au-
tomatically correcting memory errors with high probability.
Commun. ACM, 51(12):87–95, 2008.

[15] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu,
and W. S. Beebee, Jr. Enhancing server availability
and security through failure-oblivious computing. In
OSDI’04: Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation, pages 21–
21, San Francisco, CA, 2004. USENIX Association.

[16] Standard Performance Evaluation Corporation. SPECjbb2005.
On-Line Documentation, 2005. http://www.spec.org/jbb2005.

[17] Sun. Tuning Garbage Collection with the 1.4.2 Java[tm]
Virtual Machine. On-Line Documentation, Last Retrieved:
June 2007. http://java.sun.com/docs/hotspot/gc1.4.2.

[18] Sun Microsystems. JVM Crash Log Analysis.

http://forums.sun.com/thread.jspa?threadID=5369763.
[19] Sun Microsystems. OpenJDK. http://openjdk.java.net/.
[20] G. Tan, S. Chakradhar, R. Srivaths, and R. D. Wang. Safe

java native interface. In In Proceedings of the 2006 IEEE
International Symposium on Secure Software Engineering,
pages 97–106, 2006.

[21] D. Ungar. The Design and Evaluation of a High Performance
Smalltalk System. ACM Distinguished Dissertations, 1987.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2009

	Quarantine: Java Heap Protection in the Presence of Native Code
	Du Li
	Witawas Srisa-an

	tmp.1453490845.pdf.uqOCL

