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FORUM

Early Detection and Mitigation of Resistance to Bt Maize
by Western Corn Rootworm (Coleoptera: Chrysomelidae)

DAVID A. ANDOW,1,2 STEVEN G. PUEPPKE,3 ARTHUR W. SCHAAFSMA,4 AARON J. GASSMANN,5

THOMAS W. SAPPINGTON,6 LANCE J. MEINKE,7 PAUL D. MITCHELL,8

TERRANCE M. HURLEY,9 RICHARD L. HELLMICH,5 AND R. PAT PORTER10

J. Econ. Entomol. 1–14 (2015); DOI: 10.1093/jee/tov238

ABSTRACT Transgenic Bt maize that produces less than a high-dose has been widely adopted and pre-
sents considerable insect resistance management (IRM) challenges. Western corn rootworm, Diabrotica
virgifera virgifera LeConte, has rapidly evolved resistance to Bt maize in the field, leading to local loss of
efficacy for some corn rootworm Bt maize events. Documenting and responding to this resistance has
been complicated by a lack of rapid diagnostic bioassays and by regulatory triggers that hinder timely and
effective management responses. These failures are of great concern to the scientific and agricultural
community. Specific challenges posed by western corn rootworm resistance to Bt maize, and more gen-
eral concerns around Bt crops that produce less than a high-dose of Bt toxin, have caused uncertainty
around current IRM protocols. More than 15 years of experience with IRM has shown that high-dose
and refuge-based IRM is not applicable to Bt crops that produce less than a high-dose. Adaptive IRM
approaches and pro-active, integrated IRM-pest management strategies are needed and should be in
place before release of new technologies that produce less than a high-dose. We suggest changes in IRM
strategies to preserve the utility of corn rootworm Bt maize by 1) targeting local resistance management
earlier in the sequence of responses to resistance and 2) developing area-wide criteria to address wide-
spread economic losses. We also favor consideration of policies and programs to counteract economic
forces that are contributing to rapid resistance evolution.

KEY WORDS Bt resistance, Diabrotica virgifera virgifera, insect resistance management, integrated
pest management, western corn rootworm

Transgenic crops that produce insecticidal toxins (Cry
proteins) from Bacillus thuringiensis Berliner (Bt) have
been widely adopted in maize and cotton cropping sys-
tems in the United States, representing 80 and 84%,
respectively, of the area planted to these two crops in
2014 (US Department of Agriculture–National Agricul-
tural Statistics Service [USDA-NASS] 2015). Bt
rootworm-protected maize was introduced in 2003

(Vaughn et al. 2005) and was quickly embraced by
farmers because it provided excellent protection of
corn roots from larval rootworm, while simplifying pro-
duction by eliminating soil-applied insecticides (Rice
2004). Although some Bt traits have proven durable,
failures of corn rootworm Bt maize to control its main
target, western corn rootworm, Diabrotica virgifera vir-
gifera LeConte, have increased rapidly after field-
evolved resistance was first documented (Gassmann
et al. 2011). Presently, this insect is the most important
pest of cultivated maize in North America, with yield
loss and control expenditures estimated to exceed US
$1 billion per annum (Sappington et al. 2006; Gray
et al. 2009; Dun et al. 2010; Tinsley et al. 2012, 2015).

The rapid development of resistance to corn root-
worm Bt maize can be attributed to multiple causes, in-
cluding 1) an insect resistance management (IRM)
strategy based on the “high-dose/ refuge” concept that
proved inapplicable because of inaccurate assumptions
about pest biology, 2) definitions of resistance that al-
lowed lengthy delays in response to field observations,
and 3) economic incentives and government policies
that inadvertently increased selection pressure by en-
couraging continuous planting of maize instead of crop
rotations.

In an open letter to the United States Environmental
Protection Agency (USEPA), entomologists with
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expertise in the ecology and management of North
American maize pests wrote that the situation requires
urgent action to preserve efficacy of corn rootworm Bt
technologies (Porter et al. 2012). Current attempts to
mitigate the economic consequences of resistance often
rely on tactics that create conflict between the goals of
IRM and integrated pest management (IPM; Cullen
et al. 2013, Sappington 2014). Yet IRM and IPM
should be integrated to complement each other by re-
ducing selection for resistance, extending the effective
life of the Bt technology, and simultaneously reducing
the risk of economic losses from rootworms (Porter
et al. 2012, Cullen et al. 2013, Devos et al. 2013, Wan-
gila et al. 2015). Here we review the causes of field-
evolved resistance and suggest actions that could pro-
long the efficacy of existing and future technologies.

Old Assumptions Meet New Evidence

The IRM plans implemented by the USEPA for the
first several corn rootworm Bt maize products were
similar to the high-dose refuge (HDR) strategy success-
fully used for European corn borer, Ostrinia nubilalis
(Hübner), with the modification that refuge maize
must be adjacent to CRW Bt maize (USEPA 2007,
2010a,b). High-dose was defined as 25� the amount of
toxin needed to kill 99.99% of a susceptible population
(USEPA 2001). In its simplest form, the HDR-IRM
strategy assumes 1) that resistance alleles are rare, 2)
that susceptible adults emerging from nearby non-Bt
refuges move far enough and in large enough numbers
to mate with nearly all rare resistant individuals emerg-
ing from Bt fields, and 3) that plants produce Bt toxin
at a dose sufficient to kill heterozygous resistant insects
(i.e., a high-dose¼ functionally recessive resistance;
Alstad and Andow 1995, Gould 1998, Carrière et al.
2004, Devos et al. 2013). These attributes lead to sub-
stantial delays in resistance, because most resistant in-
dividuals will mate with a susceptible individual, their
heterozygous progeny will not survive on the Bt crop,
and thus resistance alleles will be purged from the pop-
ulation. In retrospect, the rootworm IRM plan mani-
festly did not protect sufficiently against western corn
rootworm resistance to Bt maize. The reasons for the
failure are described below and are important to under-
stand because they clearly show that future plans
should emphasize a more adaptive, integrated IRM
and IPM approach.

Nearly all high-dose toxins have remained effective
against their targeted pests, including European corn
borer, despite widespread use (Huang et al. 2011,
Tabashnik et al. 2013, Siegfried et al. 2014). In contrast,
toxin levels that are less than high-dose increase the
risk of resistance evolution because of an associated in-
crease in the functional dominance of resistance (Car-
rière et al. 2010, 2015; Brévault et al. 2013; Tabashnik
2013); this has been a frequent contributing factor to
instances of field-evolved resistance with concomitant
control failures (e.g., van Rensburg et al. 2007, Storer
et al. 2010, Farias et al. 2014) or increases in resistance
allele frequency (e.g., Tabashnik et al. 2009, Tabashnik
and Gould 2012, 2013; Dhurua and Gujar 2011). None

of the corn rootworm Bt events currently registered is
high-dose, and this allows for some larval survival and
adult emergence (e.g., Table 1; Storer et al. 2006;
Meihls et al. 2008; Binning et al. 2010; Hibbard et al.
2010, 2011; USEPA 2012, Gassmann 2012; Head et al.
2014; Frank et al. 2015; Hitchon et al. 2015; Keweshan
et al. 2015). The level of susceptible western corn root-
worm killed by single-toxin Bt maize can range from
ca. 70% to as high as 99% (Gassmann 2012; Petzold-
Maxwell et al. 2013a,b). Thus, mortality seems to fall in
the range of that expected for “moderate-dose” (“less
than high-dose” in the current paper) toxins, which can
increase rate of resistance evolution over that of either
high-dose or low-dose toxins (Tabashnik and Croft
1982, Gould 1998, Tabashnik et al. 2013). A USEPA
Scientific Advisory Panel tasked with examining possi-
ble IRM plans for corn rootworm recognized the risk
of relying on an HDR strategy for less than high-dose
events and recommended a non-Bt refuge of 50% to
compensate (USEPA 2002). However, the USEPA
chose not to follow that recommendation, and instead
the final IRM plans mandated a 20% refuge.

Furthermore, several critical initial assumptions
about western corn rootworm biology, which aligned
with the assumptions underlying the HDR strategy,
have now been refuted. For example, it was assumed
that resistance in western corn rootworm populations is
rare, likely caused by a single locus, and would require
a large change in susceptibility to impact efficacy in the
field, as was observed for other Bt toxins (e.g., 100- to
500-fold resistance; Caprio et al. 2000). The rapid re-
sponse to laboratory selection for resistance was an
early sign of trouble (Lefko et al. 2008, Meihls et al.
2008), and we now know that Bt resistance can evolve
rapidly (Meihls et al. 2011, 2012; Oswald et al. 2012;
Devos et al. 2013), implying that resistance alleles
are relatively common. This was followed by the find-
ing that western corn rootworm populations with only a

Table 1. Mean root injury ratings for susceptible corn root-
worm attacking rootworm-protected Bt maize and control hybrids
without rootworm Bt traits

Corn rootworm Bt toxin Location

DeKalb,
ILa

Urbana,
ILa

Crawfordsville,
IAb

Cry3Bb1 0.08a 0.15a 0.03a
mCry3A 0.50b 0.40b
Cry34Ab1/Cry35Ab1 0.17ab 0.05ab 0.05a, 0.06a
Pyramid: Cry3Bb1 þ 0.03a,

0.01a
0.05a,

0.02a
0.02a

Cry34Ab1/Cry35Ab1
Untreated control 0.98c 0.87c 0.90b
Untreated control 1.55d 1.70d 1.34c
Untreated control 1.65d 1.15c 1.36c

0–3 Node injury scale (Oleson et al. 2005) used to evaluate all
roots.

Means within a column followed by the same letter are not signifi-
cantly different, as reported in the original analyses (not all treatments
in the original studies are presented here).

a From: Tinsley, N., R. Estes, and M. Gray. 2011. Preliminary
root ratings for 2011 University of Illinois corn rootworm trials, http://
bulletin.ipm.illinois.edu/article.php?id¼ 1560

b From: Gassmann, A., and P. Weber. 2010. Iowa State University
2010 evaluation of insecticides and plant-incorporated protectants,
p. 18, http://www.ent.iastate.edu/pest/rootworm/2010_Ent_Report.pdf
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3- to 6-fold increase in resistance caused substantial
feeding injury and yield loss in the field (Gassmann
et al. 2011, 2014). Because it was not anticipated that
resistance monitoring would have to detect smaller
changes in resistance than occur for high-dose Bt
crops, methods to detect such changes were not used
or sought.

Assumptions about the interplay of adult movement
and local mating also proved to be incorrect (Spencer
et al. 2012). While it was known that many females
mate near their emergence site, the effect of this be-
havior on local mating structure was not clear, and data
suggested that male movement was extensive enough
to ensure adequate encounters of susceptible refuge
adults with adults emerging from the Bt maize (Quiring
and Timmons 1990). The finding that the optimal male
mating period is shorter than previously believed (Kang
and Krupke 2009) implies that the distance that males
move before mating is more limited than formerly
thought. This promotes positive assortative mating,
where resistant individuals are more likely to encounter
and mate with one another. Limited interfield dispersal
among adults (Marquardt and Krupke 2009, Spencer
et al. 2009) also promotes positive assortative mating,
as does later average emergence of adults from Bt
maize than from refuge maize (Storer et al. 2006, Mur-
phy et al. 2010, Hibbard et al. 2011, Frank et al. 2015,
Hitchon et al. 2015, Keweshan et al. 2015). In aggre-
gate, current evidence suggests that positive assortative
mating occurs frequently, the effect of which is to
greatly accelerate resistance evolution (Deitloff et al.
2015). Consequently, fields planted to the same Bt trait
for as few as three consecutive years have become foci
of selection for resistance in western corn rootworm
(Gassmann et al. 2011, 2012, 2014; Wangila et al.
2015).

Current IRM Plans and Definitions of Resistance

Registration of the first rootworm-active Bt maize
(Cry3Bb1) in 2003 included an IRM plan that had four
components: 1) a 20% structured refuge, 2) a resistance
monitoring program, 3) a remedial action plan, and 4)
a grower compliance and education program (USEPA
Reg. No. 524-528). This framework is similar to that
used for lepidopteran-active Bt crops (USEPA 2001).
US registrants are required to routinely monitor for re-
sistance, with the goal of detecting resistance before
widespread economic crop losses occur. Resistance
monitoring for rootworms involves testing arbitrarily se-
lected populations for a change in susceptibility and re-
lying on farmers to report unexpected root injury.
Resistance management proceeds through four sequen-
tial steps (USEPA 2007, 2010a,b): performance inquiry,
unexpected damage, suspected resistance, and con-
firmed resistance (Fig. 1a). Meeting the definitions of
the latter three steps is necessary for triggering reme-
dial action.

A product performance inquiry is initiated by a
farmer who perceives a problem in a rootworm Bt
maize field and contacts the technology provider. Each
report is investigated by the technology provider to

determine the nature of the problem, which sometimes
is unrelated to product performance, e.g., planting er-
rors, non-rootworm pests, weather, or other factors.
The technology provider samples roots to determine
whether the degree of corn rootworm feeding injury is
unusually high, i.e., whether unexpected injury has oc-
curred. Once spurious causes of injury are ruled out
and normal production of Bt toxin is verified quantita-
tively in the laboratory of the technology provider, the
field is considered to have suspected resistance. Adult
corn rootworms are then collected from this or adja-
cent fields as soon as possible (typically in the following
cropping season), and offspring assayed to confirm re-
sistance. Registrants could advise farmers to implement
local remedial management during the current or fol-
lowing season, (i.e., management of adults, crop rota-
tion, or an alternative pest management method) to
reduce the population of potentially resistant insects
(USEPA 2012).

According to the current regulatory definition, resis-
tance is operationally confirmed for a single Bt protein
if 1) the LC50 from a diet-based bioassay on progeny of
the sampled beetle population exceeds the 95% confi-
dence interval of the mean historical LC50 for suscepti-
ble pests, or 2) over 50% of Bt-expressing plants have
�1.0 root nodes destroyed by suspected resistant popu-
lations under controlled laboratory conditions. Western
corn rootworm produces one generation annually and
has an obligate egg diapause of several months, so the
process from product performance inquiry to con-
firmed resistance may require several years to complete
(Fig. 1a; USEPA 2007; 2010a,b). If resistance is con-
firmed, registrants are required to take several actions.
These include steps to characterize the spatial extent of
the resistance problem, recommend measures to re-
duce the local population, reduce selection pressure,
and develop a case-specific remedial action plan
(USEPA 2010a,b).

Definitions of resistance, especially the regulatory defi-
nition of confirmed resistance, have contributed to
lengthy delays in responding to problems in the field
(Tabashnik and Gould 2012). Indeed, USEPA scientists
(2012) identified serious shortcomings associated with
the artificial diet bioassays used to detect resistance and
concluded that “the current regulatory definition of ‘con-
firmed resistance’ for corn rootworm is flawed.” They in-
dicated that these shortcomings could lead to
circumstances where farmers and extension entomolo-
gists can see that there is an extensive resistance problem,
even as the definition of resistance remains unmet and
remedial action is withheld. Improved methods of verifi-
cation have been proposed (USEPA 2014), but in prac-
tice, farmers are reacting to the perception of field failure
with actions that may promote neither IRM nor IPM.

Additionally, the definition of confirmed resistance
has become entangled with the concept of yield loss.
This was first proposed by the Insecticide Resistance
Action Committee, which advocated for demonstration
of economic loss (Tomlin 1997), a position recently reit-
erated by others (Moar et al. 2008, Sumerford et al.
2013). This is problematic because the causes of eco-
nomic loss are complex and not directly linked to the
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biological basis for the evolution of resistance (Tabash-
nik et al. 2013, 2014). For example, when population
sizes are small, even a highly resistant pest population
is unlikely to cause economic loss because there may
be minimal feeding injury. Conversely, if the initial den-
sity of a susceptible pest population is high, enough in-
dividuals may survive the less than high-dose crop so
that economic loss occurs. Thus, requiring a demon-
stration of economic loss adds an additional burden of
proof without increasing the accuracy with which resis-
tance is determined. IRM should aim to detect resis-
tance at earlier stages, so that timely actions can be
taken to avoid economic loss and preserve the long-
term utility of a Bt trait (Whalon et al. 2008). Indeed,
the goal of IRM monitoring should be to identify in-
creased risk of resistance before it can cause yield loss,
enabling an effective response to reduce that risk
(Tabashnik et al. 2013, 2014).

For corn rootworm Bt maize, economic loss also is
reflected in the regulatory use of the term “unexpected
crop damage.” Damage measures loss of crop yield
from pests (Pedigo et al. 1986) and can be determined

in maize only at the end of the growing season when
the crop is harvested. Furthermore, yield loss varies
greatly, even for the same level of crop injury (Dun
et al. 2010, Tinsley et al. 2012). A better indicator is
“unexpected crop injury,” a measure of the effect of the
pest’s activities on host physiology and morphology
(Pedigo et al. 1986). This can be assessed earlier in the
maize growing season. Although it is possible that crop
damage will occur before resistance can be confirmed,
identifying injury that is likely due to resistance offers a
practical advantage by allowing farmers to take action
that year, and during following cropping seasons, to
avoid more extensive damage.

A New Sequence of Management Responses

Reassessment of current IRM plans seems war-
ranted after more than a decade of experience with
corn rootworm and Bt maize (Tabashnik and Gould
2012). Future plans should be adaptive, acknowledging
that toxin production by corn rootworm Bt maize is less
than high-dose. They should also be decoupled from

(a)

(b)

Fig. 1. Current (USEPA 1998, 2007, 2010b) (a) and proposed adaptive (b) IRM response sequences, beginning with a
corn rootworm Bt maize product performance inquiry from a farmer. If the question (Q) in the box is answered affirmative, the
orange arrows indicate the next step in the sequence. If not, the black arrows are followed. Months above the boxes indicate
approximate time needed to advance from one stage (box) to the next (not cumulative). Definitions are in the text.
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definitions of resistance that are based on economic
damage in the field, and they should de-emphasize the
importance of “confirmed resistance” as the trigger for
rapid responses to likely resistance. Such an approach
fosters a balance between management responses and
severity of the problem (Andow and Ives 2002; Tabash-
nik et al. 2013, 2014). We propose three levels of man-
agement to follow the initial step of performance
inquiry (Fig. 1b).

Unexpected Injury. Risk Factors. Several risk
factors may be used qualitatively to help determine if a
portion of a field should be investigated for unexpected
injury. These include continuous cultivation of maize
producing the same Bt toxin, late planting date the pre-
vious year (which can attract a large number of adults
from neighboring fields), lodging, high adult density, in-
formal root evaluations, and other signs of poor plant
health such as water stress. A field history of three or
more consecutive years with the same Bt toxin favors
both unexpected injury and confirmed resistance (see
below, Gassmann et al. 2011, Wangila et al. 2015).
Late-planted and late-flowering maize acts as a trap
crop for corn rootworm adults (Darnell et al. 2000),
which are highly attracted to fresh maize silks and pol-
len (Chiang 1973, Prystupa et al. 1988, Meinke et al.
2009, Spencer et al. 2009), resulting in increased egg
laying in that late-maturing field (Hill and Mayo 1974),
and high larval populations and potentially high root in-
jury in the following year. Unexpectedly high adult
corn rootworm densities emerging from a field can in-
dicate moderate to severe root injury (Branson et al.
1980). Although varietal differences in rootworm sus-
ceptibility may arise (Urı́as-López and Meinke 2001,
Ivezić et al. 2009), lodging of maize after the late whorl
stage may indicate severe root injury from corn root-
worms (Branson et al. 1980, Reidell 1990, Spike and
Tollefson 1991, Godfrey et al. 1993). However, high
winds can lodge maize without rootworm injury, espe-
cially on saturated soils (Sutter et al. 1990) or following
herbicide injury, and so these possibilities also should
be considered.

Roots can be rapidly evaluated by excavating several
maize plants, and looking for signs of feeding injury. If
rootworm resistance were present in a number of fields
in a region, trap crops the previous year may concen-
trate resistant beetles into a relatively small area. Other
signs of root injury, relative to nearby healthy plants,
may include stunting or earlier leaf curling under
drought stress conditions.

Quantifying Injury Level. In the case of less than
high-dose events, the target pest will cause some crop
injury even when there is no resistance, so presence of
injury is not by itself diagnostic of a Bt trait perfor-
mance problem. Unexpectedly high injury can be a
simple, rapidly assessed, and reliable early warning in-
dicator of resistance that can be evaluated in the field
within a few hours. Two critical criteria are: 1) there
must be a threshold above which observed injury is
considered unexpected, and 2) expression of the requi-
site Bt toxin(s) in the maize plants must be confirmed.

A simple root injury index (Oleson et al. 2005) can
be used to quantify the level of root protection

provided by a given Bt technology. The root injury in-
dex is related to the number of severely injured pri-
mary root nodes and ranges from 0 to 3. A
standardized sampling approach is important. We sug-
gest that maize roots be excavated after peak root in-
jury has occurred (i.e., coincident with or shortly after
peak adult emergence). Because there can be variation
in rootworm density and associated feeding injury
among plants (Meinke et al. 2009), at least 12 plants
should be sampled from the area of the maize field
showing indications of unexpected injury, such as lodg-
ing. The plants should be separated from one another
by at least 2 meters, but otherwise sampled randomly
within the area of suspected injury.

Unexpected Injury Threshold. In the case of suscep-
tible populations, injury to hybrids expressing single
traits historically has been higher than to hybrids ex-
pressing pyramided traits (i.e., more than one toxin ef-
fective against the same pest; Prasifka et al. 2013, Head
et al. 2014). Consequently, the threshold value for pyra-
mided hybrids should be set lower than that for single
trait hybrids. Because large population densities of sus-
ceptible rootworms can cause average root injury indi-
ces nearing 1.0 on some single trait hybrids (Gray et al.
2007), injury thresholds of 1.0 for maize hybrids with a
single rootworm Bt event and 0.5 for pyramided hy-
brids have been widely used and are scientifically justi-
fied (USEPA 2014). These thresholds enable
conservative but realistic detection of unexpected in-
jury based on historical performance of rootworm traits
against susceptible rootworm populations (see Table 1).

Confirming Expression of Bt Toxin. All sampled
plants must express the relevant Bt protein. Expression
can be confirmed qualitatively using immunochroma-
tography (such as QuickStix). In seed mixtures, 5 to
10% of sampled plants on average will be non-Bt ref-
uge plants, and these plants should be discarded from
the sample. While laboratory-based quantification of Bt
toxin may ultimately be important for some purposes, it
is not essential at this early step. Unexpected injury is
confirmed when the presence of the relevant Bt pro-
tein is verified and the root injury threshold is ex-
ceeded, with both results available within a day.

Confirmed Resistance. Resistance is a genetically
based decrease in pest susceptibility to a management
tactic (Tabashnik et al. 2009, 2014; Box 1). In the case
of western corn rootworm, small changes in susceptibil-
ity are sufficient to cause injury to Bt maize in the field;
greater changes would be needed to cause injury to a
high-dose Bt crop (Gassmann et al. 2014). A 3- to 6-
fold increase in survival on Cry3Bb1 maize is sufficient
to cause increased root feeding injury (Gassmann et al.
2011, 2012, 2014; Meihls et al. 2012; Wangila et al.
2015). Furthermore, because resistance can evolve
within three years of continuous use of a trait (Gass-
mann et al. 2011, Wangila et al. 2015), whatever
method is used to confirm resistance must be rapid,
repeatable, and sensitive to changes in pest susceptibil-
ity. Confirmation of resistance in areas subject to unex-
pected injury requires evidence of reduced
susceptibility within an insect population, and of its
genetic basis.
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In principle, resistance to Bt toxins in rootworms can
be measured by any diet-based or plant-based
laboratory bioassay sensitive enough to distinguish Bt-
resistant from Bt-susceptible individuals (Alves et al.
2006, Meihls et al. 2008, Gassmann et al. 2011, Huang
et al. 2011). The progeny of pests sampled from a field
with unexpected root injury are pooled and their cor-
rected survival measured (Abbott 1925) on Bt plants
(Siegfried et al. 2005, Nowatzki et al. 2008, Gassmann
et al. 2012). If the population harbors individuals with
heritable resistance, corrected survival will be higher
on Bt plants than for susceptible control populations.
Currently, only laboratory methods using Bt maize
plants, such as a whole-plant assay (Gassmann et al.
2011) or a seedling-mat assay (Nowatzki et al. 2008),
are sufficiently sensitive to achieve this, but ongoing ef-
forts will likely improve the utility of diet-based bioas-
says. A sensitive assay is necessary to avoid
misclassifying a resistant population as susceptible (i.e.,
obtaining a false negative), and is desirable for IRM
purposes. Any assay used to confirm resistance of field
populations must be freely available to all public-sector

scientists, and ideally, all public- and private-sector sci-
entists would use the same assay method.

For any type of assay it is important to test several
susceptible strains to increase sensitivity for comparison
with populations from fields with unexpected injury
(Siegfried et al. 2005, Gassmann et al. 2012, Wangila
et al. 2015). Several strains were brought into the labo-
ratory prior to 2003, the year that corn rootworm Bt
maize was commercialized, and they are the best avail-
able control populations. These populations are main-
tained by the USDA–ARS North Central Agricultural
Research Laboratory and have been used for research
to quantify baseline susceptibility to Bt toxins (Siegfried
et al. 2005). Preserving these USDA–ARS strains is
critical, because widespread planting of corn rootworm
Bt maize will make it problematic to find populations
unexposed to selection for future research.

Area-Wide Resistance. Under the current USEPA
framework, confirmed resistance to a specific Bt maize
event is the last stage in the response sequence for
corn rootworm (Fig. 1a). Confirmation of resistance to
a specific event at a specific location does not preclude

Box 1. Resistance

“Resistance” is a genetically based decrease in pest susceptibility to an insecticide (Tabashnik et al.
2009). It is a phenotype, a trait, and a characteristic of an individual organism (Crow 1960, Andow
2001). “Resistance” also can be employed, usefully, in the sense of being a characteristic of a population
as described below (see also Tabashnik et al. 2014). But it is important to remember that the fundamen-
tal unit of resistance is the individual, and that population-level resistance is an emergent property of
the frequency of resistance among whatever group of individuals constitutes the population of interest.
Likewise, evolution of resistance is a population-level phenomenon, but the unit of selection is the indi-
vidual based on its resistance phenotype. Terms for the underlying genetics of resistance include “resis-
tance allele” and “resistance locus.”
“Frequency of resistance in a population,” or simply the “frequency of resistance,” is the propor-
tion of individuals in a population that is resistant. The “frequency of resistance alleles” and, equiva-
lently, the “genetic frequency of resistance” are scientifically rigorous terms to describe the underlying
genetics.
“Evolution of resistance” describes a change in the frequency of resistance alleles within a population.
Because resistance evolution is typically studied with respect to the dynamics of directional selection,
most studies on the evolution of resistance implicitly assume that the frequency of resistance alleles is
increasing, although a decrease in frequency also is possible.
“Field-evolved resistance” is an increase in the frequency of resistance alleles that occurs in a wild
population. This follows directly from classical definitions of evolution as any change in allele frequen-
cies, and it recognizes that resistance evolution is a response to selection for higher resistance (lower
susceptibility). This definition does not differ much from an alternative: “genetically based decrease in
susceptibility of a population to a toxin caused by exposure of the population to the toxin in the field”
(Tabashnik et al. 2009, 2013, 2014), but it emphasizes the response to selection (and not the selective
differential), allows for dispersal to be a contributing cause of resistance evolution, and keeps clear dis-
tinctions between individual phenotype and population characteristics. Moreover, an increase in resis-
tance allele frequency may have different impacts on the frequency of resistant individuals in that popu-
lation, which depends on dominance relationships among alleles, levels of incomplete resistance [i.e.,
difference in fitness of resistant individuals on a Bt crop relative to corresponding non-Bt crop (Carrière
et al. 2010)], and the magnitude of the increase in allele frequency. Fitness costs associated with the re-
sistant phenotype relative to susceptible individuals on a non-Bt crop also can affect the frequency of re-
sistance over the larger landscape. Neither the detection of “resistance” in individuals nor “field-evolved
resistance” in populations necessarily implies that there will be economic losses or even detectable
changes in field efficacy (WHO 1957, Crow 1960, Brent 1986, Sawicki 1987, Tabashnik et al. 2013,
2014).
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the economic value of this event to farmers in other lo-
cations. We propose area-wide resistance as a land-
scape-level stage of resistance management to link
confirmed resistance with economic loss at an appro-
priate spatial scale (Fig. 1b). Hence, there is a need for
a clear definition of the “area of resistance” that in-
cludes scientifically sound criteria for determining the
degree of lost efficacy and the spatial extent of resis-
tance. Adopting the concept of area-wide resistance
has an advantage in that pre-established remedial
actions (see below), which may eventually include
product withdrawal, are not implemented until clearly
needed in a well delineated geographic space.

Conceptually, the spatial dimensions of area-wide re-
sistance will reflect the tendency of farmers in an area
with confirmed resistance to avoid a product with lo-
cally declining or failing efficacy. Many affected or con-
cerned farmers will quickly adopt hybrids having other
Bt toxins, supplement Bt maize with chemical insecti-
cides, or take other measures to attain the immediate
goal of suppressing pest injury. These immediate pest
management actions can make it difficult to measure
the spatial dimensions of resistance in an area. The pro-
tocol for defining an area of resistance should incorpo-
rate incentives for its rapid determination at a
reasonable cost, with unambiguous specification of
management responses when some threshold value is
reached. Research to develop the methodology for ac-
complishing this is sorely needed, and will require both
field work and modeling.

Management Options for Mitigation

Consideration should be given to several levels of
mitigation tactics (Fig. 1). We define mitigation as mak-
ing the consequences of resistance less severe, which is
a central goal of IPM. This is in contrast to remedia-
tion, which aims to restore susceptibility within a popu-
lation by decreasing the frequency of resistance alleles.
The goal of IRM is to slow the evolution of resistance,
and while remediation is consistent with this goal, it is
more elusive. Thus, to integrate IRM and IPM, mitiga-
tion tactics must also slow the rate of resistance
evolution.

The first cases of unexpected injury from corn root-
worm occurred in isolated fields on single farms (Gass-
mann et al. 2011, Wangila et al. 2015). Farmers would
be expected to respond quickly to a determination of
unexpected injury in their fields and reduce the risk of
crop losses in the current and following year (Fig. 1).
Consequently, the IRM plan should identify and rec-
ommend responses that both limit yield loss and re-
duce evolution of resistance (Table 2). Delaying
mitigation until resistance is confirmed likely will pro-
long selection pressure and may increase dispersal of
resistance alleles making future efforts to mitigate resis-
tance, and delay additional cases of resistance, more
difficult. Essential steps to reduce such delays include
1) modifying regulatory requirements to allow use of
the most sensitive bioassay available, such as those that
are plant-based (e.g., Nowatzki et al. 2008, Gassmann
et al. 2011), 2) adopting a more practical definition of

confirmed resistance, and 3) implementing effective
mitigation measures once unexpected injury is con-
firmed. These steps will enable the rapid suppression
of a locally resistant population and reduce additional
selection for resistance. Timely action is especially im-
portant where the problem is still localized, because it
capitalizes on the potentially fleeting opportunity to re-
duce the frequency of resistance alleles and contain
their spread. Such an opportunity is exemplified by the
crop rotation resistance phenotype of western corn
rootworm that oviposits in soybean fields as well as
cornfields, which spread outward from a 3-km2 point
source in eastern Illinois at a rate of 10–30 km/year
from 1986–1997 (Levine and Oloumi-Sadeghi 1996,
Onstad et al. 1999, Meinke et al. 2009).

Confirming resistance with a bioassay provides an as-
sessment of resistance in a single field rather than a re-
gion. It does not imply that the technology has lost its
utility at a broader landscape scale or even to that
farmer. Moreover, early detection of resistance followed
by localized mitigation may sustain the viability of a Bt
trait in an area where resistance has been confirmed.
The management responses to confirmed resistance
must be commensurate with the risk and should help
preserve efficacy of the Bt maize event.

Several management tactics are available to mitigate
Bt resistance in western corn rootworm (Table 2). The
most favorable tactic is crop rotation, which has been
used by farmers to manage rootworm for over a cen-
tury (Gillette 1912, Schaafsma et al. 1999, Spencer and
Levine 2008, Miller et al. 2009). In most instances the
biology of corn rootworms—laying eggs in the pre-
ferred crop (maize) during late summer, hatching in
the subsequent year, little or no larval survival in non-
maize crops—enables rotation to destroy the greatest
number of resistant individuals simply and effectively.
Early detection and immediate implementation of crop
rotation may be particularly useful to suppress newly
forming foci of resistance alleles in areas outside the
Corn Belt where selection pressure has not been as in-
tense and adult population densities as great. Crop ro-
tation is not always a viable option for a farmer, as
when, for example, maize production is critical to feed
livestock, the landlord or lender disallows it, or
rotation-resistant rootworms predominate (Schaafsma
et al. 1999, Sappington 2014). Volunteer Bt maize in
the rotated crop can allow survival of rootworms and
even accelerate resistance evolution (Krupke et al.
2009), and should be eliminated if possible.

If a farmer must plant continuous maize, Bt traits
should be rotated to reduce selection pressure on any
one trait. Rotating modes of action is a recommended
IRM strategy before resistance develops, and is useful
as a short-term response to reduce the size of resistant
populations. However, switching to a different Bt trait
after a heavily used one fails is equivalent to the chemi-
cal insecticide treadmill (Onstad 2008), which is unsus-
tainable for transgenic crops in the long-term
(McDougall 2011, Fuglie et al. 2012), so it is important
to rotate traits before failures occur. Also, it is important
to avoid rotating traits with cross-resistance, as is the
case with Cry3Bb1 and mCry3A, where western corn
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rootworms resistant to one toxin are also resistant to the
other (Gassmann et al. 2014, Wangila et al. 2015).

Alternatively, farmers could replace a hybrid contain-
ing a single compromised trait with one that contains
two corn rootworm Bt traits. Such pyramided hybrids
are an excellent IRM practice to use before resistance
develops to one of the traits. Currently, all commercial
pyramided corn rootworm Bt hybrids contain either
Cry3Bb1 or mCry3A (Carrière et al. 2015), so all are
less than fully effective in delaying resistance in areas
where resistance has developed. Reliance on pyra-
mided hybrids after resistance has developed against
one of the toxins is not as effective, because the already
compromised trait exposes the second trait to direct se-
lection for resistance (Roush 1998, Gould et al. 2006,
Onstad and Meinke 2010). Nevertheless, in many cases
where Bt resistance is suspected or confirmed, the
compromised trait may not be wholly ineffective. In
short, planting a pyramid containing a trait of declining
effectiveness is better for IRM than planting an uncom-
promised single-toxin hybrid.

If a suitable pyramided hybrid is not available, it is
advisable to plant a maize hybrid without a rootworm
Bt trait, but with a soil insecticide to protect the crop
from yield loss. Planting non-Bt maize may reduce re-
sistance allele frequencies if a fitness cost is associated

with resistance (Gassmann et al. 2009). Unfortunately,
such costs seem to be low in Bt-resistant western corn
rootworm (Oswald et al. 2012; Petzold-Maxwell et al.
2012; Devos et al. 2013; Hoffmann et al. 2014, 2015).
The alternative, treatment of Bt maize with a soil insec-
ticide, does not decrease root injury or increase yield
(Petzold-Maxwell et al. 2013a, Tinsley et al. 2015). This
occurs because soil insecticides are applied in a band
to protect only the root crown, but they do not substan-
tially reduce the number of rootworm adults emerging
from a field when typical density-dependent mortality
is occurring (Gray et al. 1992). Petzold-Maxwell et al.
(2013a) concluded that any additional mortality
provided by the insecticide was too low to slow the
evolution of resistance. Furthermore, use of a soil
insecticide in Bt maize increases the usual delay
in adult emergence in Bt maize relative to refuge,
which can exacerbate assortative mating and accelerate
resistance evolution (Petzold-Maxwell et al. 2013a,
Frank et al. 2015). In short, the combination of soil
insecticides and a corn rootworm Bt hybrid does not
reduce selection on the Bt trait, promotes assortative
mating of resistant individuals, and offers little or no
short-term economic advantage to the farmer
compared to growing a non-Bt hybrid protected with a
soil insecticide.

Table 2. Suggested mitigation tactics for Bt resistance, including rationales, and associated risks for resistance evolution and pest
management

Tactic Rationale Risks for resistance evolution Risks for pest management

Crop rotation Eggs hatch the year after they
are oviposited, and larvae die
if maize is unavailable

Volunteer Bt maize Not effective with rotation-
resistant rootworm
populations

Planting a different single
Bt trait in subsequent
years

New trait kills resistant larvae,
reducing selection pressure
on compromised trait

Cross resistance Different Bt trait is not
effective

Planting a pyramid hybrid
containing multiple Bt
traits

Additional trait kills resistant
larvae

Reduced refuge; pyramid acts as a single
trait if it includes the compromised
trait; cross resistance

Pyramid hybrid is not
effective

Soil insecticide/seed treat-
ments with non-Bt
maize

Insecticides kill resistant larvae,
allow fitness costs to be
incurred

Potential reduction of effective refuge Soil insecticide or seed treat-
ment not effective

Soil insecticide/seed treat-
ments with a single-trait
hybrida

Insecticides kill some resistant
larvae

Reduction of effective refuge in cases
where refuge and Bt seeds are
blended; may mask continued poor
performance of trait and thus contin-
ued resistance evolution

Insecticide provides no mea-
surable improvement in
pest control

Soil insecticide/seed treat-
ments with a pyramided
hybrida

Insecticides kill some resistant
larvae

Reduction of effective refuge in cases
where refuge and Bt seeds are
blended; pyramid acts as a single trait;
cross resistance

Insecticide provides no mea-
surable improvement in
pest control

Adult insecticide
application

Insecticides kill resistant adults Resistant adults disperse widely prior to
application; resistance to the insecti-
cide class used

Poorly timed application will
provide no improvement
in pest control

Increase refuge size Increase susceptible population
and reduce selection pres-
sure; increase relative impacts
of potential fitness costs

Resistant population will also increase
and may increase resistance in nearby
fields via dispersal

Increase in population can
increase risk of pest losses

Continuous non-Bt maize
without soil insecticide/
seed treatment

Increase susceptible population
and reduce selection pres-
sure; increase relative impacts
of potential fitness costs

Resistant population will also increase
and may increase resistance in nearby
fields via dispersal

Increase in population size
can increase risk of pest
losses

Farm-wide management; Reduce selection pressure, select
against resistance, and limit
spread of resistance

More complicated management in-
creases likelihood of mistakes

More complicated manage-
ment increases likelihood
of mistakes

Area-wide management

Bt traits refer only to those targeting corn rootworm.
a These tactics are possible, but not recommended.
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Adulticides are sometimes used to protect maize
from adults feeding on maize silks, or to reduce adult
population size and thus oviposition in the field (Pruess
et al. 1974, Meinke et al. 1998). This tactic may have
value at the unexpected injury stage to reduce repro-
duction by and dispersal of resistant adults (Porter
et al. 2012, Cullen et al. 2013), but timing of the adulti-
cide application is critical to ensure that gravid females
are optimally targeted before substantial oviposition
occurs.

Increasing refuge size substantially (Tabashnik and
Gould 2012) and growing more continuous non-Bt
maize without soil insecticide or seed treatment could
be effective IRM tactics, because they will reduce the
selection pressure for resistance. These tactics, how-
ever, will increase the rootworm population size and
will likely contradict the goals of IPM because they in-
crease the risk of pest injury and are potentially costly
to a grower (Onstad et al. 2003, Tabashnik and Gould
2012).

In principle, farm-wide or area-wide management
would increase the options available to a farmer, be-
cause any of the previously mentioned tactics could be
used to optimize IRM and IPM across multiple fields
on a farm or multiple farms across an area. A farmer
could choose to balance IPM and IRM benefits by fo-
cusing IRM on the fields with highest resistance risk
and focusing IPM on fields with highest pest risk. As a
hypothetical example that remains to be tested, if a
part of the farm has an area of unexpected injury, a
farmer could plant a trap crop nearby to concentrate
oviposition of resistant rootworms in a small field.
Rotating that field to another crop the next year would
kill the Bt-resistant offspring. Area-wide management
of western corn rootworm may be difficult to coordi-
nate, but could provide substantial benefits. For exam-
ple, area-wide releases of sterile male pink bollworm in
conjunction with near 100% adoption of pyramided Bt
cotton in Arizona reduced pest abundance >99% with-
out accelerating the development of resistance (Car-
rière et al. 2001a,b, 2003; Tabashnik et al. 2010).

Policies and Incentives

Economic forces and government policies influence
pest management practices immensely, including those
for IRM. High maize prices, commodity subsidies, crop
insurance, and biofuels policies have created incentives
to plant more maize and rotate crops less often. More
importantly, corn rootworm Bt maize has enabled farm-
ers to respond to these incentives, at least in the short-
term, by substituting Bt maize for crop rotation and
soil insecticides to manage corn rootworm (Osteen and
Fernandez-Cornejo 2013). This substitution was partic-
ularly attractive because of the large nonpecuniary ben-
efits and risk reduction provided by corn rootworm Bt
maize (National Research Council 2010, Shi et al.
2013). Regulatory approval of seed mixtures (i.e., ref-
uge in a bag) and the crop insurance biotech yield en-
dorsement (BYE; only available 2008–2011) also
contributed to increased adoption of corn rootworm Bt
maize (Onstad et al. 2011, Hurley and Mitchell 2013).

As a consequence of all of these factors, US acreage
planted to maize increased 21% between 2003, when
corn rootworm Bt maize was introduced, and 2013
(USDA-NASS 2014). The most recently available pub-
lic data also show the percentage of acres planted to
continuous maize increased from 21% in 2000 to 29%
in 2010 (Osteen and Fernandez-Cornejo 2013), with
corn rootworm Bt maize constituting half of all maize
acreage planted as of 2011 (Marra et al. 2012).

Sound policies are needed to counterbalance these
economic forces, which are inadvertently contributing
to the rapid evolution of resistance. We recommend ex-
perimentation with programs that use voluntary finan-
cial incentives to encourage farmers to rotate crops,
management options, and/or transgenic traits, although
the latter is constrained by cross-resistance issues.
These could resemble the Natural Resources Conser-
vation Service’s Environmental Quality Incentives Pro-
gram and Conservation Stewardship Program,
company rebate programs, or the Risk Management
Agency’s previous crop insurance premium reductions
through the BYE. More aggressive programs may ulti-
mately be needed if these voluntary measures are not
sufficient. For example, IRM, IPM, or both, could be
added to the eligibility requirements for crop insurance
or participation in other federal programs, similar to
conservation compliance requirements for federal crop
insurance programs authorized by the 2014 Farm Bill.

The Future

IRM and IPM must be integrated to complement
one another. Yet, farmers and crop consultants must, of
course, manage corn rootworm within a season and for
a given field in ways that are practical and economical.
Nevertheless, they should be encouraged to develop
management strategies that extend beyond one season
and consider the entire farm, and to use tactics that
meet the goals of both IPM and IRM (Table 2). Farm-
ers should be encouraged to move away from a mental-
ity of “what trait do I use” to a multifaceted pest
management approach. This integrated approach
should start as soon as a new technology is commercial-
ized, so that it can be more effectively stewarded by re-
ducing the rate of resistance evolution, especially for
traits with less than a high-dose. New biotechnology
traits take a long time to develop and register—an aver-
age of 12 yr for maize, with more than 5 yr needed to
proceed through the regulatory process alone (McDou-
gall 2011, Fuglie et al. 2012). Loss of a transgenic trait
to resistance leaves a much bigger gap in the farmer’s
management options than did the loss of a chemical in-
secticide in earlier decades.

We propose a proactive adaptive IRM and IPM
strategy to delay resistance evolution to the less than
high-dose corn rootworm Bt maize hybrids (Fig. 1b).
The need for multitactic approaches likely will become
increasingly generalized, because future transgenic
traits for management of corn rootworm also appear to
be less than high-dose, and will likely have short dura-
bility in the field under current IRM practices. Main-
taining the efficacy of less than high-dose traits over
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the long term will require cooperation and integration
of planning and managing at all levels—crop consul-
tants, farmers, private technology providers, public ex-
tension, public-sector scientists, regulatory agencies,
and seed companies.
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