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Abstract—A novel method consisting of an adaptive feature 

extraction scheme and a particle swarm optimization (PSO)-
optimized multiclass support vector machine (SVM) classifier is 
proposed for condition monitoring and fault diagnosis of 
drivetrain gearboxes in variable-speed operational conditions. 
The adaptive feature extraction scheme consists of an adaptive 
signal resampling algorithm, a frequency tracker, and a feature 
generation algorithm for effective extraction of the features of 
gearbox faults from the stator current signal of the AC electric 
machine connected to the gearbox. The multiclass SVM classifier 
is designed to identify different faults in the gearbox according to 
the fault features extracted. The PSO algorithm is utilized to 
optimize the parameter setting of the SVM classifier to obtain the 
best classification accuracy. The proposed method is testified on a 
drivetrain gearbox connected with a permanent-magnet 
synchronous machine with three different faults. Experimental 
results show that the faults can be effectively classified by the 
proposed method.  

 
Index Terms—Condition monitoring, drivetrain, fault 

diagnosis, gearbox, multiclass classification, particle swarm 
optimization (PSO), support vector machine (SVM). 

I.  INTRODUCTION 
EARBOXES are widely used in the drivetrains of various 
mechanical and electromechanical systems, such as wind 

energy systems, (hybrid) electric vehicles, electric train, 
aircrafts, etc. It is beneficial to develop reliable condition 
monitoring and fault diagnosis (CMFD) technologies for the 
safe operation of these systems [1]-[4].  

Prior work has demonstrated the effectiveness of current-
based methods for CMFD of gearboxes [5]-[7]. However, the 
previous work assumed that the gearbox had been in faulty 
condition but did not address the diagnostic task when the 
condition of the gearbox is unknown. As one of the pattern 
recognition methods, the support vector machine (SVM) 
offers an effective means to solve the problem of fault 
identification [8]. The SVM possesses useful properties for the 
problems of classification in terms of the complexity and 
efficiency of computation, uniqueness of solution, and 
simplicity of implementation. Owing to these merits, a SVM-
based classifier [9] was proposed for gearbox fault diagnosis. 
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The drivetrain gearboxes in industrial systems suffer a 
variety of faults. Hence, the fault classification of drivetrain 
gearboxes is a multiclass problem. The SVM was originally 
designed for binary classification [10]. Some effort has been 
made to extend it for multiclass classification [11]-[13]. 
Although the SVM algorithm is effective to perform pattern 
recognition in many applications, such as facial expression 
analysis, texture classification, and image clustering, the 
optimal values of the SVM parameters are hard to determine, 
which limits the use of the SVMs. Generally, the parameter 
setting of an SVM significantly influences the classification 
accuracy of the SVM. The key parameters of an SVM include 
the kernel parameters and penalty parameter. The existing 
approaches to determining these parameters are based on prior 
knowledge, user expertise, or experimental trial. However, 
there is no general consensus for setting the parameters of an 
SVM and many opinions for choosing the optimal SVM 
parameters are contradictory [14]. Furthermore, the SVM 
generalization performance depends on all of the parameters 
simultaneously. This makes the optimal parameter selection 
even more complicated. A separate optimization for each 
parameter does not necessarily ensure an optimized SVM 
model [15]. Grid search [16] is a conventional method that has 
been used for finding the optimal parameters of an SVM. 
However, this method is considered expensive in terms of 
computational costs and data requirements. Hence, a 
computationally effective method that is capable of searching 
for the optimal values of all the parameters  simultaneously is 
desired for the optimal parameter setting of multiclass SVM 
classification. 

This paper proposes a novel method of using the particle 
swarm optimization (PSO) algorithm to optimize a multiclass 
SVM classifier for fault classification of drivetrain gearboxes. 
An adaptive feature extraction algorithm is proposed to extract 
the fault-related features from nonstationary current signals. A 
multiclass SVM classifier is designed to classify various 
gearbox faults. The PSO algorithm is utilized to optimize the 
parameter setting of the SVM classifier. Experimental studies 
are carried out to validate the proposed method for a drivetrain 
gearbox. 

II.  CHARACTERISTIC FREQUENCIES OF DRIVETRAIN 
GEARBOXES 

If a drivetrain gearbox is connected to an AC electric 
machine, the faults in the gearbox will change the sideband 
distribution in the frequency spectrum of the current signals of 
the AC machine [17]. Mathematical expression has been 
derived to show how the torsional vibrations related to the 
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gearbox faults affect the current signals and demonstrated the 
characteristic frequencies of gearbox faults in the current 
frequency spectrum [5], [18].  

This paper considers a drivetrain consisting of a two-stage 
gearbox connected with a permanent-magnet synchronous 
machine (PMSM), as illustrated in Fig. 1, where ����� denote 
the tooth numbers of the four gears in the gearbox. The 
characteristic frequencies of the gearbox vibration include the 
input shaft frequency ��, pinion shaft frequency ��, output 
shaft frequency ��, and two gear meshing frequencies ��� and 
���. These characteristic frequencies then modulate the stator 
currents of the PMSM and generate sidebands across the 
dominant components of the currents [5]: 

1 2 3sideband sf k f l f m f n f= ± ± ±  ( 1 ) 
where �	 is the fundamental frequency of the stator current, 
and 
� ��� � � �� �� ���. 

 

 
 

Fig. 1. Schematic of a drivetrain consisting of a two-stage gearbox connected 
to a PMSM with characteristic vibration frequencies. 

III.  ADAPTIVE FEATURE EXTRACTION 

A.  Adaptive Signal Resampling 
The characteristic frequencies of gearbox faults in the stator 

current are related to gearbox shaft speeds, and become 
nonstationary when the shaft speeds vary with time. This 
paper uses an adaptive signal resampling algorithm to convert 
the current samples from a fixed sampling rate to an adaptive 
sampling rate to make the values of the objective frequencies, 
such as the fault characteristic frequencies, constant, as 
illustrated in Fig. 2. The details of the algorithm are described 
in [5]. By using the adaptive resampling algorithm, the time-
varying characteristic frequencies of the gearbox in the stator 
current are converted to constant values in the PSD spectrum 
of the resampled signal. The magnitudes of certain frequency 
components in the resultant PSD spectrum can be then used to 
generate features to evaluate the condition of the gearbox. 

B.  Frequency Tracker 
The characteristic frequencies of the gearbox in Fig. 1 are 

related to each other because of their mechanical connection, 
and the rotating frequency of gearbox output shaft is identical 
to that of the PMSM shaft. 
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The objective features of faults are different among 
different data records, as the operating points, e.g., the speed 
and load, may vary over time. To facilitate the fault feature 
extraction in this work, a frequency tracker is developed to 
solve this problem by utilizing the mechanical relationship 
among the gearbox shafts. In the proposed frequency tracker, a 
frequency detector is designed to detect the fundamental 
frequency of the resampled stator current signal. Then, 
according to (2) and (3), the characteristic frequencies, ��, �� 
and ��, of the gearbox can be calculated. After that, an 
objective frequency extractor is designed to extract the 
objective frequency components with their magnitudes 
according to (1). In this works, the objective frequency 
components are the sidebands around the fundamental 
frequency of the resampled stator current. 

 

 
 

Fig. 2. Schematic of the adaptive signal resampling algorithm. 

C.  Frequency Generation 
This paper uses the magnitudes of two groups of sidebands 

around the fundamental frequency calculated from the 
frequency tracker to generate the features related to faults. The 
first group is the sidebands caused by the first to forth order of 
the gearbox input shaft rotating frequency, which are 
expressed as �	 � ���, where � � �� �� � and �. The second 
group is the sidebands caused by the three gearbox shaft 
rotating frequencies, which are expressed as �	 � ��, �	 � �� 
and �	 � ��. The magnitudes of these two groups of sidebands 
are first normalized with respect to the magnitude of the 
fundamental frequency component. Two features are then 
generated for each group from the normalized sideband 
magnitudes: the standard deviation defined in (5) and the 
summation defined in (6). 
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where ����� � �� �� � � �� is the normalized magnitude of each 
sideband, �� is the mean value of ��, and � is number of 
sideband pairs being processed.  

The adaptive signal resampling algorithm, the frequency 
tracker, and the feature generation algorithm constitute the 
proposed adaptive feature extraction scheme in Fig. 3. 

  

 
 

Fig. 3. Schematic diagram of the proposed feature extraction scheme. 

IV.   MULTICLASS SVM CLASSIFICATION 

A.  Principles of SVM 
The basic idea of the SVM-based classification for a binary 

problem is to construct a hyper-plane as the decision plane, 
which separates the positive (+1) and negative (-1) classes 
with the largest margin (Fig. 4). The margin is the sum of the 
distances from the hyper-plane to the two boundaries 
constructed by the closest data points of the two classes. These 
closest data points are defined as the Support Vectors.  

Suppose that there is a given training data set � �

 ���� !��� � � ��"#. Each sample ���$�%
& belongs to a class 

!� '  (��)�#. The hyper-plane of the SVM can be expressed 
as follows: 

0x⋅ + =� b  ( 7 ) 
where * is a weight vector and + is a bias vector.  

Thus, the following decision function can be used to 
classify any data point , in either class “+1”or “-1”: 

( ) sgn( )f x x= ⋅ +� b  ( 8 ) 
where -./�0� is the operation to find the sign of a value.  

According to (8), a SVM-based classifier is as follows: 
P

1
( ) sgn ( , )i i ii

f x a y K x x
=

� �= +� �� b
 

( 9 ) 

which is subject to  

1
0l

i ii
yα

=
=�  (10 ) 

where 1� 2 3 is a Lagrange multiplier, 4��� ��� is the kernel 
function. 

The kernel function used in the SVM application is to map 
the input vectors into a higher-dimensional feature space 
through some nonlinear separating hyper-plane and, thus, 
makes the data linearly separable in the feature space although 
the original input vectors are nonlinearly separable in the input 
space [8]. Among all the available kernel functions for SVMs, 
the radial basis function (RBF) kernel is believed to have the 
most accurate, reliable, and efficient performance in real-
world applications [19]. 

 
 

Fig. 4. SVM classification. 
 

B.  Multiclass SVM Classification 
The fault classification of a drivetrain gearbox is a 

multiclass problem. Therefore, a multiclass SVM classifier is 
designed. Choosing an appropriate classification strategy is a 
critical issue in multiclass classification, and much work has 
been done on this subject [20]. This work utilizes a One-
Against-One (OAO) strategy, taking its advantages in a small 
number of training samples for each classifier, symmetric data 
structure, and low computational loads [20]. 

A multiclass SVM classifier with a RBF kernel is designed 
to evaluate the condition of the test gearbox. The SVM has 4 
inputs, which are the 4 features generated by the adaptive 
feature extraction scheme described in Section III. The output 
of the SVM is the code of the fault types as in Table I. 

TABLE I 
OUTPUT CODING IN PROPOSED MULTICLASS SVM CLASSIFIER 

Condition Health One-tooth-
missing 

Two-teeth-
missing 

Gear 
crack 

Code 0 1 2 3 
 

V.  PSO ALGORITHM TO OPTIMIZE MULTICLASS SVM 

A.  Principles of PSO Algorithm 
The PSO algorithm is a population-based stochastic 

optimization method inspired by the social behavior of bird 
blocking or fish schooling. In the description of PSO, the 
swarm is constituted of a certain number of particles moving 
in the problem hyperspace to search for the global optima 
iteratively. Each particle has a position vector and a velocity 
vector for directing its movement. The PSO algorithm is 
implemented in the following iterative procedure[21], [22]. 

(i) Initialize a population of particles with random positions 
and velocities of 5 dimensions in the problem space; 

(ii) Evaluate the fitness function for each particle; 
(iii) Compare each particle’s fitness value with its previous 

best fitness 6789:�. If the current value is better than 
6789:�, then set this value as 6789:� and the particle’s 
current position �� as 6�; 

(iv) Identify the particle in the neighborhood with the best 
fitness value and set this value as ;789: and the 
particle ’s position as 6<; 

(v) Update the velocity and position of each particle 
according to the following two equations, respectively; 

−b
�

1x⋅ + = +� b

1x⋅ + = −� b

0x⋅ + =� b
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Fig. 8. PSD spectrum of the resampled PMSM stator current in healthy case. 

C.  Classification Results 
The proposed feature extraction scheme is then applied to 

the PSD spectrum of the resampled PMSM stator current data. 
Each data record produces one set of four features. The 
complete dataset have 1326 sets of features. 

The PSO algorithm is executed to optimize the parameter 
setting of the multiclass SVM classifier. The result of the first 
20 iterations of the PSO execution is shown in Fig. 9 and the 
classification results are summarized in Table III. As shown in 
Fig. 9, the classification accuracy starts with a relatively high 
value and converges to a steady value after one iteration of the 
PSO implementation. This indicates that the PSO algorithm 
can find the optimal parameter setting quickly. This fast 
convergence is the result of the proper feature extraction in 
Section III and proper PSO parameter setting in Section V. 
The results clearly indicate that the multiple types of faults in 
the drivetrain gearbox are properly classified by the proposed 
method consistently. 

 

 
 

Fig. 9. Accuracy multiclass SVM classification vs. PSO iteration. 
 

TABLE III 
PSO OPTIMIZED MULTICLASS SVM CLASSIFICATION RESULTS 

 Max Min Average Standard deviation 
Accuracy 99.77% 99.69% 99.76% 0.0002 

VII.  CONCLUSIONS 
This paper has presented a novel PSO-optimized multiclass 

SVM classifier for fault identification of drivetrain gearboxes. 
An adaptive feature generation algorithm has been proposed to 
extract the features of the faults from the nonstationary current 
signals. A multiclass SVM classifier with the RBF kernel has 
been designed to classify the multiple types of gearbox faults 
according to the fault features extracted. The PSO algorithm 
has been adopted to optimize the parameter setting of the 

multiclass SVM classifier. Experimental studies have been 
performed for a PMSM-connected drivetrain gearbox with 
three different faults; and the experimental results have shown 
that the faults can be effectively classified by using the 
proposed method with satisfactory classification accuracy. 
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