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Abstract—Drivetrain gearboxes play an important role in 
many modern industrial applications. This paper presents a 
novel method consisting of adaptive feature extraction and 
support vector machine (SVM)-based classification for 
condition monitoring and fault diagnosis of drivetrain 
gearboxes operating in variable-speed conditions. An adaptive 
signal resampling algorithm, a frequency tracker, and a 
feature generation algorithm are integrated in the proposed 
method for effective extraction of the features of gearbox faults 
from the stator current signal of the AC electric machine 
connected to the gearbox. A radial basis function kernel-SVM 
classifier is designed to identify the fault in the gearbox 
according to the fault features extracted. Experimental studies 
are performed for a drivetrain gearbox with a gear crack fault 
connected with a permanent magnet synchronous machine. 
Results show that the fault can be effectively identified by the 
proposed method. 

Keywords—Adaptive resampling, classification, condition 
monitoring, fault diagnosis, drivetrain gearbox, permanent 
magnet synchronous generator (PMSG), support vector 
machine (SVM) 

I. INTRODUCTION 
Gearboxes are widely used in the drivetrains of many 

mechanical and electromechanical systems, such as wind 
energy systems, (hybrid) electric vehicles, aircrafts, etc. 
Condition monitoring and fault diagnosis (CMFD) of 
drivetrain gearboxes is of great importance to ensure safe 
operation of these systems [1]-[4]. Compared to 
conventional vibration-based diagnostic techniques, current-
based (i.e., mechanical sensorless) diagnostic techniques 
have gained increasing attention in recent years because of 
their advantages in terms of cost, implementation, reliability, 
accessibility, and robustness [5], [6].  

Prior work has demonstrated the use of current-based 
methods for effective detection of gearbox faults [5], [7], [8]. 
However, the condition of an operating system is usually 

unknown. The previous work assumed that the gearbox had 
been in a faulty condition and did not address the diagnostic 
task when the condition of the gearbox is unknown. To solve 
this problem, two issues need to be investigated. First, an 
appropriate signature of the fault needs to be extracted from 
the current signals for fault diagnosis. Second, an appropriate 
method is needed to effectively identify the condition of the 
gearbox.  

Pattern recognition methods offer an effective means to 
solve the problem of fault identification. Among various 
pattern recognition methods, the support vector machines 
(SVMs), which are designed by using the statistical learning 
theory, are found to be remarkably effective in real-world 
applications [9], [10]. They can generate a satisfactory signal 
generalization capability using a small set of data points. In 
addition, the SVMs possess some useful properties for the 
problems of classification in terms of the complexity and 
efficiency of computation, uniqueness of solution, and 
simplicity of implementation [11]. Therefore, this paper 
proposes to utilize the SVM to design a classifier for fault 
identification of drivetrain gearboxes in a real-time CMFD 
system. 

This paper proposes a novel real-time CMFD method for 
drivetrain gearboxes operating in variable-speed conditions. 
A three-step feature extraction scheme consisting of adaptive 
signal resampling, frequency tracking, and feature generation 
is proposed to extract the frequency-domain features of 
gearbox faults from the generator stator current 
measurements. An SVM classifier is designed to classify the 
condition of a gearbox to be healthy or faulty according to 
the fault features extracted. Experimental studies are carried 
out to validate the proposed method. 

II. CHARACTERISTIC FREQUENCIES OF DRIVETRAIN 
GEARBOXES 

In a drivetrain gearbox, the shaft rotation and gear 
meshing will introduce torsional vibrations on the shaft. The 
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shaft torsional vibrations will subsequently cause magnetic 
field anomaly of an AC machine connected with the gearbox 
via the shaft. As a result, the mutual and self-inductances of 
the machine will change, generating sidebands across current 
frequencies [12]. Mathematical expression has been derived 
to show how the torsional vibrations affect the current 
signals of the AC machine and demonstrate the characteristic 
frequencies of gearbox faults in the current frequency 
spectrum of the AC machine [5], [13]. Those studies provide 
a theoretical basis for current-based CMFD for drivetrain 
gearboxes, which is valid for both permanent magnet 
synchronous machines (PMSGs) and induction machines 
[13].  

This paper considers a drivetrain consisting of a two-
stage gearbox connected with a PMSG, as shown in Fig. 1, 
where   -  denote the tooth numbers of the four gears in 
the gearbox. The characteristic frequencies of the gearbox 
vibration include the input shaft frequency , pinion shaft 
frequency , output shaft frequency , and two gear 
meshing frequencies  and . These vibrations are 
induced by transmission errors in the input, pinion, and 
output wheels and the stiffness variation of gear tooth 
contact. The rotational and meshing frequency components 
appear in the torque signature of the gearbox output shaft and 
are called torsional vibrations [7]. The characteristic 
frequencies of the gearbox vibration then modulate the stator 
currents of the PMSG and generate sidebands across the 
dominant components of the currents [5]. Accordingly, the 
frequencies of these sidebands depend on the input, pinion 
and output shaft frequencies as well as the fundamental and 
harmonics of the currents, and can be expressed in the 
following form: 

1 2 3sideband sf k f l f m f n f= ± ± ±  
( 1 ) 

where  is the fundamental frequency of the stator current, 
and , , , 1, 2, 3, .  

A gearbox fault will change the amplitudes of these 
sidebands, which therefore can be used as the feature for 
fault diagnosis. 

 
 

 

Fig. 1. Schematic of a drivetrain consisting of a two-stage gearbox 
connected to a PMSG with characteristic vibration frequencies. 

III. ADAPTIVE FEATURE EXTRACTION SCHEME 
Feature extraction is of vital importance in the 

implementation of classification. Proper feature extraction 
can help simplify the design of the SVM. On the contrary, 
improper feature extraction will deteriorate the performance 
or even lead to failure of the designed SVM. 

 

 
 

Fig. 2. Schematic of the adaptive signal resampling algorithm. 

A. Adaptive Signal Resampling 
The characteristic frequencies of gearbox faults in the 

stator current are related to gearbox shaft speeds, and 
become nonstationary when the shaft speeds vary with time. 
It is difficult to extract the fault signatures from the 
nonstationary stator current of the PMSG using conventional 
spectrum analysis methods. This paper uses an adaptive 
signal resampling algorithm to convert the current samples 
from a fixed sampling rate to an adaptive sampling rate to 
make the values of the objective frequencies, such as the 
fault characteristic frequencies, constant, as illustrated in Fig. 
2. The details of the algorithm are described in [5]. By using 
the adaptive resampling algorithm, the time-varying 
characteristic frequencies of the gearbox in the stator current 
are converted to constant values in the PSD spectrum of the 
resampled signal. The magnitudes of certain frequency 
components in the resultant PSD spectrum can be then used 
to generate signatures to evaluate the condition of the 
gearbox. 
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B. Frequency Tracker 
The characteristic frequencies of the gearbox in Fig. 1 are 

related to each other because of their mechanical connection. 

4
2 3

3

z
f f

z
=  ( 2 ) 

2 2 4
1 2 3

1 1 3

z z z
f f f

z z z
= =  ( 3 ) 

The rotating frequency of the gearbox output shaft, , is 
identical to that of the PMSG shaft, which is proportional to 
the fundamental frequency of the PMSM stator current via 
the following relationship. 

3
2

sf f
P

=  ( 4 ) 

where  is the number of poles in the PMSG. 

The objective features of faults are different among 
different data records, as the operating points, e.g., the speed 
and load, may vary over time. To facilitate the fault feature 
extraction in this work, a frequency tracker (Fig. 3) is 
developed to solve this problem by utilizing the mechanical 
relationship among the gearbox shafts. In the proposed 
frequency tracker, a frequency detector is designed to detect 
the fundamental frequency of the resampled stator current 
signal. Then, according to (2)-(4), the characteristic 
frequencies, ,  and , of the gearbox can be calculated. 
After that, an objective frequency extractor is designed to 
extract the objective frequency components with their 
magnitudes according to (1). In this works, the objective 
frequency components are the sidebands around the 
fundamental frequency of the resampled stator current. The 
frequency tracker does not require complex signal 
processing. Another advantage is that the speed and load 
variations among different data records will not affect the 
performance of the proposed frequency tracker. 

C. Feature Generation 
Acquiring the most relevant features is of vital 

importance for constructing a reliable CMFD system. This 
paper uses the magnitudes of the first four pairs of the 
sidebands around the fundamental frequency extracted from 
the frequency tracker to construct the fault features. These 
sidebands are caused by the gearbox input shaft rotating 

frequency in the current PSD spectrum, i.e., 1, , 4 in 
(1), with 1  and  0 . The sidebands are first 
normalized with respect to the magnitude of the fundament 
frequency . Two features are then generated from the 
normalized sideband magnitudes: the standard deviation 
defined in (5) and the summation defined in (6). 

1
22

1

1 ( )N
ii

x x
N

σ
=

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑  ( 5 ) 

1

N
ii

M x
=

= ∑  ( 6 ) 
where  1, 2, … ,  is the normalized magnitude of 
each sideband,   is the mean value, and  is number of 
sideband pairs being processed.  

The adaptive signal resampling algorithm, the frequency 
tracker, and the feature generation algorithm constitute the 
proposed adaptive feature extraction scheme, as shown in 
Fig. 3. In summary, the adaptive signal resampling algorithm 
does the PSD analysis for the current signal; the resultant 
PSD spectrum is used by the frequency tracker to find the 
magnitudes of the objective frequency components; and the 
obtained magnitudes are then used by the feature generation 
algorithm to generate the features for diagnosis of the 
gearbox faults. 

IV. SVM-BASED CLASSIFICATION 

A. Principles of SVM 
The basic idea of the SVM-based classification is to 

construct a hyper-plane as the decision plane, which 
separates the positive (+1) and negative (-1) classes with the 
largest margin (Fig. 4). The margin is the sum of the 
distances from the hyper-plane to the two boundaries 
constructed by closest data points of each of the two classes. 
These closest data points are defined as Support Vectors 
(SVs).  

Suppose that there is a given training data set , , 1 … . Each sample    belongs to a class 1, 1 . The hyper-plane of the SVM can be 
expressed as follows: 

0x⋅ + =ω b  ( 7 ) 
where  is a weight vector and  is a bias vector.  

 

 
 

Fig. 3. Schematic diagram of the proposed feature extraction scheme. 
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Thus, the following decision function can be used to classify 
any data point  in either class " 1" or “-1”: 

( ) sgn( )f x x= ⋅ +ω b  
( 8 ) 

where sgn ·  is the operation to find the sign of a value.  

According to (8), a SVM-based classifier can be written 
as follows: 

P

1
( ) sgn ( , )i i ii

f x a y K x x
=

⎡ ⎤= +⎣ ⎦∑ b
 

( 9 ) 

which is subject to  

1
0l

i ii
yα

=
=∑  (10 ) 

where 0 are Lagrange multipliers, ,  is the kernel 
function that maps the data from the input space to a feature 
space. 

The SVM possesses some useful properties for solving 
the classification problem [11]: 

• The solution is unique for the optimization problem 
of constructing a SVM. 

• The learning process in constructing a SVM is 
computationally efficient.  

• A set of support vectors are obtained 
simultaneously with constructing the decision rule.  

• .Designing a new SVM can be accomplished by 
changing only the kernel function. 

 

 
 

Fig. 4. SVM classification. 
 

B. Kernel Function 
In the problem of classification, the selection of the 

kernel function ,  is a key issue in designing the SVM. 
The kernel function maps the input vectors into a higher-
dimensional feature space through some nonlinear separating 
hyper-plane and, thus, makes the data linearly separable in 
the feature space although the original input vectors are 

nonlinearly separable in the input space, as shown in Fig. 5. 
Hence, the kernel substitution provides a route for obtaining 
a nonlinear algorithm from the algorithms previously 
restricted to handling linear separable datasets [10]. The 
kernel function is the key affecting the learning and 
generalization abilities of an SVM. It determines the 
transformation and characteristic space of the designed 
SVM. Four types of kernel functions are currently commonly 
used, which are linear function, polynomial function, radial 
basis function (RBF), and sigmoidal function. Among them 
the RBF kernel shown in (11) is believed the best choice for 
practical applications owing to its excellent learning ability 
and high efficiency for classification.  

2

2( , ) exp
2

x y
K x y

σ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 ( 11 ) 

where  is the width of the RBF kernel. 
 

 

Fig. 5. Feature mapping by using the kernel function. 
 
Various SVMs with different kernel functions are 

constructed to investigate their performance. . The selection 
of the parameters of the SVMs is performed by trial and 
error, which is the most commonly used method in SVM 
design. These SVMs are compared in terms of the number of 
SVs and classification accuracy, as shown in Table I. 
Usually the computational complexity of a SVM is 
proportional to the number of SVs. Fewer SVs means faster 
classification of the test samples. Although Table I indicates 
that the polynomial-SVM has the least number of SVs, its 
accuracy is a little worse than that of the RBF-SVM. 
Considering the learning and extension abilities [9], the 
RBF-SVM is considered to have the most accurate, reliable, 
and efficient performance. 

TABLE I 
COMPARISON OF SVMS WITH DIFFERENT KERNEL FUNCTIONS 

Linear Polynomial RBF Sigmoidal 
SV # 46 20 28 80 

Accuracy 88% 95% 96% 89% 
 

C. Generalization Ability Analysis 
In the research on machine learning and pattern 

recognition, the dataset is usually divided into training and 
test subsets. The training subset is used to train the SVM 
model, while the test subset is used to evaluate the prediction 
accuracy (i.e., generalization ability [10]) of the model for 
unknown samples. 

−b
ω

1x⋅ + = +ω b

1x⋅ + = −ω b

0x⋅ + =ω b
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How to divide a complete dataset into training and test 
subsets is also an important issue. Two general rules are 
commonly followed [14]: 

• The number of samples in the training subset must 
be sufficiently large, which is at least more than 
50% of the total samples; 

• The samples in the training and test subsets must be 
selected uniformly from the complete dataset. 

The second rule is especially important. The purpose of 
uniform sample selection is to reduce the bias between the 
training/test subsets and the original complete dataset. A 
general practice is to do random selections. When there are 
sufficient samples, random selections of data samples will 
lead to uniform selections of the data samples.  

This paper adopts a random sample selection method 
[14] to generate the training and test subsets. The original 
dataset is divided into training and test subsets according to a 
pre-determined control factor,  (0.5 1). Suppose that 
there are totally  samples in the original complete 
dataset, where  samples are Class “-1” and  samples are 
Class “+1”. Then a number of  samples will be chosen 
randomly into training subset, and the rest 1  
samples will constitute the test subset. Through the random 
selection process, the generalization performance of the 
designed SVM classifier for an independent dataset can be 
assessed. An example dataset division is presented in Fig. 6. 

 

 
 

Fig. 6. Example of dataset division. 
 

V. EXPERIMENTAL STUDIES 

A. Experiemetnal System 
The proposed method is applied for diagnosis of a gear 

crack fault in a test drivetrain gearbox. Fig. 7 shows the 
experimental system setup, which consists of a 300-W 
PMSG driven by a variable-speed induction motor through 
two back-to-back connected SIEMENS gearboxes. They are 
two-stage helical gearboxes with a total gear ratio of 10.57. 
One gearbox (i.e., the speed reducer) reduces the shaft speed 
of the induction motor. The second gearbox (i.e., the test 
gearbox) is used to emulate a drivetrain gearbox in real-
system applications. The test gear is mounted at the input 
shaft of the test gearbox and pretreated by artificially 
generating a gear crack from the corner of the key way to the 
tooth root (Fig. 8). One phase stator current of the PMSG is 
recorded via a Fluke current clamp and National Instrument 
(NI) data acquisition system with a sampling rate of 10 kHz. 
Each data record lasts 210 seconds, during which the rotating 
speed of the PMSG is varied randomly in the range of 297 to 
891 RPM. A total number of 161 data records are collected, 
including 80 for the healthy case and 81 for the gear crack 
case. 

 

 
 

Fig. 8. The test gear with a crack. 
 

B. System in Nonstationary Conditions 
The proposed technique is testified when the system is 

operated in variable-speed conditions, where the rotating 
speed of the PMSG input shaft (i.e., the output shaft of the 
test gearbox) randomly varies in a range of 297 to 891 RPM. 
Each speed lasts for 8 second. 

As reported in the previous work [5], the classical FFT 
analysis cannot be used directly to extract effective fault 
features from the nonstationary stator current signal caused 
by the variable shaft frequencies. As shown in Fig. 9, no 
specific characteristic frequencies of the gearbox are 
observable in the PSD spectrum of the stator current signal 
obtained directly from the classical FFT analysis. Therefore,

 

 
 

Fig. 7. The experimental system. 
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no fault signatures can be extracted from the nonstationary 
stator current signal caused by the variable shaft rotating 
frequencies using the classical FFT analysis. 

 

 
 

Fig. 9. PSD spectrum of the stator current signal obtained directly from 
classical FFT analysis. 

 

The proposed adaptive feature extraction scheme is 
utilized to facilitate the diagnosis of the gear crack fault in 
variable-speed conditions. As shown in Fig. 10, the shaft 
rotating speed of the PMSG is estimated by a phase-locked 
loop (PLL) method [15]. Meanwhile, the Hilbert transform 
[16] is used to calculate the instantaneous load of the PMSG, 
which ranges from 30% to 70% of the rated power of the 
PMSG  The load connected to the PMSG is purely resistive 
and, therefore, is proportional to the rotating speed of the 
PMSG. 

 

 

Fig. 10. PMSG input shaft rotating frequency estimated by the PLL method 
[15] and load estimated by the Hilbert transform [16] . 
 

Figs. 11 and 12 exhibit the PSD spectra of the stator 
current obtained from the proposed method for the system 

with and without the gear crack in the test gearbox, 
respectively. As expected, the characteristic frequencies 
predicted in Section II are observed. Moreover, the gear fault 
altered the distribution of the sidebands around the 
fundamental frequency of the stator current, which is related 
to the gearbox vibration. The main change in the current 
PSD spectrum caused by the gear crack appears in the input 
shaft-related sidebands, i.e., 1 , m = 0, 0  and 1, 2, 3, … in (1). 

 

 
 

Fig. 11: PSD spectrum of stator current for healthy gearbox. 
 

 

 
 

Fig. 12: PSD spectrum of stator current for gearbox with gear crack. 
 

The proposed feature extraction scheme is then applied to 
the PSD spectrum of the PMSG stator current data. Each 
data record produces one set of features. The complete 
dataset have 161 sets of features, which are then divided into 
the training subset and test subset using the aforementioned 
random selection method. Based on the premise of 
generalization ability, the critical case where 0.5  is 
considered. In other words, the training subset has 81 data 
records and the test subset has 80 data records. 

According to the comparison in Section III, a SVM 
classifier with a RBF kernel is designed to evaluate the 
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condition of the test gearbox. The SVM has two inputs, 
which are the two features generated by the adaptive feature 
extraction scheme described in Section III. The output of the 
SVM is binary coded, where Class “-1” indicates the 
gearbox is in healthy condition and Class “+1” indicates the 
gearbox is in faulty condition. Different widths are tested for 
the RBF kernel function and an optimal value of σ 2.673 
is chosen for the designed SVM, which provides the best 
classification accuracy. 

Monte Carlo studies have been performed to testify the 
effectiveness of the proposed method, where the 161 feature 
sets generated by the proposed method are used for fault 
diagnosis. Different training/test subsets are generated for 
classification in different Monte Carlo cases, where the use 
of different training/test sets leads to different cases of 
classification using the SVM classifier [17]. Results show 
that the average classification accuracy of the proposed 
method is 91.5%, where the highest accuracy is 96.25% and 
the lowest accuracy is 87.5%. These results clearly indicate 
that the gear crack fault can be properly detected by the 
proposed method consistently. 

VI. CONCLUSIONS 
A novel method consisting of effective adaptive feature 

extraction and SVM-based classification has been presented 
for CMFD of drivetrain gearboxes operating in variable-
speed conditions. The proposed feature extraction method 
consists of an adaptive signal resampling algorithm, a 
frequency tracker, and a feature generation algorithm for 
effective extraction of the features of gearbox faults in the 
frequency domain of the PMSG stator current signal. A RBF 
kernel-SVM classifier has been designed to identify the 
faults in the gearbox according to the fault features extracted. 
A random selection method has been adopted to generate the 
training and test subsets form the original complete dataset, 
which ensures the generalization ability of the proposed 
method. Experimental studies have been performed for a 
PMSG-connected drivetrain gearbox with a gear crack fault; 
and the experimental results have shown that the fault can be 
effectively identified by the proposed method. Monte Carlo 
studies have shown that the SVM classifier has consistently 
satisfactory classification accuracy. 
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