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Higher-Order Explicit Methods for Laser-Plasma
Interactions

J. Paxon Reyes and B. A. Shadwick
Department of Physics & Astronomy

University of Nebraska-Lincoln
Lincoln, NE 68588

Abstract—The evolution of a short, intense laser pulse prop-
agating in an underdense plasma is of particular interest for
laser-plasma accelerator physics and, in some circumstances,
is well-modeled by the cold Maxwell-fluid equations. Solving
this system using conventional second-order explicit methods
in a three-dimensional simulation over experimentally-relevant
configurations is prohibitively expensive. This motivated a search
for more efficient numerical methods to solve the fluid equations.
Explicit methods tend to suffer from stability constraints which
couple the maximum allowable time step to the spatial grid size.
If the dynamics of the system evolves on a time scale much larger
than the constrained time step, an explicit method would require
many more update cycles than is physically necessary. In these
circumstances implicit methods, which tend to be unconditionally
stable, may be attractive. But when physical situations (e.g.,
Raman processes) need to resolve the fast dynamics, implicit
methods are unlikely to exhibit much improvement over explicit
methods. Thus, we look for higher-order explicit methods in space
that would allow coarser spatial grids and larger time steps. We
restrict our discussion to the one-dimensional case and present
a comprehensive survey of a wide range of numerical methods
to solve the fluid equations, including methods of order two
through six in space and two through eight in time. A systematic
approach to determine the stability condition is presented using
linear stability analysis of numerical dispersion relations. Three
higher-order methods are implemented to show their behavior,
in terms of numerical stability and energy conservation.

I. INTRODUCTION

The cold Maxwell-fluid equations accurately describe the
dynamics involved in laser-plasma acceleration [1]. These
equations are often solved numerically using a second-order
differencing scheme to approximate the space and time deriva-
tives, leading to a stability-constrained explicit method that
tends to be computationally expensive when used in a fully
three-dimensional simulation. We shall consider only the one-
dimensional fluid equations since the longitudinal dynamics
plays the crucial role in shaping the stability constraints. Time
t and the propagation direction z are reparameterized by

(t, z) 7→ (t, ξ = c t− z) (1)

in order to follow the laser pulse. A consequence of the
reparameterization is that the temporal dynamics is effectively
slowed down and, since this is not a Lorentz-boosted frame
[2], none of the spatial parameters are changed. The laser
and plasma wavenumbers k and kp, respectively, and the
laser pulse length L have the same magnitudes as in the lab
frame. Thus methods with severe stability constraints can cause
large inefficiencies in the time-update calculations due to the

temporal step size being tied to the spatial resolution. For
example, second-order backwards differencing applied to the
1D fluid equations have the stability constraint c∆t/∆ξ .
0.25, to prevent high-frequency numerical noise from exciting
exponentially-growing modes. To maintain acceptable spatial
accuracy using second-order methods, a considerable number
of grid points per laser wavelength can be required. With only
25 grid points per laser oscillation, the maximum allowable
stable time step ∆tM is unnecessarily small by approximately
four orders of magnitude (with a laser wavenumber of k0 =
10kp), and produces an inefficient computer simulation for
laser-wakefield accelerator applications.

Implicit methods may entirely relieve the stability con-
straint and permit reasonable time steps in modeling a forward-
traveling laser pulse interacting with a plasma. As an example,
an unconditionally-stable implicit method can be formed using
second-order midpoint differencing and the resulting simula-
tions maintain the same level of accuracy as in the explicit
method except they allow reasonable times steps: depending
on the laser wavenumber, the time step can be five or six
orders of magnitude larger than the maximum time step ∆tM
allowed by the explicit method. This is true as long as the
fast dynamics are of little interest. The forward-traveling wave
will be nearly stationary in the co-moving coordinate system
whereas a backward-traveling wave has an analytical group
velocity that is nearly 2c in the +ξ direction [3]. With this
implicit method, the numerical group velocity of the backward
mode is highly sensitive to the size of the time step, dropping
by half as the time interval is nominally increased from
ωp∆t = 0.1 to ωp∆t = 0.2.

Many physical situations (e.g., Raman processes) require
resolving the fast time dynamics for both propagation direc-
tions. In such cases, implicit methods are unlikely to exhibit
much improvement over explicit methods. But higher-order
explicit methods are likely more efficient than the traditional
second-order method, allowing for a courser spatial grid and
looser coupling between ∆t and ∆ξ. We examine a wide
range of methods while restricting the discussion to the one-
dimensional case. There is no a priori way to determine
whether a method will work and there are surprisingly many
methods that turn out to be unconditionally unstable. We
present a systematic approach to determine stability conditions
using linear stability analyses of the numerical dispersion
relations from these methods. This illustrates how the time
step couples with the grid spacing, and we use examples to
show how the numerical error of the group velocity depends
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on the grid size.

II. LINEAR STABILITY ANALYSIS

By Lax’s theorem [4], [5] we know that only methods
which are stable converge to the exact solution for ∆t,∆ξ →
0. Lax’s theorem, strictly speaking, only applies to linear
equations. However, since the addition of nonlinear dynamics
is unlikely to mitigate the effects of a linearly-unstable method,
we use the criterion of linear stability in the present analysis.

Written with the reparameterized variables, the one-dimen-
sional cold Maxwell-fluid equations are(

∂2

∂t2
+ 2c

∂2

∂t ∂ξ

)
Ax = −4πq2

m

n

γ
Ax ,

(
∂

∂t
+ c

∂

∂ξ

)
Ez = −4πq

m

n

γ
pz ,

(
∂

∂t
+ c

∂

∂ξ

)
n =

∂

∂ξ

(
n

γ

pz
m

)
,

(
∂

∂t
+ c

∂

∂ξ

)
pz = mc2

∂γ

∂ξ
+ qEz ,

(2)

where m is the electron mass, q is electron charge, c is
the speed of light, Ax is the transverse vector potential, Ez
is the longitudinal electric field, n is the electron plasma
density, pz is longitudinal electron fluid momentum, and
γ =

√
1 + q2A2

x/m
2c4 + p2

z/m
2c2.

The linearized equations admit Fourier modes of the form

Ax = Âxeiωte−ikξ, (3)

where ω and k is the angular frequency and wavenumber in the
co-moving coordinate system and Âx is the wave amplitude.
For the linearized wave equation in system (2),(

∂2

∂t2
+ 2c

∂2

∂t ∂ξ

)
Ax = −ω2

p Ax , (4)

the analytical linear dispersion relation is

ω = kc±
√
k2c2 + ω2

p , (5)

where ωp = kpc is the plasma frequency. If the imaginary part
of ω is negative, the time exponential term of (3) would consist
of an oscillating exp [iRe(ω)t] and an exponentially-growing
exp [−Im(ω)t] factor. The condition for numerical instability
is analogous to the presence of this growing exponential.

Discretizing (4) in space, the system is treated as a set of
ODEs in time (i.e., using the method of lines [7]):

ẏ = Ay (6)

where

y =

(
Ax
Ȧx

)
and A =

(
0 1

−ω2
p −2c θ

)
, (7)

with θ the discrete Fourier transform of the spatial difference
operator (see the first column of Table I). Let yn be the
numerical approximation of y at time t = n∆t. Then

yn+1 = M yn, (8)

where the update matrix

M =
N∑
l=0

∆tl

l!
Al (9)

depends on the order N of the temporal accuracy. The numer-
ical dispersion relation Ω(κ) is related to the eigenvalues, λ,
of M by

eiΩ(κ) = λ , (10)

where the numerical angular frequency Ω = ω∆t and the
numerical wavenumber κ = k∆ξ.

Analogous to (3), discrete Fourier modes have the form

(Ax)
n
j = Âx einΩe−ijκ (11)

and, as in the analytical case, if the imaginary part of the
numerical dispersion relation Ω(κ) is negative over any range
in κ, the numerical solution will exhibit an instability with
numerical growth rate Γ = −Im Ω. Typically, Im Ω is negative
over a finite interval in κ corresponding to a range of Fourier
modes in k (given a particular ∆ξ). Although initial parameters
in a simulation may stay well clear of these growing modes,
rounding errors and numerical noise tend to excite higher-order
modes. With sufficient time propagation in the simulation,
these growing modes will dominate all others. Therefore, if
a method leads to Im Ω < 0 at any point, it is said to be
unstable.

Table I contains a summary of the stability analysis for the
higher-order methods examined. In the ωp = 0 vacuum case,
all occurrences of the intervals ∆t and ∆ξ expressed in the
eigenvalues of M appear as the ratio r = c∆t/∆ξ, which
is thus a suitable quantity to describe the stability constraint.
Though the eigenvalues do have a dependence on ∆ξ when the
linear plasma is considered, the dependence is not substantial
and has little effect on the stability constraint. Still, this means
the values listed in the table are accurate approximations but
not exact. A particular value of ∆ξ based on the spatial
resolution requirements would have to be specified for a
particular situation to find the precise stability constraint. Since
the numerical dispersion relation Ω(κ) is 2π-periodic in κ and
symmetric about κ = π, only the domain from 0 to π needs to
be considered, which corresponds to Fourier modes of k/kp
between 0 and 125, using ∆ξ = 0.025.

III. NUMERICAL ANALYSES

A number of methods will be analyzed in more detail: the
traditional second-order backward method and, with time order
N = 4, central differencing methods of order two, four, and
six. The analyses will use the grid spacing ∆ξ = 0.025/kp
such that 25 grid steps are used to sample one oscillation of
the laser with wavenumber k0 = 10kp.

Accuracy of the numerical method can be inferred by
comparing the analytical va

g and numerical vn
g group velocities.

As seen from the analytical dispersion relation (5) in the
co-moving coordinate system, with k-modes around 10kp, a
forward-traveling laser pulse will have a small group velocity
while a backward-traveling pulse approaches a group veloc-
ity of 2c. Thus, it is expected that the “slower” forward-
traveling modes will have less numerical artifacts compared



TABLE I. MAXIMUM STABLE VALUES OF c∆t/∆ξ FOR A GIVEN SPATIAL DIFFERENCING SCHEME IN ξ. ‘US’ DENOTES METHODS THAT ARE
UNCONDITIONALLY UNSTABLE. SEE REF. [6].

Temporal Order
Spatial Discretization 2 3 4 5 8

2n
d

f
′

=
1

2δ
(3 fj − 4 fj−1 + fj−2) 0.25 0.3 0.35

f
′

=
1

2δ
(fj+1 − fj−1) US 0.8 1.4

3r
d

f
′

=
1

6δ
(11 fj − 18 fj−1 + 9 fj−2 − 2 fj−3) US US US

f
′

=
1

6δ
(3 fj − 6 fj−1 + fj−2 + 2 fj+1) 0.48 0.8 0.85

f
′

=
1

12δ
(25 fj − 48 fj−1 + 36 fj−2 − 16 fj−3 + 3 fj−4) US US US

4t
h f

′
=

1

12δ
(−8 fj−1 + 8 fj+1 + fj−2 − fj+2) US 0.63 1.05

f
′

=
1

12δ
(10 fj − 18 fj−1 + 6 fj−2 − fj−3 + 3 fj+1) US 0.45 0.55 0.59

5t
h

f
′

=
1

60δ
(137 fj − 300 fj−1 + 300 fj−2 − 200 fj−3 + 75 fj−4 − 12 fj−5) US US US

f
′

=
1

60δ
(20 fj − 60 fj−1 + 15 fj−2 − 2 fj−3 + 30 fj+1 − 3 fj+2) 0.09 0.72 0.85

6t
h

f
′

=
1

60δ
(45 fj+1 − 45 fj−1 − 9 fj+2 + 9 fj−2 + fj+3 − fj−3) US 0.55 0.87 US 1.05

to backward-traveling modes for all stable methods. The
numerical group velocity can be expressed as

vn
g

c
=

(
1

c

∆ξ

∆t

)
∂(ω∆t)

∂(k∆ξ)
=

1

r

∂Ω

∂κ
, (12)

and the vn
g of the four numerical methods will be compared

against each other and with va
g .

A shorthand notation is adopted to simplify the description
of the following methods by listing the spatial ordering and the
differencing scheme (i.e., backward or central) followed by
the temporal order (e.g., “2t” for second-order in time). The
traditional method using second-order backwards differencing
in space and second-order time approximation is written as
“2b2t.”

A. Stability Considerations

We examine solutions of the numerical dispersion relation
for various spatial differencing schemes and temporal integra-
tion orders.

1) Second-Order Backward Differencing in Space (2b2t):
As stated before, the traditionally used method to solve system
(2) uses backwards differencing in space. The imaginary part
of Ω of the forward-traveling mode (Fig. 1a) is strictly positive
for a range of r. This is in contrast to the backward-traveling
mode (Fig. 1b) where, for r > 0.25, there is a range of k
where Im Ω < 0. Only by keeping r ≤ 0.25 will the numerical
instability be completely avoided.

An example of an unconditionally-unstable method can be
made by replacing the backward spatial differencing of 2b2t
with a central differencing of the same order. The results is
that, for all k and r in both the forward and backward waves,
the imaginary part of Im Ω ≤ 0. In this case, all modes grow
exponentially in time.

1

2

3

4

5

6
×10−5

(a) r = 0.15
r = 0.20
r = 0.25

r = 0.30
r = 0.35
r = 0.40

20 40 60 80 100 120

k/kp

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0
2.5

(b)

Fig. 1. Im Ω using second-order backwards differencing plotted against k
with ∆ξ = 0.025/kp and N = 2. (a) The forward mode Im Ω is fairly
insensitive to r with numerical dissipation on the order of 10−5. (b) The
backward mode Im Ω, on the other hand, has much more variation in r. The
criterion for stability is r ≤ 0.25, although significant numerical dissipation
exists compared to that of the forward mode.

2) Second-Order Central Differencing in Space (2c4t):
Surprisingly, going to order four for the time approximation
while keeping the previously-mentioned second-order central
differencing in space produces the most efficient numerical
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r=0.50

r=0.60

r=0.70

r=0.80

r=0.90

r=1.00

Fig. 2. Im Ω for methods using central differencing: (a) the 2c4t method;
(b) the 4c4t method; and (c) the 6c4t method. In all cases only the backwards
mode is shown; the forwards mode Im Ω . 10−12 and is insensitive to both
r and κ.

method (2c4t). For the forward mode, Im Ω is nearly zero
for all k and r; thus the numerical dissipation is negligible for
these modes. The backward modes of this method (see Fig. 2a)
show less dissipation compared to the 2b2t method.

3) Fourth-Order Central Differencing in Space (4c4t):
Here the imaginary part of the forward mode Ω is essen-
tially zero. Otherwise, in terms of the stability conditions
and the magnitude of the numerical dissipation, there is no
improvement by applying the fourth-order central differencing
in space to a fourth-order accurate temporal method. As seen
from Fig. 2a and Fig. 2b, for comparable values of r, the
level of dissipation with 2c4t is much less than with 4c4t.
Of course, with higher-order approximations we do expect the
numerical accuracy behave to better for larger ranges of k and
also to exhibit faster convergence. Faster convergence of the
total energy error will be shown in the next sectio45n.

4) Sixth-Order Central Differencing in Space (6c4t): The
highest spatial order we illustrate is the sixth-order central.
Again, for the forward mode Im Ω essentially zero. For the

4.7
4.8
4.9
5.0
5.1
5.2
5.3
5.4
×10−3

(a)

0.01 0.02 0.03 0.04 0.05
kp ∆ξ

1.6

1.8

2.0

2.2

2.4

2.6

2.8
(b)

2b2t
2c4t
4c4t
6c4t

Fig. 3. Numerical group velocities of: (a) the forward and (b) backward
modes, in units of c.

backward mode, the Im Ω shows features similar to 2c4t and
4c4t. In general, the maxima and minima have shifted toward
higher k and the maximum r is reduced compared to the other
fourth-order time methods.

Higher-order time approximations, like the method from
Table I using eighth-order time and sixth-order central differ-
encing, may lead to a significantly large value of r (1.05 in
this case) but the extra work required for such high-order time
calculations is not desirable when the time steps are already
constrained to be far smaller than is required for accuracy.

B. Accuracy Considerations

The analytical group velocity for the linear wave equation
(4), using (5), is

va
g

c
= 1± k2c2√

k2c2 + ω2
p

(13)

and depends only on the wavenumber k, whereas the numerical
group velocity (12) also has dependencies on the numerical
parameters r and ∆ξ and on the differencing scheme. The ∆t
dependence enters through r. For the methods discussed above,
the numerical group velocities have been plotted in Fig. 3,
along with the analytical group velocity (broken yellow line),
as a function of the parameter ∆ξ for a chosen wavenumber
k = 10kp. The values of r were chosen based on Table I
but adjusted to allow even subintervals of time and space
in computer simulations. Specifically the r used were 0.25,
4.0/3.0, 1.0, and 0.80 for methods 2b2t, 2c4t, 4c4t, and 6c4t,
respectively. Since r was fixed, ∆t and ∆ξ varied dependently.
The forward mode Fig. 3a and backward mode Fig. 3b group
velocities are physically accurate for small ∆ξ and then depart
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Fig. 4. Relative error of the total system energy after a time propagation of 50/ωp versus grid size ∆ξ. The order of the spatial differencing corresponds to
the behavior of the energy error scaling. The broken lines indicate power law scalings associated with the spatial orderings.

from the analytical group velocity at large ∆ξ. For larger
wavenumbers, significant departures occur at smaller ∆ξ.

The nonlinear system (2) is energy conservative [8], so
tracking the change in the total system energy is a convenient
way to assess a method’s quality. All four methods were
implemented in a fully-nonlinear, one-dimensional code. The
total energy includes contributions from the laser, the plasma
wakefield, and the particles. After a propagation time of
T = 50/ωp the total energy was calculated and compared with
the initial energy, taking the absolute value of the difference
and scaling by the initial energy. The r parameters were the
same as in Fig. 3, and the initial shape of the laser pulse was a
Gaussian with average wavenumber k = 10kp, width kpL = 2,
and amplitude A0 = mc2/q. Fig. 4 shows the relative energy
error as a function of the spatial grid size ∆ξ. Using larger
∆ξ in space leads to greater energy errors, in general.

IV. CONCLUSION

We have analyzed all practical higher-order explicit meth-
ods for laser-plasma interactions using the cold Maxwell-fluid
equations. In terms of the most relaxed stability constraints
and ease of calculation, the 2c4t explicit method was found
to be the most efficient among those analyzed. In comparison,
the largest time step with this method is over five times larger
than is possible with the traditional 2b2t method while the
numerical dissipation per time step is also significantly less.
Thus, the overall effective dissipation for 2b2t is greater by a
factor of approximately five over the 2c4t method.

The numerical group velocities are sensitive to the grid
spacing. As expected, higher-order spatial methods are ac-
curate for a wider range of ∆ξ. Extremely high temporal
resolutions are mandated by the stability constraints. Even for
simulations using the largest stable time steps, the energy error
only depends on ∆ξ. The energy behavior of these explicit
methods are predictable, obeying expected power laws based
on the accuracy of the spatial order.

These one-dimensional numerical methods are suitable for
higher-dimensional simulations. The addition of transverse
dimensions may alter the time constraints but they do not
drastically affect a method’s stability. So, if resolving fast
dynamics are of interest, high-order explicit methods are an
attractive option.
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