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Introduction 

Improving reproductive longevity in maternal lines using 
a traditional phenotypic selection approach is challeng-
ing due to the fact that it is lowly heritable, sex limited 
and expressed late in life. There is a need to predict the 
genetic merit of gilts for longevity in breeding herds for 
economic and animal welfare reasons. One trait that has 
been shown to predict reproductive longevity is the age 
at which a gilt reaches puberty (Serenius & Stalder 2007; 
Tart et al. 2013). The earlier a gilt expresses puberty, the 
more likely she will generate more parities and, as a re-
sult, more piglets born during her lifetime. Profiling ex-
pression of first estrus is labor intensive and rarely used 
at the commercial level. The objective of this research 
was to evaluate genomic predictors of age at puberty 
in training and evaluation sets of similar genetics based 
on the University of Nebraska (UNL) reproductive lon-
gevity resource population. A genome-wide association 
study (GWAS) was conducted using high-density geno-

types and phenotypes for age at puberty using a Bayes B 
model to uncover regions of the genome and SNPs that 
influence phenotypic variation and estimate the efficacy 
of genomic predictors. 

It is generally agreed that an increase in the number of 
markers used in a GWAS will result in larger proportions 
of the phenotypic variance explained because of the im-
proved genome coverage. However, this concept has lim-
itations in recent evolutionarily developed populations 
that have had less time to accumulate recombinations and 
are characterized by slow linkage disequilibrium decay 
and extended relationships between DNA markers and 
QTL. In recent work, Visscher (2014) showed that an in-
crease in the number of significant SNPs from a discov-
ery population (n = 250,000, ~1 mil. SNPs) when validated 
in five independent sets led to an increase in the aver-
age proportion of variance explained from 16% (nSNPs ≈ 
700, P < 5 × 10–8) to 21% (nSNPs ≈ 1900, P < 5 × 10–5) to 29% 
(nSNPs ≈ 9500, P < 5 × 10–3). When no SNP selection was 
performed, the whole SNP panel of approximately 1 mil-
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Abstract 
Genomic information could be used efficiently to improve traits that are expensive to measure, sex limited or expressed late in life. 
This study analyzed the phenotypic variation explained by major SNPs and windows for age at puberty in gilts, an indicator of re-
productive longevity. A genome-wide association study using 56,424 SNPs explained 25.2% of the phenotypic variation in age at pu-
berty in a training set (n = 820). All SNPs from the top 10% of 1-Mb windows explained 33.5% of the phenotypic variance compared 
to 47.1% explained by the most informative markers (n = 261). In an evaluation population, consisting of subsequent batches (n = 
412), the predictive ability of all SNPs from the major 1-Mb windows was higher compared to the variance captured by the most in-
formative SNP from each of these windows. The phenotypic variance explained in the evaluation population varied from 12.3% to 
36.8% when all SNPs from major windows were used compared to 6.5–23.7% explained by most informative SNPs. The correlation 
between phenotype and genomic prediction values based on SNP effects estimated in the training population was marginal com-
pared to their effects retrained in the evaluation population for all (0.46–0.81) or most informative SNPs (0.30–0.65) from major win-
dows. An increase in genetic gain of 20.5% could be obtained if genomic selection included both sexes compared to females alone. 
The pleiotropic role of major genes such as AVPR1A could be exploited in selection of both age at puberty and reproductive longevity. 
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lion SNPs explained 50% of the variation, leading to the 
conclusion that most of the variation is explained by 9500 
SNPs. Interestingly, an increase in the number of signifi-
cant SNPs had limited to no influence on the correlation 
between genomic predictors and height. In addition, two 
recent studies showed that there is marginal advantage 
in using large-density SNP panels (770K or 500K SNPs) 
compared to the traditional 50K SNP panel in genomic 
evaluations of dairy cattle (VanRaden et al. 2011; Saatchi 
& Garrick 2014). 

Because known examples of genetic variants that ex-
plain substantial amounts of variation for different quan-
titative traits are well characterized (e.g. Milan et al. 2000; 
Van Laere et al. 2003), we hypothesized that a small subset 
of major SNPs with relatively large effects explain a sub-
stantial part or most of the proportion of phenotypic vari-
ance captured by the entire Porcine SNP60 BeadChip. We 
expected that SNPs associated with major effects are more 
likely to be in high linkage disequilibrium with important 
QTLs and, as a result, more robust predictors of pheno-
typic variance in independent data sets. To test this hy-
pothesis, the full set of SNPs and various subsets of SNPs 
from 1-Mb windows that explained the greatest propor-
tions of variation were used to estimate genomic predic-
tion values (GPVs) in the evaluation populations to assess 
the potential of genomic information to explain pheno-
typic variation for age at puberty outside the training set. 

Materials and methods 

Population 
Phenotypic and genotypic data were obtained from 

a population of crossbred gilts (n = 1232) produced in 
11 batches (B1 to B11) as described by Tart et al. (2013). 
The experimental pigs were derived from Nebraska In-
dex Line (NIL) and commercial Large White × Landrace 
dams inseminated with semen from two unrelated com-
mercial Landrace genetic lines (batch B1–B4: Landrace 1; 
batch B5–B11: Landrace 2). As a result, there is a partial 
degree of genetic relationship between the animals across 
batches. NIL was derived from commercial Large White 
9 Landrace crossbreds and was selected for reproductive 
traits for over 32 years (Hsu 2011). Experimental gilts 
were inseminated with pooled commercial Duroc semen. 

Nutrition, culling and phenotypes 
Gilts received the same diet and management from day 

0 through day 123. Starting at day 123, gilts were fed ei-
ther an ad libitum corn–soybean meal diet or a caloric-re-
stricted diet consisting of a daily allotment of feed that 
was ~80% of that consumed by gilts on the ad libitum reg-
imen, as described by Tart et al. (2013). Beginning at ap-
proximately day 135, age at puberty was determined as 

the first day the gilts displayed signs of estrus in the pres-
ence of a boar. Estrus detection continued through ap-
proximately day 240 or until all gilts in a pen expressed 
estrus twice. At day 240, gilts were moved to the breed-
ing barn and stayed in production through four parities, 
except B6, which due to limited space was maintained for 
three parities. Lifetime number of parities and lifetime to-
tal number born were measured as the total number of 
parities and piglets produced until culling respectively. 
Culling was performed after one unsuccessful service, af-
ter four parities, for soundness and health issues or for 
other reproductive failures. 

Genotyping 
DNA was isolated from an ear notch or tail clip using 

DNeasy and Puregene kits (Qiagen). DNA quality and 
quantity were tested by gel electrophoresis and Nano-
drop (Thermo Scientific) spectrophotometry. Genotyp-
ing was performed using the Porcine SNP60 BeadChip 
(Illumina). All genotypes with a quality score below 0.4 
were removed and replaced with mean allelic frequencies 
from the experimental population (B1–B11). SNPs and in-
dividual samples with a call rate below 0.8 were excluded, 
leaving 56,424 high-quality SNPs and 1232 experimental 
samples used in the analysis. 

Genome-wide association analyses and genomic 
predictions 

Phenotypic-based heritabilities were estimated using 
a linear mixed model; fixed effects included batch, diet 
and dam line, and random effects included sire and lit-
ter. Sire line was not included in the model due to par-
tial confounding with batch. Genome-wide association 
was performed via GENSEL software (Fernando & Gar-
rick 2008) using a Bayes B model, with genetic line, diet 
and batch fitted as fixed effects. The a priori value of π was 
set equal to 0.99 in most of the analyses (when the num-
ber of SNPs > 130), and the MCMC (Markov chain Monte 
Carlo) included 41,000 iterations with the first 1000 dis-
carded as burn-in. 

The influence of major 1-Mb windows and SNPs rela-
tive to predicting phenotypic variation were assessed us-
ing B1– B7 (n = 820) as a training data set and the subse-
quent B8–B11 (n = 412) batches as an evaluation data set. 
The 1-Mb windows and SNPs were ranked based on the 
proportion of variation explained in the training data set, 
with the windows and SNPs respectively that explained 
the most variation considered as major. The proportion of 
phenotypic variation explained in the evaluation data set 
was based on all SNPs or the single most informative or 
major SNP within the top 1%, 5%, 10%, 20%, and 50% of 
the 1-Mb windows explaining the most variation uncov-
ered in the training data set. GPVs were based on subsets 

http://onlinelibrary.wiley.com/doi/10.1111/age.2015.46.issue-4/issuetoc


Evaluat ion of SNPs for predict ion of age at  puberty  in sows    405

of major SNP and 1-Mb windows obtained in the training 
data set using the mean posterior SNP effects estimated 
in the training data set or SNP effects re-estimated in the 
evaluation data set. 

Response to direct selection for age at puberty per year 
was calculated by ΔG = hgiσg/t, where hg is the square root 
of the proportion of the phenotypic variation explained 
by SNPs (genomic heritability), i is the selection intensity, 
σg is the genetic standard deviation (Table 1) and t is the 
generation interval (Table 1). The proportion of females 
and males selected was assumed to be 30% and 10% re-
spectively, corresponding to a standardized average se-
lection intensity of 1.457. If males were not selected, as 
would be the norm without a genetic selection tool, the 
selection intensity dropped to 1.159. The generation inter-
val was assumed to be 1.5 years. The predictive accuracy 
of the genetic variance by GPV was estimated by dividing 
the sample correlation between the GPV and the observed 
phenotypic values by the square root of heritability (h2). 

The effect of age at puberty and AVPR1A genotype 
(G31E) on the probability that females would produce first 
two parities was evaluated by fitting age at puberty as a 
covariate in a generalized linear mixed model using a logit 
link function that included batch, diet and AVPR1A SNP 
genotypes as fixed effects and litter as a random effect. 

Candidate gene identification 
The porcine genome was divided into 1-Mb non-over-

lapping windows and extended by 1 Mb on each side 
in the major QTL regions to search for candidate genes 
using the Sus scrofa Build 10.2 assembly and tools avail-
able in Ensemble’s BioMart – http://uswest.ensembl.
org/biomart/martview – and DAVID – http://david.
abcc.ncifcrf.gov/  

Results and Discussion 

Genome-wide association analyses of major regions 
and SNPs associated with age at puberty 

Age at puberty is a complex trait with one of the largest 
heritability estimates for a reproductive trait (Rothschild 
et al. 1998). The heritability of age at puberty in the re-
source population was 0.42 (SE = 0.09; B1–B11, n = 1232), 
an estimate similar to previous reports (Bidanel 2011). A 
GWAS for age at puberty based on the entire data set (B1–
B11, n = 1232) and all high-quality SNPs from the Porcine 

SNP60 BeadChip (n = 56,424) explained 28.3% of the phe-
notypic variance (Table 1). The three major 1-Mb win-
dows located on SSC4 (7 Mb), SSC12 (2 Mb) and SSC3 (71 
Mb) explained 3.3% of the genetic variation. These three 
regions include potential candidate genes, such as NDRG1 
(n-myc downstream regulated 1; SSC4, 7.8–7.9 Mb), known 
to play a role in DNA damage response and peripheral 
nervous system myelin maintenance; BAIAP2 (brain-spe-
cific angiogenesis inhibitor 1-associated protein 2; SSC12, 1.5–
1.6 Mb), shown to affect signal transduction, dendrite de-
velopment and neuron projection; and M1AP (meiosis 1 
associated protein; SSC3, 71.5–71.6 Mb), known to affect fe-
male gamete generation (http://www.geneontology.org). 

We hypothesized that the selection of subsets of ma-
jor SNPs, such as those identified in the regions described 
above, would explain the majority of the phenotypic vari-
ance captured by the entire SNP panel. To demonstrate 
this, major 1-Mb windows and SNPs were determined 
based on their contribution to genetic variation in the train-
ing data set (B1–B7). The proportion of the phenotypic vari-
ance explained in the training set was estimated based on 
subsets of the top 1%, 5%, 10%, 20%, and 50% 1-Mb win-
dows including all SNPs in the respective windows or in-
cluding the most informative SNP or the SNP associated 
with the largest effect in each window (Tables S1 and S2). 

When all SNPs located in the major subsets of win-
dows were used in the analysis, the proportion of vari-
ance peaked when the top 10% of the windows were 
used, explaining 33.5% of the phenotypic variance (Ta-
ble 2, Fig. 1). The proportion of the phenotypic variance 
explained when the entire panel of high-quality SNPs 
(n = 56,424) was used was 25.2%. The proportion of the 
variance explained was larger when the most informa-
tive SNP from each of the windows was used; the most 
informative SNPs (n = 261) from the top 10% windows ex-
plained 47.1% of the phenotypic variance, the largest pro-
portion of variation explained by markers. Standard devi-
ation of the proportion of phenotypic variation explained 
across subsets of SNPs was limited, varying from 2.8 to 
4.1%. The large proportion of the variance explained by 
SNPs, especially by the most informative SNP from each 
major window across different subsets, was expected be-
cause the same data set was used in ranking and also in 
the evaluation of subsets of the SNPs and windows. How-
ever, the fact that the subsets of SNPs contained in major 
windows explained more variation than the entire SNP 
panel can be attributed to the signal-to-noise ratio in the 

Table 1. Phenotypic means, standard deviation (SD), posterior means of variance components and proportion and the posterior standard devia-
tion (PSD) of the phenotypic variance of age at puberty (AP, B1–B11) and lifetime number of parities (LT-NP, B1–B8) explained by 56,424 SNP effects.

   Genetic Residual Total Phenotypic variance 
Trait  n  Mean (SD)  variance  variance  variance  explained by SNPs (% PSD)

AP  1232  168.9 (19.9)  90.33  229.30  319.63  28.3 (3.0)
LT-NP  899  2.05 (1.60)  0.19  2.27  2.45  7.5 (1.6)

http://uswest.ensembl.org/biomart/martview
http://uswest.ensembl.org/biomart/martview
http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
http://www.geneontology.org
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high-density SNP-based GWAS. The fact is that not all 
SNPs represented in the Porcine SNP60 panel are predic-
tive for a given trait and, consequently, represent a source 
of noise. We expect that association analyses using sub-
sets of significant SNPs that explained the predominant 
genetic variance are less affected by noise carried by the 
majority of the SNPs from the whole panel that are not 
associated with the trait of interest. 

Evaluation of genomic predictors for age at puberty 
Practical applications of genomic information in ani-

mal breeding could be more valuable if SNP panels could 
capture functional effects across populations and data 
sets. Major SNPs identified in B1–B7 (n = 820) were eval-
uated in subsequent batches (B8–B11, n = 412) of similar 
genetics by using SNPs selected based on their effects es-
timated in training and by re-estimating their effects in 
the evaluation set. When SNP effects were re-estimated in 
B8–B11, the proportion of phenotypic variance explained 
by all SNPs located in subsets of major windows varied 
from 12.3% to 36.8%, reaching the peak when all SNPs 
within the top 20% of the windows were used followed 
by a decline when more SNPs were added (Table 2). In 
contrast, the most informative SNPs located in the major 
windows captured less phenotypic variance, with pro-
portions varying from 6.5% (top 1%) to 23.7% (top 50%). 
This was expected given that the SNPs identified as be-
ing the most informative in the training set are likely not 
the direct sources of the association and the linkage dis-
equilibrium status between them and the QTLs were re-
defined in the evaluation population. 

Traits that could potentially benefit the most from ge-
nomic selection include those that are expensive to mea-
sure, expressed late in life or limited by sex. The ability of 
the GPVs to predict the phenotype in the evaluation data 
set was substantially reduced if the SNP effects used to 
calculate GPV were estimated in the training population. 
For example, the largest correlation between the pheno-
type and GPVs (rY,GPV) was 0.17 and was obtained when all 
SNPs from the top 50% of the major windows were used 
in the analysis (Table 3). The correlation was negligible  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
when the most informative SNPs from the subsets of ma-
jor windows were used. Predictive accuracies of the ge-
netic variance by GPV had increased with larger subsets 
of major 1-Mb windows up to 50% (0.26) followed by a 
plateau (Fig. 2). These results were expected because pre-
vious reports in different species showed that SNP effects, 
or GPVs, are not well transferable across populations (e.g. 
Kachman et al. 2013). When GPVs were calculated based 
on the same subsets of major SNPs but with their effect es-
timated in the evaluation data set, there was a general in-
crease in the ability of the GPV to predict the phenotype. 
The rY,GPV varied from 0.46, when all SNPs from the ma-
jor 1% of the windows were included, to 0.81, when the 
top 50% of the windows were included (Table 3). In gen-
eral, using more than 50% of the windows showed a lim-
ited increase in the predictive ability. The use of the most 
informative SNP in the subsets of major windows did 
not improve the phenotypic variance explained; the rY,GPV 
varied from 0.30 (26 SNPs/1% windows) to 0.65 (1 299 
SNPs/50% windows). Results illustrate that, although the 
SNP effects are not robust across populations, informa-
tive subsets of SNP can be identified in training data and 
used in other populations if the effects are re-estimated. 

Table 2. Proportion and posterior standard deviation (PSD) of the phenotypic variation of age at puberty explained by subsets of major SNPs and 
1-Mb windows in the training (B1–B7) and evaluation data sets (B8–B11).

 Proportion of phenotypic variation Proportion of phenotypic variation
 explained by SNPs (%, PSD,  explained by SNPs (%, PSD, 
Percent major          Number of training set: B1–B7, n = 820) evaluation set: B8–B11, n = 412)
1-Mb SNPs within Number of 
windows (%) windows  major SNPs All SNPs  Major SNPs  All SNPs  Major SNPs

1  652  26  23.7 (3.4)  28.0 (2.8)  12.3 (4.1)  6.5 (2.3)
5  3422  131  33.0 (3.8)  41.8 (3.2)  25.1 (4.8)  10.5 (3.7)
10  7246  261  33.5 (4.0)  47.1 (3.1)  30.0 (4.8)  21.4 (4.3)
20  14,429  521  31.2 (4.0)  37.3 (4.0)  36.8 (5.0)  19.9 (4.8)
50  33,297  1299  27.2 (3.6)  40.1 (4.1)  32.3 (4.4)  23.7 (4.6)
100  56,424  –  25.2 (3.2)  –  33.2 (4.3)  –

Figure 1. Proportion of the phenotypic variation of age at puberty in 
gilts explained by subsets of major SNPs and 1-Mb windows in the train-
ing (B1–B7) and evaluation (B1–B11) data sets.

http://onlinelibrary.wiley.com/doi/10.1111/age.2015.46.issue-4/issuetoc
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However, this option could be restricted if the availabil-
ity of the phenotypic information in the evaluation pop-
ulation is limited. 

Opportunities for the improvement of age at puberty 
through genomic selection 

One of the advantages of using genomic information 
in animal breeding programs is the opportunity to per-
form selection in both sexes for traits limited in expres-
sion to only one of the sexes. For example, if genomic in-
formation were applied in selection for age at puberty, 
there would be an increase in genetic gain of 20.5% if se-
lection includes both sexes compared to the scenario of 
using females alone, as in the case of mass selection on 
phenotypes. The genetic gain reached the peak when all 
SNPs or the most informative SNPs from the major 10% 
of the windows were used in selection. 

Direct selection for early expression of age at puberty 
will have positive impacts by simply increasing the num-
ber of gilts that cycled multiple times and are reproduc-

tively mature prior to breeding. In addition, we recently 
provided evidence that age at puberty represents an early 
indicator of reproductive longevity and that potential 
pleiotropic DNA markers can be used to improve both 
traits (Tart et al. 2013). Evidence of common loci and path-
ways that influence both traits was demonstrated by neg-
ative relationships between the GPVs of age at puberty 
and lifetime number of parities (–0.41; P < 0.0001) and 
other lifetime productivity phenotypes such as lifetime 
number born alive (–0.45; P < 0.0001) and lifetime total 
number born (–0.45; P < 0.0001). Due to the limited ef-
fect of the full SNP panel in explaining phenotypic vari-
ation for lifetime reproductive longevity, our study ana-
lyzed the ability of the major loci associated with age at 
puberty to predict lifetime number of parities rather than 
using genome-wide prediction models. Potential pleiotro-
pic loci were determined by analyzing the proportion of 
genetic variance for age at puberty and lifetime number 
of parities explained by 1-Mb windows. In Fig. 3, win-
dows that affect both traits are represented on the diag-
onal of the x- and y-axes compared to trait-specific win-

Table 3. Correlation (r) between the phenotype (y) and genomic prediction value (GPV) for age at puberty in the evaluation data set (B8–B11). GPVs 
were calculated based on the SNP effects estimated either in the training (B1–B7) or in the evaluation (B8–B11) data sets.   

   rY,GPV based on SNP effects calculated rY,GPV based on SNP effects calculated 
Percent major Number of  in the training data set (B1–B7) in the evaluation data set (B8–B11)  
1-Mb SNPs within Number of 
windows (%) windows  major SNPs All SNPs  Major SNPs  All SNPs  Major SNPs

1  652  26  0.02  0.00  0.46  0.30
5  3422  131  0.15 –0.01 0.67  0.47
10  7246  261  0.10 0.07  0.75 0.60
20  14,429  521  0.13  0.04  0.70 0.54
50  33,297  1299  0.17 0.10 0.81 0.65
100  56,424  –  0.17  –  0.82  –

Figure 2. Prediction accuracy of the genetic variance by genomic pre-
diction values for age at puberty in gilts by subsets of major SNPs and 
1-Mb windows in the evaluation data sets (B8–B11).

Figure 3. Proportion of genetic variance for age at puberty (X: B1–B11) 
and lifetime number of parities (Y: B1–B8) explained by 1-Mb windows. 
The reference lines are the 99% quantiles for the proportion of genetic 
variance explained by 1-Mb windows.



408     Lucot ,  Spangler ,  Trenhaile ,  Kachman,  & Ciobanu in Animal Genet ics  46 (2015)

dows displayed parallel to the respective axes. Two of 
the windows that were associated with both traits (pro-
portion of genetic variance >99% quantile) are located on 
SSC5 (30 Mb) and SSC16 (3 Mb). The window mapped 
on SSC5 (30 Mb) includes AVPR1A (arginine vasopressin 
receptor 1A; SSC5, 30 Mb), a gene involved in social and 
sexual behavior (Walum et al. 2008; Gobrogge et al. 2009). 

The effect of age at puberty and the genotype of a 
nonsynonymous SNP (G31E), located in AVPR1A, on the 
probability that females would produce up to two pari-
ties were evaluated in a generalized linear mixed model. 
Across all genotypes, a delay in age at puberty was associ-
ated with a reduction in the probability of a female to gen-
erate a first or second litter (P < 0.0001). The GG genotype 
was associated with higher probability of the gilts to pro-
duce the first parity compared to AG and AA genotypes 
(P < 0.05) and also a higher probability of the sows to pro-
duce the second parity compared to the AA genotype (P 
< 0.10). Interestingly, the difference in probabilities be-
tween the favorable GG genotype and the other genotypes 
in generating the first parity increases with the delay in 
the expression of age at puberty (Fig. 4). For example, 
the difference in probability to generate parity 1 between 
gilts with the favorable GG genotype and gilts with the 
alternate AA homozygote genotype was 5% higher in the 
group of gilts that expressed early estrus (SD < –1) com-
pared to 12.9% higher in the group that expressed estrus 
late (SD > 1). The difference in probabilities of generat-
ing the second parity between genotypes remained simi-
lar across the age at puberty spectrum. 

Conclusions 

Although age at puberty has been shown to be one of 
the early predictors of reproductive longevity, estrus de-

tection is labor intensive and not used in commercial set-
tings. In this case, the use of genomic information could 
be applied early in life to predict whether a gilt will be 
successful reproductively. In our resource population, we 
have shown that a limited number of informative major 
markers could reach or exceed the proportion of the vari-
ation explained by a full SNP data set, in our case the Por-
cine SNP60 BeadArray. Evaluation of the predictive po-
tential of major SNPs in a subset of subsequent batches 
of gilts demonstrated that all SNPs from major 1-Mb win-
dows were able to explain more phenotypic variation 
compared to single most informative SNPs, most likely 
due to the changes in linkage disequilibrium status be-
tween major SNPs and the QTL. In addition, retraining 
the subset of major SNP in the evaluation population im-
proved the potential of the GPV to explain phenotypic 
variation as compared to using GPV derived from SNP 
effects in the training data. In general, although some of 
the major SNPs and windows had consistently ranked 
high and some displayed pleiotropic properties influenc-
ing both age at puberty and reproductive longevity, their 
individual ability to explain substantial phenotypic vari-
ation was limited. 
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Figure 4. The genotypes of the G31E polymor-
phisms in AVPR1A influence the success rate of 
sows generating the first two litters (genotypes 
with the same subscript differ:  
a, P < 0.10 ;  
b,c, P < 0.05).
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