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Rapid introduction of cheap and precise genotyping technology has created a void 

between genotypes and phenotypes in maize breeding. While detailed genetic 

information is easily accessible, the data are lacking robust phenotypes to be used in 

mapping studies like genome-wide association. As a result, high-throughput phenotyping 

tools are necessary to rigorously characterize specific traits. In this study, agronomic 

traits and an active spectrometer system were used to monitor 36 era hybrids – popular 

commercial maize hybrids grown from 1936 to 2012 – to discover how various traits 

have changed over time. In conjunction with increased grain yield of 76 kg/ha per year, 

modern hybrids displayed a decreased anthesis silking interval, as well as decreased stalk 

lodging, root lodging, plant height, ear height, and early vegetative biomass, and 

increased staygreen. In addition, modern hybrids displayed increased leaf chlorophyll and 

water contents. The 760/730 vegetation index, designed to study plant health and nitrogen 

uptake using the red edge region of the electromagnetic spectrum, correlated strongly to 

total leaf chlorophyll content (R
2
 = 0.64) and also displayed higher values in modern 

hybrids at numerous points throughout the growing season. By understanding these 

morphological and physiological trends of maize hybrids over time, breeders can 

continue to select for traits that are known to enhance yield. Moreover, this research 

shows that high-throughput phenotyping tools that estimate chlorophyll content can be 

implemented into a breeding program because the technology can detect superior 

cultivars. 
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Overview of Work 

 Retrospective analyses are essential for breeders to understand how plant growth 

and development has changed over time. When comparing modern maize hybrids to 

popular cultivars used throughout the 20
th

 century, distinguishable traits between the 

hybrids provide a glimpse of how productivity has increased. Now, with phenotyping 

technology that can quickly assess plant health, one can monitor the various hybrids 

throughout the growing season. 

As a result, this research utilizes a set of era hybrids – hybrids used readily by 

farmers from 1936 to 2012 – to study physiological differences over time. The hybrids 

were grown in well-watered conditions and they were phenotyped routinely with visual 

scores, laboratory assays, and a hyperspectral reflectance sensor. Leaf samples were 

destructively harvested to measure chlorophyll and water content in the lab. Chlorophyll 

content and water content are basic leaf characteristics that inform about a plant’s health 

and productivity. However, the destructive samples require many man hours and it is 

unrealistic to use this protocol to monitor large research plots throughout the growing 

season. Rather, data collection with a spectrometer has numerous advantages. Such 

sensors are nondestructive and high-throughput – one research plot can be measured in a 

few hours with two people, and data can be collected throughout the growing season on 

these large populations. Also, the sensors can capture data outside the boundaries of the 

visible spectrum, detecting differences not visible to the human eye and without the need 

of a laboratory. Finally, the sensors use calibrated reflectance values so comparisons can 

be made across the season and across years. 
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Along with these, basic agronomic traits were noted. Grain yield, senescence, root 

and stalk lodging, aboveground biomass, canopy temperature, and flowering notes were 

gathered to further characterize the hybrids. 

 Because this research utilizes a set of era hybrids and new phenotyping 

technology, two primary objectives exist. One objective is to determine how well 

vegetation indices, calculated from the reflectance data, correlate to the destructively 

sampled leaf traits (chlorophyll and water content). The second objective is to observe 

how all of the traits have changed from older to newer hybrids. In other words, the goal is 

to determine how maize has changed with selection for yield. 

 The first objective was realized by harvesting leaf samples for laboratory analysis 

and using the sensor to record reflectance data on the same days. In turn, the 

measurements could be correlated to determine if the sensor was actually monitoring leaf 

chlorophyll and water content. Next, the second objective was accomplished in two 

distinct ways. One, the general agronomic traits provided an overview of how maize 

gross morphology has changed over time. Two, the sensor measurements provided details 

about the unique leaf characteristics of modern hybrids compared to historic cultivars 

throughout the growing season. In all, information about changes in maize physiology 

that accompany the increase in grain yield over time will prove useful to the breeding 

community. 
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Chapter 1 

Literature Review 

Introduction 

 Maize agriculture is vital for the wellbeing of humans across the globe. Maize is a 

preferred staple in developing countries and it is necessary for the production of milk, 

eggs, and meat in developed nations (Shiferaw et al., 2011). The demand for maize has 

outpaced wheat and rice and it will double by 2050 (Shiferaw et al., 2011). However, the 

climate will not make this task of increasing production easier. Drought is already 

prevalent in many maize-growing regions, and it is only expected to become more severe 

in the future (Harrison et al., 2014). For breeders, the goal is to develop stress tolerant, 

productive cultivars. Grain yields have increased consistently since the advent of hybrid 

maize because of improved stress tolerance (Duvick et al., 2004). Newer hybrids are able 

to maintain production as they are planted at higher densities (Duvick et al., 2004). These 

trends must continue to meet the projected maize demands. 

 Currently, breeders have access to powerful genotyping methods, and high-

throughput phenotyping tools are in development (Campos et al., 2004 and Montes et al., 

2007). These precision phenotyping techniques need to be utilized to make the genomic 

information even more powerful. The phenotypes delivered by this new technology may 

provide the next push in breeding that continues to increase maize productivity. 

Demand for Maize Agriculture 

 The worldwide utilization, and therefore demand, of maize is incredibly high. 

Maize is grown in many different regions and climates, and there is a wide variety of 

germplasm to make this possible. While maize has a number of uses in each distinct 
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region of the world, one thing remains – maize is a critically important crop for the 

livelihoods of people everywhere. 

 The United States of America is extremely dependent on maize production. Until 

2006 there was an excess of inexpensive maize in the USA (Klopfenstein et al., 2013). As 

a result, livestock operations grew in size. However, with the advent of the ethanol 

industry in 2006, the demand and price of maize increased (Klopfenstein et al., 2013). In 

the 1960s, as much as 75 percent of the maize was fed to livestock (Benson & Gibson, 

2002). Now, the primary uses of maize are split between feed, fuel, and food. The 

National Corn Growers Association reported the following uses of maize in 2014:  Feed 

(38.8%), Distiller’s Dried Grain with Solubles (7.6%), Fuel Ethanol (30.5%), Exports 

(12.9%), High-Fructose Corn Syrup (3.6%), Sweeteners (2.1%), Starch (1.8%), 

Cereal/Other (1.5%), Beverages (1%), and Seed (0.2%) (Bowling & Novak, 2015). 

 Worldwide, considering over 4.5 billion people in 94 developing countries, maize, 

wheat, and rice provide at least 30% of the food calories (Shiferaw et al., 2011). Maize 

alone provides over 20% of food calories in certain parts of Africa and Central America 

(maize is the preferred staple for 900 million poor consumers) (Shiferaw et al., 2011). 

Maize is obviously an important part of global food security. 

 Pressure continues to mount on these poor nations as other countries develop 

rapidly. Economic growth in various parts of Asia, the Middle East, and Latin America 

allow people to purchase milk, eggs, and meat (Shiferaw et al., 2011). As a result, 

additional maize is demanded and the price increases. While this might benefit some 

farmers, it is detrimental to poor consumers and poor nations that desire to import the 

grain. 
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 Shiferaw et al. (2011) analyzed trends in global maize production and its effect on 

land use. Land used for maize production is currently around 150 million hectares, which 

is a 50% increase from 1961 because of the growing popularity of maize. Much of the 

land usage increase was a result of newly cultivated areas in developing countries; 

farmers typically choose maize because it is much higher yielding than wheat or rice, and 

they don’t have much land to utilize. The global demand for maize has dramatically 

increased since 1961 – from 189 million metric tons to 771 million metric tons, which is 

a much higher demand than wheat or rice – this is primarily from the increasing 

popularity of maize in developing nations. As the population continues to grow, as people 

make more money, move to the city, and eat more meat, the demand for maize will 

double by 2050 (Shiferaw et al., 2011). 

 Finally, while most of these problems seem to affect the developing world, the 

United States is still of extreme importance. Wu and Guclu (2013) performed an analysis 

of the global maize trade from 2000-2009. The United States is by far the largest exporter 

of maize worldwide; many nations depend on our maize production to meet their needs. 

Because the United States is such a large exporter, many nations solely rely on the USA 

for their maize. Therefore, if production decreased in the United States, many nations 

would be without maize – there would not be enough worldwide production to supply 

everyone’s needs. For example, Canada and Mexico import over 99% of their maize from 

the USA; in addition, four out of the top five importers of maize rely heavily on the USA 

– Japan (90% from the USA), Taiwan (80%), Egypt (40-75%), and South Korea (85%). 

Mexico was impacted in 2005 when the United States reduced exports in order to fuel the 

new ethanol industry. As a result, prices soared and riots broke out in Mexico because the 



6 

 

poor could not afford corn tortillas anymore (Wu & Guclu, 2013). In addition, the 

drought of 2012 showed how a decreased supply of maize could affect the world. As 

expected, the world maize price increased, and trade and consumption decreased (Chung 

et al., 2014). Decreased consumption enhances food insecurity, and it especially hurt the 

poor countries in the Caribbean, northern Africa, and western Asia because of their 

dependency on imports (Chung et al., 2014). Obviously, maize production in the United 

States is critical for food security around the globe. 

Stress Tolerant Traits 

 In order to increase maize production in light of highly variable climatic 

conditions, breeding efforts must develop cultivars which have high yield potentials in 

both stressed and optimal environments. Certain physiological characteristics can 

enhance productivity in both situations. 

Naturally, during drought, plants have reduced leaf area and seed number in order 

to preserve a few viable seeds (Tardieu et al., 2014). Reducing leaf area in turn reduces 

the transpiration rate and water is saved for the reproductive stage (Tardieu et al., 2014). 

However, this conservative strategy would be completely outperformed under mild 

drought scenarios because it stops accumulating biomass (Tardieu et al., 2014). 

Therefore, different traits/physiology can lead to drought tolerance in different situations 

– it all depends on the drought scenario (Tardieu, 2012, Harrison et al., 2014, and Tardieu 

et al., 2014). In order to make strides in drought tolerance in a certain area, one must ask 

whether an allele/trait confers a positive effect on yield in the majority of years for that 

specific location (Tardieu, 2012). 
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 Yue et al (2005) describe three mechanisms toward drought resistance that have 

unique genetic bases: drought escape, drought avoidance, and drought tolerance. The 

drought escape mechanism is simply a shortened life cycle. Drought avoidance 

culminates in the least reduction of leaf hydration, while drought tolerance expresses 

itself as maintained plant life even when tissues are dehydrated (Blum et al., 1982 and 

Yue et al., 2005). 

 Typically, drought tolerant traits enable plants to survive severe droughts. In the 

most extreme case, resurrection plants can become totally dehydrated and then recover 

upon rehydration. This is made possible by constitutive traits like a high antioxidant 

capacity, high sugar levels, and expression of late embryogenesis abundant and heat 

shock proteins (Gechev et al., 2012). While many other pathways accompany these 

constitutive traits to provide desiccation tolerance, it is still uncertain whether 

resurrection plant genes can be used to provide drought tolerance in agronomic crops. 

On a more practical note, drought tolerant crops are generally good at 

remobilizing stem water-soluble carbohydrates, accumulating molecular protectants, 

maintaining cell-membrane stability, and detoxifying cells (Tuberosa, 2012 and Yue et 

al., 2005). Redox molecules can act as signals for the cell to detoxify itself to prevent 

irreversible damage to photosystems, and the ability of a membrane to maintain its 

integrity during dehydration and rehydration is imperative (Chaves & Oliveira, 2004). 

Even though these features allow plants to maintain functionality in a dehydrated state, it 

results in decreased carbon assimilation and overall productivity through stomatal 

closure, reduced leaf growth, and leaf rolling (Chaves & Oliveira, 2004 and Tardieu, 

2012). 
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 On the other hand, drought avoidance is characterized by enhanced water uptake 

and maintained turgor pressure in the cells (Tuberosa, 2012 and Yue et al., 2005). In 

other words, the plant is avoiding the drought because it still has high leaf water 

potential. Primary traits influencing drought avoidance are deep roots and osmotic 

adjustment. Root exploration allows necessary water to be acquired, and the 

accumulation of solutes in cells maintains turgor pressure (Tuberosa, 2012). Leaf-canopy 

temperature is a reliable indicator of the drought avoidance mechanism; if a plant closes 

its stomata because of low leaf water potential then there is a reduction in evaporative 

cooling (Blum et al., 1982). 

As decreased leaf growth is the first effect of water stress on plants, one can 

decipher between avoidance and tolerance mechanisms based on the variability in this 

process (Tardieu, 2012). Leaf relative water content (LRWC) has a strong positive 

correlation with dry matter and height, indicating that maintained water content leads to 

maintained growth (Mohammady-D. & Hasannejad, 2006). As early as 1990, correlations 

were made between growth and yield; Sinclair, et al. (1990) showed very strong positive 

correlations between biomass and yield in maize under water stress. Maintained growth 

should be the result of plants utilizing the drought avoidance mechanism. 

However, increasing total biomass should not be the goal while breeding for 

drought tolerance (Edmeades et al., 1999). Instead, partitioning should be directed to the 

developing ear, increasing the harvest index (HI) (Edmeades et al., 1999). Maintaining 

growth leads to higher yield potential under mild drought conditions; maintaining leaf 

growth shares genetic determinism with reproductive growth, so leaf growth is correlated 

with ear growth rate, a short anthesis silking interval (ASI), and a reduced abortion rate 
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(Tardieu, 2012). The ASI is the time between pollen shed and silk emergence. While 

maintaining growth seems suitable for most agriculture environments, it holds the risk of 

failing during a severe drought. 

 A new drought resistant hybrid from Monsanto, which was genetically engineered 

to express cold shock protein B, exhibits a drought tolerant phenotype. The hybrid had an 

average yield increase of 6% in water limiting conditions, but that was associated with 

higher soil water content at 0.5 meter depth, increased ear growth, increased harvest 

index, and decreased leaf area, leaf dry weight, and sap flow rate (Nemali et al., 2015). 

Somehow, the hybrid was able to conserve water (more water in the soil and decreased 

leaf growth and sap flow rate) while still partitioning enough assimilates to the ear to out-

yield the other hybrid, which had the same genetic background just without the transgene 

(Nemali et al., 2015). The unique phenotype expressed can most likely be attributed to 

the environment it was created for – an extreme drought. The experiment was conducted 

in California and water was withheld from the V10 to R3 stages. This resulted in severe 

stress; additional irrigation was required to rescue the crop from failure during some 

years (Nemali et al., 2015). This extreme environment enabled the drought tolerant 

mechanism of decreasing leaf area and conserving water to be successful. 

 However, drought avoidance mechanisms are the norm in the industry. Progress 

achieved by breeders has mainly been in the area of constitutive traits affecting 

dehydration avoidance (Tuberosa, 2012). In Texas, compared to a conventional hybrid, a 

drought-resistant cultivar extracted the same amount of water or less from the soil, but 

extracted more water from deeper soil layers (Hao et al., 2015). The resistant cultivar had 

a higher yield attributed to its increased biomass, harvest index, and kernel weight (Hao 
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et al., 2015). In addition, a CIMMYT study showed that delayed senescence was the most 

important factor for hybrid grain yield under water stress (Cairns et al., 2012). 

 Dupont Pioneer Optimum AQUAmax hybrids display drought avoidance traits by 

maintaining leaf water potential. In a large on-farm study, the AQUAmax hybrids were 

6.5% higher yielding in water stressed conditions and 1.9% higher yielding in optimal 

conditions compared to other popular hybrids (Gaffney et al., 2015). Therefore, drought 

avoidance mechanisms are capable of not only improving yield under mild drought 

scenarios, but also maintaining yield in optimal conditions. Progress needs to continue for 

drought avoidance in target environments that frequently experience mild droughts. 

 Luckily, large genetic variability does exist for growth under water deficit 

(Tardieu et al., 2014). Some plants refrain from growing in relatively wet soil while 

others continue growing until soil-available water is near its minimum (Tardieu et al., 

2014). Multiple studies have even found QTLs for leaf elongation rate under different 

temperatures, vapor pressures, and soil water statuses, and could predict how each line 

would respond in unique environments (Reymond et al., 2003 and Sadok et al., 2007). 

Primarily, these differences in growth rates are linked to hydraulic processes in the plant 

(cell turgor, osmotic adjustment, cell wall extensibility, water potential, conductance, 

etc.), and they are responsible for sink strength (a kernel’s capacity to store 

photosynthates). Meanwhile, photosynthesis operates through a separate process and 

determines the source strength (amount of photosynthates available). These 

interdependent processes, controlled by water content (growth potential) and chlorophyll 

content (photosynthetic potential), must work efficiently to enhance grain yield (Tardieu 

et al., 2014). 
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Selecting Secondary Traits in Nebraska 

 In Nebraska, a breeder should select for traits, like the AQUAmax hybrids, that 

confer increased productivity in both water limited and optimal environments. According 

to the University of Nebraska-Lincoln website, Lincoln receives approximately 28.93 

inches of rain per year, and the wettest months are May and June with 4.29 and 4.34 

inches, respectively. While drought stresses are sporadic, eastern Nebraska can typically 

expect moist springs and intermittent rainfall throughout the growing season; late 

terminal water stresses are most frequent. As a result, traits can be selected that 

encourage maintained growth and production – drought avoidance. 

 Obviously, grain yield is the primary trait of interest. However, if other secondary 

traits are selected with grain yield, selection efficiencies can increase (Chapman & 

Edmeades, 1999). One study, under nitrogen stress, showed an increase in selection 

efficiency of 20% by using secondary traits (Chapman & Edmeades, 1999). More 

recently, Dr. Samuel Trachsel of CIMMYT (International Maize and Wheat 

Improvement Center) found that selecting for high NDVI (Normalized Difference 

Vegetation Index) and low canopy temperature can increase grain yields in maize under 

heat and drought stress (personal communication, February 6, 2015). According to 

Chapman and Edmeades (1999), ideal secondary traits should be, “associated with grain 

yield under drought, carry no yield penalty under favorable conditions, be heritable, 

cheap and rapid to measure, stable over the measurement period, and be able to be 

observed at or before flowering so that undesirable parents are not crossed.” 

 As many of the traits have already been mentioned, this section will simply 

summarize secondary traits that could be selected for in Nebraska: 
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 Increased fertile ears per plant (Chapman & Edmeades, 1999). 

 Reduced barrenness (Campos et al., 2004). 

 Increased grains per fertile ear (Chapman & Edmeades, 1999). 

 Increased kernel number per plant (Campos et al., 2004). 

 Increased grain number per square meter (Chapman & Edmeades, 1999). 

 Maintained 1000 grain weight (Chapman & Edmeades, 1999). 

 Reduced ASI (Chapman & Edmeades, 1999). 

 Quick silk emergence (Campos et al., 2004). 

 Decreased days to 50% anthesis (Chapman & Edmeades, 1999 and Lopes et al., 

2011). 

 Decreased primary tassel branch number (Chapman & Edmeades, 1999). 

 Increased ear growth rate (Campos et al., 2004 and Barker et al., 2005). 

 Maintained photosynthesis (Tardieu, 2012). 

 Maintained stomatal conductance (transpiration rate) (Lopes et al., 2011 and 

Tardieu, 2012). 

 Maintained plant growth (Campos et al., 2004, Lopes et al., 2011, and Tardieu, 

2012). 

 Reduced senesced leaf area (staygreen) (Campos et al., 2004 and Chapman & 

Edmeades, 1999). 

 Increased chlorophyll concentration (Campos et al., 2004). 

 Decreased leaf rolling (Campos et al., 2004). 

 Decreased canopy temperature (Campos et al., 2004). 

 Increased rooting depth (Tardieu, 2012). 
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 Maintained leaf relative water content (Mohammady-D. & Hasannejad, 2006). 

 Increased harvest index (Edmeades et al., 1999). 

Many of these traits are self-explanatory as to why they promote maintained 

growth and productivity under mild drought scenarios. All of the kernel and ear traits 

(ears per plant, kernels per ear, etc.) are directly correlated with yield (Chapman & 

Edmeades, 1999). In addition, these traits are also highly correlated with ASI under 

drought (Chapman & Edmeades, 1999). This proves how important it is for Nebraska 

hybrids to grow and partition photoassimilates to the developing ear in order for the silks 

to emerge quickly, the ASI to decrease, and fertilization to occur. 

Maintained 1000 grain weight and days to 50% anthesis (or maturity) are less 

important characteristics. Grain yield is determined more by kernel number than kernel 

weight; therefore, the focus should be on increasing kernel number and maintaining 

kernel weight (Chapman & Edmeades, 1999). Then, days to 50% anthesis is generally 

reduced when selections are made under drought because the crop is trying to escape the 

late-season stress (Lopes et al., 2011). However, a happy medium must be in place 

because during low stress years, a late-maturing hybrid will be the most productive 

(Tardieu, 2012). 

Energy generation through photosynthesis must be increased. This is 

accomplished by maintaining carbon uptake (stomatal conductance) and by maintaining 

chlorophyll concentration (Tardieu, 2012). Maintained plant growth depends primarily on 

the water status of the plant (Tardieu et al., 2014). Therefore, increased rooting depth and 

leaf relative water content as well as decreased leaf rolling and canopy temperature 

would all benefit this cause (Campos et al., 2004, Lopes et al., 2011, and Tardieu, 2012). 
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Leaves roll because they are experiencing water deficit, and canopy temperature is 

decreased when sufficient water uptake allows the plant to continue to transpire (Campos 

et al., 2004). Finally, while plant growth should be promoted, assimilates should always 

be favorably partitioned to the ear to promote fertility, high yield, and a high harvest 

index (Edmeades et al., 1999). 

Era Advances 

 Because maize breeding has been around for at least a century, remarkable gains 

have been made in the crop’s performance. The current inbred-hybrid breeding method, 

used to exploit the extra vigor in the F1 generation, was designed by George Harrison 

Shull and Edward Murray East in 1908 (Duvick, 2001). Initially double-cross hybrids 

were used, but as the companies improved inbred lines, they were capable of selling 

single cross hybrids in the 1960s (Duvick, 2001). Interestingly, there has been no 

improvement in heterosis over time (the difference between the hybrid and the mid-

parent value) and the molecular mechanisms underlying heterosis are still a mystery 

(Duvick, 2001). As a result, average grain yield in the United States has risen from 1 

megagram per hectare in 1930 to nearly 10 megagrams per hectare in 2011 (Smith et al., 

2014). 

 Pioneer Hi-Bred International has released a summary of how their cultivars have 

changed after years of pedigree breeding to improve inbred lines, and they attribute the 

increases in grain yield to improved efficiency of grain production and improved stress 

tolerance (Duvick et al., 2004). Now, maize hybrids are planted at much higher densities 

than in the 1930s. Actually, today’s hybrids do not yield more per plant than the old 

hybrids; instead, they are able to maintain that yield while being planted much closer 
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together. In addition, the new hybrids outperform the old hybrids in low- and high-

yielding environments. When a series of hybrids sold by Pioneer Hi-Bred International 

from 1930 to 2000 were planted under drought, linear gains in grain yield over time were 

similar to gains in normal conditions (Duvick et al., 2004). 

 Changes in secondary traits have enabled new hybrids to become more productive 

in stressful environments. Several changes have occurred, including a shorter ASI, more 

ears per 100 plants, increased staygreen, reduced stalk and root lodging, less European 

corn borer damage, and increased tolerance to northern corn leaf blight (Duvick et al., 

2004). In addition, traits like smaller tassels, increased grain starch, more upright leaves, 

and fewer tillers allowed the plants to be more efficient in transporting assimilates to the 

grain. Assimilates were delivered to the developing ear rather than to extra vegetative 

growth in the tassel or tillers (Duvick et al., 2004). 

 Tollenaar & Wu (1999) found that yield improvements can be attributed to greater 

stress tolerance. They showed that new hybrids outperform old hybrids in all scenarios:  

high plant density, weed interference, low night temperatures during grain-filling, low 

soil moisture, and low soil nitrogen. The new hybrids were advantageous because they 

captured and used resources more efficiently. Primarily, new hybrids intercepted 

sufficient solar radiation from increased leaf angles and staygreen characteristics, and 

their roots could acquire enough water and nitrogen to maintain a larger source/sink ratio 

(Tollenaar & Wu, 1999). Valentinuz and Tollenaar (2004) noticed that newer hybrids had 

a larger leaf area index at flowering and that old hybrids senesced 3.4 and 2.1 times faster 

than newer hybrids during two separate halves of grain-filling. This prolonged period of 

photosynthesis during grain fill and the efficient partitioning to the kernels has enabled 
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new hybrids to accumulate greater biomass at high plant densities (Tollenaar & Lee, 

2006). 

Using hydroponics, Sanguineti et al. (2006) noticed that newer hybrid seedlings 

had significantly reduced sizes and weights (of roots and shoots) compared to old 

hybrids. They attributed this to the increase in fertilizer and plant density experienced by 

new hybrids. As a result, new hybrids would not need vigorous roots to capture nutrients, 

and they could delay competition (Sanguineti et al., 2006). On the other hand, Hammer et 

al. (2009) noted a change in root architecture as the most likely cause for increased grain 

yields in maize. In their model, as long as water was available at depth, narrow, deep, and 

steep roots proved to be more important than changes in canopy architecture for 

increased biomass and yield at high density. 

Abscisic acid (ABA) is a plant growth regulator that encourages survivability 

rather than productivity – increased concentrations lead to stomatal closure, leaf 

shedding, and tip kernel abortion. Yields are said to increase when ABA leaf 

concentration is reduced in mild-drought scenarios. New hybrid seedlings had less ABA 

in their leaves 24 hours after water stress compared to old varieties (Sanguineti et al., 

2006). Therefore, selection may have favored those genotypes that reduce ABA 

production and/or signaling (Sanguineti et al., 2006). 

Phenomics 

 In order to create hybrids that bear these beneficial traits, breeders need to 

integrate phenotyping and genotyping technologies in conjunction with crop modeling 

programs (Cooper et al., 2014). While each of these aspects is crucial, and while 

phenotyping involves many variables (experimental design, managed environments, 
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understanding soil variability, etc.), this review will focus on the acquisition of 

measurements by new phenotyping technology. 

 The phenome refers to the phenotype as a whole; therefore, phenomics is the 

gathering of high-dimensional phenotypic data of an organism (Houle et al., 2010). Many 

authors suggest that large-scale phenotyping is the “natural complement to genome 

sequencing as a route to rapid advances in biology,” so the field of phenomics must be 

pushed to the forefront (Houle et al., 2010). 

While there has been an exponential increase in genotyping technologies and a 

similar decrease in cost per data point, the ability to measure important phenotypes has 

not kept pace; phenotyping large experiments for multiple traits remains laborious and 

expensive (Campos et al., 2004 and Montes et al., 2007). As QTL mapping, genome wide 

association studies, and genomic selection have become mainstays, a lack of accurate, 

rapid, precise, thorough, reproducible, and descriptive phenotypes limits the discovery 

power of these genomic technologies. Instead, high throughput phenotyping would allow 

plant characteristics to be captured in detail, and they would provide reliable estimates of 

important traits (Campos et al., 2004). 

 For a high throughput phenotyping technology to be successful, it must be able to 

take many measurements rapidly (Cooper et al., 2014). In a commercial breeding 

program, multiple breeders have multiple breeding cycles to evaluate every season – 

from new inbred evaluations, early testing, to final pre-commercial evaluations (Cooper 

et al., 2014). As a result, the number of genotypes to be phenotyped for the traits of 

interest will be in the tens of thousands (Cooper et al., 2014). In addition, these 

phenotypes need to be analyzed in the field. Oftentimes traits analyzed in the laboratory 
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do not correlate well with how the plants behave season-long in the field (Passioura, 

2012). Next, dynamic traits such as drought tolerance need to be monitored throughout 

the season (Montes et al., 2007). High throughput phenotyping that can take many 

measurements throughout the growing season can capture the genes that are active at 

different phases of plant development (Montes et al., 2007). 

 Two technologies that are promising are near-infrared spectroscopy on harvesters 

and spectral reflectance of the plant canopy (Montes et al., 2007). With near-infrared 

spectroscopy on harvesters, the plant material can be analyzed as it is harvested. 

Reflectance values corresponding to one plot are summarized in the near-infrared 

spectrum. By using calibration models with known references, the spectrum can elucidate 

many physical and chemical characteristics of the harvested material. This spectroscopy 

technique reduces manpower and expenditure for determining significant traits, while 

producing representative measurements with smaller sampling errors. In maize, this 

technique has provided accurate details of grain dry matter, starch, and crude protein, and 

it has the potential to determine other quality components like amino acids, fatty acids, 

and vitamins (Montes et al., 2007). 

Canopy spectral reflectance is promising because radiation that is reflected off of 

a leaf can provide information about the status of that leaf (Peñuelas & Filella, 1998). 

The unique reflectance signatures are a result of leaf surface properties, internal structure, 

and concentrations and distributions of biochemical components. A typical reflectance 

pattern shows low reflectance in the visible spectrum (400-700 nm) because of absorption 

by photosynthetic pigments. Meanwhile, since there are no molecules which absorb near-

infrared radiation (700-1300 nm), the high reflectance values in that region primarily 
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represent cell structure. Finally, the middle infrared region (1300-3000 nm) is best linked 

to water content (Peñuelas & Filella, 1998). Figure 1.1 displays a typical reflectance 

curve of a healthy maize leaf. 

 Canopy spectral reflectance is a non-invasive technique that allows for high 

temporal resolution measurements of dynamic traits (Montes et al., 2007). Sensors 

capture the reflectance from the canopy and a spectrum is produced as a result; these 

sensors can be mounted on tractors, unmanned aerial vehicles (UAVs), wands, and even 

satellites (Montes et al., 2007 and Thenkabail et al., 2014). Physical and chemical 

characteristics of the plot can be inferred (following correlation studies), like canopy 

architecture, water status, and nitrogen concentration. 

Two kinds of canopy spectral reflectance sensors exist: active and passive 

(Montes et al., 2007). Active sensors have their own light source; radiation is generated 

within the sensor which is directed toward the canopy. In turn, it also measures the 

proportion of incoming energy that was reflected off of the canopy. Active sensors can be 

used at any time during the day or night because they are not dependent on radiation from 

the sun. In addition, active sensors are less sensitive to environmental conditions and are 

useful for multi-location trials (Montes et al., 2007). On the other hand, passive sensors 

utilize the electromagnetic energy from the sun to measure reflectance. Sensors observe 

the total radiation from the sun and the proportion of that radiation that is reflected off of 

the plant canopy. Passive sensors can measure reflectance from a wide range of 

wavelengths, but they are influenced by environmental conditions (Montes et al., 2007). 

 Hyperspectral data provides the best coverage of the electromagnetic spectrum; 

100s to 1000s of narrow bands can provide reflectance information across the spectrum 
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(Thenkabail et al., 2014). To this point, much research has been conducted with hand-

held spectrometers like the FieldSpec (Analytical Spectral Devices, Inc.) which operates 

from 400 to 2500 nm and has small bandwidths of 1 to 10 nm (Thenkabail et al., 2014). 

Devices like these are favored because they are easy to use and they avoid challenges like 

cloud cover and high costs of airborne systems. However, to become more high-

throughput, the use of airborne systems and satellites are also being developed. The main 

obstacles to overcome with the use of this airborne technology are the background noise 

and atmospheric effects (Thenkabail et al., 2014). 

 Hyperspectral data as a whole has other concerns. First, one has to mine large 

volumes of data to find useful information and valuable bands (Thenkabail et al., 2014). 

Second, many of the bands are redundant; typically, bands that are next to each other are 

almost perfectly correlated (680 nm and 690 nm bands have an R-squared of >0.99). 

While the research is nowhere near complete, Thenkabail et al. (2014) have identified 15 

to 20 unique, non-redundant bands which can provide useful descriptions of vegetation. 

Vegetation Indices 

 When a small number of spectral bands can be utilized for analysis, the data is 

much more manageable. Equations that use these optimal spectral bands have been 

designed that can describe certain characteristics of the vegetation – these calculations are 

called vegetation indices (Thenkabail et al., 2014). Vegetation indices are more powerful 

than analyzing individual bands by themselves (Bannari et al., 1995). 

 The power of the vegetation indices stems from the inverse relationship of the 

near infrared and red regions of the electromagnetic spectrum. A healthy plant will reflect 

high amounts of radiation in the near infrared region and low amounts of radiation in the 
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red region. As a result, the ratio of near infrared reflectance over red reflectance is the 

baseline for distinguishing plants based on their health status, or color. In fact, the first 

vegetation index created, the simple ratio, used this exact equation (𝑆𝑅 =  
𝑁𝐼𝑅

𝑟𝑒𝑑
 𝑜𝑟 

𝑅745

𝑅675
) 

(Birth & McVey, 1968). With their simple ratio, Birth and McVey (1968) found a 

correlation of 0.984 between their index and a visual score of turf color. Most vegetation 

indices take advantage of this inverse relationship. Now, the most popular vegetation 

index, the normalized difference vegetation index (NDVI), simply provides a 

standardized score (with results between 0 and 1) for easier comparisons.  

These indices have the potential to observe many important characteristics of a 

crop, ranging from biomass and leaf area index (LAI), to chlorophyll and carotenoid 

concentrations, to the extent of stresses (Thenkabail et al., 2014).  Because many 

vegetation indices currently exist, a number of different indices will be briefly explained 

and summarized in Table 1.1. 

 First, Thenkabail et al (2014) list their top indices which monitor four generic 

features of vegetation. 

1. HBSI – Hyperspectral Biomass and Structural Index 

2. HBCI – Hyperspectral Biochemical Index 

3. HREI – Hyperspectral Red-Edge Index 

4. HWMI – Hyperspectral Water and Moisture Index 

HBSI is used to study biomass, LAI, plant height, and grain yield; HBCI is used to study 

pigments like carotenoids, anthocyanins, and chlorophyll as well as nitrogen; HREI is 

used to study plant stress and drought; HWMI is used to study plant water and moisture 

(Thenkabail et al., 2014). 
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 Chlorophyll content is a necessary trait to characterize, and there are many 

spectral indices that try to do so. Main et al (2011) compare 73 different chlorophyll 

indices to actual leaf chlorophyll content (mg/m
2
) using leaf level hyperspectral data 

collected from multiple species. When combining the datasets from multiple species 

(maize, tomato, cabbage, and savanna tree), Main et al (2011) found that the red-edge 

position linear extrapolation (REP_LE) and modified red-edge inflection point (mREIP) 

indices had the highest predictive power. When only looking at the maize data, the 

modified NDVI (mND705) and mREIP indices were the best at predicting total 

chlorophyll content (Main et al., 2011). From the University of Nebraska-Lincoln, 

Anatoly Gitelson and co-workers (2003) created a robust index to quantify chlorophyll 

content in vegetation. Their chlorophyll indexred edge (CIRE) had a coefficient of 

determination of 0.95 when correlated with chlorophyll content in maize and soybean 

leaves. 

 NDVI is the most commonly referred to index. Generally, it is known to correlate 

with leaf greenness, crop cover, and crop productivity (Hazratkulova et al., 2012). In one 

study, NDVI correlated to grain yield in winter wheat; higher yielding lines maintained 

NDVI throughout the season (negative correlation between grain yield and reductions in 

NDVI), even through periods of stress (Hazratkulova et al., 2012). Meanwhile, low-

yielding lines experienced a more rapid decline in NDVI (Hazratkulova et al., 2012). Teal 

et al (2006) found an R-squared relationship of 0.77 between NDVI at the V8 stage and 

grain yield of maize. 

 For understanding plant water content, Winterhalter et al (2011) found the best 

indices that correlate to canopy water mass (CWM). CWM is measured by destructively 
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sampling, drying, and weighing the maize plants to see how much total water is in the 

biomass – the units are kilograms per square meter. Coefficients of determination for 

three indices were 0.72; these indices are CWMI I, NIR/NIR, and 760/730, respectively 

(Winterhalter et al., 2011). Additionally, the 760/730 index correlated strongly with 

canopy temperature. In their study, the drought tolerant cultivars had elevated chlorophyll 

content and water mass and low canopy temperatures compared to susceptible cultivars, 

and the respective indices had tight correlations (Winterhalter et al., 2011). With 

improved water status, the plants are able to maintain chlorophyll production and 

transpiration. In wheat, two water indices have shown great correlations with grain yield 

(Gutierrez et al., 2010). These normalized water indices, NWI-1 and NWI-3, have 

correlated with relative water content, leaf water potential, and stomatal conductance in 

the plants (Gutierrez et al., 2010). 

 Finally, the photochemical reflectance index (PRI) correlates with the state of the 

xanthophyll cycle pigments and tells about the efficiency of photosynthesis and the 

degree of stress the plant is experiencing (Gamon et al., 1992). With excess light, the 

absorbed radiation exceeds the amount that can be used in the photosynthetic reactions, 

and the xanthophyll cycle pigment violaxanthin is deepoxidized to zeaxanthin. Therefore, 

if zeaxanthin levels are elevated, the plants are said to be less light use efficient (LUE) – 

they are not utilizing the available radiation in photosynthesis, typically due to stress 

(Gamon et al., 1992).  

 While many more indices exist, those in Table 1.1 have been cited as correlating 

strongly with measured traits. Obviously, as high-throughput phenotyping becomes a 

mainstay in agriculture, robust indices that hold true for a characteristic across 
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experiments need to be identified. Breeders and physiologists need to collaborate in order 

to maximize the potential of high-throughput phenotyping to pinpoint ideal traits that 

need to be selected. 
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Figures 

 
Figure 1.1. Typical reflectance signature of a healthy maize leaf in the visible and 

near infrared regions of the electromagnetic spectrum (400 to 1000 nm). Acquired on 

July 28, 2014 with a spectrometer (USB2000+ VIS-NIR, Ocean Optics, Dunedin, 

FL). 
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Tables 

Table 1.1. Summary of important vegetation indices, their equations, and the traits that 

are monitored. In the equations, an R followed by a number is the reflectance value at 

that specific wavelength in nanometers. Subscript numbers designate the mean 

reflectance value across the listed wavelengths. 

Index Equation Trait Reference 

HBSI1 (R855-R682)/(R855+R682) Biomass (Thenkabail et al., 

2014) 

HBCI8 (R550-R515)/(R550+R515) Pigments (Thenkabail et al., 

2014) 

HWMI17 (R855-R970)/(R855+R970) Water Content (Thenkabail et al., 

2014) 

mND705 (R750-R705)/(R750+R705-

2*R445) 

Chlorophyll Content (Main et al., 2011) 

CIRE (R750-800/R710-730) - 1 Chlorophyll Content (Gitelson et al., 

2003) 

NDVI (R800-R670)/(R800+R670) Productivity, 

Greenness, Cover 

(Main et al., 2011) 

CWMI I R850/R725 Canopy Water Mass 

(CWM) 

(Winterhalter et al., 

2011) 

NIR/NIR R780/R740 CWM (Winterhalter et al., 

2011) 

760/730 R760/R730 CWM and Canopy 

Temperature 

(Winterhalter et al., 

2011) 

NWI-1 (R970-R900)/(R970+R900) Water Status (Gutierrez et al., 

2010) 

NWI-3 (R970-R880)/(R970+R880) Water Status (Gutierrez et al., 

2010) 

PRI (R531-R570)/(R531+R570) Light Use Efficiency 

(LUE) 

(Gamon et al., 

1992) 
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Chapter 2 

 

Correlations between Vegetation Indices and Leaf Traits 

 

INTRODUCTION 

 Chlorophyll pigments are essential for converting radiation energy from the sun 

into stored chemical energy (Gitelson et al., 2003). The amount of radiation that can be 

used by the plant is directly proportional to the chlorophyll content. As a result, 

chlorophyll content has shown strong correlations to photosynthetic potential and primary 

production (Gitelson et al., 2003 and Peng et al., 2011). As primary production increases, 

or the rate at which the crop can capture and store chemical energy, the yield potential 

increases – the crop simply has to partition the photosynthates to the grain. In addition, 

chlorophyll provides an estimation of nitrogen status as most of the leaf nitrogen is 

located in these pigments (Filella et al., 1995). Leaf chlorophyll is also related to plant 

stress and senescence (Gitelson et al., 2003). Because chlorophyll is the source of energy 

for the plant, it is essential for monitoring plant health and productivity. 

 In conjunction with chlorophyll content, leaf water content is of extreme 

importance. Changes in water content, affecting total water potential, osmotic potential, 

and turgor pressure, in turn affect physiological processes (Zygielbaum et al., 2012). For 

example, turgor pressure is not only necessary to maintain cell structure integrity, but 

also to open stomata (Zygielbaum et al., 2009). Only when stomata are open can carbon 

dioxide be incorporated into the plant. This carbon dioxide is used in the Calvin cycle to 

create products for sucrose and starch synthesis (Zygielbaum et al., 2012). Therefore, no 

matter the amount of chlorophyll present, without sufficient turgor pressure the plant will 

not be able to utilize the light energy to create carbohydrates. 
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 Because chlorophyll content and water content can be used to monitor plant 

health and productivity, many techniques have been developed to measure these traits. 

Apart from using destructive leaf samples in laboratory assays, spectrometers (mounted 

on platforms ranging from backpacks, tractors, and airplanes to satellites) have been used 

to estimate these traits based on reflectance spectra. However, because of the popularity 

of this field, an abundance of vegetation indices exist. The Index DataBase (Henrich et 

al., n.d.) is an online resource that records all vegetation indices used to date. Currently, 

there are 112 unique indices that supposedly detect chlorophyll concentration. While all 

indices have been proven in one way or another, the sheer number of possible 

calculations generates confusion. 

The goal of this project is to identify those indices which correlate best to 

chlorophyll content and relative water content in maize leaves. Additionally, the indices 

will be analyzed to determine if they are more or less robust in detecting differences 

among hybrids grown in optimal conditions. Indices with these characteristics will 

become valuable assets to the breeding community. 

MATERIALS AND METHODS 

Experimental Design 

The experiment was conducted at the University of Nebraska-Lincoln East 

Campus (40.8° N and 96.7° W) in Lincoln, Nebraska. Trials were performed during the 

summers of 2014 and 2015. Thirty-six popular commercial era hybrids (released from 

1936 to 2012), two irrigation treatments, and six replications were arranged as a 

randomized complete block design. Each of the 216 plots consisted of 2 rows with 0.76 
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m spacing between rows and a plot length of 6.1 m. Stands were thinned to an average 

density of 60,000 plants per hectare. 

The maize hybrids were attained from two different sources and were assigned to 

eras as follows: Era 1 = 1936-1958, Era 2 = 1963-1969, Era 3 = 1970-1975, Era 4 = 

1982-1988, Era 5 = 1991-1999, Era 6 = 2008-2012 (Table 2.1). The hybrids were 

acquired from DuPont Pioneer or inbred lines were retrieved from the North Central 

Regional Plant Introduction Station (NCRPIS) and hybrids were made by hand 

pollination at the University of Nebraska-Lincoln. All hybrids exhibited similar 

maturities and developmental stages were synchronous in the field. 

The two water treatments, irrigated (well-watered, WW) and rain fed (water 

stressed, WS), were placed in blocks side-by-side in the field. The WW treatment 

received drip tape irrigation on an as needed basis. Sixteen mm diameter and 15 mm wall 

thickness drip tape offered a .32 gallon per hour flow rate. Plots were planted on May 15 

and May 22 in 2014 and 2015, respectively. Pre- and post-emergent herbicides along 

with manual weeding minimized the effects of stress from weeds. 

Hyperspectral Reflectance 

 Leaf level reflectance data was collected with a spectrometer (USB2000+ VIS-

NIR, Ocean Optics, Dunedin, FL) on a near weekly basis beginning at V8. Measurements 

were always taken in the early afternoon (between 1200 and 1500 h CDT); approximately 

three hours were required to sample all plots. The active sensor system was mounted on a 

backpack. The spectrometer was connected to a halogen lamp light source and a “leaf 

clip” with a dual branch flexible fiber optic. The leaf clip covered the leaf to reduce 

environmental factors and had a field of view of 0.4 cm in diameter. 
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 Two marked plants were measured in each plot. Prior to ear formation, scans were 

taken on the newest, fully expanded leaf. After ear formation, scans were taken on the ear 

leaf. The spectrometer analyzed reflected radiation at 2022 unique spectral bands with a 

detection range from 349 to 1028 nm and a bandwidth of approximately 1.5 nm. A 

number of spectral indices were calculated for use in analysis (Supplementary Table 1). 

Chlorophyll Content 

 In tandem with reflectance measurements (on the same leaf), 0.9 cm diameter leaf 

discs were acquired to measure chlorophyll concentrations in the lab using the method of 

Warren (2008). Leaf discs were kept in a -80° Celsius freezer until they were lyophilized. 

A 5 mm ball bearing was added to the tissue; the samples were ground to a fine powder 

by shaking in a vibratory ball mill (TissueLyser II, Qiagen, Inc., Valencia, CA). 

Methanol was added; after being mixed and centrifuged the supernatant was used for 

analysis. A BioTek Synergy 2 microplate reader (BioTek Instruments, Inc., Winooski, 

VT) measured the absorbance of the chlorophyll extract dissolved in a methanol solution. 

To determine the pathlength of the microplate reader, a number of the solutions were also 

measured in a DU 730 spectrophotometer (Beckman Coulter, Inc., Indianapolis, IN). 

Total chlorophyll content is used for all analysis (Chl a + b, µg/mL). 

Microplate samples were corrected to a 1-cm pathlength absorbance: 

  A652, 1 cm = (A652, microplate – blank) / pathlength 

  A665, 1 cm = (A665, microplate – blank) / pathlength 

Chlorophyll concentrations were calculated from these corrected absorbance values: 

  Chl a (µg/mL) = -8.0962 A652, 1 cm + 16.5169 A665, 1 cm 

  Chl b (µg/mL) = 27.4405 A652, 1 cm – 12.1688 A665, 1 cm 
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Relative Water Content 

Scissors were used to cut portions of the same leaves monitored by the 

spectrometer approximately 2x8 cm in size for relative water content determination. Two 

samples per plot were cut and immediately placed in labeled and sealed Ziploc bags in a 

cooler. As soon as possible, the samples were taken to the lab and weighed to the nearest 

milligram on an analytical balance (Denver Instrument, Bohemia, NY). De-ionized water 

was added to each bag to hydrate the leaves. The leaves were left overnight at room 

temperature because there were too many samples for the fridge; they were removed 

from the bags and weighed the next day to achieve the turgid weight (after surface 

moisture was removed). Finally, the samples were placed in the dryer for 24 hours at 65 

degrees Celsius – after which the dry weight was measured. In all, approximately 20 man 

hours were required to complete the process for all plots. The following calculation was 

used to determine relative water content: 

RWC (%) = [(FW-DW) / (TW-DW)] * 100, where 

FW = fresh weight 

DW = dry weight 

TW = turgid weight 

Statistical Analysis 

 Analysis of variance (ANOVA) and linear regression models were used to find 

differences between all hybrids for various traits and to find correlations between traits. 

PROC GLIMMIX in SAS 9.4 (SAS Institute Inc., Cary, NC) was used for the ANOVA 

analysis. Traits were treated as the response variable, hybrid as a fixed effect, and 

replication as a random effect. Coefficients of variation were determined by dividing the 
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square root of the model mean square error by the overall mean. Repeatability was 

calculated by dividing the hybrid variation by the sum of hybrid variation and total error 

variation divided by the number of replications. 

Since leaf reflectance and leaf samples were collected on the same leaf, 

correlations were made on a plot by plot basis. Both sampling dates were combined 

within a year, but the years were analyzed separately. The cor() function was utilized in R 

(The R Foundation) to correlate leaf chlorophyll and relative water content to all 

calculated indices (Indices listed in Supplementary Table 1). Pearson correlation 

coefficients were squared to present coefficients of determination. 

RESULTS 

Environmental Conditions 

Rainfall distributions were unique in the 2014 and 2015 growing seasons. 

Although total rainfall between May and September were similar for both years (66.3 cm 

in 2014 and 75.3 cm in 2015), the timing of the rainfall events created a water stressed 

environment in 2014, but not 2015 (Figure 2.1). In 2014, the month of July only received 

1.3 cm of rainfall. On the other hand, 2015 received above average rainfall in the spring, 

followed by average accumulations throughout the growing season (Table 2.2). As a 

result, the WS treatment in 2014 was discarded from all analysis except the correlations, 

while both 2015 treatments were combined for analysis as well-watered replications. The 

WS treatment in 2014 was located near the field edge and became highly variable at the 

onset of water stress. Repeatability of measurements was extremely low – the same 

hybrid produced varied results in each replication. Because of this, ANOVA models 

could only find differences among all hybrids for a few traits. The increased spatial 
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variability of the field and the increased variability in traits that could not be explained by 

hybrids made analysis of the WS treatment unprofitable. 

Differentiating Hybrids Based on Leaf Traits 

 An ANOVA analysis was conducted separately for each sampling date of 

chlorophyll content and relative water content (RWC) because of significant hybrid x 

sampling date interaction effects. For every destructive leaf sampling date, chlorophyll 

content could significantly detect differences among all era hybrids (Table 2.3). On the 

other hand, relative water content could not find differences among all hybrids in 2014, 

but it could in 2015. Repeatability values averaged 0.68 for all chlorophyll 

measurements, but only 0.27 for relative water content. In 2014, the hybrids were unable 

to account for the extra variation in relative water content. Figure 2.2 displays the 

variability in the leaf traits. 

Correlating Indices and Leaf Traits 

 Correlations were made between a large number of vegetation indices and RWC 

and chlorophyll content to determine which spectral indices predict these traits best 

(Supplementary Table 1 lists all indices calculated). All data (including all treatments) on 

a plot by plot basis were used for the correlations; sampling dates were combined in each 

respective year for the analysis to see if the index could successfully track changes in trait 

values across the growing season. Linear models are desired when predicting traits as 

quadratic models result in saturated indices. Therefore, only linear models were used 

(quadratic models did not show significant improvements). Table 2.4 displays the best 

correlating index to each trait in each year and other indices within one standard error of 

the top index. 
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 With water stress apparent in 2014, the best index relating to RWC was Carter6 

(R
2
 = 0.481). However, there is obviously not one superior index as 41 unique indices are 

within one standard error of each other. In 2015, the lack of variability in RWC led to 

poor correlations (Figure 2.2). 

 As for chlorophyll content, the 760/730 index predicts chlorophyll concentrations 

best in both years (Average R
2
 = 0.643). The CIRE, CWMI, and MTCI indices also appear 

in the top tier for both years. Interestingly, the 760/730 and CIRE indices also appear in 

the large group of indices correlating with RWC in 2014. Figures 2.3 and 2.4 show the 

760/730 index’s relationship with RWC in 2014 and chlorophyll content in 2015, 

respectively. 

Using Vegetation Indices to Differentiate Hybrids 

 As the chlorophyll and water content were able to differentiate hybrids (based on 

the ANOVA results in Table 2.2), the 760/730 and CIRE indices were also capable of 

finding differences among all hybrids on those same dates (Table 2.5). The only non-

significant results on August 14, 2014 were a result of missing values because the 

spectrometer over-heated while collecting data. 

 Although chlorophyll and water content laboratory assays were only conducted on 

these sampling dates to correlate with vegetation indices, the spectrometer was used 

throughout the growing season. In 2014, the spectrometer was used on a near-weekly 

basis from V10 to R6 for a total of ten sampling dates. In 2015, the spectrometer was 

used weekly from V8 to R6 for a total of 13 sampling dates. 

 In both years, the spectrometer was capable of finding significant differences 

among all hybrids at every sampling date except two. One, August 14, 2014 (R5 stage) 
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was an outlier because of missing values; two, June 30, 2014, was very near to the .05 

significance level (760/730 Index P-value = .0596). 

DISCUSSION 

Correlations 

 Previous studies have also correlated reflectance indices to leaf chlorophyll and 

water content. Specifically, the 760/730 and CIRE indices have been correlated to these 

traits. Mistele and Schmidhalter (2010) first used the 760/730 index to monitor above-

ground biomass and nitrogen uptake in wheat. They found strong correlations between 

the index and shoot dry biomass (R
2
 = 0.86) and nitrogen uptake (R

2
 = 0.92). 

Subsequently, Winterhalter et al (2011a, 2011b) used the 760/730 index to monitor traits 

in tropical maize. Again, the index correlated strongly to nitrogen uptake (R
2
 = 0.74) 

(Winterhalter et al., 2011a). In addition, the index was shown to relate strongly to canopy 

water mass and canopy temperature, with R-squared values of 0.72 and 0.68, respectively 

(Winterhalter et al., 2011b). 

 The CIRE index was developed by Gitelson et al (2003) to provide a robust 

indicator of plant chlorophyll content. The CIRE index displayed an R-squared value of 

0.96 when compared to the total chlorophyll content of beech, chestnut, maple, and wild 

vine leaves (Gitelson et al., 2003). When compared to soybean and maize leaves, the 

index maintained a strong relationship (R
2
 = 0.95) (Gitelson et al., 2005). 

 Unsurprisingly, the 760/730 index and CIRE index have similar equations; both 

utilize the red edge region of the electromagnetic spectrum (760/730 = (R760/R730) and 

CIRE = (R750-800/R710-730) - 1). The red edge has been used for a variety of applications:  

nitrogen status (Li et al., 2014), insect defoliation levels (Adelabu et al., 2014), response 
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to phenanthrene stress (Zhu et al., 2014), general stress detection (Das et al., 2014 and 

Eitel et al., 2011), and aboveground biomass (Ren et al., 2011). 

The red edge region is used widely because it monitors the overall health status of 

plants. As noted in the introduction, chlorophyll content is an important trait underlying 

plant health and productivity. As a result, even though indices may be looking directly at 

chlorophyll content, the applications vary. This research suggests that the 760/730 index 

is a robust predictor of leaf chlorophyll content, but secondarily, the index can monitor 

water content – also supported by Winterhalter et al (2011b). In addition, this research 

shows that chlorophyll content and water content respond together – stressed or less 

productive plants will have less water and chlorophyll in their leaves. Sanchez et al 

(1983) found that water stress reduced chlorophyll content, stomatal conductance, and 

photosynthetic rates in maize. Romano et al (2011) also found that canopy temperatures 

correlate well with NDVI and SPAD meter readings. In this study, not only does the 

same index correlate well with both RWC and chlorophyll content, but RWC and 

chlorophyll content correlate well with each other (R
2
 = 0.34). Although RWC can be 

said to act similarly to chlorophyll content, the 760/730 index does not provide an exact 

estimate of RWC per se. Instead, spectrometers that can take advantage of the middle 

infrared region of the electromagnetic spectrum are more accurate at predicting RWC 

(Gao, 1996). 

Differentiating Hybrids 

 The 760/730 index is capable of monitoring maize chlorophyll content; however, 

with the goal of plant improvement, cultivars must be able to be distinguished for the 

results to be valuable. Currently, the primary usage of vegetation indices is to monitor the 
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health status of uniform cultivars across fields with different fertility or irrigation 

treatments (Clay et al., 2006, Li et al., 2014, and Zaman-Allah et al., 2015). Rodrigues et 

al (2015) epitomize this trend by utilizing sensing technology to asses low and high yield 

areas in a wheat field. 

 While these methodologies are well-studied, the power of sensor technology to 

differentiate many unique cultivars under optimal growing conditions is less well-known. 

Adebayo et al (2014) at CIMMYT used NDVI to correlate with grain yield and to find 

differences among all of their 96 test-cross hybrids. Our study shows that laboratory 

measurements of chlorophyll content and spectrometer measurements are capable of 

distinguishing hybrids at every sampling date (excluding August 14, 2014 for the sensor). 

In fact, the spectrometer is as accurate, if not slightly more accurate, at detecting these 

differences (Table 2.6). Across all dates, the 760/730 index maintained a smaller 

coefficient of variation – the spectrometer provides more precise measurements. In 2014, 

the chlorophyll laboratory assay had a greater repeatability, R-squared value, and number 

of LSD groups. Repeatability describes how similar measurements are for the same 

hybrid taken at different times, the R-squared tells of the amount of variation in the 

model explained by the different hybrids, and the number of LSD groups is the unique 

number of significantly different hybrid groups that could be distinguished based on 

Tukey’s LSD. In 2015, the 760/730 index was superior in all categories at both sampling 

dates. This is promising because in 2015 there were twice as many replications in optimal 

conditions. Therefore, the spectrometer can be used to distinguish hybrids in a large study 

(216 plots) quicker, more efficiently, and more accurately than destructive laboratory 

assays. 
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 The RWC measurements were able to distinguish hybrids in 2015, but not 2014. 

This is surprising because much more variability existed in 2014 (Figure 2.2). However, 

the low repeatability values in 2014 (Table 2.3) suggest that samples for the same hybrids 

were dissimilar across replications. Because we only used the values from the WW 

treatment, this is most likely due to poor laboratory measurements. After being cut, leaf 

samples were exposed to the ambient weather conditions for a longer period of time in 

2014. This could explain the poor results obtained for RWC that year. 

CONCLUSIONS 

 Chlorophyll content is a primary trait of interest because it is the underlying 

driver of plant health and productivity. We found that the 760/730 index correlates well 

with total leaf chlorophyll content for both growing seasons in WW treatments (Average 

R
2
 = 0.643). Indirectly, the index also correlates well with relative water content (R

2
 = 

0.431). It is obvious that these traits respond similarly; therefore, the 760/730 index is a 

robust indicator of plant health and productivity. 

 In addition, the spectrometer offers precise, repeatable measurements that can be 

used to distinguish cultivars. The spectrometer can be easily implemented to quickly 

measure fields throughout the growing season. In this study, with 36 era hybrids, as many 

as 9 significantly different groups of hybrids could be distinguished with the 760/730 

index. Multiple reviews suggest the implementation of this technology for plant 

improvement (Araus & Cairns, 2014, Houle et al., 2010, and White et al., 2012). This 

experiment reveals that spectral reflectance technology can in fact be used in breeding 

programs to differentiate cultivars grown in well-watered environments. 
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Figures 

 

Figure 2.1. Rainfall and temperature patterns for the 2014 and 2015 growing 

seasons. Top panels display rainfall accumulation per day in centimeters. Daily high 

(black line) and low (gray line) temperatures are displayed in the bottom panels. 
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Figure 2.2. Variation in RWC and chlorophyll content for all sampling dates in both 

years. In 2014, samples were collected on July 28 and August 14 at the R3 and R5 

developmental stages, respectively (only WW treatment). Samples were collected on July 

14 (V16) and August 7 (R3) in 2015 (all replications). Chlorophyll content was 

significantly greater in the early reproductive stage compared to the vegetative stage in 

2015. Excess variability in RWC in 2014 was attributable to increased plant stress and 

imperfect laboratory measurements. 
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Figure 2.3. Relationship between relative water content and 760/730 index values in 

2014 (R
2
 = 0.43). The WS treatment was included to capture extra variation in RWC. 
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Figure 2.4. Relationship between chlorophyll content and 760/730 index values in 2015 

(R
2
 = 0.65). Correlations were made on a plot by plot basis for both sampling dates. 
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Tables 
Table 2.1. Hybrids used in this study. Hybrids were grouped into six distinct eras based 

on decade of year of release (YOR). The first era spans multiple decades due to the 

limited number of genotypes from 1936 to 1958. Era hybrids acquired from Pioneer or 

current hybrids obtained from other companies are listed by their commercial hybrid 

number. Hybrids created by hand pollination at the University of Nebraska-Lincoln 

(UNL) show the female and male parentage. 

 

Source Pedigree YOR Era

Pioneer 307HYB 1936 1

UNL WF9/38-11//Hy/L317 1948 1

UNL NS 0 1948 1

UNL Wf9/Hy//L289/I205 1950 1

Pioneer 329HYB 1954 1

UNL W64A/OH43 1954 1

UNL B37/B14//C103/Oh43 1958 1

UNL B14A/B57 1963 2

UNL N501D 1964 2

UNL B37/OH43 1965 2

UNL B37/B14//Mo17 1965 2

Pioneer 3390 1967 2

Pioneer 3334 1969 2

UNL N7A/Mo17 1970 3

Pioneer 3366 1972 3

UNL NS[RFS_NB]3_8 1972 3

UNL B73/Mo17 1974 3

Pioneer 3541 1975 3

UNL B73/LH39 1982 4

UNL B73/LH51 1983 4

UNL LH132/LH51 1985 4

UNL LH156/MBS2333 1988 4

UNL LH132/LH59 1988 4

Pioneer 3379 1988 4

UNL LH192 /LH82 1991 5

Pioneer 3394 1991 5

Pioneer 33A14 1997 5

Pioneer 33P67 1999 5

Mycogen 2A555 2007 6

Pioneer 33D49 2008 6

Golden Harvest H-7949 2010 6

Hoegemeyer 7630RR 2011 6

Pioneer P0876HR 2012 6

Pioneer PO987HR 2012 6

Hoegemeyer 7644 Hx/LL/RR 2012 6

NK N45P-4011 2012 6
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Table 2.2. Mean temperatures and total rainfall per month during the 2014 and 2015 

growing seasons in Lincoln, NE as compared to local climate normals. 

 
  

Year May June July August September

2014 18.4 23.3 23.9 24.5 18.7

2015 16.4 23.0 25.1 23.2 21.9

Normal 16.8 22.5 25.3 24.1 18.9

2014 13.4 15.0 1.3 19.2 17.5

2015 27.7 19.5 6.1 9.6 12.5

Normal 10.9 11.0 8.6 8.8 7.7

Temperature (Celsius)

Precipitation (Centimeters)
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Table 2.3. ANOVA results for relative water content (RWC) and chlorophyll content 

(Chl) laboratory measurements. All replications were utilized in 2015; only the WW 

treatment was used in 2014.  

 

MS = Mean Square, CV = Coefficient of Variation 

‘***’ = significant at the <0.001 level; ‘**’ = <0.01; ‘*’ = <0.05; ‘.’ = <0.10 

  

2014 (7-28) R3 (8-14) R5 2015 (7-14) V16 (8-7) R3

Source df Chl RWC Chl RWC df Chl RWC Chl RWC

MS MS MS MS MS MS MS MS

µg/mL % µg/mL % µg/mL % µg/mL %

Hybrid 35 51.09*** 30.89 47.49*** 40.87 35 46.76*** 6.31** 83.55*** 6.1***

Rep 2 6.35 1273*** 224.04*** 388.24*** 5 94.01*** 18.79*** 63.05** 19.13***

Error 70 12.46 28.34 15.22 28.78 175 16.07 3.05 15.53 2.25

Mean 43.31 62.87 47.06 73.11 35.83 93.28 46.62 91.33

CV 0.082 0.076 0.086 0.077 0.109 0.019 0.086 0.016

Repeatability 0.759 0.018 0.557 0.065 0.608 0.453 0.803 0.554
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Table 2.4. Coefficients of determination for the relationship between chlorophyll content 

(Chl) and relative water content (RWC) with various vegetation indices. All indices 

within one standard error of the best index are listed. Correlations were made on a plot by 

plot basis combining both sampling dates in each year. 

 

2014 2015

Chl RWC Chl RWC

Index R
2

Index R
2

Index R
2

Index R
2

760/730 0.639 Carter6 0.481 760/730 0.647 ZTM4 0.141

HREI15 0.636 RARSb 0.472 CWMI1 0.629 PRI4 0.126

Datt 0.636 Green.NDVI 0.470 Gitelson2 0.628 HBCI8 0.122

Maccioni 0.633 HBCI12 0.470 NIR.NIR 0.618 GLI 0.121

ND 0.632 HREI16 0.469 CIRE 0.617 ZTM5 0.119

CIRE 0.626 LABR 0.468 MTCI 0.606 HBCI9 0.117

NDRE 0.626 Gitelson 0.463 Git2 0.603

Carter4 0.623 R701 0.463 Git3 0.603

TCARI 0.618 Carter4 0.462

HREI16 0.616 NDVI2n 0.461

TCARI.OSAVI 0.612 OSAVI2 0.461

HBCI12 0.611 Carter2 0.460

Green.NDVI 0.610 Carter3 0.460

CWMI1 0.607 TCARI 0.460

Carter6 0.605 ND 0.459

CWMI2 0.604 PSNDb 0.458

NDVI2n 0.600 TCARI.OSAVI 0.457

OSAVI2 0.600 TCARI2.OSAVI2 0.456

MTCI 0.598 CI2 0.446

Git3 0.596 SR3 0.441

Git2 0.596 NIR.green 0.439

Vogelmann2 0.596 CG 0.439

LABR 0.595 Maccioni 0.437

R701 0.594 HBSI2 0.437

Vogelmann 0.593 RNIR.CRI550 0.436

Datt 0.436

HBSI1 0.434

HREI15 0.434

760/730 0.431

NDVIc 0.431

CIRE 0.431

NDRE 0.430

Git5 0.430

Git6 0.430

mSR2 0.430

NDVI 0.430

OSAVI 0.429

NDVIw 0.429

PSNDa 0.429

Datt2 0.429

Git4 0.428
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Table 2.5. ANOVA results for the 760/730 and CIRE vegetation indices. All replications 

were utilized in 2015; only the WW treatment was used in 2014. The August 14, 2014 

measurement date shows poor results because of missing data. 

 

MS = Mean Square, CV = Coefficient of Variation 

‘***’ = significant at the <0.001 level; ‘**’ = <0.01; ‘*’ = <0.05; ‘.’ = <0.10 

  

2014 (7-28) R3 (8-14) R5 2015 (7-14) V16 (8-7) R3

Source df 760/730 CIRE 760/730 CIRE df 760/730 CIRE 760/730 CIRE

MS MS MS MS MS MS MS MS

Hybrid 35 0.0049*** 0.0256** 0.0042 0.0249 35 0.0048*** 0.0257*** 0.0088*** 0.053***

Rep 2 0.0004 0.0029 0.0056 0.0534 5 0.0008 0.0034 0.0047** 0.036**

Error 70 0.002 0.011 0.003 0.019 175 0.0013 0.007 0.0014 0.009

Mean 1.51 1.11 1.38 0.786 1.38 0.835 1.42 0.911

CV 0.028 0.095 0.039 0.167 0.026 0.099 0.026 0.098

Repeatability 0.607 0.58 0.505 0.444 0.732 0.732 0.832 0.816
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Table 2.6. Comparing chlorophyll content (Chl) laboratory measurements and 760/730 

vegetation index ANOVA results among all hybrids. Coefficients of variation (CV), 

repeatability, and coefficients of determination (R
2
) were used to display the phenotypes’ 

power to detect differences. Tukey’s LSD was used to organize hybrids into statistically 

different groups. The August 14, 2014 measurement was excluded because of missing 

data. 

 

2014 (7-28) R3 2015 (7-14) V16 (8-7) R3 Average

Chl 760/730 Chl 760/730 Chl 760/730 Chl 760/730

CV 0.082 0.028 0.109 0.026 0.086 0.026 0.092 0.027

Repeatability 0.759 0.607 0.608 0.732 0.803 0.832 0.723 0.724

LSD Groups 5 3 3 4 8 9 5.333 5.333

R
2

0.67 0.55 0.33 0.42 0.5 0.54 0.500 0.503
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Chapter 3 

 

Genetic Gain in Popular Midwest United States Maize Hybrids 

INTRODUCTION 

Retrospective analyses are necessary to understand how breeding has transformed 

a crop. Through its long history, maize has experienced physiological and morphological 

changes in conjunction with increases in grain yield. Knowing this, breeders can continue 

selecting for the traits that correspond to improved productivity and attempt to discern the 

most limiting factors to continued yield increases. 

Much research has been conducted with era hybrids to determine specific traits 

contributing to increased productivity (Duvick et al., 2004, Duvick, 2005, Russell, 1991, 

Smith et al., 2014, Tollenaar, 1989, & Tollenaar and Lee, 2006). Duvick (2005) 

summarizes the changes in maize gross morphology over the years. Briefly, plant and ear 

heights have slightly decreased while leaves have become more upright. Tassel weights 

and branch numbers have decreased, but no significant trends have been found in leaf 

number or leaf area index. Delayed leaf senescence (staygreen) is improved in modern 

hybrids, the number of tillers is reduced, and the anthesis silking interval (ASI) has 

shortened. New hybrids have a longer grain-fill period, less grain protein, and less root 

and stalk lodging, but no change in harvest index (HI) (Duvick, 2005). Tollenaar and Wu 

(1999) note that modern hybrids outperform older varieties in all environments – these 

environments range from high weed competition, low night temperatures, and low soil 

moisture to low soil nitrogen. 

From these results, yield gains in maize have generally been attributed to more 

efficient capture and utilization of resources, and greater stress tolerance (Duvick et al., 
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2004 & Tollenaar and Wu, 1999). Because new hybrids have small tassels and few tillers, 

more resources are available to the developing ear. The upright, long-lived leaves 

improve radiation capture, provide increased assimilate supply, and promote root 

exploration (Duvick et al., 2004 & Tollenaar and Wu, 1999). Meanwhile, physiology 

leading to a short ASI creates new hybrids with fewer barren plants; they can endure 

environmental stresses and high planting densities and remain productive (Duvick et al., 

2004). 

These gross morphological traits provide great insights into the genetic gain of 

corn over time; however, specific leaf level physiology such as chlorophyll content and 

water content could help explain the underlying causes to improved productivity. 

Chlorophyll is necessary to harvest light energy to create ATP and NADPH. Meanwhile, 

sufficient water content allows for the incorporation of carbon dioxide through stomata. 

The light-harvested compounds, carbon dioxide, and water molecules are used in the 

Calvin cycle to generate sugars used in vegetative and reproductive growth (Taiz and 

Zeiger, 2010). In addition, chlorophyll content has been associated with gross primary 

production, nitrogen status, and plant stress (Gitelson et al., 2003). Yield potential 

increases in conjunction with chlorophyll and water content. 

Hyperspectral reflectance technology is capable of monitoring plant chlorophyll 

and water content; many vegetation indices have been created (Henrich et al., n.d. & 

Main et al., 2011). In this situation, the 760/730 index (Winterhalter et al., 2011a & 

2011b) proved to be useful as a proxy for chlorophyll content, and indirectly relative 

water content (Chapter 2).  
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Therefore, in order to learn from the past in order to make contributions for the 

future, this research utilizes high-throughput phenotyping to assess how leaf 

characteristics have changed in maize over time. In addition, as the sensor was utilized 

throughout the growing season, this research identifies specific growth stages when 

differences between old and new hybrids are exaggerated. By understanding how maize 

has become more productive over time, the same, novel phenotyping procedures can be 

used to assist breeders in selecting cultivars in the present. 

MATERIALS AND METHODS 

Experimental Design 

The experiment was conducted at the University of Nebraska-Lincoln East 

Campus (40.8° N and 96.7° W) in Lincoln, Nebraska. Trials were performed during the 

summers of 2014 and 2015. Thirty-six popular commercial era hybrids (released from 

1936 to 2012), two irrigation treatments, and six replications were arranged as a 

randomized complete block design. Each of the 216 plots consisted of 2 rows with 0.76 

m spacing between rows and a plot length of 6.1 m. Stands were thinned to an average 

density of 60,000 plants per hectare. 

The maize hybrids were attained from two different sources and were assigned to 

eras as follows: Era 1 = 1936-1958, Era 2 = 1963-1969, Era 3 = 1970-1975, Era 4 = 

1982-1988, Era 5 = 1991-1999, Era 6 = 2008-2012 (Table 2.1). The hybrids were 

acquired from DuPont Pioneer or inbred lines were retrieved from the North Central 

Regional Plant Introduction Station (NCRPIS) and hybrids were made by hand 

pollination at the University of Nebraska-Lincoln. All hybrids exhibited similar 

maturities and developmental stages were synchronous in the field. 
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The two water treatments, irrigated (well-watered, WW) and rain fed (water 

stressed, WS), were placed in blocks side-by-side in the field. The WW treatment 

received drip tape irrigation on an as needed basis. Sixteen mm diameter and 15 mm wall 

thickness drip tape offered a .32 gallon per hour flow rate. Plots were planted on May 15 

and May 22 in 2014 and 2015, respectively. Pre- and post-emergent herbicides along 

with manual weeding minimized the effects of stress from weeds. 

Hyperspectral Reflectance 

 Leaf level reflectance data was collected with a spectrometer (USB2000+ VIS-

NIR, Ocean Optics, Dunedin, FL) on a near weekly basis beginning at V8. Measurements 

were always taken in the early afternoon (between 1200 and 1500 h CDT); approximately 

three hours were required to sample all plots. The active sensor system was mounted on a 

backpack. The spectrometer was connected to a halogen lamp light source and a “leaf 

clip” with a dual branch flexible fiber optic. The leaf clip covered the leaf to reduce 

environmental factors and had a field of view of 0.4 cm in diameter. 

 Two marked plants were measured in each plot. Prior to ear formation, scans were 

taken on the newest, fully expanded leaf. After ear formation, scans were taken on the ear 

leaf. The spectrometer analyzed reflected radiation at 2022 unique spectral bands with a 

detection range from 349 to 1028 nm and a bandwidth of approximately 1.5 nm. A 

number of spectral indices were calculated for use in analysis (Supplementary Table 1). 

Chlorophyll Content 

 In tandem with reflectance measurements (on the same leaf), 0.9 cm diameter leaf 

discs were acquired to measure chlorophyll concentrations in the lab using the method of 

Warren (2008). Leaf discs were kept in a -80° Celsius freezer until they were lyophilized. 
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A 5 mm ball bearing was added to the tissue; the samples were ground to a fine powder 

by shaking in a vibratory ball mill (TissueLyser II, Qiagen, Inc., Valencia, CA). 

Methanol was added; after being mixed and centrifuged the supernatant was used for 

analysis. A BioTek Synergy 2 microplate reader (BioTek Instruments, Inc., Winooski, 

VT) measured the absorbance of the chlorophyll extract dissolved in a methanol solution. 

To determine the pathlength of the microplate reader, a number of the solutions were also 

measured in a DU 730 spectrophotometer (Beckman Coulter, Inc., Indianapolis, IN). 

Total chlorophyll content is used for all analysis (Chl a + b, µg/mL). 

Microplate samples were corrected to a 1-cm pathlength absorbance: 

  A652, 1 cm = (A652, microplate – blank) / pathlength 

  A665, 1 cm = (A665, microplate – blank) / pathlength 

Chlorophyll concentrations were calculated from these corrected absorbance values: 

  Chl a (µg/mL) = -8.0962 A652, 1 cm + 16.5169 A665, 1 cm 

  Chl b (µg/mL) = 27.4405 A652, 1 cm – 12.1688 A665, 1 cm 

Canopy Temperature and Relative Water Content 

Canopy temperatures were recorded with an Extech Instruments 421307 infrared 

thermometer (FLIR Commercial Systems, Nashua, NH) weekly from R1 to R3 stages. 

Measurements were taken in the early afternoon, and two temperature readings were 

recorded per plot. 

Scissors were used to cut portions of the same leaves monitored by the 

spectrometer approximately 2x8 cm in size for relative water content determination. Two 

samples per plot were cut and immediately placed in labeled and sealed Ziploc bags in a 

cooler. As soon as possible, the samples were taken to the lab and weighed to the nearest 
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milligram on an analytical balance (Denver Instrument, Bohemia, NY). De-ionized water 

was added to each bag to hydrate the leaves. The leaves were left overnight at room 

temperature because there were too many samples for the fridge; they were removed 

from the bags and weighed the next day to achieve the turgid weight (after surface 

moisture was removed). Finally, the samples were placed in the dryer for 24 hours at 65 

degrees Celsius – after which the dry weight was measured. In all, approximately 20 man 

hours were required to complete the process for all plots. The following calculation was 

used to determine relative water content: 

RWC (%) = [(FW-DW) / (TW-DW)] * 100, where 

FW = fresh weight 

DW = dry weight 

TW = turgid weight 

Visual Scores 

Leaf rolling visual scores were recorded on a weekly basis from pollination to 

physiological maturity during the early afternoon (between 1200 and 1500 CDT). A 

ranking system of 1 to 5 was utilized: 1 = no rolling, 2 = only leaf edges are beginning to 

curl, 3 = a v-shaped leaf, 4 = the leaf rolling hides the top of the leaf, and 5 = the leaves 

look like onion leaves. 

Leaf senescence (or staygreen) scores were recorded weekly beginning at the 

onset of senescence. A ranking system of 0 to 10 was utilized:  0 refers to 0% dead leaf 

area, 1 refers to 10% dead leaf area, up to 10, which is 100% dead leaf area. 

Days to 50% anthesis and silking were also recorded. 

Biomass Estimation 
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A subset of 24 hybrids was used to calibrate nondestructive measurements to 

aboveground dry biomass. Plant height, in centimeters, was measured to the collar of the 

newest, fully expanded leaf, or to the flag leaf. The total number of leaves was counted. 

The newest, fully expanded leaf or the leaf above the ear was measured for length and 

width in centimeters; width was measured near the center (lengthwise) of the leaf. The 

stalk diameter was measured in centimeters with calipers between the topmost nodal 

roots and the next stalk node. Finally, if an ear was present, the diameter of the lower 

third of the ear was measured in centimeters with calipers and the length of the ear was 

measured from the node to the tip of the cob. 

 Two plants were measured in this fashion, and then the fresh weights of 2, 4, and 

10 plants were recorded. Two plants were shredded and placed in the dryer at 60 degrees 

Celsius for 72 hours to determine sample dry weights. This process was conducted in 

2014 at the V11 and R3 growth stages in order to generate biomass estimation models for 

plants with or without an ear. Multiple regression models were generated with the dry 

weight of 10 plants as the response variable and with all other measurements as 

explanatory variables (Supplementary Figures 1 and 2). The explanatory variables were 

the means of each of the nondestructive measurements for two plants, respectively: 

DW10 ~ mH2 + mLW2 + mLL2 + mLN2 + mSD2 + mED2 + mEL2 

DW10 = dry weight of ten plants 

mH2 = mean of plant height from two plants 

mLW2 = mean of leaf width from two plants 

mLL2 = mean of leaf length from two plants 

mLN2 = mean of leaf number from two plants 
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mSD2 = mean of stalk diameter from two plants 

mED2 = mean of ear diameter from two plants 

mEL2 = mean of ear length from two plants 

The same nondestructive measurements taken on the biomass calibration plots were taken 

throughout the experiment at three different stages: vegetative, early reproductive, and 

physiological maturity. As a result, the equations of best fit determined by the calibration 

plots were used to generate a plot biomass estimate for each of the hybrids. 

Grain Yield 

 The two-row plots were harvested with a plot combine (8-XP, Kincaid Equipment 

Mfg., Haven, KS). Yield data such as grain weight and moisture were collected with 

HarvestMaster’s Single Plot High Capacity GrainGage (Juniper Systems, Logan, UT).  

Calculations were used to standardize grain weight at 15.5% moisture and to convert the 

yield to units of megagrams per hectare. 

Statistical Analysis 

 Analysis of variance (ANOVA) and linear regression models were used to find 

differences between all hybrids for various traits and to find the genetic gain of traits. 

Differences were found among all hybrids and eras using the aov() function in R (The R 

Foundation). Trait values were treated as the response variable, hybrid or era and 

replication were fit as fixed effects. The drop1() function was used to change the analysis 

to a Type III Sums of Squares rather than a Type I. LS-means were calculated for all 

traits based on hybrid year of release. Trait values were treated as the response variable 

while hybrid year of release and replication were fit as fixed effects in the lsmeans() 

function. 
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 The LS-means were used in the lm() function to analyze genetic gain. Trait values 

were the response variable and hybrid year of release was the numeric independent 

variable. Slopes acquired from this analysis were compared with an analysis of 

covariance (ANCOVA) to determine if the rate of change in index values across years of 

hybrid release were different throughout the growing season. Using the aov() function to 

identify interaction effects, the index values were modeled as the dependent variable with 

maize developmental stage as a factor and hybrid year of release as the covariate. 

RESULTS 

Environmental Conditions 

Rainfall distributions were unique in the 2014 and 2015 growing seasons. 

Although total rainfall between May and September were similar for both years (66.3 cm 

in 2014 and 75.3 cm in 2015), the timing of the rainfall events created a water-stressed 

environment in 2014, but not 2015 (Figure 2.1). In 2014, the month of July only received 

1.3 cm of rainfall. On the other hand, 2015 received above average rainfall in the spring, 

followed by average accumulations throughout the growing season (Table 2.2). As a 

result, the WS treatment in 2014 was discarded from all analysis while both 2015 

treatments were combined for analysis as well-watered replications. The WS treatment in 

2014 was located near the field edge and became highly variable at the onset of water 

stress. Repeatability of measurements was extremely low – the same hybrid produced 

varied results in each replication. Because of this, ANOVA models could only find 

differences among all hybrids for a few traits. The increased spatial variability of the field 

and the increased variability in traits that could not be explained by hybrids made 

analysis of the WS treatment unprofitable. 
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Differences in Traits 

 Prior to analyzing genetic gain, ANOVAs for all traits were conducted to 

determine if hybrids could be differentiated. In addition to differences among all hybrids, 

ANOVAs to find differences among the six eras were computed as well. Those traits 

which showed significant differences among all hybrids and eras are candidates for 

genetic gain analysis. Traits were analyzed separately for each year because of significant 

hybrid x year interaction effects for most traits. 

Variation among individual hybrids and eras was found for most traits. Table 3.1 

summarizes these differences for all of the traits collected. All gross morphological traits 

could differentiate hybrids and eras – from pollen date, ASI, biomass, and growth rate to 

lodging, plant and ear height, and grain yield. However, all leaf level traits could not 

differentiate hybrids and eras. In both years canopy temperature was unresponsive among 

hybrids, and in 2014 RWC didn’t show differences. Also in 2014 slight leaf rolling 

occurred during a hot week and the visual scores could differentiate hybrids and eras. In 

2015 RWC was able to differentiate hybrids and eras on both sampling dates. Finally, 

both years showed significant differences among hybrids and eras for chlorophyll content 

and senescence. 

Genetic Gain of Agronomic Traits 

 For each of the traits that showed significant differences among all hybrids and all 

eras, linear regression models were used to identify genetic gain, or how the traits have 

changed over time (other models were not fit because traits generally displayed linear 

relationships). Table 3.2 presents the results of the linear regression models of each trait 
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over hybrid year of release. Years were analyzed separately because of significant hybrid 

year of release x year interactions, except for grain yield. 

 Although days to anthesis have not significantly changed over time, the anthesis 

silking interval has continuously become shorter at a rate of 0.065 days per year (R
2
 = 

0.63, Figure 3.1). Aboveground dry biomass failed to separate hybrids based on year of 

release except for the V13 sampling in 2014. There, modern hybrids display a smaller 

biomass; dry matter was reduced by 0.656 grams per year of hybrid release (R
2
 = 0.21). 

Corresponding to that, the growth rate of modern hybrids during early vegetative stages 

was less than that of old hybrids. In 2014, the growth rate between the V6 and V13 stages 

declined at a rate of 0.039 grams/day over year of hybrid release (R
2
 = 0.19). Both plant 

height and ear height have decreased in hybrids over time as well. Plant height decreased 

at a rate of 0.23 cm per year (R
2
 = 0.23) and ear height at 0.36 cm per year (R

2
 = 0.46). 

Modern hybrids are less prone to root and stalk lodging. Stalk lodging has decreased by 

0.1% per year (R
2
 = 0.43) and root lodging has also decreased at a rate of 0.6% per year 

(R
2
 = 0.5). 

 Leaf characteristics have also changed over time. Most significantly, new hybrids 

maintain higher chlorophyll concentrations and relative water contents in their cells. 

Chlorophyll contents have increased at a rate of 0.1 µg/mL per year (R
2
 = 0.3, Figure 3.2) 

and water contents at 0.02% per year (R
2
 = 0.38, Figure 3.3). Also, new hybrids senesce 

at slower rates; senescence scores decreased at a rate of 0.04 of a ranking per year (R
2
 = 

0.31). Finally, combining both experimental years, grain yield has increased at a rate of 

76 kg/ha per year (R
2
 = 0.71, Figure 3.4). 

Genetic Gain of the 760/730 Vegetation Index 
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 Previously it was shown that the 760/730 index captures differences between all 

hybrids throughout the growing season and correlates well with leaf traits, providing a 

general indicator of plant health (Chapter 2). The index also expresses significant genetic 

gain at multiple stages throughout the growing season. Higher index values are associated 

with new hybrids, while low values are consistently partnered with old hybrids. Unlike 

the other traits, the 760/730 index did not have significant hybrid year of release x year 

interaction effects. As a result, measurements taken at the same growth stage from both 

years were combined for analysis. Table 3.3 shows the linear regression, or genetic gain 

results for the 760/730 index taken at various points throughout the growing season. 

 The maximum slope and coefficient of determination was found at the R1 growth 

stage (b=.001, R
2
 = 0.49, Figure 3.5). The next highest slopes occur at the V13, V17, R3, 

R4, and R5 growth stages; however, the best coefficients of determination are at the V13, 

V17, and R1 growth stages (R
2
 > 0.44). As a result, at those late vegetative and early 

reproductive growth stages, a hybrid’s year of release explains more of the variation in 

the 760/730 index than at other points in the growing season. 

 Despite the differences in the coefficients of determination, an analysis of 

covariance showed that there was no significant interaction effect between the slopes of 

the 760/730 index at different growth stages (Figure 3.6). In other words, removing the 

interaction effect between the different lines did not significantly affect the fit of the 

model. Rather, significant main effects existed between growth stages. The 760/730 

index was significantly greater in the R1 to R5 growth stages compared to the V10 to 

V17 and R6 stages. 

DISCUSSION 
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Differences in Traits 

 The only trait that did not show any differences among all hybrids or eras at any 

measurement date was canopy temperature. This is unsurprising as all measurements 

were collected in well-watered environments and ambient air temperature was not 

recorded for each plot. Typically, air temperature is subtracted from canopy temperature 

to differentiate cultivars in water-stressed scenarios. However, Romano et al (2011) did 

find differences among all genotypes in well-watered conditions using an infrared 

camera. Newer infrared technology than what was used in this project may have more 

precision to differentiate genotypes in any environment. 

Genetic Gain of Agronomic Traits 

Of the traits that showed significant differences among all hybrids and eras, 

aboveground dry biomass did not show any trend over time except at early vegetative 

stages. At those stages, new hybrids were consistently smaller than old hybrids. Using 

hydroponics, Sanguineti et al (2006) also found that new hybrid seedlings have 

significantly smaller roots and shoots compared to older hybrids. In contrast, they noted 

that the height of field grown era hybrids did not differ at the V4 stage – although total 

biomass was not recorded. Changes in farm management strategies are plausible culprits 

of this decreased early biomass. Increased nitrogen fertilizer usage and planting densities 

may have resulted in plants that don’t need to search for nutrients and that delay 

competition from adjacent plants (Sanguineti et al., 2006). In agreement with Duvick et al 

(2004), the weight of mature plants has not changed over time, but plant height and ear 

height has decreased slightly by 0.1 cm and 0.3 cm per year in their set of era hybrids 

released from 1934 to 2001, respectively (R
2
 = 0.11, 0.40). This research shows similar, 
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but slightly steeper and better fit slopes for plant height and ear height changes in a set of 

era hybrids released from 1936 to 2012. Plant height and ear height have decreased by 

0.23 and 0.36 cm per year (R
2
 = 0.23, 0.46). Breeders have purposefully selected for 

stable plant height as farmers dislike overly tall plants, but it is unknown how this and 

decreased ear height has directly affected grain yield (Duvick et al., 2004). It may be 

another result of increased plant density over time. At higher densities, old hybrids 

maintain plant size, but lose yield because of an increased proportion of barren plants 

(Duvick, 2005). Meanwhile, new hybrids manage to maintain their harvest index in 

densely planted populations (Duvick, 2005). 

The effects of root and stalk lodging on grain yield are more obvious. Downed 

plants are not only more difficult to machine harvest, but also are not given the chance to 

fully utilize the grain-filling period. Similar to Duvick et al (2004), this research shows 

that new hybrids are more resistant to both root and stalk lodging. While there was 

minimal root lodging in 2014, a wind storm in 2015 made differences in root lodging 

apparent among eras. 

For flowering traits researchers agree that days to anthesis have not significantly 

changed over time, but the anthesis silking interval (ASI) has consistently decreased 

(Meghji et al., 1984 and Duvick et al., 2004). The ASI is extremely important for hybrid 

yield potential under stress – maintained silk exertion and ear growth are necessary to 

reduce the number of barren plants (Bolanos & Edmeades, 1996). 

Interestingly, while this research showed no significant effect of hybrid year of 

release on leaf rolling, Barker et al (2005) showed that newer hybrids tend to roll their 

leaves to a greater extent. Because leaf rolling is not a sign of maintained growth and 
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production under mild drought scenarios it is generally assigned a negative connotation 

(Tardieu, 2012). 

Another trait that has shown consistent improvement over time is staygreen, or 

delayed leaf senescence. Duvick et al (2004) showed an increase in the staygreen score 

(rank from 1 to 9) at a rate of 0.06 per year (R
2
 = .75). This experiment showed a less 

significant trend of a decrease in senescence ranks at a rate of 0.04 per year (R
2
 = 0.31). 

Yield potential is increased as new hybrids are less prone to premature death and have 

extended grain-fill periods (Cavalieri & Smith, 1985). 

Changes in leaf chlorophyll and relative water contents in maize era hybrids have 

not been reported previously in the literature. This study shows that significant trends do 

exist for both traits. Over time, chlorophyll content has increased at a rate of 0.1 µg/mL 

per year (R
2
 = 0.3) and RWC at 0.02% per year (R

2
 = 0.38). Ying et al. (2000) actually 

discovered that the photosynthetic rate at saturating irradiance of an old hybrid was 

greater than two new hybrids. However, other results show that leaf photosynthetic rates 

from a larger group of era hybrids did not show any differences (Tollenaar & Lee, 2002). 

While it might be expected that leaves with increased chlorophyll contents would exhibit 

increased rates of ATP and NADPH production from electron transport, this cannot be 

concluded. New hybrids undoubtedly have a photosynthetic advantage as they maintain a 

larger leaf area index when planted at high densities; however, on a per plant basis, leaf 

area index has remained stable over the years (Tollenaar & Lee, 2002). This study, 

consisting of uniform plant populations and individual leaf chlorophyll estimations, hints 

that chlorophyll contents have increased concomitantly with grain yield over time. 
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 Although previous era studies have not looked directly at chlorophyll content, 

researchers have examined nitrogen uptake and partitioning. Chen et al. (2015) found that 

newer hybrids partition more dry matter to the leaf instead of the stem at silking, that new 

hybrids retrieve more nitrogen from the soil post-silking, and that new hybrids retained 

higher leaf dry matter and nitrogen content at maturity. On top of that, newer hybrids 

have higher nitrogen contents in the whole plant at silking; therefore, a greater source 

strength at the onset of grain filling (Ciampitti & Vyn, 2013). Because remobilization of 

nitrogen from vegetative organs to the ear is delayed and post-silking nitrogen uptake is 

prolonged in new hybrids, leaf photosynthesis duration can be expanded (Chen et al., 

2015). Old hybrids typically accumulate as much nitrogen as possible at silking and then 

transfer most of this nitrogen to the grain throughout the reproductive stages (Chen et al., 

2015). On the other hand, recent hybrids require this post-silking nitrogen uptake because 

remobilized nitrogen from the vegetative organs at silking will not fulfill the ear nitrogen 

demand (Chen et al., 2015). Therefore, the greater nitrogen status in the leaves of newer 

hybrids coincides with the increased chlorophyll contents found in this study. 

 Barker et al. (2005) found a significant downward trend in canopy temperature 

over hybrid year of release in water stressed scenarios. This implies that newer hybrids 

are able to access soil water and/or maintain leaf relative water content better in 

comparison to old hybrids. Our study shows that even in optimal environments new 

hybrids retain more water in their leaves. The importance of chlorophyll and water 

content was elucidated in Chapter 2, from that introduction and this discussion it is clear 

that new hybrids are productive because of their ability to capture and utilize additional 

carbon and nitrogen. Sufficient water status allows for continual transpiration and 
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incorporation of carbon dioxide. Increases in chlorophyll and nitrogen contents allow 

prolonged photosynthesis which creates the chemical energy necessary to produce useful 

carbohydrates for continued root and ear development. 

Finally, Duvick et al (2004) note that the average annual genetic gain for grain 

yield is 77 kg/ha in optimum growing conditions. This study shows, using the lsmeans for 

each year of release, that the annual genetic gain of grain yield is 76 kg/ha (R
2
 = 0.71). 

Genetic Gain of the 760/730 Vegetation Index 

 The 760/730 index has been correlated to nitrogen uptake and canopy water 

content (Winterhalter et al., 2011a and 2011b). In this study, the index shows strongest 

correlations to total leaf chlorophyll content (Chapter 2). This phenotype is advantageous 

because it can monitor plants accurately and efficiently throughout the growing season. 

 First, per raw index values, total chlorophyll content is greatest in the leaves 

during early reproductive stages as compared to vegetative stages and physiological 

maturity. Second, mimicking the genetic gain of chlorophyll content, index values for 

new hybrids are consistently higher than those for old hybrids throughout the growing 

season. Third, while there are no differences between the slopes of these regression lines 

at different growth stages, the R1 growth stage can explain the most variation in the index 

values by hybrid year of release (R
2
 = 0.49). 

 These results verify that the chlorophyll content, nitrogen status, and even relative 

water contents are improved in modern hybrids. Increases in these traits have been 

associated with gains in grain yield over time. More specifically, because gains in 

chlorophyll content have changed with breeding over time, this research validates that the 
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many new phenotyping tools that utilize reflectance technology to estimate chlorophyll 

have merit to be used in selection programs to continue improving maize. 

CONCLUSIONS 

In agreement with Duvick et al. (2004), modern hybrids exhibit many unique 

characteristics that are associated with increases in productivity over time. For example, 

new hybrids exhibit increased grain yield with a decreased ASI, decreased stalk lodging, 

root lodging, plant height, ear height, early vegetative biomass, and senescence. In 

addition, increases in leaf chlorophyll concentrations and water contents were discovered 

in new hybrids. Hyperspectral reflectance indices confirmed these changes in leaf traits 

over time, and the differences were optimized surrounding flowering. 

By understanding the morphological and physiological trends of maize hybrids 

over time, breeders can continue to select for these traits that enhance yield. Moreover, 

this research shows that high throughput phenotyping tools that estimate chlorophyll 

content can be implemented into a breeding program. Research needs to be conducted to 

reveal molecular mechanisms behind these changes in leaf characteristics over time. 
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Figures 

 
Figure 3.1. LS-means for anthesis silking interval (ASI) regressed over year of hybrid 

release from the 2014 WW treatment. 
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Figure 3.2. LS-means for chlorophyll content regressed over year of hybrid release from 

the July 28, 2014 sampling date. 
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Figure 3.3. LS-means for relative water content (RWC) regressed over year of hybrid 

release from the August 7, 2015 sampling date. 
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Figure 3.4. LS-means for grain yield (Mg/ha) regressed over year of hybrid release from 

both years (2014: only WW; 2015: all replications). 
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Figure 3.5. LS-means of 760/730 index values regressed over year of hybrid release from 

both years at the R1 developmental stage (2014: only WW; 2015: all replications). 
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Figure 3.6. Slopes from the LS-means of 760/730 index values regressed over year of 

hybrid release from both years at all measured developmental stages (2014: only WW; 

2015: all replications). Red lines represent late vegetative stages, blue lines represent 

early reproductive stages, gray lines represent late reproductive stages, and the black line 

represents the average slope across all developmental stages (b = 0.0007, R
2
 = 0.76). 
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Tables 

Table 3.1. ANOVA results for detecting significant differences between all 36 hybrids or 

between the 6 eras for various traits for each year. Blank spaces are a result of traits not 

being sampled that year. Developmental stages are listed behind the trait in most cases. 

 

‘***’ = significant at the <0.001 level; ‘**’ = <0.01; ‘*’ = <0.05; ‘.’ = <0.10 

ASI = anthesis silking interval; GR = growth rate (GR1 = dry matter accumulation in 

grams per day between the V6 and V13 stages, GR2 = between V13 and R2, GR3 = 

between R2 and R6); CT = canopy temperature; LR = leaf rolling; RWC = relative water 

content; Chl = chlorophyll content; Sen = senescence score

2014 2015

Hybrid Era Hybrid Era

Pollen Date *** ** *** ***

ASI *** *** *** ***

V6 Biomass *** NS

V13 Biomass *** *** *** ***

R2 Biomass *** ** *** .

Black Biomass *** *** *** ***

GR1 *** ***

GR2 *** *** *** NS

GR3 *** *** *** *

Grain Yield *** *** *** ***

Stalk Lodge (%) *** *** *** ***

Root Lodge (%) *** ***

Plant Height *** *** *** ***

Ear Height *** *** *** ***

CT.R1 NS NS

CT.R3 NS .

CT.R4 NS NS NS NS

CT.R5 NS NS NS NS

CT.R5.2 NS NS

CT.R6 NS NS

LR.R4 *** *

LR.R5 NS NS

RWC.V16 ** *

RWC.R3 NS NS *** ***

RWC.R5 NS NS

Chl.V16 *** *

Chl.R3 *** *** *** ***

Chl.R5 *** *

Sen.R5 *** ***

Sen.R6 *** *** *** ***

Sen.R6.2 *** ** *** ***

Sen.R6.3 *** ***



82 

 

Table 3.2. Linear regression results from the LS-means of various traits over year of 

hybrid release. Slopes (b), coefficients of determination (R
2
), and significance levels are 

presented. Blank spaces are a result of non-significant ANOVAs among all hybrids and 

eras. Developmental stages are listed behind the trait. 

 
‘***’ = significant at the <0.001 level; ‘**’ = <0.01; ‘*’ = <0.05; ‘.’ = <0.10 

ASI = anthesis silking interval; LR = leaf rolling; RWC = relative water content; Chl = 

chlorophyll content; Sen = senescence score; Combined GY = LS-means for grain yield 

from both experimental years regressed over hybrid year of release 

  

2014 2015

b R
2

b R
2

Pollen Date -0.026 0.078 NS -0.021 0.077 NS

ASI -0.065 0.633 *** -0.053 0.530 ***

V13 Biomass -0.656 0.212 * -0.474 0.103 NS

R2 Biomass 3.034 0.089 NS -0.434 0.005 NS

R6 Biomass -1.910 0.057 NS -1.950 0.095 NS

Growth Rate 1 -0.039 0.191 *

Growth Rate 2 0.241 0.121 NS

Growth Rate 3 -0.081 0.085 NS -0.043 0.122 .

Grain Yield 0.076 0.678 *** 0.077 0.684 ***

Stalk Lodge (%) -0.130 0.428 *** -0.049 0.318 **

Root Lodge (%) -0.634 0.496 ***

Plant Height -0.233 0.233 * -0.133 0.063 NS

Ear Height -0.362 0.457 *** -0.261 0.220 *

LR.R4 -0.005 0.039 NS

RWC.V16 -0.001 0.001 NS

RWC.R3 0.022 0.376 ***

Chl.V16 0.030 0.066 NS

Chl.R3 0.102 0.297 ** 0.085 0.273 **

Chl.R5 0.052 0.092 NS

Sen.R5 -0.013 0.146 .

Sen.R6 -0.041 0.312 ** -0.018 0.119 .

Sen.R6.2 -0.030 0.119 . -0.023 0.227 *

Sen.R6.3 -0.011 0.089 NS

Combined GY 0.076 0.709 ***
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Table 3.3. Linear regression results from the LS-means of 760/730 index values over 

year of hybrid release for various developmental stages. LS-means are from both 

experimental years when the sensor was used at the same stage. Slopes (b), coefficients 

of determination (R
2
), and significance levels are presented. 

 

‘***’ = significant at the <0.001 level; ‘**’ = <0.01; ‘*’ = <0.05; ‘.’ = <0.10 

  

Stage b R
2

V10 0.0005 0.270 **

V13 0.0007 0.444 ***

V17 0.0009 0.453 ***

R1 0.0010 0.489 ***

R3 0.0008 0.257 **

R4 0.0008 0.276 **

R5 0.0005 0.145 .

R5 0.0008 0.282 **

R6 0.0006 0.146 .

R6 0.0003 0.031 NS
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Appendix 

Supplementary Figure 1 

 
Multiple regression results of nondestructive measurements against aboveground dry 

biomass at vegetative stage (R
2
 = 0.59). Nondestructive measurements consisted of plant 

height, leaf width, leaf length, leaf number, and stalk diameter. Correlations were made 

on a plot by plot basis using the average measurements of two plants to estimate the 

actual dry biomass of ten plants. 
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Supplementary Figure 2 

 
Multiple regression results of nondestructive measurements against aboveground dry 

biomass at reproductive stage (R
2
 = 0.65). Nondestructive measurements consisted of 

plant height, leaf width, leaf length, leaf number, stalk diameter, ear diameter, and ear 

length. Correlations were made on a plot by plot basis using the average measurements of 

two plants to estimate the actual dry biomass of ten plants. 
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Supplementary Table 1 

 
  

Index Equation Trait Reference

BGI1 (R400/R550 ) Pigments (Rodrigues et al., 2014 & Zarco-Tejada et al., 2005)

BGI2 (R450/R550 ) Pigments (Rodrigues et al., 2014 & Zarco-Tejada et al., 2005)

BRI1 (R400/R690) Pigments (Zarco-Tejada et al., 2005)

BRI2 (R450/R690) Pigments (Zarco-Tejada et al., 2005)

CAR (R515/R570 ) Carotenoids (Rodrigues et al., 2014 & Hernández-Clemente et al., 2012)

CARI

(R700*(sqrt((((R700-R550)/150)*670+R670+((R550-((R700-

R550)/150)*550))^2))))/(R670*(((R700-R550)/150)^2 + 1)^0.5) Chlorophyll (Main et al., 2011)

Cars R470 Carotenoids (Blackburn, 1998)

Carter6 R550 Chlorophyll (Main et al., 2011 & Carter, 1994)

CG (R780/R550)-1 Total Chl (Gitelson et al., 2006)

CI (R675*R690)/R683^2 Chlorophyll a (Main et al., 2011 & Zarco-Tejada et al., 2003)

CI2 (R760/R700)-1 Chlorophyll (Gitelson et al., 2003)

Datt (R850-R710)/(R850-R680) Chlorophyll (Main et al., 2011 & Datt, 1999)

Datt2 R850/R710 Chlorophyll (Main et al., 2011 & Datt, 1999)

Datt4 R672/(R550*R708) Chlorophyll (Main et al., 2011 & Datt, 1998)

Datt5 R672/R550 Chl b (Main et al., 2011 & Datt, 1998)

Datt6 R860/(R550*R708) Chlorophyll (Main et al., 2011 & Datt, 1998)

DD (R749-R720)-(R701-R672) Total Chl (Main et al., 2011 & le Maire et al., 2004)

DDn 2*(R710-R660-R760) Total Chl (Main et al., 2011 & le Maire et al., 2008)

EVI 2.5*((R800-R770)/(R800+6*R670-7.5*R400+1)) Biomass (Huete et al., 2002 & Rodrigues et al., 2014)

GI R554/R677 Canopy Chl (Main et al., 2011 & Zarco-Tejada et al., 2005)

Gitelson 1/R700 Total Chl (Main et al., 2011 & Gitelson et al., 1999)

CIRE (R750-800)/(R710-730)-1 Total Chl (Main et al., 2011 & Gitelson et al., 2003)

GLI (2*R560-R660-R485)/(2*R560+R660+R485) Total Chl (Hunt et al., 2011)

GRE 322*((R790/R715)-1)+27 Chlorophyll (Gitelson et al., 2003)

Green.NDVI (R800-R550)/(R800+R550) Chl a (Main et al., 2011 & Gitelson et al., 1996)

HBCI10 (R720-R550)/(R720+R550) Pigments (Thenkabail et al., 2014)

HBCI11 (R550-R375)/(R550+R375) Pigments (Thenkabail et al., 2014)

HBCI12 (R855-R550)/(R855+R550) Pigments (Thenkabail et al., 2014)

HBCI13 (R550-R682)/(R550+R682) Pigments (Thenkabail et al., 2014)

HBCI8 (R550-R515)/(R550+R515) Pigments (Thenkabail et al., 2014)

HBCI9 (R550-R490)/(R550+R490) Pigments (Thenkabail et al., 2014)

HBSI1 (R855-R682)/(R855+R682) Biomass (Thenkabail et al., 2014)

HBSI2 (R910-R682)/(R910+R682) Biomass (Thenkabail et al., 2014)

LABR (R820-R701)/(R820+R701) Nitrogen (Carter, 1998)

Maccioni (R780-R710)/(R780-R680) Total Chl (Main et al., 2011 & Maccioni et al., 2001)

MCARI ((R700-R670)-0.2*(R700-R550))*(R700/R670) Canopy Chl (Rodrigues et al., 2014, Main et al., 2011, & Daughtry et al., 2000)

MCARI.MTVI2 MCARI/MTVI2 Total Chl (Hunt et al., 2011)

MCARI.OSAVI MCARI/OSAVI Canopy Chl (Rodrigues et al., 2014, Main et al., 2011, & Daughtry et al., 2000)

MCARI1 1.2*(2.5*(R800-R670)-1.3*(R800-R550)) Canopy Chl (Rodrigues et al., 2014 & Haboudane et al., 2004)

MCARI2

(1.5*(2.5*(R800-R670)-1.3*(R800-R550)))/(sqrt((2*R800+1)^2 -

(6*R800-5*sqrt(R680))-0.5)) Canopy Chl (Rodrigues et al., 2014 & Haboudane et al., 2004)

MCARI2n ((R750-R705)-0.2*(R750-R550))*(R750/R705) Canopy Chl (Main et al., 2011 & Wu et al., 2008)

MCARI2n.OSAVI2 MCARI2n/OSAVI2 Canopy Chl (Main et al., 2011 & Wu et al., 2008)

mND705 (R750-R705)/(R750+R705-2R445) Total Chl (Main et al., 2011 & Sims and Gamon, 2002)

mNDVI (R800-R680)/(R800+R680-2*R445) Total Chl (Main et al., 2011 & Sims and Gamon, 2002)
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MSAVI 0.5*(2*R800+1-sqrt((2*R800+1)^2-8*(R800-R670))) Canopy Chl (Main et al., 2011 & Qi et al., 1994)

mSR (R800-R445)/(R680-R445) Total Chl (Main et al., 2011 & Sims and Gamon, 2002)

mSR3 ((R800/R670)-1)/(((R800/R670)^0.5)+1) Canopy Chl (Rodrigues et al., 2014 & Chen, 1996)

mSR2 (R750/R705)-1/sqrt((R750/R705)+1) Canopy Chl (Main et al., 2011 & Chen, 1996)

mSR705 (R750-R445)/(R705-R445) Total Chl (Main et al., 2011 & Sims and Gamon, 2002)

MTCI (R754-R709)/(R709-R681) Canopy Chl (Main et al., 2011 & Dash and Curran, 2004)

MTVI1 1.2*(1.2*(R800-R550)-2.5*(R670-R550)) Canopy Chl (Rodrigues et al., 2014 & Haboudane et al., 2004)

MTVI2

(1.5*(1.2*(R800-R550)-2.5*(R670-R550)))/(sqrt((2*R800+1)^2-

(6*R800-5*sqrt(R670))-0.5)) Canopy Chl (Rodrigues et al., 2014 & Haboudane et al., 2004)

ND (R925-R710)/(R925+R710) Canopy Chl (le Maire et al., 2008)

NDRE (R790-R720)/(R790+R720) Nitrogen, Chl (Winterhalter et al., 2011 & Rodriguez et al., 2006)

NDVI (R800-R670)/(R800+R670) Canopy Chl (Main et al., 2011 & Tucker, 1979)

NDVI2n (R750-R705)/(R750+R705) Chl a (Main et al., 2011 & Gitelson and Merzlyak, 1994)

NDVI3n (R682-R553)/(R682+R553) Canopy Chl (Main et al., 2011 & Gandia et al., 2004)

NDVIc (R895-R675)/(R895+R675) Canopy Chl (Colombo et al., 2008)

NDVIw (R800-R680)/(R800+R680) Nitrogen (Winterhalter et al., 2011 & Mistele and Schmidhalter, 2008)

NIR.green R780/R550 Nitrogen (Winterhalter et al., 2011 & Mistele and Schmidhalter, 2008)

NIR.NIR R780/R740 Nitrogen (Winterhalter et al., 2011 & Mistele and Schmidhalter, 2008)

NIR.red R780/R700 Nitrogen (Winterhalter et al., 2011 & Mistele and Schmidhalter, 2008)

NPCI (R680–R430)/(R680+R430) Chlorophyll (Main et al., 2011 & Peñuelas et al., 1994)

NPI (R415-R435)/(R435+R415) Chlorophyll (Peñuelas et al., 1995)

OCAR R630/R680 Chl & RWC (Winterhalter et al., 2011 & Schlemmer et al., 2005)

OSAVI ((1+0.16)*(R800-R670))/((R800+R670+0.16)) Canopy Chl (Rodrigues et al., 2014 & Rondeaux et al., 1996)

OSAVI2 (1 + 0.16)*(R750-R705)/(R750+R705+0.16) Canopy Chl (Main et al., 2011 & Wu et al., 2008)

PRI.CI ((R531-R570)/(R531+R570))*((R760/R700 )-1) Carotenoid (Rodrigues et al., 2014 & Garrity et al., 2011)

PSNDa (R800-R680)/(R800+R680) Chl a (Blackburn, 1998)

PSNDb (R800-R635)/R800+R635) Chl b (Blackburn, 1998)

PSNDc ((R800-R470)/(R800+R470 )) Carotenoids (Rodrigues et al., 2014 & Blackburn, 1998)

PSRI ((R678-R500)/R750 ) Carotenoid/Chl ratio (Rodrigues et al., 2014 & Merzlyak et al., 1999)

PSSRa (R800/R680) Chl a (Rodrigues et al., 2014 & Blackburn, 1998)

PSSRb (R800/R635) Chl b (Rodrigues et al., 2014 & Blackburn, 1998)

PSSRc (R800/R470) Carotenoids (Rodrigues et al., 2014 & Blackburn, 1998)

RARSa (R675/R700)/(Ref675/Ref700) Chl a (Chappelle et al., 1992)

RARSb (R675/R650*R700)*(Ref650*Ref700/Ref675) Chl b (Chappelle et al., 1992)

RARSc (R760/R500)/(Ref760/Ref500) Carotenoids (Chappelle et al., 1992)

RDVI (R800-R670)/(sqrt(R800+R670)) Biomass (Roujean and Breon, 1995 & Rodrigues et al., 2014)

REP.Li 700+40*((R670+R780/2)/(R740-R700)) Total Chl (Main et al., 2011)

RGI (R690/R550) Pigments (Zarco-Tejada et al., 2005)

RNIR.CRI550 (1/R510)-(1/R550)*R770 Pigments (Rodrigues et al., 2014)

RNIR.CRI700 (1/R510)-(1/R700)*R770 Pigments (Rodrigues et al., 2014)

SARVI2 2.5*(R800-R670)/(1+R800+(6*R670)–(7.5*R475)) Canopy Chl (Huete et al., 1997)

SARVI2m 2.5*((R800-R670)/(R800-(6*R670)-(7.5*R475)+1)) Canopy Chl (Main et al., 2011)

SIPI (R800-R445)/(R800-R680) Pigments (Main et al., 2011 & Blackburn, 1998)

SPVI 0.4*(3.7*(R800-R670)-1.2*abs(R550-R670)) Canopy Chl (Main et al., 2011 & Vincini et al., 2006)

SR R800/R675 Canopy Chl (Jordan, 1969)

SR1 R750/R700 Total Chl (Main et al., 2011 & Gitelson and Merzlyak, 1997)

SR2 R752/R690 Total Chl (Main et al., 2011)
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List of all vegetation indices used in this study. Indices are identified by their acronyms; 

the traits they measure and their calculations are provided. The letter R followed by a 

number is the reflectance value at that specific wavelength in nanometers. 

Chl = chlorophyll; RWC = relative water content; LUE = light use efficiency; CWM = 

canopy water mass  

SR3 R750/R550 Total Chl (Main et al., 2011 & Gitelson and Merzlyak, 1997)

SR4 R700/R670 Total Chl (Main et al., 2011)

SR5 R675/R700 Chl a (Main et al., 2011)

SR6 R750/R710 Total Chl (Main et al., 2011)

SRc R895/R675 Canopy Chl (Colombo et al., 2008)

SRPI R430/R680 Chl a (Main et al., 2011 & Peñuelas et al., 1995)

SRw R900/R680 Canopy Chl (Winterhalter et al., 2011) & (Aparicio et al., 2002)

TCARI 3*((R700-R670 )-0.2*(R700-R550 )*(R700/R670)) Canopy Chl (Rodrigues et al., 2014 & Haboudane et al., 2002)

TCARI.OSAVI TCARI/OSAVI Canopy Chl (Rodrigues et al., 2014 & Haboudane et al., 2002)

TCARI2 3*((R750-R705)-0.2*(R750-R550)*(R750/R705)) Canopy Chl (Main et al., 2011 & Wu et al., 2008)

TCARI2.OSAVI2 TCARI2/OSAVI2 Canopy Chl (Main et al., 2011 & Wu et al., 2008)

TGI (-.5*((R660-R485)*(R680-R530)-(R660-R560)*(R640-R510))) Total Chl (Hunt et al., 2011)

TVI 0.5*(120*(R750-R550)-200*(R670-R550)) Canopy Chl (Main et al., 2011 & Broge and Leblanc, 2000)

Vog2 (R734-R747)/(R715+R726) Total Chl (Zarco-Tejada et al., 2001)

Vog3 (R734-R747)/(R715+R720) Total Chl (Zarco-Tejada et al., 2001)

Vogelmann R740/R720 Total Chl (Main et al., 2011 & Vogelmann et al., 1993)

Vogelmann2 ((R734:R747)/n)/((R715:R726)/n) Total Chl (Main et al., 2011 & Vogelmann et al., 1993)

YCAR R600/R680 RWC, Chl (Winterhalter et al., 2011 & Schlemmer et al., 2005)

ZTM3 (R750/R670) Total Chl (Rodrigues et al., 2014 & Zarco-Tejada et al., 2001)

ZTM4 (R710/R700) Total Chl (Rodrigues et al., 2014 & Zarco-Tejada et al., 2001)

ZTM5 (R710/R670) Total Chl (Rodrigues et al., 2014 & Zarco-Tejada et al., 2001)

Carter R695/R420 Stress (Main et al., 2011 & Carter, 1994)

Carter2 R695/R760 Stress (Main et al., 2011 & Carter, 1994)

Carter3 R605/R760 Stress (Main et al., 2011 & Carter, 1994)

Carter4 R710/R760 Stress (Main et al., 2011 & Carter, 1994)

Carter5 R695/R670 Stress (Main et al., 2011 & Carter, 1994)

HREI15 (R855-R720)/(R855+R720) Stress (Thenkabail et al., 2014)

HREI16 (R910-R705)/(R910+R705) Stress (Thenkabail et al., 2014)

PRI (R531-R570)/(R531+R570) LUE (Gamon et al., 1992)

PRI2 ((R570-R530)/(R570+R530 )) LUE (Rodrigues et al., 2014 & Gamon et al., 1992)

PRI3 ((R550-R531)/(R550+R531)) LUE (Gamon et al., 1992)

SR7 R440/R690 Stress (Main et al., 2011)

760/730 R760/R730 Nitrogen, CWM (Winterhalter et al., 2011 & Mistele and Schmidhalter, 2010)

CWMI1 R850/R725 CWM (Winterhalter et al., 2011)

CWMI2 R890/R715 CWM (Winterhalter et al., 2011)

CWMI3 R980/R715 CWM (Winterhalter et al., 2011)

HWMI17 (R855-R970)/(R855+R970) Water Content (Thenkabail et al., 2014)

NWI1 (R970-R900)/(R970+R900) Water Status (Gutierrez et al., 2010)

NWI3 (R970-R880)/(R970+R880) Water Status (Gutierrez et al., 2010)

PRI4 ((R512-R531)/(R512+R531)) Stomatal Conductance (Rodrigues et al., 2014 & Hernández-Clemente et al., 2011)

PRIn

((R570-R531)/(R570+R531))/(((R800-

R670)/(sqrt(R800+R670)))*R700/R670) Stomatal Conductance (Rodrigues et al., 2014 & Zarco-Tejada et al., 2013)

R701 R701/R820 Stomatal Conductance (Carter, 1998)

WBI R900/R970 Plant Water Content (Winterhalter et al., 2011 & Peñuelas et al., 1997)

WBI.NDVI (R900/R970)/((R800-R680)/(R800+R680)) Plant Water Content (Winterhalter et al., 2011 & Peñuelas et al., 1997)

ZRWC (R520/R720) Relative Water Content (Zygielbaum et al., 2009)
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