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Numerous studies conducted on highway stormwater runoff and its control with Best 

Management Practices (BMPs) indicate that sediment is the major pollutant that affects 

performance and longevity of BMPs. Currently, there are several knowledge gaps related to the 

effects of sediments on highway BMPs: a) how much sediment will be generated by a 

construction site by a section of highway with its surrounding watershed under different 

conditions; b) how sediment is intercepted by different BMPs with or without pretreatment 

sections; and c) what are the effects of these sediments on BMPs’ hydraulic behavior, longevity, 

and pollutants removal or release. The objectives of this study are to: 1) develop models to 

predict both surface runoff and sediment yield from highway systems under different 

conditions; and 2) evaluate how to incorporate models into design and management of BMPs 

for highway runoff control.  

RUSLE2 was used to estimate sediment yield for different settings (e.g., construction 

sites, different highway sections) under different environmental (e.g., soils, vegetation, slopes) 

and weather conditions (e.g., different rain events). Several highway sites across the state were 

selected to model runoff and sediment delivery under various construction scenarios. Several 

BMP designs were modeled at each of the highway sites to assess how the sediments would 

affect longevity of the BMP. Results indicate that BMPs reduce pollutants within channels.  The 

data also points to BMPs on stabilized sites having higher efficiencies and longer lifespans. The 



  

developed models will assist in the planning, design and management of structural BMPs for 

highway runoff control. 
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Chapter 1 Introduction 

1.1 Background 
 Erosion is a natural phenomenon that occurs when soils and sediments are moved by 

wind, glacial motion, water flow, and raindrop impact.  Rain on the ground surface causes two 

types of erosion, interrill and rill.  “Inter-rill erosion is the movement of soil by rain splash and its 

transport by this surface flow.  Rill erosion is erosion by concentrated flow in small rivulets” 

(Penn State 2015). 

 The sediment eroded may carry additional pollutant load from the hillside abutting the 

highway.  Pollutants could be nitrogen, phosphorus, carbon, or other roadway pollutants that 

wash off of the hillside.  It is important to treat the soil and pollutant load prior to entering a 

water body.  This treatment process prevents pollutants from getting into water bodies and 

adversely affecting plants and wildlife.  For stormwater runoff, treatment is generally 

accomplished through implementation of best management practices, BMPs.  

 The Clean Water Act (CWA) was established to “restore and maintain the chemical, 

physical, and biological integrity of the Nation’s waters,” through processes that reduce the 

pollutant loads within the water bodies (U.S. EPA 1972).  The Clean Water Act mandates the 

application of BMPs on construction sites larger than one acre and requires a National Pollutant 

Discharge Elimination System (NPDES) permit.  Under Section 404, highway sites fall into 

infrastructure development, and must be in compliance with the CWA (U.S. EPA 2014c). 

1.2 Objectives 

 The goals of this project were to estimate the amount of erosion from roadway 

construction sites and to evaluate the impacts of sediments on BMPs treating runoff from those 
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sites.  RUSLE2 (USDA 2008) was used to estimate the annual erosion and sediment yield from 

the construction sites considering various erosion control management methods that might be 

used in Nebraska.  Once the sediment yield was found, a model was designed to estimate the 

sediment capture efficiency of different BMPs and to evaluate the lifespan of each BMP before 

it is filled with sediment.   

 The two major objectives of this project were:  

 Develop a model to predict sediment yield from highway construction sites under 

different erosion management conditions. 

 Develop a model to estimate the lifespan of sediment control BMPs treating runoff from 

highway construction sites. 

 The first objective of developing a model was done by evaluating existing erosion 

modelling software, and identifying a model that can be easily used by highway designers to 

estimate surface runoff and sediment yield.  The second objective was completed by developing 

a model that considers the sediment load to the BMP and the sediment trapping efficiency of 

the BMP to estimate the time before the BMP would fill with sediment. 

 The BMPs selected for evaluation were: detention ponds, infiltration trenches, grass 

lined swales, grass lined swales with rock check dams, and bioretention areas.  Each respective 

BMP requires different measures of efficiency to accurately assess its effectiveness and lifespan.   
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Chapter 2 Literature Review 

2.1 Soil Erosion and Impacts 

  Starting from as long ago as 4,000 years, the ancient Incas of Peru were utilizing very 

sophisticated farming practices to reduce erosion.  This was done with terracing very steep 

slopes by building walls down the hillside and hauling tons of topsoil up to 700 miles to the 

fields.  These terraces were constructed so well that even now they are producing crops (Kell 

1938). 

 “In the mid 1940’s, W.D. Ellison defined erosion as, “…a process of detachment and 

transport of soil particles.”  Detachment is the separation of soil particles from the soil mass and 

is expressed in units of mass/area.  Soil particles separated from the soil mass are referred to as 

sediment.  Sediment movement downslope is sediment transport, described as sediment load, 

expressed in units of mass/width of slope” (USDA 2008). 

 There are many problems with erosion on and off site.  On site, these are loss of topsoil, 

loss of fertilizers, and decrease in crop yields due to decreasing soil productivity.  Off-site the 

problems are pollution of water bodies, surface water with suspended solids creating muddy 

water bodies, and often requiring dredging operations to remove sediments and the pollutant 

loads settling in the water bodies (Verstraeten et al. 2002).   

 “Highway departments spend thousands of dollars every year cleaning away the debris 

and soil washed onto the roads from adjoining fields. The washing of fertile soil from fields onto 

the highways is a direct loss of the producing power and capital of the farmer, and its removal is 

a public expense that should be avoided. From a field of 15 acres in western Pennsylvania it was 

estimated by one of the highway foremen that approximately 60 tons of soil, were removed by 

one rain. Most of this soil came from a cultivated field in corn where the rows were not on the 

contour. Had this field been protected by alternate close-growing strips and cultivated on the 
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contour the loss to the farmer would have been prevented, and the State would have been 

saved the expense of removing the soil from the highway” (Kell 1938). 

 Farmers were encouraged to utilize grassed swales or biofiltration systems as early as 

1938, by planting grass or leaving prairie in the natural drainage channels instead of plowing and 

planting there.  It was also recommended at that time to use buffer strips through a field and to 

use strip cropping along the contours of the field (Kell 1938). 

2.2 Best Management Practices 

 “On September 1, 1978, EPA proposed regulations (43 FR 39282) addressing the use of 

procedures and practices to control discharges from activities associated with or ancillary to 

industrial manufacturing or treatment processes.  The proposed rule indicated how BMPs (Best 

Management Practices) would be imposed in NPDES permits to prevent the release of toxic and 

hazardous pollutants to surface waters.  The regulations (40 CFR Part 125, Subpart K, Criteria 

and Standards for Best management Practices Authorized under Section 304(e) of the CWA) 

were proposed in August 21, 1978, in the NPDES regulations (43 FR 37078)” (U.S. EPA 1994). 

 The EPA defines best management practices as: “a permit condition used in place of or 

in conjunction with effluent limitations to prevent or control the discharge of pollutants. BMPs 

may include a schedule of activities, prohibition of practices, maintenance procedure, or other 

management practice.” (U.S. EPA 2013b).   

 The type of pollution found on construction and highway sites is non-point source 

pollution.  Non-point source pollution is defined as: pollution from land runoff, precipitation, 

atmospheric deposition, drainage, seepage, or hydrologic modification (EPA 2014).  While the 

pollutants in the non-point source pollution may vary between general sites and highway sites, 

the pollutants are addressed the same.  The EPA requires that all construction sites have BMPs 
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in place during construction and after construction on newly disturbed sites of one acre or 

more.   

2.3 BMP Types 
 BMPs are generally classified as either non-structural or structural in nature.  Non-

structural BMPs are a function of how an operation is done, such as sweeping streets to remove 

sediments before they can be transported to a waterway.  Non-structural BMPs tend to be low 

impact and may be practices such as: low or no-till operations, limits on amount of impervious 

areas and prescribed burns in forested areas (Ice 2004).  Additional examples of non-structural 

BMPs are: public education, public participation and implementation, monitoring of illicit 

discharge, and generally accepted good housekeeping of sites.  Some BMPs are structural, such 

as a detention pond used to settle and remove sediment from stormwater runoff.  These 

structural BMPs may be construction or post-construction BMPs. 

 Structural BMPs are physical devices that mitigate pollution.  They are designed to catch 

and allow pollutants to settle out or filter the pollutants in runoff and slow the flow velocity.  

There are multiple structural BMPs, such as: silt fence, check dams, basins and ponds, and rock 

lined swales (MDOT 2015). 

 According to the EPA, there are many construction BMPs available (Table 2. 1) to 

manage stormwater runoff during construction activities (U.S. EPA 2014). 
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Table 2. 1 Recommended Stormwater BMPs (U.S. EPA 2014) 
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Additionally, there are many post-construction BMPs (Table 2. 2) to manage stormwater (U.S. 

EPA 2014c): 

 

 There are many factors that can affect the selection of best management practices.  

Some of these factors include: cost, land availability, topography, target pollutant, watershed 

size, land cover, and soil type (Hunt and White 2001).  All of these should be considered prior to 

initiating design and construction of runoff management systems.    

Table 2. 2 Recommended Post-Construction BMPs (U.S. EPA 2014c) 
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2.4 BMP Pollutant Removal 

 BMPs are typically measured by their pollutant removal ability.  The pollutants that the 

EPA found in the Nationwide Urban Runoff Program (NURP) study, a comprehensive study of 

runoff that occurred between 1978 and 1983, are listed below (U.S. EPA 1983):  

 Total Suspended Solids (TSS) 

 Biochemical Oxygen Demand (BOD) 

  Chemical Oxygen Demand (COD) 

 Total Phosphorus (TP) 

 Soluble Phosphorus (SP) 

 Total Kjeldahl Nitrogen (TKN) 

 Nitrate + Nitrite (N) 

 Total Copper (Cu) 

 Total Lead (Pb) 

 Total Zinc (Zn) 

 According to the U.S. EPA, the common contaminants found in stormwater runoff are 

(U.S. EPA 1999a): 

 Sediments and Floatables 

 Pesticides and Herbicides 

 Organic materials 

 Metals 

 Oil and Grease/ Hydrocarbons 

 Bacteria and Viruses 

 Nitrogen and Phosphorus 
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 Different BMPs have different target pollutants.   Vegetated filter strips are effective at 

reducing: runoff volume, peak flow, and sediments through filtration and sorption and biological 

processes.  Bioretention areas, or rain gardens, target: runoff volume reduction, sediments, and 

peak flow reduction through filtration and sorption, biological processes, and plant uptake.  A 

gravel trench, or rock lined swale, effectively reduces: runoff volume, peak flow and sediments 

through filtration and sorption and biological processes.  Infiltration basins target: runoff volume 

reduction, peak flow reduction, and sediments through filtration and sorption and biological 

processes.  Dry water quality swales, or grassed swales, effectively reduce: volume, peak flow, 

sedimentation, filtration and sorption, and biological processes (Geosyntec 2013).  Stormwater 

detention ponds target sedimentation, metals, nutrients, hydrocarbons, oxygen demanding 

material, bacteria, and dissolved nutrients (MNPCA 2000). 

2.4.1 Detention Pond 

 Detention ponds are designed to reduce peak flows from a rain event (Nguyen 2010).  

This is done by storing excess runoff volume and slowing the discharging of that water, allowing 

hydraulic conditions downstream to remain steady (FHWA 2014).  The first flush of runoff 

contains the majority of pollutants, so having a long enough detention time in the basin to 

capture the first flush is critical to allowing the pollutant load, including: nutrients, heavy metals, 

and sediments, to settle (FHWA 2014). 

 A negative aspect of detention ponds is they require large footprints.  Additionally, no 

part of a detention pond may be below the groundwater table (Nguyen 2010).  Public safety is 

important with basins because there is a risk of individuals falling in (FHWA 2014).  At times 

water in ponds will heat up, and as it is discharged may alter the temperature of a main 

waterway, potentially affecting cold water fisheries.  Regular maintenance, including inspection 

and mowing of buffer areas, will improve the operation of the pond (U.S. EPA 1999d).   
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 A design recommendation is to have an upstream pre-treatment system in place 

(UDFCD 2010).  The depth should not exceed 20 feet at any point within the pond, to allow all 

stored water to discharge within the desired time (U.S. EPA 1999d).   

 Retention time within the basin should be 72 hours.  The first flush is always targeted to 

be detained within the pond for as long as possible, but if a small storm is encountered, the first 

flush may not effectively be treated.   If not designed properly, the first flush may enter the 

system, and shortly thereafter begin to discharge, allowing the most polluted runoff to 

discharge into a natural channel (Barrett 2008).  Trash racks should be considered to prevent 

debris from discharging from the basin (Beaupre et al. 2010).  

2.4.2 Infiltration Trench 

 In many applications, infiltration of runoff is the preferred method of flow control 

(Nguyen 2010).  Infiltration trenches address most of the contaminants found in stormwater 

(FHWA 2014).  Those contaminants include: sediments, metals, nutrients, bacteria, biochemical 

and chemical oxygen demanding substances (MNPCA 2000).  However, a site must be suitable 

for infiltration by having an infiltration rate of greater than 0.5 inches per hour (Nguyen 2010).   

 Two types of infiltration trenches are subsurface and surface infiltration trenches.  The 

subsurface infiltration trench is relatively expensive, due to the construction of an underground 

pit filled with some media, such as gravel; whereas, the surface infiltration trench is more cost 

effective and well suited for highway sites (FHWA 2014).  In climates with harsh winters, water 

that enters the infiltration trench may freeze, rendering the trench ineffective, so it is 

recommended that the trench be below the freeze line (FHWA).  

 With certain geographic conditions, such as if the water table or bedrock is within three 

feet of the bottom of the trench, infiltration trenches may not be suitable to treat or trap 

pollutants before reaching the water table or bedrock (MNPCA 2000).  Infiltration trenches may 
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not be suitable during construction activities, because they will rapidly fill with sediments, 

rendering them ineffective quickly after construction.  Once a site is entirely stabilized, 

implementation of this system is encouraged (Burack et al. 2008).  These device are not suitable 

on steep slopes or in fill material (Beaupre et al. 2010). 

 It is recommended to have less than a 5 acre watershed contributing to infiltration 

trenches (CSQA 2003).   Additionally, infiltration trenches should be at least 150 feet from 

potable water wells to prevent groundwater pollution (MNPCA 2000).  A pretreatment system is 

highly recommended for infiltration trenches to be effective as well (U.S. EPA 2014c).  Infiltration 

trenches should be at least 10 feet downgrade, or 100 feet upgrade of any foundations to 

prevent any structural issues arising for that foundation (Beaupre et al. 2010). 

2.4.3 Grass Lined Swale 

 Grass lined swales are primarily designed to remove suspended solids, with secondary 

processes including: ion exchange, biotransformation, and biological uptake (WSDOT 2010).  

These systems may include infiltration components, such as check dams, sand beds, and drain 

tile (FHWA 2014) to increase the effectiveness of the BMP.  Swales are effective at removing 

multiple pollutants including: metals, nitrate, phosphorus, and sediments (FHWA 2014).  Swales 

may be utilized to divert water around a potential pollutant source (MNPCA 2000).  According to 

a study done by Yu et al. (1994), it is recommended that swales have a maximum slope of 5%, 

with a length of 30-60 meters (100-200 feet) and a minimum 0.6 meter (2 foot) bottom width.  It 

was found that check dams enhance the performance of swales (Yu et al. 2001).   

 Swales do not perform well with a total maximum daily load (TMDL) for phosphorus 

(WSDOT 2010).  If a swale remains wet for an extended period of time, a nuisance bug habitat 

may have inadvertently been created (FHWA 2014).  There is a potential that some metals and 

nutrients may leach from the vegetation into the stormwater (U.S. EPA 1999c).  Significant 
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efficiency reductions can be made if there is a long period of dry weather (more than 35% of the 

summer).  This reduces the amount of vegetation available in the swale to filter stormwater 

runoff (Weiss et al. 2010). 

 Design considerations for swales include length and slope, affecting the detention time, 

which is an efficiency driver (Yu et al. 2001).  Based on a study in Austin, TX, a pretreatment 

length of 8 meters from the edge of the highway to the center of the swale is recommended 

(Barrett et al. 1998).   Desired residence time should be greater than 9 minutes within the swale 

(Ferguson 1998).  

 Swales are common BMPs along highways due to their shape and size (Stagge & Davis 

2006).  This is because the swale footprint often can fit inside the existing highway right of way.  

2.4.4: Grass Lined Swale with Rock Check Dam 

 Rock check dams can be implemented as part of a swale type of best management 

system.  These control devices are generally utilized at sites with steeper slopes (Balousek et al 

2007; NDOR 2008).  Although check dams are used with steeper slopes, it is not recommended 

to implement check dams as a pollution control practice above a grade of 6% (MNPCA 2000).   

 Check dams reduce the velocity of stormwater runoff by ponding behind rock dams 

temporarily, allowing pollutants to settle out of the water (Balousek et al. 2007).  They are 

simple to design, and do not have a high cost associated with them (MDEQ 2010).  Additionally, 

check dams are easy to construct and do not have a large footprint (NDOR 2008; MDEQ 2010).  

Check dams are effective on sites between 2 and 10 acres, in small channels (U.S. EPA 2014a).   

 When designing a check dam, the rocks should extend up the sideslope of the swale to 

the top on both edges, while the center of the dam should be 6 inches lower than the top 

(NDOR 2008; ITD 2014).  When designing check dams near roadways, ensure the high flow point 

is below the road surface elevation, to avoid flooding (ITD, 2014; NDOR 2008).  A general rule for 
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designing checks is to have the toe of the upstream check at the same elevation as the top of 

the downstream check dam (MNPCA 2000; NDOR 2008).  The Minnesota Pollution Control 

Agency (2000) created a guide (Table 2. 3) to aid in the layout of checks.  

 

 A disadvantage of rock check dams is they require cleaning, which entails removing all 

the rocks, cleaning the sediment out of the percolation and backwater areas, and replacing all 

rocks (Balousek 2007).  It is not recommended to utilize check dams on sites larger than 10 

acres.  Over the course of time these systems can clog with debris, reducing the efficiency of the 

BMP (MDEQ 2010).   Check dams are generally not very effective for removal of fine sediment 

because most fine sediments are able to pass through the pores, or over the dam (Rozumalski et 

al. 2001).   

2.4.5: Bioretention Area 

 Bioretention areas, also known as rain gardens, first developed in Prince George’s 

County, Maryland, with the intent of improving water quality and aesthetics (Hunt and White 

2001).  They are designed to be flower beds or landscaped areas, with the purpose of collecting, 

storing, infiltrating, and treating runoff (Davis 2005).   

 The vegetation in the bioretention area may include a wide variety of plantings.  Flowers 

and natural grasses may be seen in some areas, while trees and shrubs may be seen in larger 

areas.  It has also been found that vegetables may be used in lieu of other vegetation to make a 

Table 2. 3 Check Dam Spacing 
Recommendations (MNPCA, 2000) 
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more productive space.  If vegetables are used, it may reduce the consumption of potable 

water, as the vegetation will be watered from stormwater and groundwater (Richards et al. 

2015) 

 “Bioretention generally consists of a porous media, supporting a vegetative layer, with a 

surface layer of hardwood mulch. A ponding area serves as reserve space for runoff storage and 

provides additional time for water to infiltrate into the media during and after rainfall events” 

(Hsieh and Davis 2005).  Stormwater runoff is reduced through percolation and 

evapotranspiration within rain gardens (Roy-Poirier et al. 2010).   

 It is not entirely known what the removal ability of sediments and other pollutants is 

due to the recent creation of rain gardens as BMPs (Hunt and White 2001).  Stormwater runoff 

containing suspended solids and other similar pollutants, such as nutrients, tend to have less 

pollutant load going out of the bioretention basin than entering (Tornes 2005).  As the hydraulic 

conductivity of the garden lessens, detention time increases, which allows more pollutant 

removal (Li et al. 2009).  

 When designing a rain garden, it is imperative that all vegetation be water tolerant 

(Hunt and White, 2001).  Gardens can be set to infiltrate, or to discharge, depending on soil 

conditions and engineer design (Hunt and White 2001; Tornes 2005).   Surface area to 

watershed area ratio recommendations vary from 1:45 to 1:5 (Davis et al. 2009; PDEP 2006).  

Ponding depth is recommended to be no greater than 6 inches to allow for water to be ponded 

for less than 72 hours (PDEP 2006).  There are some situations that rain gardens are not 

recommended.  One is when the groundwater table is within 6 feet of the ground surface.  Also, 

rain gardens are not generally recommended in areas where slopes are greater than 20%, or 

where mature trees have to be removed to construct rain gardens (U.S. EPA 1999b). 
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2.5 BMP Efficiencies 
 Table 2. 4 shows a table of efficiencies found in previous studies of the target BMPs.  It 

is based upon these values that the efficiencies are calculated for this project.   

  

Table 2. 4 BMP Efficiencies from Past Research 
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2.6 Applicability to Roadsides 

2.6.1 What BMPs are normally used near roads 

  The majority of BMPs utilized for general sites are also implemented along roads.  

There is a spatial consideration that is associated with roadway construction, as easements are 

generally narrow.  A recent study done for the National Cooperative Highway Research Program 

Transportation Research Board National Research Council evaluated all BMPs and Low Impact 

Development for highway stormwater runoff events.  Table 2. 5 is a list compiled by the 

Transportation Research Board showing the recommended practices to implement along 

highways (Reilly et al. 2006):  

Table 2. 5 Recommended Highway BMPs (Reilly et al. 2006) 
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Chapter 3 Methods 

 Chapter 3 discusses the methodology of estimating the sediment transport off a site.  

This sediment then enters a BMP, with the efficiency varying as the properties of the site and 

the BMP vary.  

3.1 Runoff and Sediment Yield Model Selection 

3.1.1 Model Requirements 

 In the project proposal it was stated that one of the goals of this research was to 

“…develop models to predict both surface runoff and sediment yield from highway systems 

under different conditions”, therefore, it was necessary to use a model that accurately 

calculated sediment yield from highway systems.   

In addition, it was critical to have a user-friendly system that did not require background 

knowledge in other programs, large amounts of time, or significant data collection prior to 

utilizing the program.  This model also needed to fit the above criteria of being easy to use, have 

accessible data, and be fast to run. 

3.1.2 Evaluation of Candidate Models  

 Several models that evaluate runoff and sediment yield were evaluated for use in this 

project.  These include: Agricultural Non-Point Source Pollution software (AGNPS) (NRCS 1989), 

the Soil and Water Assessment Tool (SWAT)(NRCS 2012), the Spreadsheet Tool for Estimating 

Pollutant Load (STEPL) (EPA 2013a), the Generalized Watershed Loading Function (GWLF) (Haith 

et al. 1992), and the Revised Universal Soil Loss Equation2 (RUSLE2) (USDA 2008).  The 

considerations used to evaluate the models were: the time required to run the model, data 

needed for the model, and ease of use.  
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 The AGNPS model required more data than users would be able to easily attain for 

highway construction sites.  In addition, the time and effort required to run the model was too 

high to justify using.  The SWAT model had similar restrictions regarding significant time and 

effort to get the results output by the SWAT software.  SWAT was also challenging to use for 

someone who may be using the software on an infrequent basis. 

 The STEPL model was not easy to understand for a user who was not exposed to it, 

making it challenging to use as a quick tool to estimate sediment transport.  The GWFL model is 

very thorough, to the point that it requires too much data to be known prior to running to be 

efficiently used for this application.   

 The RUSLE2 model was relatively quick to run, easy to use, and did not have too many 

data input requirements.  Much of the data, such as storm patterns, local soils, management 

practices, and local climate are embedded in the model.  The RUSLE2 software was then 

selected to be the sediment yield and transport modelling program used.   

3.2 RUSLE2 Model 

3.2.1 Site Layout for RUSLE2 Model 

 RUSLE2 calculates the soil eroded and transported along a flow path starting at the top 

of the hill and ending at a flow channel at the bottom of the hill.  Sediment yield delivered to the 

flow channel at the bottom of the hill is calculated from the sediment detachment minus 

sediment deposition along the flow path.   

 The RUSLE2 flow path (Figure 3. 1) is defined as the “path taken by overland flow on a 

smooth soil surface from its point of origin to the concentrated flow area that ends the overland 

flow path; runoff is perpendicular to hillslope contours” (USDA 2008).  The total watershed area 

is defined as the area in which a drop of water will flow to the same point.  The sub-watershed 

boundary is the area in which a drop of water will flow into any first order channel, or tributary, 
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which then feeds into the second-order channel.  The overland flow path is the path water takes 

to reach the downhill side of the sub-watershed and enter into a concentrated flow channel.  

The software models from the top of the hill down to a channel, it does not model any part of 

the channel.   

 

 RUSLE2 displays four output values: soil loss from the eroding portion of the slope, 

detachment for the entire overland flow path, conservation planning soil loss, and sediment 

delivery (yield).  Soil loss is the net loss of sediment from the eroding portion of the overland-

flow path. This value is used in conservation planning to select cover-management and support 

practices to control soil loss to a value less than soil loss tolerance or some other conservation 

planning criteria. Detachment is the total sediment production for the overland flow path length 

represented in a RUSLE2 computation. Sediment delivery (yield) is the amount of sediment 

leaving the flow path (sediment delivered at the bottom, outlet, of the flow path) represented in 

Figure 3. 1 Watershed diagram showing overland flow paths (USDA 2008) 



20 
  

a RUSLE2 computation. Total deposition for the overland-flow path is the differences between 

total detachment (sediment production) and sediment yield. Conservation planning soil loss 

gives partial credit to remote deposition depending on where the deposition occurs along the 

overland-flow path. RUSLE2 gives very little credit as “soil saved” for deposition that occurs near 

the end of the overland-flow path. Conservation planning soil loss is generally less than total 

detachment (sediment production) and greater than sediment yield” (USDA 2008). 

 Sediment delivery is the important result from RUSLE2 to evaluate BMP performance.  

This value is the amount of soil transported to the bottom of the hillside and into a channel, 

which is then assumed to go into a BMP.  Sediment delivery is given in units of tons of sediment 

per acre per year.   

 “RUSLE2 is land-use independent, which means that it can be applied to any land use 

where mineral soil is exposed to raindrop impact and Hortonian overland flow” (USDA 2008).  

Hortonian overland flow is how water generally flows horizontally across land surfaces after the 

rainfall has surpassed the infiltration capacity of the soil and depression (pond) storage capacity. 

“RUSLE2 can be applied to crop, pasture, hay, range, disturbed forest, mined, reclaimed, 

construction, landfill, waste disposal, military training, park, wild, and other lands.  RUSLE2 does 

not apply to undisturbed forestlands and lands where no mineral soil is exposed, and surface 

runoff is produced by a mechanism other than rainfall intensity exceeding infiltration rate” 

(USDA 2008).  RUSLE2 is also able to be applied to transitional land uses, such as transitioning 

from pasture to cropland or cropland to pasture. 

 Detachment “starts at the upper end of the overland flow path and steps down-slope, 

segment by segment, routing the water and sediment down-slope” (USDA 2008).  Detachment 

for each segment is accounted for by calculating how much sediment leaves and enters each 

segment.   

http://en.wikipedia.org/wiki/Infiltration_capacity
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 RUSLE2 uses the NRCS Method (USDA 1999) to find the excess rainfall rate, which is 

used to calculate the runoff depth.  “Runoff is calculated by using discharge (flow) values for 

runoff to compute sediment transport capacity, contouring effectiveness, and critical slope 

length for contouring” (USDA 2008).  To increase accuracy within RUSLE2 the sub segment 

length may be decreased, creating more, smaller steps down the slope.   

Sediment transport capacity is found at the top and bottom of each segment.  The 

transport capacity uses the Manning’s roughness coefficient, η, (Chaudhry 1993) to calculate the 

shear stress acting on the soil particles affecting transport. 

There are four possible scenarios for routing the sediment: 1) detachment over the 

entire segment, 2) deposition over the entire segment, 3) deposition ends within the segment, 

and 4) deposition begins within the segment.  “Detachment occurs over the entire segment 

when the transport capacity at the upper end of the segment is greater than the incoming 

sediment load, and the transport capacity at the lower end of the segment is greater than the 

maximum possible sediment load at the lower end of the segment” (USDA 2008).  This case is 

applicable for convex, uniform, and the upper portion of concave slopes, seen in Figure 3. 2. 

Figure 3. 2 Possible flow path profiles (USDA 2008) 
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Deposition over the entire segment occurs when transport capacity is less than 

sediment load at the top and bottom of the segment.  This may happen in a setting such as 

deposition occurring in a grass strip or in a concave slope.  Deposition ends within a segment 

when the transport capacity increases within the segment, thus causing deposition to occur only 

in the top portion of the segment.  Deposition within the segment ends when transport capacity 

increase to become equal to sediment load, this could occur in a convex, complex concave, or 

convex slope.  “RUSLE2 assumes that interrill erosion occurs simultaneously with deposition,” 

which is a valid assumption on hillsides, although it is questionable for flat surfaces and the 

bottom of concave hillsides (USDA 2008). 

Deposition begins within a segment when transport capacity decreases over the 

segment length as the sediment load increases.  The soil deposition starts where the transport 

capacity and the sediment load are equal (USDA 2008).  This may occur in a concave or complex 

convex-concave slope.   

RULSE2 calculates average annual erosion and sediment yield due to rainfall for a single 

hillside strip as the weight of soil per acre per year, T/Ac-yr, per unit width of strip.  This quantity 

of soil eroded in one strip is multiplied by the area that is represented by that strip.  Then the 

yields from all the areas are summed to determine the total amount of soil transported to the 

bottom of a slope on a site.  A representative strip is a single hillside profile that reflects an area 

that has the same slopes, lengths, cover, and soil.  If there is any variation in site or slope 

conditions, there must be representative strips to reflect each area.  Figure 3. 3 shows a hillside 

divided into representative strips and the areas represented by each strip.  With each black line 

being a representative strip, and the corresponding gray polygon being the representative area.   
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3.2.2 RUSLE2 Governing Equation 

 The governing equation for RUSLE2 is: 

ai = rikiliScipi  (3. 1) 

where 𝑎𝑖  is the average soil loss for the 𝑖𝑡ℎ day of the year.  This is generally a long-term 

quantity, which means it estimates average erosion over multiple months or years, and is then 

disaggregated into a daily value.  𝑟𝑖 is the erosivity factor.  The erodibility factor is 𝑘𝑖.  The soil 

length factor is 𝑙𝑖.  𝑆 is the slope steepness factor.  𝑐𝑖 represents the cover management factor.  

The supporting practices factor is represented by the term 𝑝𝑖. 

Figure 3. 3 Representative strips (black lines) and areas (gray polygons) represented by each strip 
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The erosivity factor (𝑟𝑖) is a function of the precipitation and establishes how erosive 

precipitation is on a daily basis.  “Erosivity is the product of a storm’s energy and the maximum 

30-minute intensity for an individual storm” (USDA 2008).  This excludes any storm data that has 

less than 0.5 inch of precipitation and extreme storm events that are greater than a 50 year 

return period.  The average annual erosivity values were obtained from 15-minute precipitation 

gages that measure the intensity of the storm.  The erosivity factor is a disaggregated daily value 

from the monthly erosivity factor (𝑅𝑚), which is equal to the average monthly erosivity density 

times the average monthly precipitation. 

  Rm = αmPm       (3.2) 

  αm = êĪ30       (3.3) 

Equation 3.3 shows the average monthly erosivity density (𝛼𝑚) equals the effective unit energy 

for the month (ê) times the representative maximum 30-minute storm intensity for the month 

(Ī30).  An example of the daily erosivity density for Douglas County, NE is found in Figure 3. 4 

Example of Douglas County erosivity data June 30-July 11. 

 

Figure 3. 4 Example of Douglas County erosivity data June 30-July 11 
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Figure 3. 5 shows the Douglas County, Nebraska climate data by month, including monthly 

erosivity which is then disaggregated into the erosivity factor for the 𝑖𝑡ℎ day. 

 

 The soil erodibility factor (𝑘𝑖) is a function of four sub-factors, which are: texture sub-

factor (𝑘𝑡), organic matter sub-factor (𝑘𝑜), soil structure sub-factor (𝑘𝑠), and the soil profile 

permeability sub-factor (𝑘𝑝). Equation 3.4 shows the soil erodibility equation.   

ki =
ktko+ks+kp

100
 (3.4)   

“Soil texture is a term commonly used to designate the proportionate distribution of the 

different sizes of mineral particles in a soil” (Brown 1990).  The soil texture can be broken into 4 

classes: sand, silt, clay, and loam.  “RUSLE2 uses values for sand, silt, and clay fractions to 

Figure 3. 5 Douglas County, Nebraska climate data including: average temperature, average 
monthly precipitation, erosivity density month 
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compute soil erodibility, the distribution of the sediment particle classes at the point of 

detachment, and the diameter of the small and large aggregate particle class” (USDA 2008).  

RUSLE2 considers the top 4 inches of soil to be the layer that is susceptible to erosion, so when 

acquiring soil data, the top layer is most important.   

 “Soil organic matter reduces the k factor value because it produces compounds that 

bind soil particles and reduce their susceptibility to detachment by raindrop impact and surface 

runoff. Also, organic matter increases soil aggregation, which increases infiltration and reduces 

runoff and erosion” (USDA 2008).  RUSLE2 uses a nomograph to establish the percentage of 

organic matter (𝑂𝑚) within the soil.  This value is then plugged into equation 3.5 to calculate the 

sub-factor. 

ko = 12 − Om (3.5) 

 “Soil structure refers to the arrangement of soil particles, including primary particles and 

aggregates, in the soil.  The soil erodibility nomograph soil structure sub-factor refers to how the 

arrangements of soil primary particles in aggregates and the arrangement of aggregates in the 

soil affect erosion under unit plot conditions.  The unit plot is the base condition to establish all 

the coefficients, with base conditions being: “72.6 foot long, 9% slope, maintained in continuous 

fallow, tilled up and down hill to a seedbed condition periodically to control weeds and break 

crusts that form on the soil surface” (USDA 2008).  Four structural classes are used in the 

nomograph. These classes are 1) very fine granular, 2) fine granular, 3) medium or coarse 

granular, and 4) blocky, platy, or massive.  These classes are defined in the USDA-NRCS soil 

survey manual (NRCS 2015).  The classes used to derive the soil erodibility nomograph were 

those in use in the mid-1960s when the experiments were conducted.  The definitions for those 

classes should be used to assign RUSLE2 values for soil structure.  Equation 3.6 is for the soil 

erodibility nomograph soil structure sub-factor:  
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ks = {
fields: {

3.25(Ss − 2) if kt + ko + ks ≥ 7
kt + ko + ks if kt + ko + ks < 7

construction:                              3.25(2 − Ss)
 (3.6)  

where: 𝑆𝑠 = the soil structure class.  Soil mineralogy has a significant effect on k for some soils, 

including subsoils, soils located in the upper Midwest of the US, and volcanic soils in the Tropics.  

Soil structure affects k because it affects detachment and infiltration” (USDA 2008). 

 “Permeability of the soil profile affects k because permeability affects runoff.  The soil 

permeability sub-factor is a measure of the potential of the soil profile in unit-plot conditions for 

generating runoff.  Six permeability classes that range from 1) rapid (very low runoff potential) 

to 6) very slow (very high runoff potential) are used to rate the soil profile for infiltrating 

precipitation and reducing runoff.  The USDA-NRCS soil survey definitions (NRCS 2015) for soil 

profile permeability should be used to assign a soil permeability class in applying the soil 

erodibility nomograph.  The assigned permeability class must not be based simply on a 

permeability measurement of the surface soil layer.  The permeability rating should take into 

account the presence of restricting layers and the landscape position.  For example, the 

permeability rating for a sandy soil underlain by a restricting layer might be moderate for the 

soil at the top of a hillslope but be very slow if the soil is at the bottom of the hillslope.  The 

RUSLE2 temporal soil erodibility equation described in Section 4.5 (of the RUSLE2 Science 

Documentation) takes into account how the permeability rating varies as climate varies among 

locations” (USDA 2008).  The equation for the permeability sub-factor is given by: 

   kp = 2.5(Pr − 3)      (3.7) 

where  𝑃𝑟 is the soil profile permeability class. 

The soil length factor (li) is a representation of the length of the hillside.  Equation 3.8 

shows the soil length factor calculation.   
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li =
(xi

m+1−xi−1
m+1)

λu
m(xi−xi−1)

 (3.8) 

where 𝑥𝑖 is the distance to the lower end of the segment; 𝑥𝑖−1 is the distance to the upper end 

of the segment; 𝜆𝑢 is the length of the unit plot; 𝑚 is the slope length exponent found from 

equation 3.9.   

m =
β

1 + β⁄  (3.9)  

where 𝛽 is the ratio of rill to interill erosion for the 𝑖𝑡ℎ segment.  Equation 3.10 is a function of 

rill and interill erodibility (
𝑘𝑟

𝑘𝑖
), subsurface conditions (

𝑐𝑝𝑟

𝑐𝑝𝑖
), cover conditions (

𝑒−0.05𝑓𝑔

𝑒−0.025𝑓𝑔
), slope 

effects(
𝑠

0.0896⁄

3𝑠0.8+0.56
), slope angle (𝑠), and percent of ground covered (𝑓𝑔). 

β = (
kr

ki
)(

cpr

cpi
)(

e−0.05fg

e−0.025fg
)(

s
0.0896⁄

3s0.8+0.56
) (3.10) 

The slope steepness factor measures the topography of the land.  Equation 3.11 shows 

the slope relationship to the steepness factor (S). 

S = {
10.8s + 0.03 if m < 9%
16.8s − 0.5 if m ≥ 9%

 (3.11) 

where 𝑠 is the steepness percentage of the hill. 

 “Cover-management refers to how vegetation, soil condition, and material on and in the 

soil affect erosion” (USDA 2008).  The cover-management factor (c) in the RUSLE2 equation (1) 

describes erosivity and erodibility of the soil.  Erosivity is related to rainfall amount and 

intensity, and is an index of the rainfall.  Erodibility is a factor based on soil properties and on 

cover-management.  “The soil erodibility factor (ki) represents the combined effect of 

susceptibility of soil to detachment, transportability of the sediment, and the amount and rate 

of runoff per unit rainfall erosivity for unit plot conditions” (USDA 2008).  The cover 

management factor equation is seen in: 
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c = ccgcsrrhsbscppam (3.12) 

where 𝑐 is the cover management factor, 𝑐𝑐 is the canopy sub-factor; 𝑔𝑐 is the ground cover 

sub-factor; 𝑠𝑟 is the soil surface roughness sub-factor; 𝑟ℎ is the ridge height sub-factor; 𝑠𝑏 is the 

soil biomass sub-factor; 𝑠𝑐 is the soil consolidation sub-factor; 𝑝𝑝 is the ponding effect sub-

factor; and 𝑎𝑚 is the antecedent moisture sub-factor. 

 Canopy cover is calculated by:   

cc = 1 − fce(−0.1hf) (3.13)   

where 𝑓𝑐 is the fraction of canopy cover; and ℎ𝑓 is the effective fall height from the canopy in 

feet.   

 The canopy cover is vegetative material both alive and dead that covers the runoff 

surface (ground) but does not come in contact with the surface.  The canopy intercepts some of 

the raindrops, which reduces raindrop energy. The erosivity has a direct relationship with impact 

energy of the drops, so if the energy is lowered, erosivity lessens as well.  However, some of 

these raindrops impact the plant and reform as drops which then fall from the canopy to impact 

the surface. 

 

Figure 3. 6 Effective fall height for differing plant shapes (USDA 2008) 
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 While looking down from above, the canopy cover is the total area minus the space 

where a raindrop can fall unobstructed to the soil surface.  The effective fall height may 

fluctuate plant by plant, but there is only one effective fall height for the cover.  That value is 

found by finding the single average fall height that gives the total impact energy from the variety 

of heights.  As plants mature, they grow taller, and may become thicker, both of which change 

the effective fall height.  The shape of the plant affects the effective fall height as well, as seen 

in Figure 3. 6.  There are also scenarios where there are multiple canopy layers that may be 

affecting the impact energy, in which case the user calculates a new single fall height totaling 

the impact energy from all plants using equation 3.14, below, and inputs that value into RUSLE2.  

RUSLE2 does not include canopy that is immediately above the ground surface. 

fce = fc ∗ (1 − fg)  (3.14)  

where 𝑓𝑐𝑒 is the effective canopy cover; 𝑓𝑐 is the canopy cover sub-factor; and 𝑓𝑔 is the portion 

of soil surface covered by ground cover. 

 Ground cover is material that is in contact with the soil surface.  This material can be live 

and dead plant matter, rocks, mulch, erosion control materials, crop residue, manure, plant 

litter, and mosses.  “Ground cover is probably the single most important variable in RUSLE2 

because it has more effect on erosion than almost any other variable, and applying ground cover 

is the simplest, easiest, and most universal way of controlling erosion” (USDA 2008).   

 “Ground cover reduces erosion by protecting the soil surface from direct raindrop 

impact, which reduces interrill erosion. Ground cover also slows surface runoff and reduces its 

detachment and transport capacity, which reduces rill erosion” (USDA 2008).  It can be seen 

from Figure 3. 7, that rill erosion is reduced more by ground cover than interrill erosion is.   
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 The ground cover sub-factor (gc) is calculated using:   

gc = ebfg (3.15)   

where 𝑏 is the coefficient describing relative effectiveness of ground cover, found in equation 

3.16, and 𝑓𝑔 is ground cover percent. 

b = − ln [
at

(ai+ar)
] /fg (3.16) 

with 𝑎𝑡 being the total relative erosion with ground cover , found in equation 3.17 and 𝑎𝑖  is the 

relative interrill erosion on a bare soil with all other conditions the same as when cover is 

present, and 𝑎𝑟 is the relative rill erosion on a bare soil with all other conditions the same as 

when cover is present. 

at = are(−0.06fg) + aie
(−0.025fg) (3.17) 

 The soil roughness is a measure of the random peaks and valleys left in the soil following 

a soil disturbing operation.  Over time the soil will settle and have a smooth surface, which 

RUSLE2 accounts for.  The valleys left in the soil act like small depression storage systems, with 

Figure 3. 7 Ground cover effects on rill and interrill erosion (USDA 2008) 



32 
  

the runoff slowing as it flows through the depression and sediment drops out the water flow.  

The rougher the soil, the more water is able to infiltrate. 

 Two different types of soil roughness are: short term and long term, where short term is 

caused by tillage and construction equipment.  “Long term roughness evolves over time after 

the last mechanical soil disturbance on pasture, range, landfills, and reclaimed land.  Long term 

roughness is related to vegetation type (bunch versus sod-forming), plant roots near the soil 

surface, local erosion and deposition by water and wind, and animal traffic” (USDA 2008).  Long 

term soil roughness is a function of time to consolidation of the soil.  Time to consolidation is an 

important factor on construction sites.  This is a measure of how long it takes for the soil 

particles to become more compacted so they aren’t as erodible.  “RUSLE2 assumes seven years 

for the time to consolidation” (USDA 2008).  Soil roughness is calculated using equation 3.18. 

sr = e[−0.66(Ra−0.24)] (3.18) 

where Ra is the adjusted roughness value, calculated by: 

Ra = 0.24 + (Rit − 0.24) ∗ [0.8{1 − e(−0.0015Bta)} + .02] (3.19) 

where 𝑅𝑖𝑡 is initial roughness adjusted for soil texture and can be found in Table 3. 1, and 𝐵𝑡𝑎 is 

the total mass of buried residue and dead roots averaged over the soil disturbance depth after 

the operation. 

 

 Ridges affect erosion through sediment production and flow direction.  How the ridges 

and furrows are ploughed along the hillside affects where the water is routed.  The best option 

for tilling is along the contours, meaning perpendicular to the natural flow direction.  If the 

sideslope of the ridge is steep, the erosion rate increases.   
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 The ridge height sub-factor varies with the ridge height itself, as seen in Figure 3. 8.  

“Ridge height is used to represent ridge sideslope steepness because ridge height values can be 

easily visualized and measured for ridge forming operations” (USDA 2008).  While using a 

planter, small ridges are left in the soil that may not be accounted for within RUSLE2.  “The 

effect of ridges on sediment production diminishes in RUSLE2 as land slope steepness increases 

above 6 percent because the local steepness of the ridges becomes almost equal to the land 

slope at steepness above 30 percent” (USDA 2008). 

Figure 3. 8 Ridge height effectiveness (USDA 2008) 

Table 3. 1 Soil texture adjustment factor (USDA 2008) 
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 As the steepness of the overland flow path changes, the ridge height sub-factor also 

varies.  Equation 3.20 calculates the daily ridge height sub-factor when the overland flow path 

steepness is less than six percent (𝑟ℎ6).   

𝑟ℎ6 = {
0.9(1 + .0582𝐻1.84) 𝑓𝑜𝑟 𝐻 ≤ 3 𝑖𝑛𝑐ℎ𝑒𝑠

2.136[1 − 𝑒(−0.484𝐻)] − 0.336 𝑓𝑜𝑟 𝐻 > 3 𝑖𝑛𝑐ℎ𝑒𝑠
  (3.20) 

where 𝐻 is the daily ridge height, calculated using: 

H = Hs + He (3.21) 

where 𝐻𝑠 is the daily ridge height component associated with settlement, and 𝐻𝑒 is the daily 

ridge height component associated with interrill erosion. 

 If the overland flow path steepness is greater than six percent, equation 3.22 is used. 

rh = 1 + (rh6 − 1)e[−ah(s−0.509989)]  (3.22) 

where 𝑠 is the overland flow path steepness, and 𝑎ℎ is found using: 

ah = {
16.02 − 0.927H if H ≤ 10 inches

6.75 if H > 10 inches
 (3.23) 

 “Soil biomass in RUSLE2 includes live and dead roots, buried plant litter and crop residue 

from vegetation “grown” on-site, and added materials (external residue) that were buried or 

directly placed in the soil. These materials, including rock, added as an “external residue,” are 

assumed to be organic materials that decompose and reduce soil erodibility.  Live roots affect 

soil loss by mechanically holding the soil in place, resisting erosive forces if the roots are 

exposed, and producing exudates that reduce soil erodibility. Also, live roots are a measure of 

plant transpiration that reduces soil moisture, which in turn increases infiltration and reduces 

runoff and soil loss” (USDA 2008).  RUSLE2 also models plant death, where the live roots 

become dead roots and start the decomposition process.  Soil tends to cling to dead roots when 

the roots are exposed or when the soil is disturbed.  When the dead roots decompose, they turn 

into organic matter, which helps increase infiltration, reduce soil erodibility, and reduce runoff.  

Buried residue is all assumed to be organic matter, that acts the same as dead roots, but 
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because it is buried it is less effective at reducing runoff because they do not have the 

mechanical soil binding abilities as roots.   

 The soil biomass equation is: 

sb = cbe(−0.0026Brt−0.00066Brs)/sc
0.5

 (3.24) 

where 𝑐𝑏 = 0.951 unless there is very low soil mass, then 𝑐𝑏 = 1.0; 𝐵𝑟𝑡 is the sum of live and 

dead root biomass averaged over a 10 inch depth; 𝐵𝑟𝑠 is the amount of buried residue averaged 

over the depth linearly, ranging from three inches if the soil is not consolidated, to one inch if 

the soil is fully consolidated; and 𝑠𝑐 is the soil consolidation sub-factor.   

 When a mechanical disturbance breaks up the soil, the erodibility and erosion increase.  

After a soil is mechanically disturbed, through a wetting and drying process, the soil particles 

becomes adhered to one another, and a crust is formed at the soil surface.  This process is soil 

consolidation.  “Soil consolidation in RUSLE2 refers to the decrease in soil erodibility following a 

mechanical soil disturbance rather than an increase in bulk density” (USDA 2008).   The 

assumptions for soil consolidation are: 

sc = {
0.45 at full consolidation

1.0 immediatley following disturbance
 (3.25) 

As stated above, the assumed normal time to full consolidation is seven years in climates with 

more than 10 inches of rain annually.  Time to consolidation in climates with 10 inches or less is 

20 years.  If a soil has more binding power, like clay and organics, the soil consolidation effect is 

greater (USDA 2008).   

The ponding effect sub-factor is a function of the 10 𝑦𝑒𝑎𝑟 − 24ℎ𝑜𝑢𝑟 precipitation 

amount and the land steepness.  Water ponds on flat areas after intense storms, reducing 

erosivity.  This factor is most significant in the Southeast United States.  As the 10 𝑦𝑒𝑎𝑟 −

24 ℎ𝑜𝑢𝑟 precipitation amount increases, the ponding effect decreases.  As the land steepness 

increases, the ponding effect increases in the flat areas.  
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Antecedent soil moisture is only applicable in the Northwest Wheat and Range Region 

(NWRR).  None of Nebraska is within the NWRR, so antecedent moisture will not be considered 

in this document. 

 RUSLE2 utilizes a Crop Management Zone Map (CMZ Map) to help users select the 

appropriate crops for the zone they are located in.  Figure 3. 9 shows the CMZ map of Nebraska. 

 “Support practices include: contouring (ridges around the hillslope); filter and buffer 

strips (strips of dense vegetation on the contour); rotational strip cropping (a system of equal 

width cropping strips that are annually rotated with position along the overland flow path); 

terraces and diversions (ridges and channels that divide the overland flow path, collect runoff, 

and redirect it around the hillslope); and small impoundments (impoundment terraces and 

sediment traps)” (USDA 2008).  These practices are in addition to best cover management 

operations, found in Table 3. 2.  “Most support practices affect rill and interrill erosion and 

sediment delivery by reducing runoff’s erosivity and transport capacity by redirecting the runoff 

around the hillslope; dividing the overland flow path that reduces the accumulation of runoff; 

slowing the runoff with strips of rough soil surface, heavy surface residue, or dense vegetation; 

and capturing and ponding runoff” (USDA 2008). 

 “Contouring is the creation of ridges and furrows by tillage equipment, earth moving 

machines, and other soil disturbing operations to redirect runoff from a path directly downslope 

to a path around the hillslope.  Grade along the furrows is zero when contouring is “perfectly on 

Figure 3. 9 Nebraska CMZ map (USDA 2008) 
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the contour,” which results in runoff spilling uniformly over the ridges along their length. If 

furrow grade is not level, runoff flows along the furrows until it reaches low ridge heights or 

local low areas on the hillslope.  The runoff breaks over ridges in these locations” (USDA 2008).   

 

Table 3. 2 Examples of Cover Management Operations from RUSLE2 
(USDA 2008) 
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 The factors that influence the effectiveness of contouring practices are: steepness, ridge 

height, storm severity and runoff, row grade, contouring failure, and temporal changes.  

Steepness affects the contouring because, if a slope is steep, there will not be significant 

ponding to slow and direct the flow.  Ridge height is important because if there is not much 

height, the flow will overtop the ridges very quickly, and will cease to follow the contoured flow 

path.  If a storm is severe, there is likely a high runoff rate, which, unless the contours are more 

like terraces, the runoff will rapidly flow over or through the contour.  Row grade is how the 

rows are oriented compared to the contour.  If the row grade is perfectly up and down hill, it is 

parallel to the overland flow path, encouraging more runoff to flow directly to the bottom of the 

hillside; whereas, if it is perfectly on the contour, the runoff will follow each row along the 

contour line.  At some point when the runoff rate and steepness become too large, the 

contouring fails.   Finally, as time elapses sediment fills the ridges established along the contour, 

and at the same time, the ridge height is being reduced.  At some point with both of these 

activities occurring, there will no longer be a functional contour. 

 Filter and buffer strips are known as porous barriers.  Filter strips are generally dense 

vegetation strips that are at the bottom of an overland flow path.  Buffer strips are multiple 

narrow strips of dense permanent vegetation that are spaced along the flow path.  Both of these 

support practices slow the flow of runoff as it goes through the barrier.  By the end of the 

barrier, water is spread thinly across the slope, instead of in a channel.  If the strips retard the 

water enough, sediment is able to fall out of the water, and at the same time there will be a 

backwater area uphill of the barrier that slows the flow more.  After a length of time, the strips 

will become clogged with sediment and be mostly ineffective.  At that point, the strips will need 

to be removed and reconstructed. 



39 
  

 Rotational strip cropping is a practice where a crop is planted in a section, with a 

different crop right next to the first crop.  These crops are rotated annually to utilize the 

nutrients left by the other plant type, and to reduce erosion.  To be strip cropping there must be 

at least two different plant types, but more can be utilized.  Generally in Nebraska, corn and soy 

beans will be rotated, but alfalfa and wheat could also be included in the rotational strip 

cropping.  Within strip cropping there are two main types that are applied: contour strip 

cropping and field strip cropping.  With contour strip cropping the rows are directly following 

the hillside contours, “in long, relatively narrow strips of variable width on which dense erosion-

control crops alternate with clean-tilled or erosion-permitting crops placed” in strips (Kell 1938).  

Field strip cropping is essentially the same as contour strip cropping, except the strips do not 

follow the contours.  Figure 3. 10 shows field strip cropping. 

 

 “Diversions and terraces are constructed specifically to intercept overland flow and 

redirect the runoff around the hillslope in a low gradient channel. Terraces are constructed on a 

sufficiently low grade to cause deposition and even on a level grade with a closed outlet to 

conserve soil moisture in dry climates. Diversions are constructed on a sufficiently steep grade 

so that deposition does not occur but on a sufficiently flat grade so that erosion does not occur. 

Figure 3. 10 Rotational strip cropping- corn and soy beans (NRCS n.d.) 
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Constructed terraces and diversions typically involve ridges and accompanying channels that 

convey the runoff to a protected open channel or an underground pipe that conveys the runoff 

downslope to a safe outlet.  Disposal channels must be lined with vegetation, stone, or other 

material to prevent erosion because flow erosivity can be quite high in these channels” (USDA 

2008).  There are two types of terraces in the agricultural arena: gradient and parallel tile outlet 

(PTO).  Gradient terraces follow the contours of the hillside, with a minor grade going toward a 

lined channel flowing downhill, seen in Figure 3. 11.    

 

 Gradient terraces tend not to be evenly spaced along the hillside.  The PTO terraces are 

in the same general direction as the contours, but run in straight lines.  Small impoundments 

that collect overland flow and sediment are formed at the concentrated flow path through the 

Figure 3. 11 Gradient terrace and PTO terrace diagram (USDA 2008) 
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terrace.  A vertical riser is located within the impoundment, so the water enters the riser, and 

connects to a pipe, also known as a tile line.  Ridges divide the hillside into multiple sections 

with shorter overland flow distances to the impoundment.   

 Small impoundments are depressions in the soil that catch stormwater runoff and allow 

sediment to settle to the bottom.  There is usually an outlet device, like a riser, in the 

impoundment to allow the water to flow out once the basin is full of water.  Impoundments are 

generally paired with another support practice, such as with terraces seen in Figure 3. 11, where 

the water is slowed and directed to the impoundment. 

3.2.3 Using RUSLE2 

3.2.3.1 Install Model 

 RULSE2 is a free model produced by the United States Department of Agriculture 

(USDA), Agricultural Research Service (ARS), and can be found on the ARS website (USDA 2008).  

The installation and operating instructions are found in Appendix A.  The Natural Resources 

Conservation Services (NRCS) has also composed a “RULSE2 – Instruction and User Guide” which 

is accessible at: http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm. 

3.2.3.2 Data Collection 

 The data necessary to run RUSLE2 are: geographic location, soil type, topographical 

information, soil cover management system, soil management support practices, and sediment 

barrier systems.  Geographic location is needed to set the climate data.  Since the climate data 

are incorporated within the model software, the user needs to input the county and state where 

the project is located.  Soil type can be found based on location using soils maps, by selecting a 

generic soil within RUSLE2, or the user can specify soil type based on known fill material.  

Topographical information can be found through GIS maps, engineer topographic designs, or 
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survey data.  For most projects, engineer design will likely be used.  The management (soil 

cover) chosen for the site may vary over time from when it is an open construction site, to post 

construction when the site is completely stabilized with permanent vegetative cover.  Support 

practices are primarily based on topographic design and can include systems like: contour 

planning (designing topography to reduce erosion), terraces, diversions, and small check dams.  

Because of steep slopes at highway construction sites, contouring on the construction site may 

not be very significant, compared to an agricultural field, where the way the field is planted has 

a significant effect on the amount of soil eroded.  Therefore contouring is often assumed to be 

up-and-down hill.  Barrier systems are engineer-designed management systems, which should 

be found in the design drawings.  These barrier systems include: wattles, berms, silt fences, 

sediment barriers, and straw bales.  

3.2.3.3 Model Process 

 RUSLE2 inputs and outputs are shown in Appendices B through D, for user guidance and 

reference.  The general process includes: 

1. Open a new plan 

2. Enter project name and geographic location 

3. Create worksheet 

4. Create hillslope 

5. Choose location 

6. Select soil on site 

7. Enter topographical data for strip (e.g., length and slope) 

8. Choose management practice that fits site 

9. Select support practices 

10. Set sediment barrier types 
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11. Repeat steps 4-10 until all strips have been input 

3.3 Sediment Impacts on BMPs 

3.3.1 BMP Model Rationale 

 It is assumed that all of the soil eroded from the site is transported into a BMP prior to 

flowing into a waterbody.  The intent of the BMP modelling software is to determine the life-

span of the BMP based on its sediment-trapping efficiency, which depends on variable site 

conditions and BMP design.  The conditions that dictate efficiency differ by BMP and should all 

be easily accessible for an engineer to attain.  The model should give users the quantity of soil 

deposited in the BMP on an annual basis and the estimated lifespan of the BMP in question.  

This program should be used as a tool to adjust BMP designs to meet their required 

performance and lifespan.  Users should also be able to compare construction site management 

options and different types of BMPs using this program to assist them in determining what fits 

the site best.  

 The BMP model was created to use the RUSLE2 results as input.  Users will first input the 

sediment delivery from RUSLE2 as tons/acre/year from the construction site, which will be 

converted into tons/year to the BMP.  The user will input soil type, watershed area, BMP 

volume, and how full the BMP will be before cleanout or reconstruction is required.  Not all of 

the input variables are applicable to every BMP.  

3.3.2 BMP Selection 

 BMPs are often required to treat stormwater runoff from highway construction sites.  

The BMPs that are used for this application are used primarily to capture sediment, and they 

must be suitable to roadside applications (e.g., relatively small footprints).  The BMPs selected 

to be modeled and evaluated were detention ponds, infiltration trenches, grass-lined swales, 

grass-lined swales with check dams, and bioretention areas.  
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3.3.2.1 Detention Pond 

 Detention ponds (Figure 3. 12) are very common BMPs in municipal stormwater 

management systems.   Detention ponds work by temporarily storing stormwater runoff within 

the basin.  The water should be detained for up to 72 hours (U.S. EPA 1999d), allowing time for 

sediment particles to settle to the bottom of the basin.  There is an outlet works system to allow 

water to slowly be released into natural channels, which helps reduce peak flow.  The trapping 

efficiency range is between 50 and 90%, based on past studies conducted on detention ponds 

(Table 2. 4).  Detention ponds are especially effective when the construction site is open and 

lacks slope stabilization since it can handle large volumes of runoff, and it can remove large 

amounts of sediment; however, detention ponds are still very effective after the site has been 

stabilized with permanent cover.  The detention pond is also relatively easy to manage and 

clean out as needed throughout the construction project.  Ponds are generally utilized for larger 

sites, because they can treat significant amounts of runoff.   

 

Figure 3. 12 Detention pond (Stormwater Management) 
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3.3.2.2 Infiltration Trench 

 Infiltration trenches (Figure 3. 13) work similarly to detention ponds, as they also detain 

water within the system.  The porous media within the infiltration trench is used to help filter 

the sediment out of stormwater runoff.  There is no outlet system within infiltration trenches, 

because the intent of this BMP is to allow runoff to infiltrate into the groundwater table.  The 

trapping efficiency range of infiltration trenches is 60-90% based on past studies of infiltration 

trenches (Table 2. 4).  They are not as useful on large sites, or sites with bare soil.  The total 

volume of the BMP is already 60% filled with gravel (leaving 40% of the total volume as empty 

pore spaces within the gravel bed)  before any stormwater enters the system.  This means that 

the capacity of infiltration trenches is a lot lower than that of a detention pond with the same 

footprint.  Once a site has been stabilized, infiltration trenches could be a viable option, because 

they allow the stomwater to naturally infiltrate into the ground, with all the sediment and 

pollutant load remaining in the trench.   

 

Figure 3. 13 Infiltration Trench (DCCC 2009) 
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3.3.2.3 Grass Lined Swale 

 Grass lined swales (Figure 3. 14) target pollutants by reducing the flow velocity of 

stormwater runoff using filter media, in this case vegetation.  As the flow velocity of runoff is 

reduced, the time runoff is in the system increases, allowing pollutant loads more time to settle 

to the bottom of the swale.  The removal efficiency range of grassed swales is 65-99% based on 

recent studies of grassed swales (Table 2. 4).  These post construction BMPs do not take up 

much space.  As with infiltration trenches, swales will fill up with sediments if they are 

downstream of a construction site with bare soil.  Therefore, they may be better applied as a 

post-construction BMP. 

  

Figure 3. 14 Grass lined swale (Bioinfiltration Swales) 
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3.3.2.4 Grass Lined Swale with Rock Check Dam 

 Grass lined swales with check dams (Figure 3. 15) are similar to grassed swales, with the 

stormwater runoff being slowed as it passes through the vegetation.  With the check dams in 

place, there will be some ponding within the system as well, which slows the runoff further, 

allowing even more time for the sediment to settle out of the flow.  The removal efficiency 

range of grassed swales with rock check dams is 20-98% based on past studies on these systems 

(Table 2. 4).  Previous research also states that grassed swales are more efficient with check 

dams present (Yu et al. 1993).  Grassed swales with check dams are post construction BMPs that 

are ideal for small footprints.  Since the goal of swales with check dams is to slow the flow of 

runoff, they do not have a large capacity, making them less effective for construction sites with 

bare soil. 

 

 

 

 

 

Figure 3. 15 Grass lined swale with rock check dam (DDOT 2014) 
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3.3.2.5 Bioretention Area 

 Biretention areas, or rain gardens, (Figure 3. 16) treat stormwater runoff by temporarily 

storing runoff within the depression created for rain gardens.  The stormwater should be able to 

infiltrate, and will also be directed to an outlet works into a channel.  As the water is temporarily 

detained, the peak flow should be reduced in streams and creeks prior to the treated 

stormwater entering receiving streams.  According to previous studies on bioretention gardens, 

the trapping efficiency range is 29-99% (Table 2. 4).  Rain gardens are great BMPs for high 

visibility areas that still require a stormwater BMP.  These rain gardens are highly recommended 

to be used as post construction management systems, due to the amount of landscape design 

and cost that is input to construct an effective and pleasing garden.  These areas treat small to 

medium sized runoff areas, with a recommendation of treating under 10 acres of runoff area.   

Figure 3. 16 shows a rain garden at the University of Nebraska-Omaha visitor center.   

 

 

Figure 3. 16 Bioretention Garden (UNL 2015) 
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3.3.3 BMP Model Process 

 The process for the BMP model may vary slightly depending on the BMP selected to use.  

Generally the steps are: 

1. Input sediment delivery (t/Ac/yr) data for each representative strip for a given 

construction site into erosion data table 

2. Input areas (Ac.) associated with each representative strip for a given site into erosion 

data table 

3. Input the TOTAL sediment delivery for a given watershed into the Sediment Delivery 

Data cell 

4. Select the soil type that reflects the given construction (or post-construction) watershed 

5. Select the BMP to implement  

6. Enter BMP-specific data (eg., volume, percent filled before cleanout, total watershed 

area, media fill type, length, slope, width, density of grass, sideslope length, and grass 

height) 

7. Evaluate efficiency and estimated lifespan 

8. Redesign as needed 

 

 Each BMP has different efficiency variables, which are discussed in the specific BMP 

sections.  A detailed tutorial explaining how to use the BMP model is provided in Appendix E 

BMP Design Tutorial. 
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3.3.3.1 BMP Model Data Requirements 

 The BMP model was created to estimate the impacts (e.g. amount of sediment 

deposited in a BMP and its lifespan) on a BMP based on site-specific data along with the RUSLE2 

sediment yield output.  The site data needed for each BMP type are shown in Table 3. 3. 

 

 The sediment yield computed in RUSLE2 (T/Ac./yr.), is input to the BMP model which 

calculates total sediment yield from the entire construction site (T/yr.), based on the 

representative areas of each strip.  The BMP model uses the total sediment yield and the BMP 

efficiency to calculate the time for the BMP to fill with sediment.   

 The soil type in the watershed (construction site) should be the same as that used 

within RUSLE2.  Soil type is necessary for all BMPs to estimate the density of the soil, which 

allows the BMP model to calculate the volume of sediment transported into the BMP annually.  

That annual sediment transport quantity is then multiplied by the efficiency of the BMP to 

Table 3. 3 BMP Data Requirements for BMP Model 
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determine the volume of sediment deposited within the BMP annually, which, in turn is used to 

estimate the lifespan of the BMP. 

3.3.3.2 Detention Pond 

 User inputs required for detention ponds are BMP volume, total watershed area, and 

percent filled before cleanout.  The total BMP volume is in units of Acre-feet, which is a surface 

area in acres, and an average depth in feet.  Total area of the watershed (construction site) is 

the contributing area for the BMP, with units of acres.  Percent filled before cleanout is how full 

the pond will be, before it needs maintenance or cleanout.  

 A BMP volume to contributing watershed area ratio is calculated (Volume: Area ratio), 

see equation 3.26.  Soil particle diameter is also determined, based on user input soil type, and 

Table 3. 4. 

   𝑉: 𝐴 𝑅𝑎𝑡𝑖𝑜 =
𝐷𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑃𝑜𝑛𝑑 𝑉𝑜𝑙𝑢𝑚𝑒

𝑊𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 𝐴𝑟𝑒𝑎
    (3.26)  

 

Table 3. 4 Soil Particle Diameter Based on Soil Size Class 
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 For detention ponds, the sediment trapping efficiency is a function of the volume-to-

area ratio (volume of detention pond to area of watershed) and the particle size of the 

sediment.  Equation 3.27 shows how the efficiency (𝜀) of detention ponds is calculated.   

ε = (0.2 ∗ eVA) + (0.8 ∗ ℯD50)  (3.27) 

where 𝑒𝑉𝐴 is the efficiency factor of the volume to area ratio based on Figure 3. 17.  The V:A 

ratio affects the efficiency of a detention pond because as the pond volume increases the 

detention time increases providing more time for the sediment to settle out of suspension.  If 

the detention pond volume is zero, obviously the removal efficiency would be zero.  As the 

volume increases, the efficiency increases; however, it would never reach 100% because very 

fine sediments will not settle regardless of the pond’s volume (detention time).  A logarithmic 

relationship between the V:A ratio and the efficiency factor is proposed ranging from 0.0 for a 

V:A ratio of 0.0001 to 0.9 for a V:A ratio of 1.0 (Figure 3. 17) based on efficiency ranges found in 

previous studies (Table 2. 4).   

 

 

 

Figure 3. 17 Detention pond volume-to-area ratio vs. efficiency factor 
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 The variable ℯ𝐷50 is the efficiency factor based on the sediment diameter (Table 3. 5).  

Settling velocity of the sediment drives the amount of sediment that is deposited within the 

detention pond.  Figure 3. 18 is used to determine the settling velocity, based on soil particle 

diameter.  Large particles have a faster settling velocity.  Smaller sediment diameters will have a 

longer settling time, meaning the smaller the sediments (eg. clays) will likely remain suspended.  

Figure 3. 18 shows the soil particle diameter efficiency factor curve (ℯ𝐷50).  The curve reflects a 

settling velocity curve, with minimal settling occurring for small particles, and rapid settling for 

large particles. 

 

 The 0.2 and 0.8 multipliers associated with the factors are to weight the relative 

importance of the two variables.  Since large particles (e.g. sand) will settle even in very small 

detention ponds and very small particles (e.g. clay) will likely not settle even in very large ponds, 

particle size is considered the more important determinant of efficiency.  Therefore, sediment 

diameter has the 0.8 multiplier and the V:A ratio is given the 0.2 multiplier. 

 

 

Table 3. 5 Particle Diameter with Corresponding Settling Velocities 
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 The volume of sediment that is deposited in the BMP is calculated by multiplying the 

efficiency by the volume of sediment transported into the BMP.  Estimated BMP lifespan is then 

determined using the volume of the BMP, the percent filled, and the volume of sediment 

deposited in the BMP (3.28). 

  𝐷𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑃𝑜𝑛𝑑 𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛 =
(𝐵𝑀𝑃 𝑉𝑜𝑙𝑢𝑚𝑒)(𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐹𝑖𝑙𝑙𝑒𝑑 𝐵𝑒𝑓𝑜𝑟𝑒 𝐶𝑙𝑒𝑎𝑛𝑜𝑢𝑡)

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑆𝑜𝑖𝑙 𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 𝑖𝑛 𝐵𝑀𝑃
𝑦𝑒𝑎𝑟⁄

 (3.28) 

If the lifespan is greater than 50 years, the model displays the estimated lifespan is > 50 years.  

This may indicate that the BMP is oversized. 

3.3.3.3 Infiltration Trench  

 The user inputs for infiltration trenches are the infiltration trench fill type, infiltration 

trench volume, and contributing watershed area.  The total BMP volume is in units of Acre-feet.  

For infiltration trenches, this is the gross volume of the trench, not the volume accounting for 

the media fill porosity.  Total area of the watershed is the contributing area for the BMP, with 

units of acres.  BMP Media Fill type is based on the material placed in the trench.  Typically, 

gravel is used as the media fill of choice within infiltration trenches, with an average porosity (η) 

of 40% (USDA 1999). 

Figure 3. 18 Detention pond sediment diameter vs. efficiency factor 
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 The volume and area are again used to calculate the Volume: Area ratio, which 

influences the efficiency.  The media, though, affects the BMP volume, depending on porosity.   

The Volume: Area calculation is: 

   𝑉𝑜𝑙𝑢𝑚𝑒: 𝐴𝑟𝑒𝑎 =  
(𝐺𝑟𝑜𝑠𝑠 𝐵𝑀𝑃 𝑉𝑜𝑙𝑢𝑚𝑒)(𝐹𝑖𝑙𝑙 𝑀𝑒𝑑𝑖𝑎 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦)

(𝑊𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 𝐴𝑟𝑒𝑎)
  (3.29) 

 Infiltration trench efficiency is based on the volume-to-area ratio (volume of infiltration 

trench: area of the watershed) up to a maximum of 90% efficiency.  This is based upon efficiency 

studies of infiltration trenches (Burack et al. 2008).  As particles suspended in stormwater enter 

the infiltration trench, the sediments fall into the porous cavities of the trench and settle out.  

The small particles will likely remain suspended, which is why the maximum efficiency is 90%.  

As volume of the infiltration trench approaches zero, there is less settling of the suspended 

sediments, causing a low efficiency (50%).  The lower limit of 50% is based on past studies of 

infiltration trenches, where the lowest efficiency was found to be 50%.  Inversely, if the trench 

has a large volume, the stormwater will all enter the BMP, creating a high efficiency (90%).  This 

relationship is based on past studies (Table 2. 4) and are assumed to be linear from low volume 

to high volume, capping at 90% efficient.  Equation 3.30 shows the efficiency of infiltration 

trenches with respect to the volume-to-area ratio.   

   ε = {
0.4106V: A + 0.4962 if V: A ≤ 1.0

0.9 if V: A > 1.0                            
   (3.30) 

where 𝑉: 𝐴 is the ratio of the volume of the porous spaces in the trench to area of a watershed.  

If the V:A is greater than 1.0, the efficiency is a maximum at 90%.  Figure 3. 19 shows the 

efficiency curve based on the volume-to-area ratio.   
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 The volume deposited in the BMP is calculated by multiplying the efficiency by the 

volume of sediment transported into the BMP.   

 Estimated infiltration trench lifespan is then determined using the volume of the BMP, 

factoring in porosity, and the volume of sediment deposited in the BMP (3.31). 

   𝐼𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑟𝑒𝑛𝑐ℎ 𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛 = 

   
(𝐺𝑟𝑜𝑠𝑠 𝐵𝑀𝑃 𝑉𝑜𝑙𝑢𝑚𝑒)(𝐹𝑖𝑙𝑙 𝑀𝑒𝑑𝑖𝑎 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦)

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑆𝑜𝑖𝑙 𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 𝑖𝑛 𝐵𝑀𝑃
𝑦𝑒𝑎𝑟⁄

    (3.31) 

If the lifespan is greater than 50 years the model displays the estimated lifespan is >50 years.  

This may indicate that the BMP is oversized. 

3.3.3.4 Grass Lined Swale 

 User inputs for grass lined swales are the swale length, slope of the swale, bottom width 

of the swale, horizontal side slope of the swale, grass cover density, and the grass height.  The 

swale length is in units of feet, and this length should be the total horizontal length from 

upstream end to downstream end.   The slope of the swale is in units of percent.  As only one 

swale slope is asked for, use the average slope over the swale.  Swale bottom width (b) is in 

units of feet (Figure 3. 20).  Grass cover density is the approximate cover of grass within the 

Figure 3. 19 Infiltration trench volume to area ratio efficiency factor 
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swale, which is defined as one minus the amount of open spaces in the grass when looking 

straight down on it.  The cover density ranges from 0.0 to 1.0 with the density determining the 

Manning roughness coefficient.  Horizontal side slope (z) of the swale is seen in Figure 3. 20, 

with units of feet.  Grass height is the average grass height in units of feet. 

 The Manning roughness coefficient is estimated based in the grass density input.  The 

roughness of the surface varies with the density of the grass.  See Table 3. 6 for the variance in 

roughness associated with grass cover density. 

 Settling duration is a function of the water treatment depth and the settling velocity of 

the soil being transported, as shown below:   

   Settling Duration =
Treatment Depth

Settling Velocity
    (3.32) 

Treatment depth is considered to be the height of that grass (𝑦) lining the swale (Figure 3. 20) 

because sediment removal is only considered to occur in that depth, with all water depth above 

the grass height being untreated. 

The settling velocity is the rate at which a specified type of eroded soil settles to the bottom of 

the BMP, see Table 3. 5. 

 Travel time is a function of the swale length and the flow velocity of the runoff, as 

shown in equation 3.33. 

z 
b 

Figure 3. 20 Swale Width (b), Horizontal Sideslope (z), and Grass Height (y) 

1 

y 
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Travel Time =
Swale Length

Flow Velocity
 (3.33) 

where the swale length is the horizontal distance from the beginning of the swale to the end.  

The flow velocity is calculated using the Manning Equation: 

V =
kn

n
R

2
3⁄ S

1
2⁄  (3.34) 

where 𝑉 is the flow velocity, 𝑘𝑛 is a constant (1.486 for English units); 𝑛 is the Manning 

roughness coefficient (Table 3. 6); 𝑅 is the hydraulic radius; and 𝑆 is the slope of the swale.   

 

The hydraulic radius of a trapezoidal channel is found by:   

R =
(b+2y)y

b+2y√1+z2
 (3.35) 

 BMP volume is also calculated, which accounts for the length of the swale, width of the 

swale, and height of the grass (3.36).  

   𝐵𝑀𝑃 𝑉𝑜𝑙𝑢𝑚𝑒 = (𝑆𝑤𝑎𝑙𝑒 𝐿𝑒𝑛𝑔𝑡ℎ)(𝑆𝑤𝑎𝑙𝑒 𝑊𝑖𝑑𝑡ℎ)(𝐺𝑟𝑎𝑠𝑠 𝐻𝑒𝑖𝑔ℎ𝑡) (3.36) 

 

 

Table 3. 6 Density of grass to 
Manning’s Roughness Coefficient 
Relationship (Chow 1959) 
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 Efficiency of grass lined swales is a function of settling duration and travel time, 

according to the Alabama Drainage Conservation Design Practices (Nara and Pitt 2005).  The 

efficiency of the grass lined swale is found using equation 3.37.  Based on the literature (Water 

Environment Research Foundation et al. 2014) an approximate maximum efficiency for grass 

lined swales was 77%.  Therefore, the maximum efficiency is set at 77%. 

   Efficiency = {

Traveling Time

Settling Duration
 if ≤ 77%

77% if 
Traveling Time

Settling Duration
 > 77%

   (3.37) 

3.3.3.5 Grass Lined Swale with Rock Check Dams 

 Grass lined swales with rock check dams have two sediment capture processes.  Where 

ponding occurs behind a check dam, the sediment removal is the same is in a detention pond.  

Where ponding is not present, removal is the same as in a grass lined swale.  User inputs for 

grass lined swales with rock check dams are the total swale length, slope of the swale, bottom 

width of the swale, horizontal side slope of the swale, grass cover density, the grass height, the 

height of the check dams, the number of check dams, spacing of check dams, and the watershed 

area.  The swale length is in units of feet, and this length should be the total horizontal length 

from upstream end to downstream end.   The slope of the swale is in units of percent.  Swale 

bottom width (b) is in units of feet (Figure 3. 20).  Horizontal side slope of the swale (z) is seen in 

Figure 3. 20, with units of feet.  Grass cover density is the approximate cover of grass within the 

swale.  The cover density ranges from 0.0 to 1.0 with the density determining the Manning 

roughness coefficient.  Grass height is the average grass height in units of feet.  Height of the 

check dams is in units of feet, and is the height of each individual dam.  Number of dams in the 

swale is unit-less, and is simply how many check dams will be within the length of the swale.  

Check dam spacing is recommended to be based on swale slope, Table 3. 7 shows 
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recommended spacing based on slope.  Spacing is in units of feet.  Total area of the watershed 

(construction site) is the contributing area for the BMP, with units of acres.  

 

 Sediment removal in the ponded portions of the BMP is a function of the ratio of the 

ponding volume and the area of the watershed (construction site).  Check dam ponding volume is 

calculated using: 

 𝐶ℎ𝑒𝑐𝑘 𝐷𝑎𝑚 𝑃𝑜𝑛𝑑𝑖𝑛𝑔 𝑉𝑜𝑙𝑢𝑚𝑒 =

(
1

2
)(𝐷𝑎𝑚 𝑆𝑝𝑎𝑐𝑖𝑛𝑔)(𝐷𝑎𝑚 𝐻𝑒𝑖𝑔ℎ𝑡)(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑚𝑠)(𝑆𝑤𝑎𝑙𝑒 𝑊𝑖𝑑𝑡ℎ)

43560 
𝑠𝑞.  𝑓𝑡.

𝐴𝑐.

 (3.38) 

Volume-to-Area ratio is then calculated using the check dam ponding volume and the total 

watershed (construction site) area.   

 Sediment removal in the non-ponded portion of the BMP is a function of the particle 

settling velocity and the travel time in the swale.  The Manning roughness coefficient is 

estimated based in the grass density input.  The roughness of the surface varies with the density 

of the grass.  See Table 3. 6 for the roughness associated with grass cover density. 

 Settling duration is a function of the water flow depth and the settling velocity of the 

soil being transported, as shown below:   

Table 3. 7 Check dam spacing 
recommendations (MPCA 2000) 
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Settling Duration =
Treatment Depth

Settling Velocity
 (3.39) 

Treatment depth is considered to be the height of that grass (𝑦) lining the swale (Figure 3. 20) 

because sediment removal is only considered to occur in that depth, with all water depth above 

the grass height being untreated.  The settling velocity is the rate at which a specified type of 

eroded soil settles to the bottom of the BMP, see Table 3. 5. 

 Travel time is a function of the swale length and the flow velocity of the runoff, as 

shown in equation 3.40. 

Travel Time =
Swale Length

Flow Velocity
 (3.40) 

where the swale length is the horizontal distance from the beginning of the swale to the end.  

The flow velocity is calculated using the Manning Equation: 

V =
kn

n
R

2
3⁄ S

1
2⁄  (3.41) 

where 𝑉 is the flow velocity, 𝑘𝑛 is a constant (1.486 for English units); 𝑛 is the Manning 

roughness coefficient (Table 3. 6); 𝑅 is the hydraulic radius; and 𝑆 is the slope of the swale.  The 

hydraulic radius of a trapezoidal channel is found by:   

R =
(b+2y)y

b+2y√1+z2
 (3.42) 

 BMP volume is also calculated, which accounts for the length of the swale, width of the 

swale, and height of the grass (3.43).  

   𝐵𝑀𝑃 𝑉𝑜𝑙𝑢𝑚𝑒 = (𝑆𝑤𝑎𝑙𝑒 𝐿𝑒𝑛𝑔𝑡ℎ)(𝑆𝑤𝑎𝑙𝑒 𝑊𝑖𝑑𝑡ℎ)(𝐺𝑟𝑎𝑠𝑠 𝐻𝑒𝑖𝑔ℎ𝑡) (3.43) 

 The efficiency of grass lined swales with rock check dams is a combination of swale and 

ponding efficiencies.  The way total efficiency of the system is determined is by finding a swale 

segment length to total BMP length ratio, and a check dam segment length to total BMP length 

ratio, as seen in Figure 3. 21, and multiplying these factors by the efficiency factors.    Equation 

3.44 shows how the total efficiency of the system is calculated.   
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   Efficiency = (
Total Swale Segment Length

Total Swale Length
) ∗ Swale Efficiency +   

   (
Total Check Dam Segment Length

Total Swale Length
) ∗ Check Dam Efficiency  (3.44) 

 The efficiency of the swale segment of the system is determined the same way it is 

calculated for a swale without check dams.   See Section 3.3.2.3 Grass Lined Swale for efficiency 

functions of grassed swales. 

 The efficiency of the check dam segment is treated similarly to a pond.  It is a function of 

the ratio of the volume of the water behind all check dams to the area of the watershed and the 

particle size of the sediment eroded.  Equation 3.45 shows the efficiency of the check dam. 

   𝜀 = (0.2 ∗ ℯ𝑉𝐴) + (0.8 ∗ ℯ𝐷50)     (3.45) 

where ℯ𝑉𝐴 is the efficiency factor of the volume to area ratio based on Figure 3. 22.  ℯ𝐷50 is the 

efficiency based on the eroded sediment particle diameter, found in Figure 3. 23.  

 The volume to area ratio affects the efficiency of a check dam because as the storage 

volume increases, the detention time also increases, which allows more retention time for the 

sediment to settle out.  The range of efficiencies was determined from literature, found in Table 

2. 4.  When the check dams are the same height as the height of the grass, the volume behind 

the checks to area is near zero, giving the minimum efficiency of a lined swale.  As the volume of 

Legend: 

    Swale segment 

    Check Dam segment 

     Total Swale Length 

Figure 3. 21 Grassed swale with rock check dams length ratios 
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the pond increases, so does the efficiency of the check dams.  The maximum efficiency of the 

check dams is 98% based on literature.  

 

 The D50 of the sediment eroded is the average diameter of the soil particles.  The 

diameter determines the settling velocity of the soil particles.  Based on this value, the efficiency 

is established from Figure 3. 23.   

 

 

Figure 3. 22 Check Dam Volume: Area Efficiency 

Figure 3. 23 Check Dam D50 Efficiency 



64 
  

 The 0.2 and 0.8 multipliers in equation 3.45 are weighting factors for V:A and D50 

indicating the relative importance of each value in the check dam efficiency calculation.  Since 

the settling velocity varies so greatly between soil types and diameters, it affects the efficiency 

more than the volume: area ratio.  Table 3. 5 shows the settling velocities of the varying soil 

sizes. 

3.3.3.6 Bioretention Area (Rain Garden) 

 The inputs required for bioretention areas are rain garden area, rain garden depth, the 

total watershed area, and depth of infiltration cell below the rain garden.  The total BMP area is 

in units of square feet, which is a surface area.  The recommended surface area of bioretention 

cells is 1/5 of the watershed area (Davis et al. 2009; PDEP 2006).  The BMP depth is also input in 

feet, and is the depth of the depression (basin) that captures and temporarily stores the runoff.  

Total area of the watershed (construction site) is the contributing area for the BMP, with units 

of acres.  Depth of infiltration cell below rain garden is in units of feet.  It is assumed that if there 

is an infiltration cell beneath, the fill media is gravel, with a porosity of 40%. 

 Many bioretention areas have infiltration cells under the rain garden, which also 

accounts for some of the BMP volume.  The total BMP volume is calculated using equation 3.46. 

 𝑇𝑜𝑡𝑎𝑙 𝐵𝑀𝑃 𝑉𝑜𝑙𝑢𝑚𝑒 = (
(𝐵𝑀𝑃 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎)(𝐵𝑀𝑃 𝐵𝑎𝑠𝑖𝑛 𝐷𝑒𝑝𝑡ℎ)

43560 
𝑠𝑞.𝑓𝑡.

𝐴𝑐.

) +

(
(𝐷𝑒𝑝𝑡ℎ 𝑜𝑓 𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑒𝑙𝑙)(𝐵𝑀𝑃 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎)(𝑀𝑒𝑑𝑖𝑎 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦)

43560
𝑠𝑞.𝑓𝑡.

𝐴𝑐.

) (3.46) 

 A BMP volume to contributing watershed area ratio is calculated (Volume: Area ratio), 

see equation 3.47.   

   𝑉𝑜𝑙𝑢𝑚𝑒: 𝐴𝑟𝑒𝑎 =  
(𝑇𝑜𝑡𝑎𝑙 𝐵𝑀𝑃 𝑉𝑜𝑙𝑢𝑚𝑒)

(𝑊𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 𝐴𝑟𝑒𝑎)
    (3.47) 

  There is a minimum recommended treatment of the first 0.5 inch of stormwater 

runoff over the entire site (Schueler and Holland, 2000).   
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 Bioretention garden efficiency is based on the Volume: Area ratio of the garden and site 

watershed (construction site) area.  The range of efficiencies for rain gardens was based on past 

studies that had efficiency calculated and noted in the literature (Table 2. 4).  Figure 3. 24 shows 

the efficiency curve of bioretention gardens based on the volume: area ratio.  As the volume: 

area approaches 0, the efficiency severely drops, because rain gardens perform by allowing 

runoff to slow and pool for a period of time before either infiltrating, evaporating, or discharging 

through an outlet works system.  If the runoff does not sufficiently slow and pool, the efficiency 

of this system decreases.  Once the V:A reaches approximately 0.1, the efficiency increases at a 

much more gradual rate, because there is enough capacity to partially treat the stormwater 

runoff. 

 

 The volume of sediment deposited in the BMP is calculated by multiplying the efficiency 

by the volume of sediment transported into the BMP.  The lifespan determined by the efficiency 

takes into consideration that once the garden becomes 
1

10
 filled, it will need to be cleaned out.  

This is because after there is noticeable sedimentation within the area, the infiltration rate will 

decrease.  This may cause water to pool longer than 72 hours, which may create a potential 

mosquito breeding ground.   

Figure 3. 24 Bioretention Area V:A Efficiency 
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 3.4 Model Calibration 

3.4.1 RUSLE2 Model Calibration 

 The Universal Soil Loss Equation (USLE) was originally published in 1965.  It has been in 

use since that time, with many modifications to the software (e.g. modified to the Revised 

Universal Soil Loss Equation 2, RUSLE2 model).  Throughout the last 50 years, the USDA has 

done significant calibration tests to get the data as accurate as possible.  Since there has been so 

much time invested into the USDA calibration, this project considered the RUSLE2 model to be 

pre-calibrated for the given modelling conditions (e.g. soils, climate). 

3.4.2 BMP Model Calibration 

 The BMP model was not tested with a field model.  All efficiency estimates are based on 

literature.   A potential future study could test the accuracy of the BMP model in the field.  The 

data within the BMP Model could be validated as part of a future study. 

3.5 Model User’s Guide Development 

 The flow chart found in Figure 3. 25 shows the process of erosion from RUSLE2 input 

requirements and RUSLE2 output, to the BMP model inputs, including the final outputs of the 

efficiency and lifespan of the BMP.   
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The model user’s guide for RUSLE2 can be found in Appendix A, with RUSLE2 site 

examples for I-80 at Center Street Omaha, I-80 at I street Omaha, and I-80 in Sidney, Nebraska, 

located in Appendixes B, C, and D, respectively.  The BMP model user’s guide is located in 

Appendix E.   

 

Figure 3. 25 RUSLE2 and BMP Model Input and Output Flow Chart 
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Chapter 4:  Results 

4.1 RUSLE2 Results for Case Study Sites  

 As a construction project develops, the site typically changes from pre-existing 

vegetation to bare ground, which can be followed by a variety of cover management practices 

and finally post-construction vegetative cover.   

 Three hypothetical roadside construction sites (I-80 at Center Street, I-80 at I Street, and 

the I-80 Sidney Off-ramp) were evaluated for erosion and sediment transport under various 

cover practices.  A compilation of total sediment delivery from three example sites, based on 

different management practices is found in Table 4. 1, Table 4. 2 and Table 4. 3 for I-80 at 

Center Street, I-80 at I Street, and I-80 at Sidney, respectively.   

 For all the sites evaluated, the pre-construction vegetative cover (tall fescue grass) 

produced the least amount of sediment.  The practice that produced the most sediment was the 

bare cut site with no cover.  The post construction permanent cover vegetation produced the 

second least amount of sediment across all sites.  For the temporary cover, for all three of these 

sites, the roll material was found to allow the least amount of erosion, followed by the straw 

mulch at 2000 lb/ac, and finally the straw mulch at 1000 lb/ac.  The long-term cover of 

permanent seeding covered with straw mulch at 4000 lb/ac was less effective than the mixed 

grass. 
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4.1.1 Interstate- 80 Center Street On-Ramp, Omaha, NE 

 A hypothetical construction site on the Interstate-80 Northbound on-ramp at Center 

Street in Omaha, NE was modelled using RUSLE2 to estimate the quantity of sediment eroded 

and transported from the site under various management conditions.  The site covers 1.12 Ac. 

with silt-loam soils.  Modelling details can be found in Appendix B Center Street RUSLE2 

Example.  

 

 

 

  

 

Table 4. 1 Center Street RUSLE2 Results: Varying Cover Management 
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4.1.2 Interstate-80 I Street On-Ramp, Omaha, NE 

 A hypothetical construction site on the Interstate-80 Northbound on-ramp at I Street in 

Omaha, NE was modelled using RUSLE2 to estimate the quantity of sediment eroded and 

transported from the site under various management conditions.  The site covers 11.4 Ac. with 

silt-loam soils.  Modelling details can be found in Appendix C I Street RUSLE2 Example.  

 

Table 4. 2 I Street RUSLE2 Results: Varying Cover Management 
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4.1.3 Interstate-80 Sidney Off-Ramp, Sidney, NE 

 A hypothetical construction site on the Interstate-80 Westbound off-ramp at Sidney, NE 

was modelled using RUSLE2 to estimate the quantity of sediment eroded and transported from 

the site under various management conditions.  The site covers 3.29 Ac. with loam soils.  

Modelling details can be found in Appendix D Sidney RUSLE2 Example.  

 

  

4.2 BMP Model Results for Case Study Sites  

 The five BMPs were evaluated on all the theoretical construction sites.  Three sizes of 

each BMP type (0.01 acre-feet, 0.1 acre-feet, and 1 acre-foot) were evaluated.  All BMP 

efficiencies listed in the tables are calculated in the BMP model. 

Table 4. 3 Sidney off-ramp RUSLE2 Results: Varying Cover Management 
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4.2.1 Interstate-80 Center Street On-Ramp, Omaha, NE 

 Within the theoretical Center Street on ramp in Omaha, NE, there are many 

management practices that may occur over the course of construction.  Table 4. 4 through 

Table 4. 8 show the potential management practices from before construction, to final 

permanent cover on the site, with sediment delivery and lifespan estimation of each BMP sized 

at 0.01 acre-feet, 0.1 acre-feet, and 1 acre-foot.  

  

Table 4. 4 Center Street with various RUSLE2 Cover Management Practices and 3 Detention 
Pond design sizes 

Table 4. 5 Center Street with various RUSLE2 Cover Management Practices and 3 Infiltration 
Trench design sizes 
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Table 4. 7 Center Street with various RUSLE2 Cover Management Practices and 3 Grass Lined 
Swale with Rock Check Dam design sizes 

Table 4. 6 Center Street with various RUSLE2 Cover Management Practices and 3 Grass Lined 
Swale design sizes 
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4.2.2 Interstate-80 I Street On-Ramp, Omaha, NE 

 Within the theoretical I Street on ramp in Omaha, NE, there are many management 

practices that may occur over the course of construction.  Table 4. 9 through Table 4. 13 show 

the potential management practices from before construction, to final permanent cover on the 

site, with sediment delivery and lifespan estimation of each BMP sized at 0.01 acre-feet, 0.1 

acre-feet, and 1 acre-foot. 

 

 

 

Table 4. 8 Center Street with various RUSLE2 Cover Management Practices and 3 Bioretention 
Pond design sizes 

Table 4. 9 I Street with various RUSLE2 Cover Management Practices and 3 Detention Pond 
design sizes 
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Table 4. 10 I Street with various RUSLE2 Cover Management Practices and 3 Infiltration Trench 
design sizes 

Table 4. 11 I Street with various RUSLE2 Cover Management Practices and 3 Grass Lined Swale 
design sizes 
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Table 4. 12 I Street with various RUSLE2 Cover Management Practices and 3 Grass Lined Swale 
with Rock Check Dam design sizes 

Table 4. 13 I Street with various RUSLE2 Cover Management Practices and 3 Bioretention Pond 
design sizes 
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4.2.3 Interstate 80 Off-Ramp, Sidney Off-Ramp 

 Within the theoretical Sidney off ramp in Sidney, NE, there are many management 

practices that may occur over the course of construction.  Table 4. 14 through Table 4. 18 show 

the potential management practices from before construction, to final permanent cover on the 

site, with sediment delivery and lifespan estimation of each BMP sized at 0.01 acre-feet, 0.1 

acre-feet, and 1 acre-foot. 

 

 

 

Table 4. 14 Sidney Off-Ramp with various RUSLE2 Cover Management Practices and 3 
Detention Pond design sizes 

Table 4. 15 Sidney Off-Ramp with various RUSLE2 Cover Management Practices and 3 
Infiltration Trench design sizes 
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Table 4. 17 Sidney Off-Ramp with various RUSLE2 Cover Management Practices and 3 Grass 
Lined Swale with Rock Check Dam design sizes 

Table 4. 16 Sidney Off-Ramp with various RUSLE2 Cover Management Practices and 3 Grass 
Lined Swale design sizes 
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Table 4. 18 Sidney Off-Ramp with various RUSLE2 Cover Management Practices and 3 
Bioretention Pond design sizes 
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4.3 Discussion 

 Through the course of this study, it has been found that erosion is a largely variable 

event.  If a site is well constructed or established with good ground cover and a stable soil there 

will be minimal annual erosion.  When a site is on poor soil, with minimal ground cover and is 

poorly designed, the opportunity for soil erosion increases significantly.  Sediment Control BMPs 

are installed to treat the soil erosion, whether large or small quantities of soil are moved.   

 The function and longevity of sediment control BMPs depend upon many site-specific 

conditions and can vary significantly from location to location.  Engineers should use good site 

design and management practices to reduce erosion and extend the life of the BMP on site.   

 The BMP model developed in this study does not account for temporal variability in 

efficiency.  As a BMP becomes filled with sediment, the efficiency is reduced.  Modelling the 

temporal change in efficiency is a complex process, which was not evaluated in this project, but 

could be investigated in future work. 

 RUSLE2 depends upon a hypothetical storm sequence that is based historical data.  

While the hypothetical storm sequence reflects average rain data collected over many years, it 

is an estimation.  With the climatic changes that have occurred in recent years, there may be 

some variance with this storm sequence. 

 Within RUSLE2 and the BMP model, the cover and soil are assumed to be uniform and 

constant across the entire site.  Due to this simplification, the soils and cover may not perfectly 

match an entire site.   

 The BMP model uses generic soil types, not specific soils that can be found in soils 

surveys and maps.  This is another simplification that may create some discrepancy between the 

lifespan estimation and the actual lifespan of the BMP. 
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 BMPs themselves have erosion occurring within them from the sidewalls of basins and 

from vegetative cover dying, decomposing and turning into soil.  No internal erosion or soil 

production from vegetation was accounted for within the BMP model because the amounts of 

soil produced from these avenues is not very well known. 

 The efficiency of the BMPs was found using past studies of BMPs, and may not be valid 

for site-specific conditions.  These efficiency functions would benefit from further study. 
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Chapter 5 Conclusions 

 A notable finding from this study is that sites produce the least amount of erosion in 

their fully vegetated, pre-construction state.  The next least sediment producing site is a fully 

stabilized site after construction is completed.  Putting these two findings together, it is ideal for 

a site to be under construction within the shortest amount of time possible.  If it is not going to 

be a short term project, the best option is to construct the project in stages, where the least 

amount of soil is disturbed at a time.   

 Designing the BMP to the size and layout of the site is critical to not over-design the 

system.   There were several estimated lifespans well above 50 years.  When a site is designed, it 

is not very likely that 50 years will pass without being re-designed within that time.  Therefore, it 

is not reasonable to design and build a BMP that will outlast the design life of the rest of the 

project.  A cost of construction to cost of maintenance comparison may be necessary to 

evaluate what the optimal performance of the BMP may be.   

 Based on other project performances, the results that were found for bare cut sites up 

to long-term stabilization on sites seems reasonable.  The most erosion occurs when a site does 

not have permanent ground cover, which is where BMPs are most needed.  The BMP that is 

selected for the construction portion of a project must be chosen knowing that there will be 

significant quantities of sediment moving in that period.   The BMP utilized while a site is under 

construction may not be the same BMP that should be utilized for post-construction 

management.  It may not be reasonable for any number of factors including: the size of the site, 

other support practices in place that reduce erosion, and easement restrictions, for a large pond 

to be in place once a site has mostly permanent cover.    

 The cover management system implemented on a site significantly impacts the amounts 

of erosion and sediment yield on a site.  Large amounts of sediment are eroded while a site has 



83 
  

bare soil.  As a site is seeded with permanent cover, the soil erosion and yield on the site may be 

almost non-existent.  At times, the bare-soil erosion and sediment yield may be 10,000 times 

higher than that for a permanent cover, as seen at I Street.  

 BMP longevity varies greatly depending on the sediment load entering the BMP, which 

is based on the cover management practice, among other things.  For a bare-soil construction 

site, it is possible to have an appropriately sized BMP fill with sediment within a year.  With the 

same BMP and site after the soil has been stabilized with permanent grass cover, the BMP may 

perform for decades, or even the design life of the site.  It is very important to stabilize a site as 

soon as possible to reduce the erosion of the site, and increase the longevity of the BMP. 
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Appendix A RUSLE2 Tutorial 
1. Install RUSLE2  

a. Go to the web site: http://www.ars.usda.gov/Research/docs.htm?docid=6038, 

and scroll to the bottom of the screen.  Select the RUSLE2 2014 Download.  

b. You will get the pop-up shown in Figure A 1.  Select Run.  

c. There will then be a RUSLE2 Setup Wizard window that pops-up.  Select Next. 

d. There will then be a License agreement, Figure A 2.  Select I accept the 

agreement, and then Next.  

Figure A 1 

Figure A 2 
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e.  Finally, there will be a window that says “ready to install,” Select Install. 

f. After the installation is complete, there will be a window that looks like Figure A 

3.  Check both of the boxes, then select Finish.  

g. Once the installation is complete, RUSLE2 will open.  Minimize RUSLE2 and 

continue the installation process. 

h. Open Windows Explorer and browse to the C: Drive, select Program Files (x86), 

then USDA, then RUSLE2, and ARS.  Within that file, create a new folder called 

Archive, as seen in Figure A 4.  

Figure A 3 

Figure A 4 
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2. Install data from the NRCS RUSLE2 site. 

a. Go to the NRCS RUSLE2 site: 

http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm.  

b. Along the side of the webpage are tabs shown in Figure A 5. 

i. Select Data Files under Climate Data and select NEclim and save or copy 

and paste it to the previously created Archive folder. 

ii. Select Crop Management Zone Maps within Crop Management 

Templates.  Using the CMZ map, select the Data files associated with 

the project state.  For Nebraska, select CMZ 04, CMZ 05, CMZ 16, CMZ 

24.  Save these to the Archive folder. 

iii. Select Data Files within Soils Data. For Nebraska, select NE zip file. 

iv. Finally select RUSLE2 Technology and RUSLE2 Program under Training 

Materials.  

c. Within the Archive folder, unzip the files within this folder. 

3. Open RUSLE2 

Figure A 5 
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a. When you first open the program there will be an introduction window that 

opens, as seen in Figure A 6.  Select Plan and Construction Site Basic Complex 

Slope.  Then click OK.    

b. Open the default file. 

c. A plan window should open, if not, open a plan window by going to 

File\open\plan\default.  

4. Import RUSLE2 Data 

a. At the top of the RUSLE2 program window, open Database, Import RUSLE2 

database.   

b. Another window will open up, Figure A 7.  Go to the Local Disk, Program Files 

(x86), USDA, RUSLE2, ARS, Archive.   

Figure A 6 RUSLE2 Introduction window
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c. Within the Archive folder, all of the downloaded data files should already be 

decompressed within this folder.   

i. Select the CMZ 04 file, and click Open.  

ii. There will be an additional Window that opens (Figure A 8). Within that 

window check the box corresponding to managements, and All.  Then 

click Import.  

Figure A 7 

Figure A 8 
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iii. There may be an error message that looks like the message below 

(Figure A 9).  Click OK.  This message is only stating that it cannot import 

the default files because ARS already has them.  

iv. Using the above process, import the remaining CMZ (crop management 

zone) files to accurately represent the area your project is in.  If you do 

not know what CMZ the project is located in, see Figure 3. 9.  You may 

also use generic cover managements, but the CMZ covers are specified 

for what will likely be encountered within your project site. 

v. Also import the NE clim file (Figure A 10).   

1. When importing, check next to climates and All.  

Figure A 10 

Figure A 9 
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2. There may be a warning message that comes up like the one in 

Figure A 11.  Click OK. 

vi. Finally, import the soils data that you will be using.  It is not 

recommended to import all available soils data, just what is needed for 

your specific site.   

1. When importing the soils data for the counties that you need, 

check Soils and All. 

5. Fill out the Plan window, Figure A 12. 

a. Return to the Plan sheet and fill in the Project Name. 

Figure A 12 

Figure A 11 
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b. Click the drop down arrow next to Location, and scroll to the USA folder, then 

find the Nebraska folder and find the county in which your project is located. 

c. Click on the tab that says: Compare Section or reach alternatives.   

6. Fill out the Worksheet window. 

a. Click on the folder icon next to the Worksheet tab. The Worksheet window, 

Figure A 13, should come up.  

b. Select the folder icon on the far left of the window, under Hillslope.  The Profile 

window, Figure A 14, will appear.  

Figure A 13 

Figure A 14 
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c. At the top of this window, next to Step 1: click on the drop down arrow and 

select the location of the project. (This should be the same as the location you 

selected earlier, see step 5b.)  

d. Under Step 2: Change the soil using the drop down arrow to select the most 

fitting type of soil for this site by either using this site: 

http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx , or using the -

Generic Soils. 

i. Once the soil map is opened, zoom to the project site location.   

ii. Click the button at the top of the screen says AOI, this stands for Area 

Of Interest (Figure A 15).  

iii. Draw a box around the area you are interested in.  A box with diagonal 

hatching should appear over the area drawn (Figure A 16).  

Figure A 15 Soil Survey AOI (Area of Interest) 
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iv. At the very top of the screen, click on Soil Map to view the soils in the 

designated area of interest (Figure A 17). 

Figure A 16 

Figure A 17 
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v. Click on the Map Unit Name for the soil that is within the project site, 

and a new window will open displaying a detailed description of the soil 

properties (Figure A 18). 

 

vi. At the bottom of the window, there is a Typical Profile section that 

describes the layers of soil within a typical profile (Figure A 19). 

Figure A 18 

Figure A 19 
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e. Change the length of the hillside to the left of Step 3 in the box titled Slope 

Length (horiz), ft. 

f. Under Step 3: If the hill does not have a constant slope, add segments, change 

Segment Lengths, and Steepness to be reflective of your site. 

g. After changes have been made to the topography, look at the Profile View to 

make sure the profile looks correct. 

h. Under Step 4: Click the drop down arrow to change the Management to be 

reflective of your site. If you select Highly Disturbed Land, there will be many 

construction site options. 

i. Change the support practices next to Step 5: within the Contouring, assume that 

the contouring is up-and-down slope, unless you know it is something different. 

j. If there are any Diversions, Terraces, or Sediment Basins on the strip profile 

select the support practice that is most reflective of your site. 

k. Next to Step 6: click on the folder icon.  A new window will open up that looks 

like Figure A 20.  

Figure A 20 
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l. Set the barriers to reflect what sediment barriers will be in place on the strip 

profile.  When finished, click Apply/Close. 

m. Go to File, Save As, and save this profile.  There will be another pop-up as seen 

in Figure A 21.  Select: Replace all references to the old file with references to 

this new one.  Click OK.  

n. Close the Profile.  RULSE2 will ask if you want to save the changes to the slope.  

Select the appropriate answer.  I will select Yes. 

o. The Worksheet window will then look similar to Figure A 22.  

p. If there is more than one representative strip for the site, click the + button 

below Hillslope.  This will duplicate the first profile.  Select the folder next to the 

Profile#2 hillslope to edit this profile.  Be sure to save this profile as a different 

name. 

q. Create as many profiles as needed to represent your site. 

7. Sediment Delivery 

Figure A 21 

Figure A 22 
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a. To the far right of each hillslope, a Sediment Delivery is displayed in units of tons 

per acre per year per unit width of strip (T/Ac/yr).  

b. Record the sediment delivery in the BMP model spreadsheet, seen in Table A 1.  

This will be used to compute the total delivery on the site by multiplying the 

sediment delivery of a strip by the representative area for that strip.  This value 

will be summed with all other representative strip sediment deliveries to 

calculate a total sediment delivery on a site.  

 

Table A 1  Site Profiles, Representative Areas, Sediment Delivery, & Total Sediment Delivery 
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Appendix B Center Street RUSLE2 Example 
The northbound Interstate 680 on-ramp from Center Street, shown in Figure B 1, is located in 

Omaha, Nebraska, in the central part of Douglas County (41.235020, -96.083994).   

Fill out the Plan window with the Project Name as Center Street, and the Location as 

USA\Nebraska\Douglas County as in Figure B 2. 

Figure B 2 Center Street RUSLE2 Plan View 

Figure B 1 Center Street on-ramp from Douglas County GIS Map 
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Select the folder to the right of Worksheet.  A new window will open (Figure B 3). 

Select the folder to the left of California Base, the RUSLE2 profile window will open. 

When in RUSLE2 in the Profile window within STEP 1, select USA, Nebraska, Douglas County as 

shown in Figure B 4. 

 

Based on the USDA Web Soil Survey the soil is classified as a Douglas County 9712- Urban Land- 

Udarents-Udorthents complex, shown in Figure B 5.  This a Silty-Loamy soil.  In RUSLE2 under 

Figure B 4 Center Street RUSLE2 Location 

Figure B 3 



109 
  

STEP 2 select Generic Soils, silt loam (l-m OM), shown in Figure B 6.  This reflects the soil for the 

site, as it is a Silt Loam, with low to moderate Organic Matter.  If there is a fill material, indicate 

that soil type within RUSLE2. 

 

The strips (black dashed lines) used to calculate sediment delivery to the slope bottom (red line) 

are superimposed on the Douglas County GIS map (2014) Figure B 7.  The numbers next to the 

black dashed strips in Figure B 7 correlate to the strip numbers in Table B 1.  The hatched areas 

correspond to the representative areas associated with each representative strip. 

Figure B 6 RUSLE2 Soils Input 

Figure B 5 Douglas County Soils Map 
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The elevations, hillslope lengths and the potential BMP location are found in Figure B 7 from the 

Douglas County GIS site and are input into Table B 1.   

Figure B 7 Center Street RUSLE2 Representative Strips (black) and potential BMP 
location (red) 
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Using the data from Table B 1, the slope is calculated from the change in elevation divided by 

the horizontal distance.  For strip 1 change the slope length (horiz) is 20 feet as seen in Figure B 

9. Ensure that the horizontal distance is 20 feet, and not the length along the slope. 

 

Site Conditions 

Strip # Length (ft) Starting Elevation (ft) Ending Elevation (ft) Slope (%) 

1 20 1094 1093 5.0 

2 28 1092 1090 7.1 

3 35 1082 1080 5.7 

4 46 1084 1076 17.4 

5 42 1076 1073 7.1 

6 68 1080 1071 13.2 

7 78 1078 1070 10.3 

8 21 1072 1070 9.5 

9 165 1077 1070 4.2 

SITE         

Table B 1 
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In STEP 3, also change the Steepness % to 5 , shown in Figure B 8. 

In STEP 4 the management that is best associated with this site is CMZ 16, Construction Site 

Template, Cool season grass, good stand, shown in Figure B 11.   

Figure B 8 Center Street RUSLE2 Topography 

Figure B 9 Center Street RUSLE2 Slope Length 
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For contouring on this site, the worst case scenario was assumed, i.e., contouring directly up and 

down the hill, because that will allow the most runoff.  There are no diversions, terraces or 

basins along this strip, so none were selected.  Figure B 10 shows STEP 5.  

Figure B 11 Center Street RUSLE2 Management 

Figure B 10 Center Street RUSLE2 Support Practices 
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When STEP 6 is selected, a new window opens that looks like Figure B 12.  For the Center Street 

site, there are no sediment barriers to establish, so click Apply/Close. 

 

The final Profile for Strip 1 on the Center Street site should resemble Figure B 13.  Note that for 

strip 1, the slope is constant.  The slope may be complex for other strips.  The total annual 

Sediment Delivery to the bottom of strip 1 is 0.054 tons/acre.  This volume will be multiplied by 

the area represented by Strip 1 to calculate the total sediment yield delivered to the receiving 

channel from that area. 

Figure B 12 Center Street RUSLE2 Sediment Barriers 
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Save the profile, and add a new profile using the + button under Hillslope to represent the 

second strip.  Do this for all the remaining strips. 

After all the profiles are input into RUSLE2, the worksheet should look like Figure B 14.  

 

 

For each strip there will be an area of the site represented by that strip.  The area should have 

the same characteristics as the strips, that is, the length and topography must be the same for 

RUSLE2 to accurately calculate sediment delivery.  Shown in Figure B 15 are the areas, in acres, 

designated with each strip.  Input this data into the table found in the BMP model. 

Figure B 13 Center Street RUSLE2 Sediment Delivery 

Figure B 14 Center Street RUSLE2 Completed Worksheet 
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These areas are then multiplied by the Sediment Delivery to get tons of sediment transported 

for the given area, and then summed to get sediment transported for the entire site.   

Table B 2 shows all of the calculations. 

Figure B 15 Center Street Representative Areas 
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Table B 2 

Site Conditions Results 

Strip 

# 

Length 

(ft) 

Starting 

Elevation 

(ft) 

Ending 

Elevation 

(ft) 

Slope 

(%) 

Slope 

Area 

(Ac.) 

Sediment 

Delivery 

(t/ac/yr) * 

Sediment 

Delivery 

(t/yr)** 

1 20 1094 1093 5.0 0.12 0.054 0.00648 

2 28 1092 1090 7.1 0.15 0.07 0.0105 

3 35 1082 1080 5.7 0.09 0.06 0.0054 

4 46 1084 1076 17.4 0.18 0.19 0.0342 

5 42 1076 1073 7.1 0.1 0.072 0.0072 

6 68 1080 1071 13.2 0.15 0.14 0.021 

7 78 1078 1070 10.3 0.12 0.11 0.0132 

8 21 1072 1070 9.5 0.06 0.088 0.00528 

9 165 1077 1070 4.2 0.15 0.054 0.0081 

SITE            0.838 0.11136 

* From RUSLE2 software calculations.  
** Column 6 x Column 7  

 



118 
  

Appendix C I Street RUSLE2 Example 
The Northbound Interstate 80 on-ramp from I Street, shown in Figure C 1, is located in Omaha, 

Nebraska, in the central part of Douglas County (41.215294, -96.088817).   

Fill out the Plan window with the Project Name as I Street, and the Location as 

USA\Nebraska\Douglas County as in Figure C 2. 

Figure C 1 

Figure C 2 
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Select the folder to the right of Worksheet.  A new window will open (Figure C 3). 

Select the folder on the far left of the screen, the RUSLE2 profile window will open. 

When in RUSLE2 in the profile window within STEP 1, select USA, Nebraska, Douglas County as 

shown in Figure C 4. 

Based on the USDA Web Soil Survey the soil is classified as a Douglas County 9712- Urban Land- 

Udarents-Udorthents complex, shown in Figure C 6.  This a Silty-Loamy soil.   

Figure C 3 

Figure C 4 I Street RUSLE2 Location 



120 
  

In RUSLE2 under STEP 2 select Generic Soils, silt loam (mod-high OM), shown in Figure C 5.  This 

reflects the soil for the site, as it is a Silt Loam, with low to moderate Organic Matter.  If there is 

a fill material, indicate that soil type within RUSLE2. 

Figure C 6 I Street Soils from Douglas County Soils Map 

Figure C 5 I Street Soils in RUSLE2 
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Based on the Douglas County GIS map (2014), seen in Figure C 7, the strips (lines) used to 

calculate sediment delivery are shown.   

 

 

 

Figure C 7 I Street Topography and RUSLE2 Representative Strips (black arrows) and 
Representative Areas (grey hatching) and Potential BMP Location (red oval) 
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 The elevations and hillslope lengths are found in that figure from the Douglas County GIS site 

and are also input into Table C 1. 

 

Using the data from Table C 1, the slope is calculated from the change in elevation divided by 

the horizontal distance.  For strip 1 change the slope length (horiz) to 502 feet as seen in Figure 

C 8. Ensure that the horizontal distance is 502 feet, and not the length along the slope.  

Figure C 8 I Street RUSLE2 Slope Length 

Table C 1 
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In STEP 3, also change the Steepness % to 1.8, shown in Figure C 9.  

In STEP 4 the management that is best associated with this site is Highly disturbed land; bare; 

bare, rough, shown in Figure C 10.   

Figure C 9 I Street RUSLE2 Slope Steepness 

Figure C 10 I Street RUSLE2 Management 
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For contouring on this site, the worst case scenario was assumed, i.e., contouring directly up and 

down the hill, because that will allow the most runoff.  There are no diversions, terraces or 

basins at the bottom of this strip, so none were selected.  Figure C 11 shows STEP 5.  

When STEP 6 is selected, a new window opens that looks like Figure C 12.  For the I Street site, 

there are no sediment barriers to establish, so click Apply/Close. 

Figure C 12 I Street RUSLE2 Sediment barrier System 

Figure C 11 I Street Support Practices 
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The final Profile for Strip 1 on the I Street site should resemble Figure C 13.  The total annual 

Sediment Delivery to the bottom of strip 1 is 20 tons/acre.   

 

This value will be multiplied by the area represented by strip 1 to calculate the total sediment 

yield delivered to the receiving area from that area. 

Save the profile and add a new profile using the + button under the Hillslope to represent the 

second strip.  Do this for all the remaining strips.  After all the profiles are input into RUSLE2, the 

worksheet should look like Figure C 14. 

Figure C 13 I Street RUSLE2 Sediment Delivery 
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For each strip there will be an area of the site associated with that strip.  The representative 

area should have identical qualities as the representative strip, that is, the length and 

topography must be the same throughout the representative area for RUSLE2 to accurately 

calculate sediment delivery.  Input this data into the table found in the BMP model.  These 

representative areas are then multiplied by the Sediment Delivery to get tons of sediment 

transported for the given area, and then summed up to give sediment transported for the site.  

Table C 2 shows all of the calculations. 

 

  

Figure C 14 I Street RUSLE2 Completed Worksheet 

Table C 2 
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Appendix D Sidney RUSLE2 Example 
 

The westbound Sidney, Nebraska off-ramp from Interstate 80, shown in Figure D 1, is located  

near Sidney, Nebraska, in Cheyenne County (41.113525, -102.947657).    

 

Fill out the Plan window with the Project Name as Center Street, and the Location as USA\ 

Nebraska\ Cheyenne County as shown in Figure D 2.  

Figure D 2 

Figure D 1 Sidney project site area (red box) 
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Select the folder to the right of Worksheet.  A new window will open (Figure D 3) 

Select the folder icon on the far left side of the page, the RUSLE2 Profile window will open.  

When in the RUSLE2 profile within STEP 1, select USA, Nebraska, Cheyenne County as shown in 

Figure D 4. 

 

 

Figure D 3 

Figure D 4 Sidney Off-Ramp RUSLE2 Location 
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Based on the USDA Web Soil Survey the soil is classified as a Rosebud-Canyon Complex 1736, 

shown in Figure D 5.  This a Loamy soil.   

  

In RUSLE2 under STEP 2 select Generic Soils, loam (low-mod OM), shown in Figure D 6.  This 

reflects the soil for the site, as it is a Loam, with low to moderate Organic Matter.  

The strips (yellow lines) used to calculate sediment delivery are superimposed on the United 

States Geological Survey GIS map (USGS TNM 2.0 Viewer), seen in Figure D 7.  The elevations 

and hillslope lengths found in  Figure D 7 are input into Table D 1.  

 

 

Figure D 5 Cheyenne County Soil Survey 
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Figure D 6 RUSLE2 Sidney Off-Ramp Soils 

Figure D 7 Sidney Off-Ramp RUSLE2 Representative Strips (black lines) and Representative 
Areas (grey hatching) and Proposed BMP Location (red oval) 
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Using the data from Table D 1, the slope is calculated by from the change in elevation divided by 

the horizontal distance.  For strip 2 the slope length (horiz) is 320 feet as seen in Figure D 8. 

Ensure that the horizontal distance is 320 feet, and not the length along the slope.  

 

 

 

Figure D 8 Sidney Off-Ramp Slope Length 

Table D 1 
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In STEP 3, also add two new segments.  One at 46 feet with a 39% slope, second at 93 feet with 

a slope of 6.5%, and finally at 180 feet with a 2.2% slope.  Shown in  Figure D 9.  

In STEP 4 the management that is best associated with this site is Highly disturbed land; blade 

and mulch/ blanket; blade fill, straw mulch 1000, shown in Figure D 10.  

 

 

 

 

 

 

 

 

 

Figure D 9 Sidney Off-Ramp RUSLE2 Slope Steepness 
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For contouring on this site, the worst case scenario was assumed, i.e., contouring directly up and 

down the hill, because that will allow the most runoff.  There are no diversions, terraces or 

basins at the bottom of this strip, so none were selected.  Figure D 11 shows STEP 5.  

Figure D 10 Sidney Off-Ramp RUSLE2 Management 
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When STEP 6 is selected, a new window open that looks like Figure D 12.  For the Sidney off-

ramp, there are no sediment barriers to establish, so click Apply/Close. 

 

Figure D 12 Sidney Off-Ramp RUSLE2 Sediment Barriers 

Figure D 11 Sidney Off-Ramp RUSLE2 Support Practices 
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The final Profile for Strip 1 on the Sidney off-ramp site should resemble Figure D 13.  The total 

annual Sediment Delivery to the bottom of strip 2 is 3.3 tons/acre.   

 

This value will be multiplied by the area represented by strip 1 to calculate the total sediment 

yield delivered to the receiving channel from that area. 

Save the profile, and add a new profile using the + button under Hillslope to represent the 

second strip.  Do this for all the remaining strips. 

After all the profiles are input into RUSLE2, the worksheet should look like Figure D 14.  

 

 

 

 

 

Figure D 13 Sidney Off-Ramp RUSLE2 Sediment Delivery 
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For each strip there will be an area of the site associated with that strip.  The representative 

area should have identical qualities as the representative strip, that is, the length and 

topography must be the same throughout the representative area for RUSLE2 to accurately 

calculate sediment delivery.  Input this data into the table found in the BMP model.  These areas 

are then multiplied by the Sediment Delivery to get tons of sediment transported for the given 

area, and then summed up to give sediment transported for the site.  Table D 2 shows all of the 

calculations. 

 

Figure D 14 Sidney Off-Ramp RUSLE2 Completed Worksheet 

Table D 2 
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Appendix E BMP Design Tutorial 
 Once the sediment data is calculated within RUSLE2, the sediment will flow into a 

theoretical BMP, where the efficiency, sedimentation, and lifespan are estimated. 

1. The RUSLE2 output data is compiled in Table E 1, which is found on the first page (BMP 

Selection Tab) of the BMP Design Software. 

 

2.  Enter the Total Sediment Delivery (t/yr) in the Input Sediment Delivery Data (T/YR) cell, 

Figure E 1.  

3. Select the generic soil type (Figure E 1) that fits the project site.  This could be the 

generic soil that was input in RUSLE2, or if a specified soil was input, choose the soil that 

most accurately describes the soil on site.  

Table E 1 Sidney Off-Ramp site total Sediment Delivery 
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4. Choose the BMP that you wish to investigate (Figure E 1). 

5. A message will appear that directs you to the tab corresponding to the BMP selected 

(Figure E 2).  

Detention Pond 

6. If a Detention Pond is selected, you will be directed to the Detention Pond tab.  Once it 

is opened, the screen will display Figure E 3.  

Figure E 3 BMP Model Detention Pond Page 
with user inputs (blue cells) and model outputs 
(white cells) 

Figure E 1 BMP Model Selection Page Input 

Figure E 2 BMP Model Selection Page Output 
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a. The top three cells are user input data pieces.   

i. The first cell is the detention pond volume, in ac-ft.  That is the surface 

area of the pond in acres, multiplied by the depth of the pond in feet.  

The volume of the BMP is defined by engineer design.  

ii. The second cell is the percent filled before cleanout.  There is a drop 

down menu to the right of the cell that allows you to select the amount 

the BMP will be filled before it needs to be cleaned out.  This 

percentage is multiplied by the total volume of the BMP, so the 

spreadsheet calculates the life of the BMP based on that percent filled.   

iii. The third cell is the total watershed area producing runoff and sediment 

that flows into the BMP.  This value should not be reflective of any 

water that does not flow into the BMP.   

b. The remainder of the cells are used to calculate the efficiency of the BMP.  See 

Section 3.3.3 BMP Model Process for explanation on how the efficiency was 

calculated. 

i. The Volume: Area ratio is calculated by taking the gross volume of the 

BMP times the percent filled, divided by the drainage area.  The ratio 

partially determines the efficiency of the BMP. 

ii. Generic Soil Type is taken from the BMP Selection sheet and is used to 

determine the density of the sediment and diameter of the sediment 

particles. 

iii. Soil Density is an assigned value based on the generic soil selected.  This 

value dictates the volume of the sediment as it fills the BMP. 
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iv. Soil Particle Diameter determines soil settling velocity, and it affects 

sediment capture efficiency of the BMP.  The particle diameter is based 

on the generic soil type selected in the BMP Selection sheet. 

v. Volume of Soil Transported Annually is the total sediment delivery from 

the BMP Selection sheet multiplied by the soil density. 

vi. As stated, the efficiency of BMP is based on the volume: area ratio and 

the soil particle diameter. 

vii. Volume of Soil Deposited in BMP is calculated by multiplying the volume 

of soil transported into the BMP by the efficiency of the BMP. 

viii. Estimated Lifespan of BMP is calculated from the sediment capture 

capacity of the BMP, divided by the volume of soil deposited in the BMP 

annually. 

Infiltration Trench 

c. If an Infiltration Trench is selected, you will be directed to the Infiltration Trench 

tab.  Once it is opened, the screen will display Figure E 4.  

d. The top three cells are user input data pieces.   

i. The first cell is the media fill type.  That is the type of material (eg. 

gravel) that is filling the trench.  There is a porosity associated with the 

media selected, which dictates the volume of empty space. 

ii. The second cell is the gross BMP volume, in ac-ft.  That is the surface 

area of the trench in acres, multiplied by the depth of the trench in feet.  

The volume of the BMP is defined by engineer design.   
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iii. The third cell is the total watershed area producing runoff and sediment 

that flows into the BMP.  This value should not be reflective of any 

water that does not flow into the BMP.   

e. The remainder of the cells are used to calculate the efficiency of the BMP.  See 

Section 3.3.3 BMP Model Process for explanation on how the efficiency was 

calculated. 

i. The Volume: Area ratio is calculated by taking the volume of porous 

spaces, divided by the drainage area.  The ratio determines the 

efficiency of the BMP. 

ii. Generic Soil Type is taken from the BMP Selection sheet and is used to 

determine the density of the sediment and diameter of the sediment 

particles. 

Figure E 4 BMP Model Infiltration Trench Page 
with user inputs (blue cells) and model outputs 
(white cells)  
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iii. Soil Density is an assigned value based on the generic soil selected.  This 

value dictates the volume of the sediment as it fills the BMP. 

iv. Volume of Soil Transported Annually is the total sediment delivery from 

the BMP Selection sheet multiplied by the soil density. 

v. As stated, the efficiency of BMP is based on the volume: area ratio. 

vi. Volume of Soil Deposited in BMP is calculated by multiplying the volume 

of soil transported into the BMP by the efficiency of the BMP. 

vii. Estimated Lifespan of BMP is the volume of the BMP’s porous space, 

divided by the volume of soil deposited in the BMP annually. 

 

Grass Lined Swale 

7. If a Swale is selected, you will be directed to the Swale tab.  Once it is opened, the 

screen will display Figure E 6.  

a. The top six cells are user input data pieces.   

i. The first cell is the length of the swale, in feet.  This is the horizontal 

distance down the swale. 

ii.  The second cell is the slope of the BMP.  That is the difference in 

elevation divided by the length of the swale. 

iii. The third cell is the width of the BMP, in feet.  That is the horizontal 

distance across the bottom of the swale.   

iv. The fourth cell is the density of the grass cover.  This is a percentage 

that reflects the Manning roughness coefficient.  This is based on how 

much open space there is when looking down at the grass cover. 
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v. The fifth cell is the horizontal side slope of the swale (z).  Figure E 5 

shows how the horizontal side slope (z) is defined. 

vi. The last user input cell is the grass height in the swale, in feet.   

vii. All the variables that the engineer inputs, except the density of grass 

cover are defined by engineer design.   

Figure E 6 BMP Model Grass Lined 
Swale Page with user inputs (blue cells) 
and model outputs (white cells) 

z 

1 

Figure E 5 Swale 
Sideslope (z) 
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b. The remainder of the cells are used to calculate the efficiency of the BMP.  See 

Section 3.3.3 BMP Model Process for explanation on how the efficiency was 

calculated. 

i. The settling duration is calculated using the geometry of the BMP and 

the settling velocity of the soil based on soil type.  This value is in 

seconds. 

ii. Travel time, in seconds, is calculated by dividing the swale length by the 

flow velocity, calculated using the Manning equation. 

iii. The volume of the swale is based on the geometric design, and is the 

gross volume. 

iv. Generic Soil Type is taken from the BMP Selection sheet and is used to 

determine the density of the sediments. 

v. Soil Density is an assigned value based on the generic soil selected.  This 

value dictates the volume of the sediment as it fills the BMP. 

vi. Volume of Soil Transported Annually is the total sediment delivery from 

the BMP Selection sheet multiplied by the soil density. 

vii. As stated, the efficiency of BMP is based on the settling duration and 

the travel time. 

viii. Volume of Soil Deposited in BMP is calculated by multiplying the volume 

of soil transported into the BMP by the efficiency of the BMP. 

ix. Estimated Lifespan of BMP is the volume of the BMP’s porous space, 

divided by the volume of soil deposited in the BMP annually. 

Grass Lined Swale with Rock Check Dam 
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8. If a Grassed Swale with Rock Check Dam is selected, you will be directed to the Grassed 

Swale Rock Check Dam tab.  Once it is opened, the screen will display Figure E 7.  

a. The top ten cells are user input data pieces.   

i. The first cell is the length of the swale, in feet.  This is the horizontal 

distance down the swale.  

ii.  The second cell is the slope of the bottom of the BMP.  That is the 

difference in elevation divided by the length of the swale. 

iii. The third cell is the width of the BMP, in feet.  That is the horizontal 

distance across the bottom of the swale.   

Figure E 7 BMP Model Grass Lined Swale 
with Rock Check Dam Page with user inputs 
(blue cells) and model outputs (white cells) 
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iv. The fourth cell is the density of the grass cover.  This is a percentage 

that reflects the Manning roughness coefficient.  This is based on how 

much open space there is when looking down at the grass cover. 

v. The fifth cell is the horizontal side slope of the swale (z).  Figure E 8 

shows what the horizontal side slope refers to. 

vi. The sixth cell is the grass height in the swale, in feet.   

vii. The seventh cell is the check dam(s) height, in feet.  This will be the 

height of all check dams. 

viii. The eight cell is the number of check dam(s) within the swale.   

ix. The ninth cell is the spacing between each check dam, in feet.   

x. The tenth cell is the total watershed area producing runoff and 

sediment that flows into the BMP.  This value should not be reflective of 

any water that does not flow into the BMP.   

xi. All the variables that the engineer inputs, except the density of grass 

cover are defined by engineer design.   

b. The remainder of the cells are used to calculate the efficiency of the BMP.  See 

Section 3.3.3 BMP Model Process for explanation on how the efficiency was 

calculated. 

i. The check dam volume is a calculated value using the user input height, 

spacing, width, and the number of dams.  By finding the volume behind 

z 

1 

Figure E 8 Swale 
Sideslope (z) 
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one check dam, and multiplying that volume by the number of dams in 

the BMP. 

ii. The volume-to-area ratio is calculated using the sum of the gross 

volume behind all of the check dams, divided by the total watershed 

area.  

iii. The settling duration is calculated using the geometry of the BMP and 

the settling velocity of the soil based on soil type.  This value is in 

seconds. 

iv. Travel time, in seconds, is calculated by dividing the swale length by the 

flow velocity, calculated using the Manning equation. 

v. The volume of the swale with check dams is a geometric factor, and is 

the gross volume.  This is the sum of the total check dam volume and 

the swale volume. 

vi. Generic Soil Type is taken from the BMP Selection sheet and is used to 

determine the density of the sediment and diameter of the sediment 

particles. 

vii. Soil Density is an assigned value based on the generic soil selected.  This 

value dictates the volume of the sediment as it fills the BMP. 

viii. Soil Particle Diameter determines soil settling velocity, and it affects 

sediment capture efficiency of the BMP.  The particle diameter is based 

on the generic soil type selected in the BMP Selection sheet. 

ix. Volume of Soil Transported Annually is the total sediment delivery from 

the BMP Selection sheet multiplied by the soil density. 
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x. As stated, the efficiency of BMP is based on the volume: area ratio, the 

soil particle diameter, settling duration, and travel time. 

xi. Volume of Soil Deposited in BMP is calculated by multiplying the volume 

of soil transported into the BMP by the efficiency of the BMP. 

xii. Estimated Lifespan of BMP is calculated from the sediment capture 

capacity of the BMP, divided by the volume of soil deposited in the BMP 

annually. 

Bioretention Area 

9. If a Bioretention area is selected, you will be directed to the Bioretention (Rain Garden) 

tab.  Once it is opened, the screen will display Figure E 9.  

Figure E 9 BMP Model Bioretention Area Page 
with user inputs (blue cells) and model outputs 
(white cells) 
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a. The top four cells are user input data pieces.   

i. The first cell is the surface area of the garden, in square feet. 

ii. The second cell that needs to be populated is the depth of the BMP, in 

feet.   

iii. The third cell is the total watershed area producing runoff and sediment 

that flows into the BMP.  This value should not be reflective of any 

water that does not flow into the BMP.   

iv. The fourth cell is the total depth of the infiltration cell below the rain 

garden, in feet.  This is if there is a designed infiltration area under the 

garden, if there is no infiltration area, this value equals 0. 

v. All the variables that the engineer inputs are defined by engineer 

design.  The design of the BMP may change as the engineer sees fit.  

b. The remainder of the cells are used to calculate the efficiency of the BMP.  See 

Section 3.3.3 BMP Model Process for explanation on how the efficiency was 

calculated. 

i. The volume of the bioretention area is a geometric factor.  It is the sum 

of the surface area of the cell multiplied by the ponding depth within 

the cell, and the surface area of the cell multiplied by the depth of the 

infiltration cell.  

ii. The volume-to-area ratio is calculated using the sum of the gross 

volume of the bioretention area, plus the porous volume of the 

infiltration cell, divided by the total site area. 



150 
  

iii. Generic Soil Type is taken from the BMP Selection sheet and is used to 

determine the density of the sediment and diameter of the sediment 

particles. 

iv. Soil Density is an assigned value based on the generic soil selected.  This 

value dictates the volume of the sediment as it fills the BMP. 

v. Soil Particle Diameter determines soil settling velocity, and it affects 

sediment capture efficiency of the BMP.  The particle diameter is based 

on the generic soil type selected in the BMP Selection sheet. 

vi. Volume of Soil Transported Annually is the total sediment delivery from 

the BMP Selection sheet multiplied by the soil density. 

vii. As stated, the efficiency of BMP is based on the volume: area ratio. 

viii. Volume of Soil Deposited in BMP is calculated by multiplying the volume 

of soil transported into the BMP by the efficiency of the BMP. 

ix. Estimated Lifespan of BMP is calculated from the sediment capture 

capacity of the BMP, divided by the volume of soil deposited in the BMP 

annually. 
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