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Matrix-Enhanced Calibration Procedure for Multivariate 
Calibration Models with Near-Infrared Spectra 

MARK R. RILEY,* MARK A. ARNOLD,t and DAVID W. MURHAMMER 
Department of Chemical and Biochemical Engineering (M.R.R., D. W.M.) and Department of Chemistry (M.A.A.), The University 
of Iowa, Iowa City, Iowa 52242 

A novel method is introduced for developing calibration models for 
the spectroscopic measurement of chemical concentrations in an 
aqueous environment. To demonstrate this matrix-enhanced cali­
bration procedure, we developed calibration models to quantitate 
glucose and glutamine concentrations in an insect cell culture me­
dium that is a complex mixture of more than 20 components, with 
three components that manifest significant concentration changes. 
Accurate calibration models were generated for glucose and gluta­
mine by using a calibration data set composed of 60 samples con­
taining the analytes dissolved in an aqueous buffer along with as 
few as two samples of the analytes dissolved in culture medium. 
Standard errors of prediction were 1.0 mM for glucose and 0.35 
mM for glutamine. The matrix-enhanced method was also applied 
to culture medium samples collected during the course of a second 
bioreactor run. Addition of three culture medium samples to a buff­
er calibration reduced glucose prediction errors from 3.8 mM to 
1.0 mM; addition of two culture medium samples reduced gluta­
mine prediction errors from 1.6 mM to 0.76 mM. Results from this 
study suggest that spectroscopic calibration models can be devel­
oped from a relatively simple set of samples provided that some 
account for variations in the sample matrix. 

Index Headings: NIR spectroscopy; Bioreactor monitoring; PLS cal­
ibration; Insect cell culture medium. 

INTRODUCTION 

A number of industrially relevant processes utilize 
complex samples for which the monitored chemical spe­
cies are greatly outnumbered by interfering components 
present at similar concentrations. The development of 
calibration models for spectroscopic analyses of these 
complex samples can be a time-consuming process, as 
accurate calibration models for partial least-squares 
(PLS) regression analysis of near-infrared data must in­
corporate all the chemical variation to be encountered in 
the sample population. 1 Calibration standards must span 
the full concentration range for all analytes and all spec­
troscopically relevant matrix components. In addition, co­
variance cannot be tolerated between concentrations of 
analytes or between analytes and other chemical com­
ponent within the sample matrix. If a correlation exists 
between two chemical species, the PLS regression anal­
ysis will include this covariance, which could result in 
systematic prediction errors when the model is applied to 
samples that do not contain such a correlation. Such cor­
relations can readily appear when the composition of 
samples used in a calibration data set is not properly con­
trolled,2 and this problem is particularly onerous for mon-
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itoring biological systems that naturally yield analyte cor­
relations within a single bioreactor due to the cell metab­
olism. 

A difficulty in developing robust spectroscopic cali­
bration models for industrial processes with complex 
samples arises in properly accounting for the variations 
that exist between separate production runs. Such varia­
tions are typical of biological reactors for which small 
changes in initial conditions may affect the rate of change 
of chemical species during reactor operation. Calibration 
models for such processes, which display strong analyte 
correlations within a single run but large variations be­
tween separate bioreactor runs, are often developed by 
generating an extensive database of samples covering a 
wide range of operating conditions. These samples can 
be collected from multiple batch runs or produced 
through a purely synthetic approach. Either scheme for 
developing calibrations is time consuming, and a more 
efficient approach for building robust calibration models 
is desirable. 

In this paper, we introduce a novel approach for de­
veloping multivariate calibration models with near-infra­
red spectra for the quantification of multiple analytes in 
a complex matrix. The method is based upon a simple 
calibration set used to train a PLS algorithm to recognize 
analyte-dependent information. Samples in this initial 
calibration set consist of the analytes of interest dissolved 
in a buffer. This initial calibration set alone cannot reli­
ably correlate near-infrared spectra to the concentrations 
of analytes in complex solutions because of significant 
differences between the background matrices. By adding 
a small number of samples containing this complex back­
ground matrix, one can incorporate these variations into 
the PLS model and thus reliably predict analyte concen­
trations in the complex samples. This matrix-enhanced 
calibration method is demonstrated with calibration mod­
els for the measurement of multiple analytes in two sets 
of samples of an insect cell culture medium. The first set 
of samples is comprised of synthetic variations of fresh 
and spent culture medium from the beginning and end of 
a bioreactor run, respectively. The second set includes 
samples collected throughout the course of a separate bio­
reactor run with the use of a different culture medium. 

Insect cells are commonly cultivated in bioreactors to 
generate proteins and viral insecticides.3 To permit cell 
growth and product generation, one adds a culture me­
dium containing high levels of nutrients to the bioreactor. 
Insect cell culture media generally contain three carbo­
hydrates and the 20 common amino acids, all at concen­
trations of I mM or greater.4 The insect cells consume 
many of these chemical species for energy, for cellular 
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building materials, and for protein production; the cells 
also produce metabolic waste products such as alanine.5,6 

The composition of the culture medium continually 
evolves during reactor operation, and so there is a need 
for the development of noninvasive monitoring schemes 
for such insect cell bioreactors, as the insect cells often 
exhaust the available supply of glucose and glutamine. 6,7 

Such limitations subsequently decrease the production of 
desired products and halt cell growth. Some types of cul­
tivated cells have been reported to perform optimally 
when fed nutrients at a slow, but well-controlled, rate. 8 

To maintain these tightly controlled conditions, frequent 
measurements of the nutrient concentrations must be 
available. Spectroscopic methods are ideal for making 
such measurements in bioreactors,9-13 since concentration 
information for multiple analytes can be supplied in a 
noninvasive and nondestructive manner without introduc­
ing microbial contamination. The constraint of uncorre­
lated species concentrations substantially complicates the 
development of valid calibration models for a cellular 
culture medium. The concentrations of many species in 
a bioreactor (e.g., amino acids, carbohydrates, proteins, 
cell mass, and cell debris) are inherently correlated 
through cellular metabolism. For example, the correlation 
between glucose and alanine concentrations suggests that 
alanine derives from glucose metabolism.7 

One approach for building a calibration data set is to 
operate a bioreactor, collect multiple samples, and di­
rectly employ these samples as a calibration data set. 
However, such a method will introduce correlations be­
tween all the species in the culture medium, restricting 
the application of this calibration to subsequent bioreac­
tor runs. Invariably, significant differences exist between 
subsequent bioreactor runs because of the complex nature 
of the cellular, biochemical, and hydrodynamic processes 
involved. If samples with different variations or back­
ground compositions are presented to a correlated cali­
bration data set, the resultant concentration predictions 
ultimately will be flawed. A better approach would be to 
collect samples from multiple bioreactor runs; however, 
this approach can be both time consuming and expensive. 

Alternatively, working calibration models can be de­
veloped by preparing synthetic samples with varying 
concentrations of the desired analytes and of interfering 
compounds. 14 However, culture medium commonly con­
tains an undefined fraction of cell debris, cell waste prod­
ucts, and variable factors added to enhance cell growth 
such as blood serum of yeastolate. These components 
cannot be accurately reproduced by addition of known 
chemical species. 

The proposed matrix-enhanced calibration method cir­
cumvents such difficulties through use of two types of 
samples. The first set consists of simple, well-character­
ized standard solutions that provide analyte-specific in­
formation. The second set of samples provides spectral 
information on changes in the background matrix. This 
matrix-enhanced calibration method is demonstrated for 
the development of calibration models to quantify glu­
cose and glutamine in an insect cell culture medium. 
Such calibration models are based on simple binary 
mixtures of glucose and glutamine dissolved in an aque­
ous buffer which are used to train a PLS algorithm for 
glucose concentrations of 0-60 mM and glutamine con-
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TABLE I. Distribution of samples into calibration, monitoring, 
and prediction data sets. 

Total Calibra- Monitor- Prediction 
Matrix samples tion set ing set set 

Buffer 55 40 15 0 
Spent culture medium 25 0-6 6 13 
Fresh culture medium 22 0-6 6 10 
AC2 20 0-3 5 12 

centrations of 0-35 mM. By themselves, such calibration 
models yield poor analyte concentration predictions in 
culture medium. Model performance is greatly enhanced 
by incorporating spectra from a few culture medium sam­
ples into the calibration set. With the addition of as few 
as two samples of culture medium to the calibration data 
set, standard errors of prediction for glucose and gluta­
mine fall by factors of -5 and 3, respectively. The type 
and number of culture medium samples added to the cal­
ibration set significantly impact analyte prediction errors. 

The matrix-enhanced calibration method has also been 
applied to develop calibration models to predict glucose 
and glutamine concentrations in samples removed at 
varying times from an insect cell bioreactor. Addition of 
three culture medium samples to a buffer calibration re­
duced glucose prediction errors by a factor of -3; while 
addition of two culture medium samples reduced gluta­
mine prediction errors by a factor of -2. 

MATERIALS AND METHODS 

Samples for the first set of experiments were prepared 
in either an aqueous buffer, fresh insect cell culture me­
dium, or spent insect cell culture medium. Fresh culture 
medium is that placed in a bioreactor at the beginning of 
a run, and spent culture medium is that which remains at 
the end of the run. Samples from these three matrices 
were divided into small aliquots to which random, known 
amounts of glucose and glutamine were added. Samples 
were further subdivided into separate calibration, moni­
toring, and prediction data sets (see Table I). Calibration 
samples were used to train the PLS regression algorithm. 
Monitoring samples were used to select optimal calibra­
tion model parameters including the spectral range and 
number of PLS factors. Prediction samples were withheld 
from the parameter selection process and used to evaluate 
the models. 

Samples were prepared by weighing random, known 
amounts of glucose and glutamine into one of the starting 
solutions. The aqueous buffer solution contained 1.05 g 
NaHC03 and 3.039 g NaH2P04 in 3L deionized water, 
adjusted to pH = 6.35. These conditions are similar to 
the buffer conditions of Sf-900 II culture medium, com­
monly used to cultivate Sf-9 insect cells. The fresh Sf-9 
insect cell culture medium used here was obtained from 
American Cyanamid (San Leandro, CA); the composition 
is generally similar to that of other commercial Sf-9 cul­
ture media. Spent culture medium was collected from an 
Sf-9 insect cell culture bioreactor operated in batch mode 
with continuous sparging of gases and pH control. The 
concentrations of glucose, glutamine, and other amino 
acids decreased significantly during the bioreactor run, 
and so the compositions of the fresh and spent media are 
substantially different. 



The concentrations of glucose and glutamine in the 
fresh and spent culture medium were quantified by stan­
dard off-line methods. Glucose concentrations were mea­
sured by using a YSI glucose analyzer (Yellow Springs 
Instruments, Yellow Springs, OH). This method has a 
precision among replicates of approximately ::to.28 mM 
at the concentration range used. 15 Glutamine was mea­
sured by HPLC with a C-18 reverse phase column (Su­
pelco, Bellefonte, PA) in conjunction with an OPA de­
rivatization-based fluorescence detection scheme. 16 Stan­
dard deviations among replicates are approximately 0.6 
mM (data not shown). 

Samples with culture medium were prepared by adding 
random and uncorrelated amounts of dry glucose and glu­
tamine to individual aliquots of the pooled fresh or spent 
culture medium. The resulting total concentrations of glu­
cose and glutamine ranged from 0 to 50 mM and 0 to 25 
mM, respectively. These concentration ranges are wider 
than the changing nutrient concentrations observed over 
the course of a typical bioreactor run.6,13 With the addition 
of various amounts of glucose and glutamine to aliquots 
of the fresh and spent media, a substantial number of 
samples were generated with un correlated analyte con­
centrations. The correlation coefficient between the glu­
cose concentration and the glutamine concentration in the 
samples from the fresh culture medium is 0.201 and be­
tween the glucose concentration and the glutamine con­
centration in the samples from the spent culture medium 
is 0.269. These samples are termed the ACI set. 

Twenty samples of a second type of American Cyan­
amid insect cell culture medium were also collected from 
a second insect cell culture bioreactor operated for one 
week with pH and dissolved gas control. These samples, 
termed the AC2 samples, provide a more rigorous test of 
the matrix-enhanced calibration method than the synthet­
ic samples because the AC2 samples not only have vari­
ations in the components to be quantified but also have 
alterations in the concentrations of background constitu­
ents including amino acids, carbohydrates, proteins, and 
cell debris. The composition of these samples had not 
been modified, and so this sample set reasonably repre­
sents a common trajectory of concentrations obtained 
during an insect cell cultivation. 

Spectra were collected on a Nicolet 550 Fourier trans­
form infrared (FT-IR) spectrometer (Nicolet Analytical In­
struments, Madison, WI). This spectrometer was equipped 
with a 50 W tungsten-halogen lamp, calcium fluoride 
beamsplitter, and liquid nitrogen-cooled indium antinomide 
(InSb) detector. The optical sample cell was maintained at 
27°C, as in the bioreactor. Single-beam spectra were col­
lected with a resolution of 2 cm- I for each sample as 128 
coadded scans from 5000 to 4000 cm- I with a 1.5 mm 
optical pathlength. An interference filter (Barr and Associ­
ates, Cambridge, MA) was used to isolate this spectral re­
gion. Three spectra were collected for each sample. A back­
ground spectrum of pure buffer was collected after every 
fourth sample. Additional details of the experimental setup 
may be found elsewhere.13,14 

Triplicate spectra of 122 samples were collected (55 
aqueous buffer, 22 fresh culture medium for ACl, 25 
spent culture medium for ACl, and 20 for AC2). These 
samples were divided into calibration, monitoring, and 
prediction data sets (as detailed in Table I). Replicate 
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FIG. 1. Individual absorbance spectra of glucose in buffer, glutamine 
in buffer, fresh culture medium, and spent culture medium. 

spectra were always incorporated into the same set. PLS 
regression was applied to develop unique calibration 
models for glucose and glutamine using samples in the 
calibration data sets. A large number of calibration mod­
els were developed by varying spectral range, number of 
PLS factors, and number and type of culture medium 
samples incorporated into the calibration model. Gluta­
mine exhibits three absorption bands, centered around 
4700, 4580, and 4390 cm-I, while glucose has three 
bands centered at 4710, 4400, and 4300 cm- I (Fig. 1). 
Calibration models that encompass these absorption 
bands should provide reliable analyte predictions. Inde­
pendent monitoring data sets were generated from a sub­
set of the calibration data sets and were used to select 
optimal calibration parameters independent of the predic­
tion data set. Models that yielded good predictions for 
the monitoring set were applied to determine analyte con­
centrations in the prediction data set. Prediction errors for 
these different data sets were computed as standard error 
of calibration (SEC), standard error of monitoring (SEM), 
and standard error of prediction (SEP). 

The AC2 samples were divided into three sets (Table 
I). The first set contains the first, middle, and last samples 
collected in time (samples numbered 1, 10, and 20), 
which are employed as additions to the previously de­
scribed buffer calibration set. The second set contains 5 
randomly selected samples which, in addition to 15 buff­
er samples, were used as a monitoring set to optimize the 
spectral range and number of PLS factors used. The third 
set applies the remaining 12 samples as a prediction set. 
The prediction and monitoring samples were randomly 
mixed three times, and models were optimized each time 
to remove artifacts caused by sample heterogeneity. Pre­
diction results are reported as averages of these three 
rounds of model evaluation. 

To allow a thorough investigation of the many possible 
combinations of calibration parameters, a C-shell com­
puter script was written to systematically develop cali­
bration models with varying numbers of PLS factors and 
with varying spectral ranges within the 5000-4000 cm- I 

region. The script followed a modified grid search, which 
provided the unbiased evaluation of many calibration 
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FIG. 2. Concentration correlation plots for glucose in an aqueous buff­
er matrix showing points for calibration (open circles) and prediction 
(filled circles). Solid line indicates perfect correlation. 

data sets in a short period of time. For each model size 
(as defined by the total number of PLS factors), the script 
searched for spectral ranges within the 5000-4000 cm- I 

region that contained significant analyte information, as 
judged by a low SEM. Initially, SEM values were cal­
culated for 100 cm- I wide regions at 100 cm- I intervals 
beginning with 4100-4000 cm- I and progressing to 
5000-4900 cm- I . The region that yielded the minimum 
SEM was judged to contain significant analytical infor­
mation. The upper and lower values of this range were 
increased and decreased by a predetermined amount, and 
the corresponding SEM values were calculated. The low­
est SEM identified the optimum spectral range. This pro­
cess was repeated four times; each subsequent iteration 
had a more narrow interval in the spectral range. The 
number of PLS factors was then incremented, and anoth­
er spectral range search was implemented. 

RESULTS AND DISCUSSION 

ButTer Calibration for Buffer Samples. Initially, cal­
ibration models were built to predict analyte concentra­
tions within a homogeneous set of samples that would 
provide a best-case scenario. Calibration models consist­
ing of 40 aqueous buffer samples were used to predict 
glucose and glutamine concentrations in 15 independent 
buffer samples. These models yield accurate predictions 
with a small degree of error because of the similarity 
between the calibration and prediction data sets. Glucose 
models with a spectral range of 4700-4200 cm- I and 
eight PLS factors yield an SEP of 0.37 mM and a mean 
percent error (MPE) of 1.65%. Glutamine models with a 
range of 4800-4250 cm- I and eight PLS factors yield 
SEP and MPE values of 0.33 mM and 2.9%, respectively. 
Concentration correlation plots are displayed for glucose 
in Fig. 2 and for glutamine in Fig. 3. Predicted and actual 
analyte concentrations have excellent agreement, and 
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FIG. 3. Concentration correlation plots for glutamine in an aqueous 
buffer matrix showing points for calibration (open circles) and predic­
tion (filled circles). Solid line indicates perfect correlation. 

both calibration and prediction data sets closely follow 
the unity line with no indication of a systematic bias. 

While it does appear that a large number of factors 
were employed to model relatively simple samples, sev­
eral previous works from the literature have employed 
similar numbers of factors to model variations in samples 
with similar numbers of varying components. In partic­
ular, Zhou et al. 17 used between 7 and 12 factors to model 
samples of glutamine and asparagine dissolved in buffer. 
Chung et al. 14 employed as many as 12 factors to model 
components in samples containing 6 varying compo­
nents. Most likely the large number of factors incorporate 
variations in baseline shifts, temperature effects, and 
alignment variations, particularly for samples that contain 
low analyte concentrations. For the present study, the 
loading vectors for calibrations were examined and found 
to display nonrandom spectral features. 

ButTer Calibration for Culture Medium Samples. 
Next, several types of calibration models were investi­
gated for their ability to predict glucose and glutamine in 
fresh and spent insect cell culture media. Our goal was 
to use the simplest calibration models that yield good 
predictions with errors less than 5%. The cell culture me­
dium contains considerably more components than an 
aqueous buffer, and so analyte measurements would be 
expected to have more error for the culture medium sam­
ples than for the buffer samples. 

The simplest type of calibration would include only 
the aqueous buffer samples. Such samples are completely 
independent of the culture medium composition, cell 
type, and bioreactor operating conditions; calibration 
models using these samples would focus entirely on the 
analyte spectral information. When applied to the mea­
surement of glucose and glutamine in culture medium, 
the calibration set with only buffer samples yields poor 
analyte predictions, as displayed in Fig. 4. Summaries of 
glucose and glutamine models are presented in Tables II 
and III, respectively. SEPs for glucose are approximately 
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FIG. 4. Concentration correlation plot for glucose (circles) and gluta­
mine (squares) predictions in fresh (filled symbols) and spent (open 
symbols) culture medium with the use of calibration models constructed 
from buffer-only samples. 

5.6 mM with MPEs of 15% (Model #1 in Table II). Pre­
dictions for glutamine are more accurate with an SEP of 
1.0 mM and an MPE of 7.8% (Model #1 in Table III). 
These models would not be acceptable for monitoring a 
cell culture bioreactor primarily because of the systematic 
bias apparent in the predictions. For glucose, the fresh 
culture medium sample concentrations are over-predicted, 
while the spent culture medium samples are under-pre­
dicted (see circles in Fig. 5). Alternatively, glutamine 
concentration predictions in fresh culture medium sam­
ples are under-predicted, while spent culture medium 
samples are over-predicted (squares in Fig. 6). Clearly, 
buffer samples alone are not sufficient to build accurate 
calibration models for the culture medium samples, be­
cause the calibration and prediction data sets are improp­
erly matched. 

Matrix-Enhanced Calibration for Culture Medium 
Samples. To systematically increase the complexity of 
the calibration models, we added several culture medium 
samples to the original set of buffer samples. Calibration 
models include the same 40 buffer samples used previ­
ously, in addition to three fresh culture medium samples 

and three spent culture medium samples. Culture medium 
samples with high, moderate, and low analyte concentra­
tions were incorporated into the calibrations. 

The resulting matrix-enhanced calibration models were 
much more successful at predicting glucose and gluta­
mine concentrations in culture medium samples (Model 
#3, Tables II and III). The best glucose model has an SEP 
of 1.0 mM with an MPE of 2.4%, and that for glutamine 
yields an SEP of 0.37 mM and an MPE of 2.6%. These 
errors are greatly reduced from those with the buffer-only 
calibration models. Such levels of error are generally sim­
ilar to the measurement error for quantification of the 
analytes in a buffer and would most likely be acceptable 
for monitoring insect cell culture bioreactors. Concentra­
tion correlation plots presented in Fig. 7 show good 
agreement between the calibration and prediction data 
sets. Predicted concentrations have a small degree of scat­
ter about the unity line, similar to the predictions of the 
buffer samples shown graphically in Fig. 2. Prediction 
residuals for both glucose and glutamine are evenly dis­
tributed and have no systematic bias (open symbols in 
Figs. 5 and 6, respectively). 

Clearly, adding six culture medium samples to the cal­
ibration data sets greatly improves concentration predic­
tions in the culture medium samples. Calibration models 
with several culture medium samples are able to yield 
good analyte predictions in a set of complex samples, 
because the models contain two important types of in­
formation: pure analyte spectral features and sample 
background variation similar to that encountered in the 
prediction samples. This same information could be in­
corporated into the calibration models by using a large 
number of samples taken directly from a bioreactor; how­
ever, these samples must have independent analyte vari­
ations so as to avoid incorporating unwanted correlations. 
The necessary variation may be achieved by adding ran­
dom amounts of the individual analytes to the culture 
medium samples. By carefully selecting samples that 
contain significant matrix and analyte variations, one may 
minimize the number of culture medium samples re­
quired to generate good models. For comparison, cali­
bration models composed of only six culture medium 
samples, without the buffer samples, are unable to ac­
curately predict analyte concentrations (data not shown), 
because insufficient amounts of analyte concentration in­
formation are provided. 

The applicability of the calibration models to predict 
glutamine concentrations in the culture medium is depen-

TABLE II. Optimum models for glucose measurements in samples of fresh and spent media spiked with glucose and glutamine. 

Fresh Spent 
culture culture 

medium medium 
samples samples Spectral 
added to added to range SEC SEM SEP 

Model # calibration calibration (cm- I ), # Factors' (mM) (mM) (mM) MPE 

I 0 0 4490-1420 9 0.35 4.3 5.6 15% 
2 1 1 4630-4230 9 0.44 0.86 1.0 2.6% 
3 3 3 4750-4250 9 0.52 0.63 1.0 2.4% 
4 6 6 4660-4240 11 0.40 0.57 1.0 2.3% 
5 6 0 4400-4200 9 0.92 1.6 2.6 6.4% 
6 0 6 4790-4570 11 0.86 3.0 3.7 8.0% 

a Optimized value. 
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TABLE III. Optimum models for glutamine measurements in samples of fresh and spent media spiked with glucose and glutamine. 

Fresh Spent 
culture culture 

medium medium 
samples samples Spectral 
added to added to range SEC SEM SEP 

Model # calibration calibration (cm- I )" # Factors" (mM) (mM) (mM) MPE 

1 0 0 4740-4380 
2 1 1 4450-4300 
3 3 3 4480-4300 
4 6 6 4480-4300 
5 6 0 4680-4490 
6 0 6 4600-4300 

" Optimized value. 

dent on the number of culture medium samples incor­
porated into the calibration set. With a reduction in the 
number of culture medium samples to one fresh and one 
spent (Model #2 in Table III), the prediction error for 
glutamine increases nearly twofold. Incorporating a large 
number of culture medium samples into the model might 
sound appealing; however, models with 6 culture medium 
samples and models with 12 culture medium samples dis­
play only small differences. Increasing the number of 
fresh and spent culture medium samples to six each 
(Model #4) only slightly reduces prediction errors. In this 
case, three fresh and three spent culture medium samples 
added to the buffer samples are sufficient to yield accu­
rate glutamine predictions. 

Comparatively, calibration models for glucose are less 
sensitive to the number of culture medium samples added 
to the calibration set (Table II). In this case, 2, 6, or 12 
total culture medium samples (Models #2, 3, and 4, re­
spectively) added to the calibration yield SEPs of about 
1.0 mM and MPEs around 2.4%. Note that, with the ad­
dition of only two culture medium samples to the buffer 
calibration set, the SEP for glucose falls substantially, 
from 5.6 mM to 1.0 mM, and the MPE drops from 15% 
to 2.6% (Models #1 and 2). 

More glutamine culture medium samples are required 
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FIG. 5. Prediction residuals for glucose measurements in fresh culture 
medium (circles) and spent culture medium (squares) with buffer-only 
calibration (filled symbols) and buffer plus three spent and three fresh 
culture medium samples (open symbols). 
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8 
7 
7 
7 
8 
7 

0.28 0.82 1.0 7.8% 
0.43 0.52 0.59 3.9% 
0.42 0.52 0.37 2.6% 
0.42 0.54 0.35 2.5% 
0.29 0.71 0.56 3.2% 
0.39 0.54 0.44 2.3% 

here to build good calibrations because the culture me­
dium contains many other amino acids that have spectral 
features, concentrations, and dynamic variations similar 
to those of glutamine. The PLS algorithm requires more 
information to discriminate glutamine from such a com­
plex background. Glucose, however, is the primary car­
bohydrate present in the culture medium, and the glucose 
spectral features are more readily distinguishable from 
the background. Therefore, fewer culture medium sam­
ples are required for the glucose calibrations to yield 
good predictions. 

The types of samples added to the calibration set can 
have a significant effect on the prediction errors. When 
only six fresh culture medium samples (Model #5) or 
only six spent culture medium samples (Model #6) are 
added to the glucose models (Table II), errors are only 
slightly lower than those for the original model (Model 
#1). The errors for Models #5 and #6 are two to three 
times greater than those obtained when a single fresh and 
a single spent culture medium sample are incorporated 
into the calibration set (Model #2). The fresh and spent 
media have significantly different compositions, and 
these differences appear to have a large impact on glu­
cose predictions. A well-balanced calibration model must 
incorporate this range of variation. 
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FIG. 6. Prediction residuals for glutamine measurements in fresh cul­
ture medium (circles) and spent culture medium (squares) with buffer­
only calibration (filled symbols) and buffer plus three spent and three 
fresh culture medium samples (open symbols). 
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FIG. 7. Concentration correlation plot for glucose (circles) and gluta­
mine (squares) predictions in fresh (filled symbols) and spent (open 
symbols) culture medium with calibration models constructed from 
buffer samples plus three fresh and three spent culture medium samples. 

Glutamine predictions are less sensitive to the type of 
samples incorporated into the calibration. When only six 
fresh culture medium samples (Model #5) or only six 
spent culture medium samples (Model #6) are added to 
the glutamine models, errors are' somewhat lower than 
those obtained for one of each type of culture medium 
sample (Model #2). 

Matrix-Enhanced Calibration for AC2 Culture Me­
dium Samples. A major limitation of the example de­
scribed above is that the matrix for samples in the pre­
diction data set contains either fresh or spent culture me­
dium, and this binary nature of the sample matrix in both 
calibration and prediction samples allows for an exact 
match in the matrix-enhanced calibration models. A 
much more demanding experiment would include predic­
tion samples collected intermittently during a bioreactor 
run where the matrix composition is not exactly incor­
porated into the calibration model. Insect cell culture me­
dium samples were collected from a subsequent bioreac­
tor run (AC2) to assess model performance under such 
conditions. 

In this experiment, 20 samples were collected during 
the bioreactor run and subsequently analyzed for glucose 
and glutamine concentrations. Five of these AC2 samples 
along with 15 of the previous buffer samples were em­
ployed as a monitoring set for selection of PLS model 
parameters. Spectra for the first, middle, and last samples 
(denoted 1, 10, and 20 in Tables IV and V) were added 
to the buffer calibration spectra, and the resulting PLS 
models were evaluated on the basis of prediction accu­
racy for a prediction data set corresponding to the re­
maining 12 samples. The 5 monitoring samples and 12 
prediction samples were randomly selected. Under this 
protocol, none of the sample matrices within the predic­
tion data set is exactly matched within the calibration set. 
The effect of different combinations of these three matrix 
enhancement samples is assessed. Results reported below 

TABLE IV. Optimum models for glucose measurements in the 
AC2 samples. 

Spectral # 
Calibration range Fac- SEC SEM SEP 

samples' (cm-I)b torsb (mM) (mM) (mM) MPE 

Buffer 4540-4200 8 0042 2.0 3.8 18% 
B + I 4760-4200 10 0.38 1.6 2.7 12% 
B + 10 4720-4250 8 0.63 104 304 13% 
B + 20 4690-4200 8 0044 3.0 5.7 16% 
B + 1, 10 4510-4200 7 0.76 1.0 2.5 10% 
B + 1,20 4570-4270 8 0043 0.59 1.5 5.2% 
B + 10,20 4600-4240 7 0.76 0.92 1.6 6.1% 
B + 1, 10,20 4580-4200 7 0.81 0.62 1.1 404% 

• "B" indicates buffer sample spectra, and 1, 10, and 20 correspond to 
the first, middle, and last samples collected during the AC2 bioreactor 
run, respectively. 

b Optimized value. 

represent averages for concentration predictions for three 
independent sets of sample selections. 

Initially, the 40 buffer samples were applied as a cal­
ibration data set to predict the concentrations of glucose 
and glutamine in the AC2 samples. Prediction errors are 
substantial, with SEPs of 3.8 mM for glucose and 1.7 
mM for glutamine. Results are summarized in Tables IV 
and V for glucose and glutamine, respectively. Predic­
tions of glucose and glutamine concentrations with the 
use of the buffer calibrations are presented as open sym­
bols in Figs. 8 and 9, respectively. Predictions are pro­
vided as normalized concentration (relative to their max­
imum value) because of the proprietary nature of this 
insect cell culture medium. 

The effect of addition of one matrix-containing sample 
to the calibration data was assessed for glucose, and the 
results are tabulated as entries B + 1 (buffer samples plus 
sample number one), B + 10, and B + 20 in Table IV. 
Addition of the first and middle samples, individually, 
improves model performance, with SEP values of 2.7 and 
3.4 mM, respectively. Addition of the last sample, how­
ever, degrades model performance and yields an SEP of 
5.7 mM. The average SEP (4.0 mM, as presented in Table 
VI) for these three conditions is slightly higher than that 
obtained for calibrations constructed with only buffer 
samples. The addition of two culture medium samples to 
the buffer calibration substantially reduces the prediction 
error, with an average SEP of 1.9 mM for the three avail­
able permutations. This amount of error is less than half 

TABLE V. Optimum models for glutamine measurements in the 
AC2 samples. 

Spectral # 
Calibration range Fac- SEC SEM SEP 

samples (cm-I)b torsb (mM) (mM) (mM) MPE 

Buffer 4700-4360 7 0040 1.1 1.7 56% 
B + 1 4650-4200 12 0.22 0.70 1.3 39% 
B+1O 4740-4300 9 0.28 0045 0.60 20% 
B + 20 4590-4290 9 0.28 0.56 1.1 21% 
B + 1, 10 4610-4300 9 0.29 0042 0.77 17% 
B + 1,20 4570-4220 8 0.32 0.55 0.87 18% 
B + 10,20 4660-4200 10 0.21 0.50 0.70 14% 
B + 1, 10,20 4590-4200 8 0.33 0.54 0.86 25% 

• "B" indicates buffer sample spectra and 1, 10, and 20 correspond to 
the first, middle, and last samples collected during the AC2 bioreactor 
run, respectively. 

b Optimized value. 
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FIG. 8. Concentration correlation plot for glucose measurement in the 
AC2 samples with application of calibration models of buffer-only 
(open circles) and buffer plus three culture medium samples (closed 
circles). All concentrations are normalized to the maximum values. 

that obtained for the buffer calibration. Combining all 
three culture medium samples with the buffer calibration 
yields an even greater reduction in the glucose prediction 
error, with an SEP of 1.1 mM. Glucose predictions with 
the use of calibrations of buffer samples plus three culture 
medium samples are presented as the closed symbols in 
Fig. 8. The enhanced-buffer calibration predictions are in 
good agreement with the unity line, whereas the buffer­
only predictions over-predict at high concentrations and 
under-predict at low concentrations. 

The addition of culture medium samples to the buffer 
calibrations has a substantial effect on glutamine predic­
tions (Table V). Incorporation of the first and last samples 
reduces prediction error to an SEP of 1.3 and 1.1 mM, 
respectively. Addition of the middle sample to the buffer 
calibration reduces prediction error by an even greater 
amount to an SEP of 0.60 mM. The average SEP for 
these three permutations is 1.0 mM, almost half that for 
calibrations from only the buffer samples. The addition 
of two or three culture medium samples produces similar 
results with average errors of 0.78 and 0.86 mM, respec­
tively (Table VI). Glutamine predictions with the use of 
calibrations of buffer samples plus three culture medium 
samples are presented as the closed symbols in Fig. 9. 
The enhanced-buffer calibration cpredictions are in good 
agreement with the unity line, whereas the buffer-only 
predictions are more scattered. 

Measurement errors reported here for glucose and glu­
tamine compare favorably with previous reports of spec­
troscopic measurements of nutrients in cell culture media. 
Hall et al. 12 monitored the concentrations of acetate and 
ammonia and the cell density in Escherichia coli fer­
mentations. Monitoring errors over large concentration 
ranges were approximately 7 mM for each analyte with 
an MPE of 1-3%. Vaccari et al. 11 measured the concen­
trations of lactate, glucose, and biomass in bacterial cell 
fermentations with similar levels of error. We have pre-
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FIG. 9. Concentration correlation plot for glutamine measurement in 
the AC2 samples with application of calibration models of buffer-only 
(open circles) and buffer plus three culture medium samples (closed 
circles). All concentrations are normalized to the maximum values. 

viously used a more time-intensive method to generate 
calibration models for insect cell culture media and ob­
tained errors of SEP of 1.5 mMlMPE of 2.3 % for glucose 
and SEP of 0.51 mMlMPE of 5.2% for glutamine. 13 

The extent of matrix variation is a major factor in our 
ability to model the sample matrix with only a few sam­
ples. Although the insect cell culture medium contains 
over 23 individual components at relatively high concen­
trations, only three of these components exhibit substan­
tial concentration changes during cultivation. An analysis 
of the culture medium at the beginning and end of a 
bioreactor run reveals that, on a molar basis, the absolute 
sum of the change in the culture medium composition is 
72 mM. Three components-glucose, glutamine, and al­
anine-account for an absolute change of 58 mM, which 
represents 81 % of the total composition change in the 
culture medium. The remaining components provide a 
relatively constant background composition. Minor 
changes in the background are supported by comparing 
spectra for the fresh and spent media in Fig. 1. Although 
some differences are apparent, these spectra are reason­
ably similar and do not indicate major chemical varia­
tions between these limiting cases. Of course, greater ma­
trix variation wi11likely demand more matrix-containing 
samples to model matrix variation adequately and pro­
duce robust calibration models. 

TABLE VI. Summary of processing results for the AC2 samples. 

Samples 
added to Glucose Glutamine 
calibra- SEP Glucose SEP Glutamine 

tion (mM) MPE (mM) MPE 

0 3.77 18% 1.7 56% 
1 3.96 14% 0.99 27% 
2 1.89 7.1% 0.78 16% 
3 1-.06 4.4% 0.86 25% 



For most models displayed in Tables n, ill, IV, and V, 
the number of PLS factors increases slightly with addition 
of more complex samples to the calibration set. Compared 
with the initial calibrations, which contained no additional 
samples, the number of required PLS factors increases for 
10 models, decreases for 7 models, and remains the same 
for 7 models. In the situations where the number of factors 
decreases, such as for glutamine models listed in Table ill 
and several glucose models listed in Table IV, the decrease 
is quite small, from 8 to 7 factors. The number of factors 
was selected through use of a computerized optimization 
scheme, and the model parameters that yielded the lowest 
error for a distinct monitoring set were selected as optimal. 
This approach removes all human bias in selecting model 
parameters but led to some variation in both the number of 
factors and the spectral range reported as optimal. A pos­
sible cause for these variations is that the monitoring set 
consists of samples with matrices both of buffer and of 
culture medium. Optimal models were selected on the basis 
of the minimum standard error in predicting analyte con­
centrations in the entire set of monitoring samples. Certain 
conditions yield models that most accurately predict the 
concentrations of the buffer samples in the monitoring set, 
while other conditions most accurately predict the concen­
trations of the medium samples in the monitoring set. 

The results of this study have implications for the de­
velopment of spectroscopic calibration models that are to 
be applied to complex situations, such as those encoun­
tered in cell culture bioreactors. Calibration models com­
posed entirely of samples of the analytes in an aqueous 
buffer yield poor concentration predictions when applied 
to culture medium samples. However, with the addition 
of as few as two culture medium samples (one of fresh 
culture medium and one of spent culture medium), pre­
diction errors decrease significantly. The advantage of 
this approach is that it relies on only a small number of 
samples taken from a bioreactor, and most of the calibra­
tion samples can be produced synthetically. This ap­
proach could be applied to spectroscopic studies of other 
complex situations where it is difficult to generate rep­
resentative and uncorrelated calibration samples. To date, 
the matrix-enhanced calibration method has not been ap­
plied to other such complex situations so it is unknown 
how well the method would perform for samples in 
which a much larger number of components vary sub­
stantially in concentration. 

The method presented here to generate calibration 
models with many buffer samples and a small number of 
culture medium samples has similarities to approaches 
used for the transfer of calibrations among multiple spec­
trometers. Difficulties often arise when a calibration per­
formed on a primary spectrometer is applied to a sec­
ondary instrument that yields a different response.18 
These differences may be due to variations between the 
primary and secondary instruments or due to changes in 
the prediction samples, perhaps from dissimilar produc­
tion batches. 19 In an effort to circumvent these problems, 
standardization methods have been developed by using a 
transfer set of samples that are measured on both the 
primary and secondary instruments, and computational 
algorithms adjust the response of the secondary instru­
ment to that of the primary instrument. 19-21 Often a small 
number of transfer samples are required to properly ac-

count for instrument variations; for example, Wang et al. 
used as few as three samples,19 while Bouveresse et al. 
used five samples21 to obtain transferable calibrations. 

These transfer spectra are somewhat analogous to the 
culture medium samples added in the matrix-enhanced 
calibration method. The buffer samples originally used in 
the calibration set are similar to samples measured on one 
instrument; the culture medium samples can be consid­
ered as samples with a different baseline due to the ad­
ditional components present in the culture medium. With 
the addition of culture medium samples to the calibration 
set, the PLS algorithm incorporates a greater extent of 
the sample variations and thus is able to correct for dif­
ferences between these two data sets. 

When using the matrix-enhanced calibration method, 
one must evaluate the dependence of analyte predictions 
on the number and type of enhancements, or in this case 
culture medium samples, incorporated into the calibration 
set. In the present study, glucose and glutamine measure­
ments follow different trends in their sensitivities to the 
types of samples added to the calibration sets. Most like­
ly, similar variations would be observed in the develop­
ment of calibration models for other complex materials. 
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