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Abstract 
This study presents a methodology for the analysis of a drought climatology within a particular re-
gion that enables a user to define drought areas at a high spatial resolution. It is suitable for quanti-
fying the relative differences in the intensity of drought spells, and the frequency and duration 
between individual stations within an area of interest. The methodology is based on the Standard-
ized Precipitation Index (SPI), the Palmer Drought Severity Index (PDSI), and the Palmer Z-index 
(Z-index). However, the climatological parameters needed to process and calculate the indices were 
not derived separately for each site as is usually done but were based on a set of all available weather 
stations in the studied region. This approach was utilized in the case study including all of the Czech 
Republic using 233 climatological stations with monthly records of mean temperature and precipi-
tation for the period 1961–2000. The study is also focused on the development of more efficient ways 
of communicating results to the stakeholders. Therefore, a method allowing for an integration of 
several drought indices into a single indicator called the Integrated Climatological Drought Indicator 
(ICDI) was developed. The newly developed method allowed for an objective identification of the 
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drought-prone regions of the country that were defined as areas with a chance (higher than 50 and 
60% respectively) of moderate or extreme drought. We have found that 12.3 and 3% of the country 
area, respectively, belong within these categories and that these regions also happen to be prime 
agricultural areas. The conclusions were supported by the results of a cluster analysis. Finally, the 
analysis of time trends was conducted, which showed that the majority of 233 stations had grown 
significantly drier during the studied period. The main driving force behind this development was 
found to be an increase of temperature, especially in the 1990s. 
 
Keywords: drought climatology, scPDSI, scZ-index, scSPI, rPDSI, rZ-index, rSPI, cluster analysis 
 
1. Introduction 
 
The drought phenomenon is referred to as the most complex and least understood of all 
natural hazards, affecting more people than have been affected by any other extreme event 
(Wilhite, 2000). Drought should be perceived as a natural aspect of climate under all cli-
matic regimes, as it occurs in both humid and arid areas (clearly with different impacts 
unique to the existing ecosystems). Central Europe is not frequently thought of as being a 
particularly drought-prone region in the European context with the exception being the 
Panonian Basin that, in part, includes eastern Austria and a large part of Hungary. As a 
consequence, only recently has the importance of a systematic research of drought clima-
tology been recognized in countries like the Czech Republic, where high dependency on 
precipitation as the main source of water might lead to future conflicts between competing 
water users. Incorrect estimation of drought risk or omitting drought-related issues in the 
process of strategic planning might have serious consequences not only for the stability of 
the remaining natural ecosystems, but also for the economy and society as a whole. This is 
partly due to the fact that there is a marked distinction between impacts of short-term ex-
treme events (e.g., floods or severe storms) and persistent ones (e.g., drought). Unlike 
drought, short-term extreme events tend to be neutral, or even stimulating, for economic 
growth in developed countries through higher public and private spending on the recon-
struction efforts that follow. On the other hand, a prolonged drought spell might not only 
inflict severe economic losses but can potentially paralyze agricultural production over 
several seasons and restrain other segments of the economy as well (e.g., White et al., 2003 
or Horridge et al., 2005). 

The high vulnerability and devastating effects of droughts that are commonly associ-
ated with specific climatic regions (e.g., African Sahel, or recently in Australia) are rarely 
experienced in Central Europe. However, even here drought episodes have played an im-
portant role since the early Neolith, when relatively short drought periods significantly 
influenced the location of early settlements (Kalis et al., 2003). Recently, the region was 
faced with the so-called “green droughts,” i.e., droughts associated with still relatively am-
ple annual rainfall amounts (especially compared to the arid regions) but reduced agricul-
tural productivity due to poorly timed rains. The most severe of these events was recorded 
in 1947 with less pronounced ones seen in 1978 and 1994 (Blinka, 2005 or Brázdil, 2007). A 
recent wave of drought episodes was experienced throughout Central Europe during 2000, 
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2001, and particularly 2003. The last event was the result of a prolonged period of subop-
timal rainfall, combined with extremely high summer temperatures (e.g., van der Schrier 
et al., 2007). It influenced a full range of ecosystems throughout Central Europe, affecting 
some of the basic ecosystem services, starting with fodder production (Schaumberger et 
al., 2006) and ending with carbon sequestration (Ciais et al., 2005). 

The mentioned example of risks associated with drought occurrence was the main mo-
tivation behind the present study of drought climatology. It takes advantage of the clima-
tological dataset for 1961–2000 for 233 stations that were used in the Atlas of the Climate 
of Czechia (Tolasz et al., 2007). The main objectives of this study can be defined as follows: 
(1) to develop and test methods of drought assessment that will allow for a spatial descrip-
tion of drought climatology, (2) to apply these methods in evaluating drought risk in the 
Czech Republic, (3) to identify homogeneous regions according to their drought character-
istics using a cluster analysis, and (4) to evaluate possible trends in drought occurrence 
during the studied period. 
 
2. Materials and methods 
 
Any realistic definition of drought must be region and application specific. Four interre-
lated categories of drought are usually distinguished based on the timescale and impact: 
meteorological, agricultural, hydrological, and socioeconomic (e.g., Heim, 2002). Agricul-
tural drought impacts are mostly associated with timescales from weeks up to 6–9 months, 
while hydrological and socioeconomic impacts usually become apparent following longer 
time lags. The individual drought categories and their timescales are obviously overlap-
ping. The occurrence of meteorological drought, however, precedes the onset of specific 
impacts, and thus, it is extremely important to understand the regional characteristics of 
meteorological drought before studying specific impacts of this phenomenon. For this pur-
pose, the evaluation of drought indices is frequently used to examine meteorological 
drought as they are convenient and relatively simple. Three of the most frequently used 
drought indicators, i.e., the Standardized Precipitation Index (SPI), Palmer Drought Sever-
ity Index (PDSI), and Palmer Z-index (Z-index), were utilized in this study. 
 
2.1. Input data 
Figure 1(a) and (b) shows the Czech Republic’s main soil characteristics and orographic 
features, as well as the applied set of climatological stations. The stations are listed in Ap-
pendix A, table AI, which also includes their basic climatological characteristics. The data-
base was the result of a concerted effort between the Czech Hydrometeorological Institute 
and the National Climatic Program, as a part of preparing the Climatic Atlas of Czechia. 
The 233 stations (1 per 335 km2) were selected from a dataset of 782 stations based on the 
quality and completeness of observations. The data were homogenized and checked for 
consistency prior to use (Tolasz, 2002; Tolasz et al., 2007). The station elevations are spread 
between 157 and 1490 m above sea level, with the mean altitude of the stations being 435 
m, which is close to the country mean altitude (430 m) provided by the Czech Statistical 
Office (CSO, 2005). The mean annual temperature and sum of precipitation are almost 
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identical to the mean climatological values for the Czech Republic (CSO, 2005). The warm-
est month is usually July with January or February being the coldest. The summer season 
(June–August) is typically characterized as the wettest with precipitation amounts ac-
counting for 37% of the annual totals (ranging from 27 to 43%) on average. On the contrary, 
winter is typically the driest season accounting for around 18% of the annual precipitation 
(from 11 to 28%) followed by fall and spring. The only exceptions to this general pattern 
are two sites (105 and 112—Appendix A, table AI) found in the northern mountainous 
region of the country, where winter precipitation is slightly higher than in summer. 
 

 
 

Figure 1. Soil water-holding capacities in the rooting zone within the study region: (a) 
location of 233 climatological stations in the Czech Republic used in the study; (b) the 
three classes of elevation in the latter map are designed to approximate the different forms 
of dominant land-use types in the region: (1) below 350 m mostly intensive agriculture; 
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(2) between 350 and 700 m less intensive agriculture (usually less favorable areas) and 
forests; and (3) above 700 m with limited agricultural production and mostly forested. 
The complete list of the stations, including the basic parameters, are found in Appendix 
A, table AI. 

 
In this study, we deal with drought in timescales ranging from 1 to 12 months, although 

we are aware of the fact that shorter time steps would be needed to study certain aspects 
of drought impacts on agriculture. However, selecting a time step shorter than 1 month 
would reduce data availability for the study, and thus, it was decided to analyze drought 
on a monthly timescale. In fact a large number of researchers prefer monthly data for var-
ious reasons including better availability (e.g., Lloyd-Hughes and Saunders, 2002; Dai et 
al., 2004 or van der Schrier et al., 2007) and lower sensitivity to observational errors (e.g., 
Viney and Bates, 2004). 

The climatological data were complemented with values of the maximum soil water-
holding capacity (MSWC) for each 0.5 km× 0.5 km grid. This parameter was estimated 
using a combination of digitalized maps of soil types (1:500,000) and detailed soil physics 
data from 1,073 soil pits collected during the Czech National Soil Survey (fig. 1(a)). For 
each of the 25 soil types, a mean value of MSWC was determined to be an average of the 
maximum water-holding capacities of all soil pits of a particular soil type in the database. 
The MSWC of the individual soil types ranges from 50 to 302 mm and was determined by 
the weighted soil water-holding capacities of individual soil horizons up to the maximum 
rooting depth determined at each soil pit. 
 
2.1.1. Standardized Precipitation Index 
The assessment of meteorological drought is mostly based on rainfall. This can be done 
either by analyzing the rainfall amounts in terms of reliability (e.g., Laughlin et al., 2003) 
or by using one of the many precipitation-based drought indices that have been developed 
over time (e.g., McKee et al., 1993 or Byun and Wilhite, 1999). One of the most recent and 
widely accepted indicators is the SPI, which allows for drought evaluation at multiple 
timescales using either monthly or weekly precipitation data. Mathematically, the SPI is 
based on the cumulative probability of a given rainfall event occurring at the given station 
(McKee et al., 1993). The historic rainfall data of the station are usually fitted by using a 
gamma distribution, which has been found to fit the precipitation distribution of most 
timescales quite well. Gamma distribution suitability for the area of Central Europe has 
been recently confirmed in the pan-European study comparing several distribution func-
tions (Lloyd-Hughes and Saunders, 2002). The fitted cumulative probability function is 
then transformed by an inverse normal function. A low or high probability on the cumu-
lative probability function related to a particular rainfall amount then indicates a likely dry 
or wet event, respectively. In summary, the SPI can effectively represent the amount of 
rainfall over a given timescale in relation to the median. This enables the user to state 
whether or not a station is experiencing dryness as the landscape (as well as management 
practices in it) are considered to be adjusted to the regional climate optimum. This near-
optimum range of SPI could be approximated by the interval of ±0.9, while the usual range 
of SPI values ranges from −3 to +3, with negative values describing periods of precipitation 
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below the median. McKee et al. (1993) defined the criteria for a “drought event” and used 
the SPI to classify various drought intensities (table I). In this study, we define the start of 
a drought episode as a period during which the SPI value remains negative and falls below 
−1.0 at least once during the episode. 
 

Table I. Standardized Precipitation Index (SPI), Palmer Z-index (Z-index), and Palmer Drought 
Severity Index (PDSI) categories according to Heim (2002) 
SPI Z-index PDSI Drought index categories 

≥2.00 ≥3.50 ≥4.00 Extremely moist 
1.50 to 1.99 2.5 to 3.49 3.00 to 3.99 Very moist 
1.00 to 1.49 1.00 to 2.49 2.00 to 2.99 Moderately moist 
−0.99 to 0.99 −1.24 to 0.99 −1.99 to 1.99 Normal range 
−1.00 to 1.49 −1.25 to −1.99 −2.00 to −2.99 Moderately dry 
−1.50 to −1.99 −2.00 to −2.74 −3.00 to −3.99 Severely dry 
≤−2.00 ≤−2.75 ≤−4.00 Extremely dry 

 
The SPI enables the user to assess the occurrence of short-term (duration of the order of 

1 month), medium-term (from 3 to 12 months), and long-term droughts (12 months and 
longer). When we analyze regions with different precipitation amounts at individual sta-
tions, but with similar annual patterns of rainfall distribution, the SPI results will inevita-
bly indicate the same number of dry episodes regardless of the precipitation totals. While 
this SPI feature is of particular value when it is used for drought monitoring, it hampers 
its use as a tool for regional classification of a drought climatology. This intrinsic property 
of the SPI could be partially bypassed through evaluating those SPI parameters that pre-
serve their variability in space (e.g., Lloyd-Hughes and Saunders, 2002 or Sönmez et al., 
2005). But this approach comes up short in distinguishing subtle differences between var-
ious types of climatic regions over relatively small areas (or regions), as is the case in this 
study, and is not very suitable for communication with the stakeholders. Therefore, we 
propose a modification of the SPI calculation that is, in our view, better suited for spatial 
drought climatology studies. From now on we refer to this method as the “relative Stand-
ardized Precipitation Index” (rSPI), while the original version of SPI is marked as scSPI. In 
the rSPI, the parameters of the gamma distribution are based on the set of data created by 
aggregating all monthly precipitation totals from the 233 stations during the 1961–2000 
period. In the following steps, the values of the rSPI relative to the reference distribution 
function were derived for each site. This enabled us to compare the precipitation deviation 
for each station and each month by utilizing the distribution function that represented the 
climate optimum of the given region rather than that of the individual station. The method 
complements the recent work of other authors (e.g., Rossi et al., 1992; Lloyd-Hughes and 
Saunders, 2002 or Hisdal and Tallaksen, 2003) who emphasize the regional nature of 
drought and the necessity of studying it within a regional context. Figure 2(a) and (b) il-
lustrates the differences between the scSPI and rSPI 12-month values at two sites (Žatec—
a lowland semiarid station and the mountainous Lysá Hora station) from January 1961 to 
December 2000. It is clear that the time series of the rSPI preserve the same temporal be-
havior as the original scSPI, which can be documented by Pearson correlation coefficient 
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values ranging between 0.96 and 1.00. While the values of rSPI (Figure 2(b)) for Žatec in-
dicate a climate which is significantly drier than the regional climate, the wetness of the 
mountainous station of Lysá Hora is depicted well by the corresponding rSPI values. Ob-
viously, the interpretation of the rSPI outputs and relative indices, in general, always needs 
to be made within the context of the regional climate, and it does not automatically mean 
that upper elevated locations are immune from drought, especially when the relatively 
high dependency of some mountainous ecosystems on regular precipitation and generally 
very low soil water-holding capacity in these regions are taken into account. More on the 
use of relative indices could be found in Dubrovský et al. (2008). 
 

 
 

Figure 2. Comparison of 12-month scSPI (a) and 12-month rSPI (b) values for the 1961–
2000 period. The station Žatec (273 m a.s.l.) is one of the driest sites in the Czech Republic 
with a mean annual precipitation of 444 mm, in contrast to Lysá Hora (1322 m a.s.l.), 
which is the wettest site in the dataset (with a mean annual precipitation of 1407 mm). 

 
2.1.2. Palmer Drought Severity Index and Palmer Z-index 
The PDSI (Palmer, 1965) is one of the most complex and widely used methods of quanti-
fying drought throughout the world (e.g., Szinell et al., 1998; Lloyd-Hughes and Saunders, 
2002; Ntale and Gan, 2003; Dai et al., 2004 or van der Schrier et al., 2006, 2007). A compre-
hensive overview of the necessary calculation procedures needed to derive PDSI is given 
by Palmer (1965); Alley (1984); Ntale and Gan (2003) and most recently by van der Schrier 
et al. (2006, 2007) and thus it is not necessary to furnish the entire calculation procedures. 

In general, the index is based on the supply-and-demand concept of a water balance 
equation, and thus, incorporates antecedent precipitation, moisture supply and demand at 
the surface as calculated according to the Thornthwaite (1948) method. It applies a two-
layer bucket-type model for soil moisture computations with three assumptions relating 
to the soil profile characteristics: (1) the water-holding capacity of the surface layer (Ss) is 
set at a maximum of 25 mm; (2) the water-holding capacity of the underlying layer (Su) 
has a maximum value dependent on the soil type and (3) water transfer into or out of the 
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lower layer only occurs when the surface layer is full or empty, respectively. The PDSI 
itself can be described as an accumulative departure relative to local mean conditions in 
atmospheric moisture supply and demand at the surface (Palmer, 1965) and it is thought 
to represent well the episodes of prolonged drought. The method of PDSI calculation in-
cludes an intermediate term known as the Palmer moisture anomaly index (or Z-index), 
which is a measure of surface moisture anomaly for a current month without consideration 
of the antecedent conditions that are so characteristic of the PDSI. It is basically the mois-
ture departure, d, adjusted by a weighing factor called the climatic characteristic, which is 
denoted by K (Equation (1)). 
 

Z = Kd (1) 
 

The Z-index can therefore be used to track agricultural droughts as it responds rela-
tively quickly to the changes in soil moisture (Karl, 1986). Due to the Z-index’s ability to 
rank the dryness or wetness of individual months, we decided to use it as one of the indi-
cators of short-term drought spells. The Z-index is related to the PDSI through the follow-
ing equation (Palmer, 1965): 
 

 (2) 
 
where i stands for index value in the given month. 

The original monthly PDSI relies on empirical constants, soil property assumptions, and 
climate characteristics derived by Palmer (1965) using data from nine stations in Kansas 
and Iowa (USA). In this study, the so-called self-calibrated version (Wells et al., 2004) of 
the Z-index and PDSI were used. Wells et al. (2004) modified the original Palmer model in 
order to adjust the former empirical constants automatically according to the input data 
uniquely derived from each studied location. The self-calibrated PDSI also adjusts the 
value of K in order to obtain a range of PDSI values between −4.0 and +4.0, thus partly 
mitigating regional differences between drought events of the same intensity. 

Owing to the complexity of the index we noted the tendency of the PDSI to exhibit large 
sudden changes at some stations between individual months (Dubrovský et al., 2005) and 
similar behavior was reported by Ntale and Gan (2003). In the case of Czech stations, the 
fluctuation took place in the near-normal range and only on rare occasions crossed the 
dry/wet event thresholds. Therefore, they did not exert any significant influence on our 
drought climatology assessment results even though such erratic behavior could be prob-
lematic when the method is used in drought monitoring. Other frequently listed shortcom-
ings of the PDSI were either directly addressed during our work (e.g., soil type specific 
water retention capacities were at our disposal) or were not considered to be important at 
the resolution and timescales of the study (e.g., assumption of no runoff unless soil mois-
ture is at field capacity, lack of snow cover module or dependence of Thornthwaite PET 
method estimates based on latitude only). Parallel use of the SPI and Z-index also partially 
mitigated the time lag in the determination of drought onset (seen in the PDSI), which is 
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known to be about 1 month (or more) when compared to the SPI (Hayes et al., 1999). The 
process of “self-calibration” of the PDSI (and Z-index as well) prevents interstation com-
parisons as the PDSI (or Z-index) assigns the same value to different absolute terms of 
water deficit/excess. In order to better describe the drought climatology of the region, we 
modified the calculation procedures of both Palmer indices and we refer to them as the 
relative Palmer Drought Severity Index (rPDSI) and relative Z-index (rZ-index). The em-
pirical coefficients of both indices (namely, the K value) were based on 9,320 years of data 
considering that they originated from a single station (i.e., set of all monthly observed val-
ues from 233 stations covering the Czech Republic during the period 1961–2000). In the 
following step, the departure from normal moisture levels (d) was calculated for each sta-
tion, and the resulting rZ-index value enabled us to distinguish differences between indi-
vidual sites. In the last step, the rPDSI value was determined using the same procedure as 
that of the PDSI. This approach made it possible to compare each month’s soil moisture 
anomaly to the distribution that served as a representation of the overall country climatic 
conditions. A drought episode according to the rZ-index and rPDSI was defined as a con-
tinuous period of index values less than −1.0 as long as the index hits −2.0 at least once 
during the episode. 
 
2.1.3. An integrated climatological drought indicator 
In order to communicate the study results better to the stakeholders and policy makers, 
we developed a new indicator and calculated the percentage of months during the 1961–
2000 period that fell into a drought spell according to rSPI, rZ-index, and rPDSI. This Inte-
grated Climatological Drought Indicator (ICDI) combined both the number of drought 
events and their duration and allowed us to visualize drought risk over the area by utiliz-
ing a single map. The major shortfall of this approach was that it did not fully account for 
the intensity of the individual drought events. However, this was dealt with by evaluating 
individual time series in a separate exercise. The ICDI was based on the mean percentage 
of months in a drought spell calculated from results of the 1- and 3-month rSPI, rZ-index 
and rPDSI in order to accommodate short-, mid-, and long-term droughts. All four indica-
tors used in the process were given the same weights. The ICDI takes into account not only 
precipitation-deficit-based indicators (i.e., the rSPI) but also includes the effect of temper-
ature and soil properties (applying rZ-index or rPDSI) within a single, robust indicator of 
climatological drought risk. Its main purpose is to give a simple but objective measure of 
dryness of a given area using readily available and sufficiently dense input data. 
 
2.1.4. Spatial analysis techniques 
In constructing the maps, we took advantage of the dependence of climatological drought 
parameters on the northing, easting, and elevation, and in the case of the rPDSI and rZ-
index, we also took into account the soil water-holding capacity of the given site. In the 
first step, the value of the particular drought parameter (e.g., number of drought events or 
mean drought duration) was calculated for all 233 stations in the Czech Republic (fig. 1). 
In the next step, a polynomial regression function (using not only squares but also the first 
order interactions of the independent variables) was fitted to the data. During an extensive 
testing of various interpolation methods, we found that the polynomial regression model 
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performed with smaller bias compared to standard interpolation methods, such as kriging, 
co-kriging, or thin-plate spline. This technique is better at capturing the spatial variability 
of drought, which does depend strongly on elevation and soil conditions. It was assumed 
that the relationship between dependent and independent variables differs insignificantly 
throughout the country and only one function was used for each parameter. The assump-
tion was tested when the set of 233 stations was divided into two parts (east and west) and 
the results of the analysis for both regions were compared with those for the whole terri-
tory. In addition, every regression function was reevaluated by comparing the interpolated 
results with the station-based data using 14 extra weather stations as an independent data 
sample. The overall fit of the polynomial regression function to the site data was assessed 
by looking at the relative root mean square error (RMSE) and Pearson’s coefficient of cor-
relation (fig. 3). The first parameter gives an indication of the mean deviation of the esti-
mated values compared to the magnitude of the estimated parameter. The latter represents 
the strength of the correlation between the particular drought characteristics and geo-
graphical location in combination with the soil conditions. We found both indicator values 
to be in the range (fig. 3) allowing for the use of the mapping technique. In addition, the 
polynomial regression method does not suffer from “edge effects” when compared to most 
standard interpolation techniques. This is of considerable importance given the problem-
atic access to climatic databases in neighboring countries and issues of transborder data 
homogeneity. 

Data for site elevations entered our calculations in the form of a smoothed terrain model 
in order to suppress small-scale local effects. Results were presented using two resolutions: 
(1) 0.5 km× 0.5 km grid cells; and (2) 0.5 km× 0.5 km grid, cells aggregated to cadastre units. 
Cadastre units constitute the smallest administrative region in the Czech Republic, and 
most of the planning or subsidy distribution (e.g., determination of drought compensation) 
is carried out at this administrative level. While a 0.5 km× 0.5 km grid resolution is con-
venient for a relatively detailed climatological study, in some cases it is convenient to pro-
vide outputs for various administrative regions (like in the case of ICDI). Thus, it makes 
good sense to provide climatological outputs for the same unit in order to facilitate their 
use. In the final step, the maps were checked for internal consistency and compared with 
other methods of drought assessment (e.g., water deficit defined as difference between 
potential evapotranspiration and actual precipitation) provided by Tolasz et al. (2007). 
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Figure 3. Results of the verification of the spatial analysis method. The charts indicate 
goodness-of-fit between values estimated using a polynomial regression function (PRF) 
for selected drought characteristics: White bar—number of drought events; gray bar—
proportion of months in drought episode during (April–September); and black bar—
mean duration of drought episodes. The goodness-of-fit is described in terms of a Pearson 
correlation coefficient and root mean square error (RMSE). The set of an additional 14 
evenly distributed climatological stations that were not used for development of the PRF 
was utilized in this evaluation. 

 
2.1.5. Cluster analysis 
One of the aims of this study was to identify groups of sites with similar drought charac-
teristics in order to verify results of previous spatial analyses. We found cluster analysis to 
be a suitable tool to spot similar regions as it allows for usage of multiple criteria in the 
process of station grouping. It has also been frequently used in order to determine similar 
groupings of stations to optimize networks of weather stations (DeGaetano, 2001), deter-
mine climatologically homogeneous regions (e.g., Matulla et al., 2003 or Unal et al., 2003) 
and also for grouping stations according to the occurrence of particular extreme events 
(e.g., Kyselý et al., 2007). One of the key advantages over other commonly used statistical 
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methods is that cluster analysis is not based on a priori assumption of data distribution. 
However, it necessitates careful selection of the used cluster method and dissimilarity met-
rics. The number of drought episodes and their mean duration based according to the 1- 
and 3-month rSPI, rZ-index, and rPDSI were used as clustering parameters. Out of the five 
commonly used hierarchical clustering methods (i.e., single linkage, complete linkage, cen-
troid, Ward’s minimum variance and the average distance) we focused particularly on the 
performance of the complete linkage and Ward’s minimum variance methods, as neither 
of them is known to be prone to the chaining (snowball) effect (Kalkstein et al., 1987). Since 
the stability of the clusters was one of the most important indicators, we compared the 
performance of various clustering methods over a subset of 190 stations and compared 
them with the results derived from using the complete database of 233 sites. The procedure 
followed suggestions made by Unal et al. (2003) and uncovered a higher stability using 
Ward’s minimum variance method over the average linkage approach. In the case of the 
former method, the majority of the stations were found to be clustered into the same group 
in both runs. Interestingly, within the Czech Republic, Ward’s method was found to pro-
duce the best results in a regional analysis of extreme precipitation events (Kyselý et al., 
2007), which included the number of dry days as one of the input variables. 
 
2.1.6. Trend analysis 
Besides the frequency and duration of drought during the given time period (i.e., 1961–
2000) the eventual trends in frequency and/or severity of the drought events during the 
study period constitutes important information for further analyses. Timescales of 1-, 3-, 
6-, and 12-month SPI, PDSI, and Z-index monthly time series from 1961–2000 were tested 
by regression analysis using a 5% significance level as a threshold for the trend’s statistical 
significance. In the case of the trend analysis, the original methods of index calculations 
(rather than their relative versions) were used. In order to avoid any existing autocorrela-
tion between consecutive drought index values, the trends were evaluated separately for 
each month. Under these circumstances, all values in each of the 12 series can be consid-
ered independent. For every station we evaluated the number of months with statistically 
significant trends toward drier/wetter conditions. At sites where no statistically significant 
trends were recorded we counted the number of months having the same tendency of the 
regression line as an indication of drought development. 
 
3. Results 
 
3.1. Dry spells during 1961–2000 
As Szinell et al. (1998) pointed out when considering the drought severity on a country-
wide scale, both the intensity and spatial extent are important. Due to the relatively large 
number of stations and good spatial coverage (fig. 1), we chose the percentage of stations 
in severe or extreme drought (table I) to be an indicator of the drought’s spatial extent. As 
seen in figure 4(a), the number and spatial extent of short-term drought events as recorded 
by the 1-month SPI is significantly higher than those of longer drought spells (figure 4(b)–
(d)). We found that according to the 1-month SPI, more than 80% of the stations were af-
fected by a severe or extreme drought spell during four independent episodes. Out of 
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these, the drought episode of December 1972 was quite unique as all but four stations were 
hit by severe or extreme drought, and the only reason it went largely unnoticed was due 
to its timing (falling outside of the growing season). During the main vegetation season 
(i.e., from April to September) there were four short-term drought spells (impacting agri-
cultural production) affecting more than 60% of the stations. In some cases (i.e., 1972) a 
single short-term event was a precursor to a long-term drought episode, which then led to 
serious hydrological impacts (e.g., low reservoir levels, limited stream flows, and deple-
tion of groundwater). The most pronounced of these long-term droughts actually started 
at some locations earlier in summer 1971 and peaked during August–October 1973. During 
1961–2000 there were four other long-term drought episodes that affected more than 40% 
of the stations during a single month. One should also bear in mind that impacts of drought 
tend to materialize after a certain delay, or lag. While agricultural droughts see a more 
rapid onset of impacts within a few weeks’ time at most, at least in the case of rain-fed 
agriculture systems of Central Europe (e.g., Trnka et al., 2005), the hydrological parameters 
are known to be affected by drought after a delay of 2–3 months (Stefan et al., 2004). 

While the results obtained using the Z-index are rather similar to those of the 1-month 
SPI, the percentage of stations in drought according to PDSI values best correlates with the 
12-month SPI. As figure 4(f) shows, there were four major drought spells during 1961–2000 
with the worst one occurring between 1990–1995. Despite a slightly lower intensity of this 
drought episode (when compared to the years 1974 and 1984), the uniqueness of this event 
is marked by its duration. During this drought spell, one-fifth of the stations were affected 
for 39 consecutive months, and as Brázdil (2007) reported for some southeastern stations, 
it was the longest single drought episode in the past 150 years. 
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Figure 4. Proportion of the stations in a given month recording a moderate to extreme 
drought spell during 1961–2000 according to different drought indicators: (a) 1-month 
scSPI; (b) 3-month scSPI; (c) 6-month scSPI; (d) 12-month scSPI; (e) scZ-index, and (f) 
scPDSI). 

 
3.2. Definition of drought-prone regions 
Application of the rSPI, rZ-index, and rPDSI allowed for the spatial characterization of 
drought frequency and duration. As can be seen in figure 5(a), the highest number of 
drought events (according to the 1-month rSPI) occurs in the north, central, and southeast-
ern regions of the country. Dry episodes in these areas are distinguished by their substan-
tially higher intensity and longer duration, exceeding 4 months on average. On the 
contrary, dry episodes are rarely observed in the mountainous regions along the north, 
northwestern, east, and southwestern borders of the country. Nevertheless, occurrence of 
short-term drought spells cannot be completely ruled out even at these locations, which 
are generally characterized by elevations over 800 m with a mean annual precipitation sum 
greater than 800 mm. When they do occur, these episodes tend to be short with rSPI values 
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rarely reaching below −2.0. Interestingly, there are also lowland sites having a negligible 
probability of drought occurrence in the northeast around the area of Moravian Gate (fig. 
1(a)). The decisive factor contributing to the lower drought risk in this area is in its en-
hanced precipitation, which is 60% higher on average when compared to the correspond-
ing lowland areas found in the southeastern region of the country (Tolasz et al., 2007). This 
can be explained by the distinctly different precipitation regimes due to a higher frequency 
of slowly moving Mediterranean cyclones in the northeastern part of the Czech Republic 
(Kyselý et al., 2007). 
 

 
 

Figure 5. Number of drought spells according to the 1-month rSPI (a) and rZ-index re-
spectively (c); proportion of months within drought episodes according to 1-month rSPI 
(b) and rZ-index (d) during the period 1961–2000. The drought characteristic on maps (a) 
and (c) are calculated using a 0.5 km× 0.5 km grid. The proportion of months within a 
drought episode (b, d) was integrated on the cadastre unit level. 

 
While assessing the drought climatology of the Czech Republic we took advantage of 

rSPI’s ability to be applied to arbitrarily long periods of aggregation. Therefore, we also 
analyzed 3- and 12-month rSPI values in order to evaluate mid- and long-term drought 
episodes. Although the absolute number of dry episodes decreases with increasing aggre-
gation, these episodes tend to be much longer and show a much higher level of persistence 
as McKee et al. (1993) noted when analyzing the Boulder (CO) series. Despite the lower 
absolute number of individual episodes of medium and long-term droughts (represented 
by the 3- and 12-month rSPI), the percentage of months affected by these droughts is mark-
edly higher than that in the case of short-term droughts (those represented by the 1-month 
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rSPI index). For example, the percentage of months affected by drought according to the 
3-month rSPI can be up to 70% in Southern Moravia, Central Bohemia, and the Elbe river 
basin, while episodes of short-term droughts account for only 50% of the months in the 
same areas. Applying the 3- and especially the 12-month rSPI indices also resulted in en-
hancing the differences between lowland areas and the mountains, where several consec-
utive months with a high precipitation deficit are highly unlikely. Comparison of figure 
5(a) and (c) shows that inclusion of the temperature and soil water-holding capacity in the 
drought evaluation process results in a much higher spatial heterogeneity within the 
drought climatology of the individual regions. Both the 1-month rSPI (fig. 5(a) and (b)) and 
the rZ-index (fig. 5(c) and (d)) indicate that the highest probabilities of drought events are 
found to occur in the north, central, and southeastern regions of the country. However, at 
the local level drought risk is clearly differentiated according to the soil properties. Figure 
5(d) indicates that the highest drought risk is found on the alluvial soils within Morava 
and the Elbe river basins. In addition, two smaller drought “epicenters” can be found in 
the lowlands of southern and southwestern Bohemia. Their drought susceptibility is due 
to the relatively low precipitation and high potential of evapotranspiration found in these 
regions, which normally leads to an insufficient accumulation of moisture in the soil profile 
particularly during the growing season. Thanks to the large soil water-holding capacity of 
alluvial soils, their relative moisture deficit is high when compared to the lighter loamy, or 
sandy soils that are typically found along the edges of river beds. To interpret results of 
the rPDSI and rZ-index locally (particularly in the case of alluvial soils), we must also bear 
in mind that the applied methods do not consider the effects of a high water table, which 
can be important in many cases and can change the water balance at the individual sites 
as well as the ability of plants to extract water from the soil. The rZ-index maps (fig. 5(c) 
and (d)) indicate that due to the lower temperatures and different soil characteristics the 
central highland region of the country is generally much less susceptible even to short-
term drought events when compared to the 1-month SPI, which takes into account only 
the precipitation amount and distribution. The low probability of severe drought events in 
the border mountain chains and the central highlands is of particular importance as it de-
creases the region’s overall vulnerability to large-scale droughts. This is due to the fact that 
these regions contain the main reservoirs and spring areas of major rivers (e.g., Elbe) that 
provide water supplies to the lowland—and in most cases, the more drought-prone—re-
gions. 

Integration of the four drought indices into a single indicator, i.e., the ICDI (fig. 6(a) and 
(b)), leads us to the conclusion that from a climatological point of view there are several 
“epicenters” of drought-prone regions in the Czech Republic. The largest continuous area 
with a high risk of drought occurrence (more than 60% of months within dry spells) is 
found in the southeastern part of the country with a secondary additional “epicenter” close 
to the border with Slovakia. Other drought-vulnerable regions are found in the lowlands 
of the Elbe river valley and in the area on the lee side of the Krušné Hory Mountains in the 
western part of the country. During the warm season (April–September) the spatial extent 
of the high-risk area increases and the fragmented “epicenters” tend to create continuous 
entities. On the contrary, the mountain ranges (on the border with Germany, Slovakia, 
Austria, and Poland) as well as the Bohemian-Moravian Highlands in the center of the 
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country are only rarely influenced by drought. Besides the high altitude areas, the low-
lands in the upper northeastern reaches of the country are among those regions that are 
only marginally endangered by drought events when compared to the rest of the country 
due to higher precipitation. We have found that almost two-thirds of the country falls 
within regions where drought occurs less than one-third of the time. Drought events in 
these regions are typically short with only a very low chance of prolonged dry episodes 
that are so typical of the drought “epicenters.” The ICDI concept proved to be useful at the 
decision-making level (e.g., to initially determine the most drought-prone administrative 
regions) as was noted by Brázdil (2007). Information of this type could be much easier 
utilized by decision makers as it is robust and straightforward, and when calculated for 
existing administrative units it is also more applicable. 
 

 
 

Figure 6. Proportion of months within a drought episode according to the ICDI-based 
data from (a) all months (January–December) and (b) months in the warm season (April–
September). The ICDI integrates results from the 1- and 3-month rSPI, rZ-index, and 
rPDSI and is calculated as a mean value for each cadastre unit. 
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3.3. Regionalization of drought characteristics 
The regionalization process used in determining drought characteristics was performed 
according to the Ward’s method algorithm using results of the 1- and 3-month rSPI, rZ-
index and rPDSI calculations. We used the number of drought events, their mean and max-
imum duration and number of months within drought episodes in individual seasons ac-
cording to individual drought indices used as the input variables. The process behind any 
cluster analysis is a step-by-step aggregation during which two groups are merged each 
time the algorithm is iterated based on the value of the chosen metric. The key aspect of 
the analysis is to decide that the simplest and most admissible configuration of groups was 
reached (Lana and Burgueňo, 1998). If we repeat the procedure indefinitely we obtain one 
solution including all climatic stations classified within the same cluster. Nevertheless, if 
we chart the consecutive values of the similarity metric (i.e., in our case the squared Eu-
clidian distance) we can assume that the aggregation previous to a sharp increase in this 
indicator is the simplest acceptable configuration. Figure 7 shows this evolution for the last 
50 clusters in the examined dataset. We can observe a clear change in the indicator value 
if we attempt a reduction from six to five cluster groups, and thus, we decided to define 
six station groups according to their drought characteristics. 
 

 
 

Figure 7. Evolution of the similarity metrics (squared Euclidean distance) with the num-
ber of attempted groups. The arrow indicates a sudden change of the indicator value. 

 
Figure 8 schematizes the resulting regionalization with each station being represented 

by the corresponding cluster number. Table II provides an insight into the number of 
drought events, mean drought-spell duration, and the basic climatological parameters of 
each cluster group. The climatic stations classified in Cluster 1 cover the warmest areas 
with the lowest precipitation located mostly on heavy soils. They are characterized by nu-
merous short-term drought events indicated by the 1-month rSPI and rZ-index. In the same 
period, the rPDSI signals a persistent soil moisture deficit throughout most of the observa-
tional period. Cluster 2 stations are within close proximity of the previous group and are 
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described by a high number of drought events having a shorter duration than those within 
Cluster 1. The remaining lowland stations with higher precipitation totals and lower soil 
water-holding capacities represent Cluster 3 stations. Drought-prone stations are almost 
exclusively situated in those lowland areas that generally belong to the prime agricultural 
regions. The Cluster 1 stations are found in regions with elevations less than 250 m, and 
all stations in Cluster 2 were situated below 300 m. Cluster 3 consists of stations with a 
considerably higher chance of short-term drought, but with a much lower probability of 
extended drought periods. From an economical perspective, this region is the most valua-
ble in terms of rain-fed agricultural productivity. Clusters 4 and 5 represent highland areas 
with relatively ample precipitation and cooler air temperatures, thus seeing only occa-
sional drought spells. Cluster 6 includes 44 stations in the submountainous and mountain-
ous regions (in general above 600 m) that are rarely influenced by short-term droughts and 
only rarely by long-term drought events with the percentage of months influenced by 
drought episodes well below 20% compared to over 70 or 60% in the case of Clusters 1 and 
2, respectively. Interestingly, in some aspects, this regionalization compares well with re-
sults of Kyselý et al. (2007) who grouped stations according to occurrences of their extreme 
precipitation events. They found that both the southeastern and northwestern regions of 
the country (represented in our case by Clusters 1, 2, and partially by 3) show a markedly 
different behavior than those stations found in the highlands (classified as Cluster 4). 
 

 
 

Figure 8. Clusters according to Ward’s method of cluster analysis. Shading indicates the 
altitude of the area while the number depicts an affiliation to a particular group according 
to table II. 
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Table II. Cluster centroids and their drought characteristics. The drought climatology characteris-
tics based on rSPI for 1 and 3 months, rZ-index and rPDSI were used as clustering parameters. 

 
 
3.4. Trend analysis 
Analysis of time trends on the precipitation data series at 233 stations showed no statisti-
cally significant change during 1961–2000 with the exception of three stations. Conse-
quently, the same findings were repeated when scSPI series for individual stations were 
evaluated and no prevailing trend (or pattern) toward a drier (or wetter) climate during 
1961–2000 was found throughout the territory. On the other hand, we found positive and 
highly significant trends in the mean air temperatures associated especially with the unu-
sually warm decade of the 1990s for most of the 233 stations that were evaluated. This 
corresponds with results of the detailed analysis of air temperature series done by Květoň 
(2001), Huth and Pokorná (2004), or Chládková et al. (2007) as well as with results obtained 
in the adjacent areas of Poland (Degirmendžič et al., 2004) and the Alps (Casty et al., 2005). 
As a direct result of increasing temperatures and no change in precipitation, the monthly 
series of the scZ-index and scPDSI showed decreases, indicating more frequent and/or se-
vere droughts. According to the scZ-index (serving as a short-term drought indicator), 98 
stations showed statistically significant negative trends in at least 1 month of the year com-
pared to 26 stations having a positive trend (fig. 9(a) and (b)). The remaining stations 
showed no statistically significant trend. However, within this group, a large number in-
clined toward lower scZ-index values with time. This became even more apparent during 
the warm season (April–September) when more than half the stations showed either sta-
tistically significant or at least decreasing scZ-index values with time (fig. 9(b)). The time 
trends were found to be much more pronounced in the case of the scPDSI, which deals 
with long-term drought spells compared to shorter spells identified with the scZ-index 
(fig. 9(c) and (d)). When we evaluated the whole year we found statistically significant 
trends toward negative scPDSI values at 133 stations with 59 of them having a significant 
decrease of PDSI in 6 or more months. Interestingly, only 31 stations showed the opposite 
tendency. During the warm half of the year only 11 stations out of 233 showed a positive 
trend that was statistically significant in at least 1 month compared to 99 stations showing 
a negative trend (i.e., tendency to more intensive droughts). Out of the 41 stations with no 
statistically significant trend, 66% of them still showed a decrease of scPDSI values rather 
than an increase or no change. Also, in this case, the number of stations with significant 
drying trends is higher in the eastern Czech Republic. The western part of the country 
(mainly the areas in the vicinity of Prague and also in the southern Bohemia region) has 
grown more drought prone during 1961–2000. The stations with positive trends of scPDSI 
values are found almost exclusively in mountainous areas (e.g., northern border with Po-
land) as might be seen in figure 9(c) and (d). 
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Figure 9. Number of months with statistically significant time trends (P = 0.05) of monthly 
series of the scZ-index (a, b) and scPDSI (c, d) for all months of the year (a, c) and months 
within the warm season (b, d). The size of the point is proportionate to the number of 
months with a significant time trend. Shading depicts the altitude of the area. 

 
The fact that the drying trends seem to be more frequent at sites in the eastern part of 

the country corresponds with the findings of Szinell et al. (1998), who reported regionally 
specific but significant trends of the scPDSI values toward a drier climate at 15 stations in 
Hungary, and with Horváth (2002), who reported similar results for the River Tisza catch-
ment. On the continental scale key recent studies differ in their conclusions about the dry-
ing trends. Dai et al. (1998), using 2.5° gridded data, noted that areas of severe drought 
increased in Europe during 1960–1995; however, this rise was found to be of the same 
magnitude that Europe had already experienced in the early 1920s and late 1940s. In sub-
sequent work applying the PDSI to the 1870–2002 time series, Dai et al. (2004) reported the 
existence of a notable drying trend since the beginning of the 20th century throughout Eu-
rope, which he linked to increasing temperatures over the same time frame. Other studies 
using a different dataset with higher spatial resolution (0.5° grid) reported only insignifi-
cant changes to the areas experiencing moderate to extreme drought conditions during the 
20th century (Lloyd-Hughes and Saunders, 2002) or to summer moisture availability 
across Europe (van der Schrier et al., 2006). However, regardless of uncertainty on the Eu-
ropean scale, all the studies discussed indicated very strong drying trends for the area of 
interest in this paper (i.e., 48–51°N and 13–18°E). 
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Up to now, only Brázdil (2007) evaluated time trends using scPDSI values using station 
data having long-term datasets (1850–2003) within this region. They reported a statistically 
significant trend toward lower PDSI values over the past 153 years (P = 0.05) with a mean 
decrease of values by 0.1 per decade. Analysis of the data showed that there have been two 
prolonged drought spells of comparable magnitude (1855–1875 and 1970–2003) which cor-
responds rather well with findings of van der Schrier et al. (2007) in the adjacent Greater 
Alpine region (GAR). The drying trend between 1900 and 2003 was found to be much 
stronger when compared to the overall record of 1850–2003 with scPDSI values decreasing 
by 0.3–0.6 per decade. This study concluded that while the former drought period (i.e., 
1855–1875) was caused mainly by a prolonged period of below-normal precipitation, the 
increase in dryness toward the end of the 20th century can be explained only by increased 
temperatures that had accelerated especially since the early 1980s. The existence of such a 
drying trend should be affecting the river discharge in the area. This assumption was in-
deed confirmed by Majerčáková et al., (1997) and Hisdal et al. (2001) who documented a 
significant decrease of river flow with time. The latter study, in particular, showed that the 
southeastern Czech Republic was becoming especially drier, even beyond the overall Eu-
ropean trend. We found these results especially troubling because according to Hayes et 
al. (2005) it is very likely that this trend might be accelerated throughout most of Europe 
in the upcoming decades thanks to the climate change. When analyzing the above-men-
tioned results, one should also bear in mind that both the scSPI and scPDSI were used in a 
monthly time step and that there might be important underlying processes present in 
shorter timescales. As Brunetti et al. (2002) reported, there seems to be no major change in 
seasonal or total precipitation amounts, but there has been a substantial trend toward a 
higher number of dry days during the winter along with an increased intensity of remain-
ing precipitation events, which results in lower soil moisture recharge. In addition to the 
trends at individual stations, we also investigated trends with regard to the total area ex-
periencing moderate to extreme drought conditions according to the methodology pro-
posed by Lloyd-Hughes and Saunders (2002). Similar to the mentioned study, the area 
affected by drought spells does not show any statistically significant trend with time unlike 
the individual series of the scPDSI and scZ-index. It thus seems that despite the fact that 
the total area of the country experiencing moderate to severe drought at any one time did 
not change during the 1961–2000 period, there is a tendency toward drought spells becom-
ing more intensive. 
 
4. Concluding remarks 
 
The study introduced an innovation to the standard methodological approaches in evalu-
ating drought climatologies within a particular region, allowing for the identification of 
drought-prone areas. The analysis relied on well-known and thoroughly tested drought 
indices (i.e., the SPI, PDSI, and Z-index). These indices were used partly in their original 
form, and in some cases they were modified to better capture the climatological aspects of 
drought. In the latter case, each index value was uniquely related to the set of all observa-
tions made at all stations during the period 1961–2000 rather than using single site records. 
Results based on these “relative” indices were combined together to derive an ICDI, which 
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allowed for a more robust multicriteria regionalization of drought risk. The proposed 
methodology provided an effective and objective quantification of the relative intensity of 
drought spells, their frequency, and duration with respect to the whole country, thus al-
lowing for an easy identification of the most drought-prone regions. As a part of our 
drought climatology assessment, the study also described the existing trends in drought-
spell occurrences in Central Europe during the last half of the 20th century. 

Monthly records of mean temperature and precipitation from 233 Czech stations were 
used to calculate the original and relative drought indices at all stations. We concluded 
that more than 3% of the country falls into a high-risk region (defined as over 60% of the 
months influenced by moderate to extreme drought) and an additional 12.3% is faced with 
a 50–60% chance of drought according to the rPDSI, rZ-index, and rSPI. Drought probabil-
ity was found to be clearly linked not only to the precipitation, temperature, and oro-
graphic characteristics but also to the soil conditions. The overall outcome of the spatial 
analysis of drought occurrence was confirmed by the results of a cluster analysis that iden-
tified six groups of stations in the Czech Republic according to their drought characteris-
tics. While three clusters represent predominantly dry regions, the mountainous stations, 
with a relatively limited probability of drought occurrence, were grouped within one ho-
mogenous group and the rest of the stations (mostly highland) could be found within two 
transitional clusters. The results of the cluster analysis might be utilized in selecting the 
most suitable stations for operational drought monitoring as it clearly identifies stations 
within the drought “epicenters” that were found in the northwest and southeast. 

The analysis of temporal trends showed shifts in drought severity during the last 40 
years of the 20th century. While there has been no statistically significant time trend in 
precipitation anomalies (as described by the scSPI) during the 1961–2000 period, we did 
find strong decreasing trends in the monthly and long-term water balance deficits ex-
pressed by both the scZ-index and scPDSI at many stations, notably located in the eastern 
part of the country. Over the same time period, only a handful of stations indicated that 
conditions became wetter. The main reasoning behind these trends was a significant in-
crease of temperatures toward the end of the 20th century. This only adds to the mounting 
concerns about the potentially higher severity of future drought spells in Central Europe 
due to expected patterns of climate change. We hope that this study might highlight the 
drought issue and generate discussion about the potential use of the proposed methodol-
ogy over the European region while at the same time serving as a useful reference to 
drought vulnerability over a significant part of Central Europe. 
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Appendix A 
 

Table AI. List of 233 stations with monthly temperature and precipitation data for period 1961–
2000 used in the study sorted according to longitude. 
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Table AI. (Continued). 
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Table AI. (Continued). 
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Table AI. (Continued). 
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Table AI. (Continued). 
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