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Iron (Fe) and copper (Cu) are trace heavy metals that are re-
quired by plants for their roles in redox chemistry. These met-
als form the active sites in numerous enzymes involved in 
disparate processes, such as mitochondrial respiration, pho-
tosynthesis, oxidative stress protection, and various metabolic 
pathways.1–4 Low metal concentration leads to deficiency and 
inefficiencies in metabolism, while too much causes metal tox-
icity. Consequences of metal toxicity are oxidative damage 
to cellular components,5 or displacement of the correct metal 
from active sites in proteins.6 Certain soils may have too little 
or low availability of metal micronutrients naturally, whereas 
other soils may have excess metals naturally or due to human 
activities.7,8 Excess or deficient supply of one metal may lead 
to deficiencies or toxicities of other metals, thus there is a need 
for the plant to have crosstalk mechanisms to coordinate up-
take, chelation, transport, or other gene expression mecha-
nisms to maintain metal homeostasis.

Crosstalk between Fe and Cu has been shown to occur 
in previous reports. In chloroplasts, superoxide dismutases 
(SODs) scavenge reactive oxygen species, and both Fe-contain-
ing SODs (FeSODs) and Cu-containing (CuSODs) are present, 
with both functioning equivalently.9 We noted that CuSODs 
had increased expression under Fe deficiency, while FeSOD 
expression decreased.10,11 Cu concentrations in Arabidopsis and 
other species were higher in Fe-deficient leaves.11–14 Together, 
this suggested that accumulation of Cu under Fe deficiency 
allows replacement of FeSOD proteins with CuSOD proteins. 
A physiological role for this switch from FeSODs to CuSODs 
was demonstrated, because inability to make this switch re-
sulted in decreased ability to counteract oxidative stress.11 Ad-
ditionally, certain microRNAs that are known to be regulated 
by Cu and to target transcripts of Cu-containing proteins15–18 
were also regulated by Fe.11

Fe-Cu crosstalk may also influence mineral transport and 
uptake. Rosette Cu concentration of Fe-deficient Arabidopsis 
plants had doubled within 24 h of switching plants to Fe-de-
ficient nutrient solution.11 Several Cu and Fe related genes re-
spond to both Fe and Cu deficiencies, such as COPT2, ZIP2, 
and the ferric-chelate reductase FRO3.10,11,19–26 Similarly, Cu 
deficiency upregulated ferric-chelate reductase activity in 
roots of a number of species.14,27

To test whether crosstalk between Fe and Cu supply influ-
ences accumulation of Fe and Cu in leaves, Arabidopsis plants 
were grown in hydroponics10 for 9 d on Fe and Cu treatments 
(fig. 1A). When Cu was withheld, rosette Cu concentration 
was low and did not change across Fe supply. At 0.2 μM Cu, 
rosette Cu concentration was higher at 1 μM Fe than at 25 μM 
Fe, whereas at 0.5 μM Cu supply, rosettes accumulated signif-
icantly more Cu at 1 and 5 μM Fe than at 25 μM Fe. These re-
sults indicate that moderate-term low Fe supply increases Cu 
accumulation in Arabidopsis rosettes, and that this phenome-
non is not limited to conditions of sudden withdrawal of Fe 
supply as performed previously.11 Iron and Cu treatments had 
no effect on overall Fe concentration in rosettes (fig. 1B), in-
dicating that total leaf Fe quantity was maintained, although 
it is possible that the Fe was partitioned to different compart-
ments or proteins under low Fe supply.28 In the first leaf of 
cucumber plants (fig. 1C), Fe deficiency (0 μM Fe supply) de-
creased Fe concentration to 42% of that of Fe replete leaves, 
and increased Cu concentration by 2.8-fold. This result sup-
ports our model that Fe-deficient plants require additional Cu 
in leaves to supply CuSOD proteins. In previous results, Fe-
deficient Arabidopsis also accumulated Zn, but later than Cu 
and to lower relative levels,11 and Mn concentration was not 
increased, supporting the idea that Cu accumulation is specific 
and not a secondary effect of increased metal uptake.
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Abstract
Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. Understanding crosstalk between Fe and 
Cu nutrition could lead to strategies for improved growth on soils with low or excess metals, with implications 
for agriculture and phytoremediation. Here, we show that Cu and Fe nutrition interact to increase or decrease Fe 
and/or Cu accumulation in leaves and Fe uptake processes. Leaf Cu concentration increased under low Fe sup-
ply, while high Cu lowered leaf Fe concentration. Ferric reductase activity, an indicator of Fe demand, was inhib-
ited at insufficient or high Cu supply. Surprisingly, plants grown without Fe were more susceptible to Cu toxicity.
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Root ferric-chelate reductase activity is a reliable bio-
marker for plant Fe uptake activity, and thus an indicator of 
Fe sufficiency/deficiency status. To test Fe-Cu crosstalk ef-
fects on Fe uptake responses, we measured root ferric-chelate 
reductase activity in Arabidopsis thaliana plants treated with 

0 or 25 μM Fe and a range of Cu for 3 d (fig. 2A). Peak ferric-
chelate reductase activity was observed at 0.5 μM, while at 
lower Cu supply, a decrease in Fe reductase activity was ob-
served. As Cu supply increased above 0.5 μM, ferric-chelate 
reductase activity decreased. When Cu was at 0.75 μM, there 
was no elevation in ferric-chelate reductase in –Fe plants 
over +Fe, and at 1.0 and 1.5 μM, ferricchelate reductase of –
Fe plants was less than half that of +Fe plants. This was due 
to Cu toxicity in the –Fe plants, as the –Fe roots with 1.0 or 
1.5 μM Cu were noticeably stunted and discolored, with a 
green-brown appearance, while +Fe plants treated with 1.5 
μM Cu had a normal bright white coloration. We have grown 
Arabidopsis (with 25 μM Fe) at Cu supply of up to 5 μM with 
no signs of toxicity. Thus, Fe-deficient plants are substan-
tially more sensitive to Cu toxicity than Fe replete plants.

A similar experiment was conducted using cucumber (Cu-
cumis sativus cv Ashley, Jung Seed Co) seedlings (fig. 2B). Cu-
cumber plants were switched from complete nutrient solution 
to treatments of 0 or 0.5 μM Fe, and a range of Cu. Supplying 
cucumber plants with 0.5 μM Fe is sufficiently low to induce 
ferric-chelate reductase but does not result in severe leaf chlo-
rosis. In –Fe treatments, Fe reductase peaked at 0.25 μM Cu 
and was lower at 0.1 μM and 0 Cu. Ferric-chelate reductase 
decreased at concentrations above 0.25 μM until at 1.5 μM Cu 
the activity was not higher than in +Fe plants. Plants grown 
on 0.5 μM Fe had highest ferric-chelate reductase activity at 
0 Cu. Activity declined as Cu supply increased, and at higher 
Cu concentrations 0 Fe, 0.5 μM Fe, and 10 μM Fe treatments 
had similar ferric-chelate reductase. To test whether there 
were trace amounts of Cu in our solution that might influ-
ence the results, we also included a treatment with the Cu 
chelator BCS (bathocuproinedisulfonic acid, Sigma Chemi-
cal Co) to bind potential trace Cu. This treatment resulted in 
no additional ferric-chelate reductase activity for 0 Fe plants, 
and a slight increase in 0.5 μM Fe plants.

Pumpkin (Cucurbita max cv Big Max, Eden Brothers) seed-
lings were grown in a hydroponic solution used previously 
for Cucurbita pepo.29 Ferric-chelate reductase activity in Fe-de-
ficient pumpkin roots was highest at 0 Cu. As Cu supply in-
creased, ferric-chelate reductase activity decreased (fig. 3A), 
until at 3 μM Cu, activity was the same as in control plants, 
and activity was inhibited at 5 μM Cu. Roots of the 0 Fe, 5 
μM Cu treatment looked similar to roots of the 10 μM Fe 5 
μM Cu treatment and were not stunted and discolored like 
roots of Arabidopsis thaliana on Fe-deficient, high-Cu treat-
ments, suggesting that pumpkin may be the more Cu toler-
ant species. Iron concentration in the first leaf of pumpkin 
did not vary across the Cu treatments in the –Fe treatment, 
but in +Fe treatments decreased at 3 and 5 μM Cu (fig. 3B). 
This suggests that at high Cu supply, the plant decreased its 
demand for and subsequently accumulated less Fe. How-
ever, Cu concentrations steadily increased as Cu supply in-
creased in both Fe treatments (fig. 3C) until leveling off at 
2 μM. Copper concentration was higher in the leaves of Fe-
deficient plants at all levels above 0 μM Cu. This provides 
another example of Fe-Cu crosstalk, corroborating our re-
sults from Arabidopsis and cucumber, which together sug-
gest that Fe status of plants modulates Cu uptake and accu-
mulation in leaves.

Figure 1. Iron and Cu concentrations in Arabidopsis and cucum-
ber leaves. Arabidopsis rosette (A) Cu and (B) Fe concentration at 
different Fe and Cu supplies. Plants were grown for 9 d on hydro-
ponic solution with Cu and Fe supply as indicated. (C) Cucum-
ber first leaf Fe and Cu concentrations after 7 d growth on –Fe 
or +Fe (10 μM) solution. * indicates significant difference from 
+Fe (P ≤ 0.05) as determined by t-test.
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The relationship between ferric-chelate reductase activ-
ity and Cu supply to Fe-deficient plants (fig. 2) is complex, 
with an optimum Cu concentration of 0.5 and 0.25 μM for Fe-
deficient Arabidopsis and cucumber, respectively. Along the 
Cu supply curve there were three phases. In the first phase, 
below optimal Cu, there was an inhibition of ferric-chelate 
reductase activity, suggesting that Cu may be required for 
some aspect of ferric-chelate reductase synthesis or activity. 
A similar inhibition for whole root ferric-chelate reductase 
activity by low Cu was observed for Plantago lanceolata.30 In 
pumpkin, and in cucumber supplied with 0.5 μM Fe, 0 Cu 
was optimal. As Cu was increased above optimal concentra-
tions, lower ferric-chelate reductase activity occurred. It is 
possible that increased Cu results in more efficient or rapid 
synthesis of Cu proteins that replace Fe proteins, thus reduc-
ing the Fe demand and generating a feedback inhibition of 
ferric-chelate reductase activity or decreased shoot-to-root 
demand signal. For example, in Arabidopsis, FeSOD expres-
sion increased under Cu deficiency31,32 and decreased under 
high Cu supply.33 Indeed, ferric-chelate reductase activity de-
creased (fig. 3A) as Cu concentration in leaves of Fe-deficient 
pumpkin increased (fig. 3C). The third phase of the curve in-
dicates Cu toxicity, which abolished ferricchelate reductase 
activity. Similar inhibition of ferric-chelate reductase activ-
ity by high Cu has been observed in cucumber34 and Plan-
tago lanceolata,30 but high Cu did not inhibit ferric-chelate re-
ductase protein activity in Plantago membrane isolates, which 
suggested that Cu blocked expression rather than function 
of the ferric reductase.

In conclusion, our results show that Fe and Cu status and 
supply interact to influence uptake of both metals. The sens-
ing mechanisms are not known, but the metal chelator nico-
tianamine is important for Fe homestasis35,36 and can bind 
both Fe and Cu.37 We also showed that under Fe deficiency, 
plants were strikingly more susceptible to Cu toxicity. Un-
derstanding this aspect of Fe-Cu crosstalk could have im-
plications for agriculture and for phytoremediation of metal 
contaminated soils. The conditions described here provide an 
entry point into growth conditions that can be used to pro-
duce plants that are engaging in Fe-Cu crosstalk to further 
understand these mechanisms.
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