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Global database of matched
Plasmodium falciparum and P. vivax
incidence and prevalence records
from 1985–2013
Katherine E. Battle1, Carlos A. Guerra2, Nick Golding1, Kirsten A. Duda1, Ewan Cameron1,
Rosalind E. Howes1, Iqbal R.F. Elyazar3, J. Kevin Baird3,4, Robert C. Reiner Jr.5,
Peter W. Gething1, David L. Smith1,6 & Simon I. Hay1,6

Measures of clinical incidence are necessary to help estimate the burden of a disease. Incidence is a metric
not commonly measured in malariology because the longitudinal surveys required are costly and labour
intensive. This database is an effort to collate published incidence records obtained using active case
detection for Plasmodium falciparum and Plasmodium vivax malaria. The literature search methods, data
abstraction procedures and data processing procedures are described here. A total of 1,680 spatio-
temporally unique incidence records were collected for the database: 1,187 for P. falciparum and 493 for
P. vivax. These data were gathered to model the relationship between clinical incidence and prevalence
of infection and can be used for a variety of modelling exercises including the assessment of change in
disease burden in relation to age and control interventions. The subset of data that have been used for such
modelling exercises are described and identified.

Design Type(s) observation design • epidemiological study • data integration objective

Measurement Type(s) infectious disease incidence
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Sample Characteristic(s) Plasmodium falciparum • anthropogenic habitat • Plasmodium vivax

1Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford,
South Parks Road, Oxford OX1 3PS, UK. 2Sanaria Institute for Global Health and Tropical Medicine, Rockville,
Maryland 20850, USA. 3Eijkman-Oxford Clinical Research Unit, Jalan Diponegoro No 69, Jakarta 10430, Indonesia.
4Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
5Indiana University School of Public Health, Bloomington, Indiana 47405, USA. 6Fogarty International Center,
National Institutes of Health, Bethesda, Maryland 20892, USA. Correspondence and requests for materials should
be addressed to K.E.B. (email: katherine.battle@zoo.ox.ac.uk)

OPEN
SUBJECT CATEGORIES

» Epidemiology

» Malaria

» Literature mining

» Data mining

Received: 22 December 2014

Accepted: 02 March 2015

Published: 18 August 2015

www.nature.com/scientificdata

SCIENTIFIC DATA | 2:150012 | DOI: 10.1038/sdata.2015.12 1

mailto:katherine.battle@zoo.ox.ac.uk


Background & Summary
The global clinical burden of malaria has proven difficult to enumerate. Previous efforts have estimated
the clinical incidence of Plasmodium falciparum malaria using adjusted case reports1,2, modelling based
on study-level incidence and mortality rates3 and cartographic modelling techniques4–6. All of these
methods require malaria incidence measures in some part of their estimation or validation procedures.
The surveillance-based approach relies on routinely reported case numbers, which are adjusted by
country to account for incomplete reporting, the proportion of cases confirmed with routine diagnostics,
and health facility use and access1. The Global Burden of Disease (GBD) study uses an amalgam of three
methods to estimate case incidence. First, reported cases are used from a small subset of countries
deemed to have reliable reporting. Second, corrected reporting (similar to the surveillance-based
approach methods) is applied to a larger set of countries. And third, study-level incidence, such as the
records reported here, along with mortality rates and a variety of parameters such as age and detection
methods are used to model country-level incidence3. The cartographic approach, employed by the
Malaria Atlas Project (MAP), also uses a tiered approach. Case estimates from countries with reliable
estimate are used directly. Regions designated as unstable transmission regions6,7 are assigned an
incidence of 0.1 cases per 1,000 per year. For regions without accurate reporting in areas stable malaria
transmission, a modelled relationship between study-level measures of incidence matched in space and
time to prevalence surveys is applied to a smooth endemicity (prevalence) surface7 and multiplied by a
global population grid4. Such matched incidence and prevalence data are presented here.

Whilst approximations of ‘non-P. falciparum’ malaria exist, the burden of Plasmodium vivax malaria
is considered to be largely unknown8–10. The primary reason for these knowledge gaps is that measures of
malaria incidence are rarely undertaken as they are logistically demanding and thus expensive. To
accurately measure clinical incidence of malaria, longitudinal studies must be conducted that include
regular visits made to communities to check for symptomatic individuals through active case detection
(ACD)11. The database described here aimed to compile as many ACD studies for P. falciparum and
P. vivax as possible from 1985 to 2013 and represents a significant expansion upon previously published
assemblies of incidence data5.

A more commonly measured malaria metric is prevalence, also known as parasite rate (PR)12. As
demonstrated by Patil et al.5, Cameron et al.13 and Battle et al.14, ACD incidence records can be matched to
PR measures to model the relationship between prevalence of infection and incidence of clinical disease.
These models then have the potential to transform existing endemicity maps7,15 into global burden estimates
with known precision5. For this purpose, each ACD observation in this database has been matched to a
concurrently measured PR value or an extracted spatially and temporally matched modelled PR7,15.

All data curation and abstraction procedures to obtain the 1,680 incidence records, including geo-
positioning and prevalence matching, are described here. The structure of the final database and technical
validation efforts are also described along with notes to facilitate the replication of the analyses in
Cameron et al.13 and Battle et al.14 Such validation yields a powerful mathematical tool supporting efforts
to reliably estimate global burdens of disease imposed by the parasites causing human malaria.

Methods
Data collection
Here we provide additional detail on methodology to that provided in Cameron et al.13 and Battle et al.14,
which utilize only a subset of the data presented here. PubMed (http://www.ncbi.nlm.nih.gov/pubmed)
was searched on 27 November 2013 using the following search string: ((malaria[MeSH Terms]) AND
(‘Incidence’ [Mesh] OR ‘Epidemiology’ [Mesh] OR ‘epidemiology’ [Subheading])) AND (‘1985/01/
01’[Date—Publication]: ‘3000’[Date—Publication]). This selected references published after 1 January
1985 and the Medical Subject Headings (MeSH; http://www.ncbi.nlm.nih.gov/mesh) ensured that all
pseudonyms were included in the search. The cut off of 1985 was used to match the year range of PR
records included in the MAP database16. The literature search returned 11,272 citations and was
augmented with a further 25 references from previously published analyses5,17. A total of 15 search
strings were tested varying the terms used and application of MeSH terms. The number of references
returned ranged from 58 (((malaria[MeSH Terms]) AND ‘active case detection’) AND (‘1985/01/
01’[Date—Publication]: ‘3000’[Date—Publication])) to 1,291,787 (((((malaria[MeSH Terms]) AND
incidence[MeSH Terms]) OR epidemiology[MeSH Terms]) OR epidemiology[MeSH Subheading]) AND
(‘1985/01/01’[Date—Publication]: ‘3000’[Date—Publication])). The search string used was chosen
because it was a reasonable number of titles for a small team to sort through, while still capturing the
majority (87%, 55/63) of the references used in a previously published collection5.

Abstracts were reviewed to determine if the reference might contain P. falciparum or P. vivax
incidence data. References excluded at this stage included reviews, case studies, vector-only, reports on
animal or non-P. falciparum or P. vivax malaria, reports of imported malaria and technical articles
including mathematical modelling and genetic analyses. The full list of 11,297 references was narrowed
down to 898 references for full text review. Seventy-eight references known to contain incidence data
from the work by Patil et al.5 and Griffin et al.17 were also set aside.

Full texts were obtained for the 976 references identified for review. The criteria for inclusion were:
(i) longitudinal studies using ACD, (ii) symptomatic/clinical cases were the subjects of detection,
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(iii) studies were conducted in the general community (not patient sub-groups or hospital-based studies),
and (iv) diagnosis using microscopy or rapid diagnostic test (RDT). Studies done only on pregnant
women were excluded due to their increased susceptibility to malaria18. Conversely, studies using only
infants aged less than three months were excluded due to their potential temporary immunity to
P. falciparum from maternal antibodies19. Plasmodium vivax has been shown to cause significant
morbidity in young infants20,21, however none of the studies conducted on infants measured P. vivax
incidence. In-house language skills only allowed for the inclusion of articles written in English, French,
Portuguese and Spanish. Twelve publications out of the 976 identified for review were in other languages
(one Turkish and 11 Chinese) and therefore excluded. Articles that did not have enough information to
determine the number of cases and the person-time observed (length of follow up for each cohort
member) were excluded. Initially, there were no restrictions placed on the length or frequency of follow
up, as long as it was explicitly reported. Based on the above criteria, data were abstracted from a total of
230 references, the majority of which measured incidence of P. falciparum malaria. Data on P. falciparum
and P. vivax incidence were identified in 226 and 99 of these references, respectively. Literature review
procedures are outlined in Fig. 1.

Geo-positioning
All available location information was extracted from the published sources. Incidence records were first
positioned to a MAP region: Africa+ (Africa plus Saudi Arabia and Yemen), the Americas, and Central
and Southeast Asia (CSE Asia). The number of records by species and region are shown in Table 1. Next,
they were assigned to a country (based on 2013 boundaries) and place. The place was considered the
location of the study and latitude and longitude coordinates for each site were found using values given in
the paper (converting to decimal degrees where necessary) or where this was unavailable, manually
digitized using Google Maps22 or Microsoft Encarta23. Contextual information from the paper was used
to differentiate when two places with the same name were within one country or to narrow down a region
to be scanned for names that could be different spellings or translations of the site name (for example,
Sissé rather than Cisse). If the site was a village, town or city, the latitude and longitude were taken from
centre, unless a specific part of the town or city were specified as the study site. If the only location
information given was a larger area such as a district administrative unit, as defined by the Food and
Agriculture Organization (FAO) Global Administrative Unit Layers (GAUL) coding24, the centroid of the
region was found using geographic information systems (GIS) software25. If the location could not be
determined by any of these means, the authors were contacted for further information. The locations of
each record are shown in Fig. 2 and the distribution of the data records over time are shown by country
in Fig. 3. Records were also matched to zoo-epidemiological zones originally defined by Macdonald26 and
modified by Battle et al.27 to describe the geographic variation observed in P. vivax relapse phenotypes
(Fig. 4). These classifications enable the relationship between prevalence and incidence to be modelled
separately by region.

Calculating incidence
Incidence describes the number of events that occur within a specified time period. In this context, the
events are symptomatic cases (fever cases confirmed by RDT or microscopy) of P. falciparum or P. vivax
identified within a study population. Cases of P. vivax may arise from new mosquito-borne infections,
recrudescence from treatment failure or relapses from hypnozoites (the dormant liver stage). Because
there is no reliable way to differentiate relapses from new infections or recrudescence, the incidence
of P. vivax reported here includes the cases from all origins.

Values for the number of cases and time period the study population was observed (recorded in
person-years) were needed for modelling purposes and every effort was therefore made to extract or
derive those values. If incidence was given, then the number of cases or person-time was derived from
other information provided in the publication. In the few studies that provided age-specific data without
age-specific population data, a general population structure was applied28 to the whole population to
determine the size of the composite age groups. Where person-time was not explicitly reported, this was
calculated by multiplying the population number by the length of the study period. This was necessary for
the majority of studies for both P. falciparum (61%, 722/1187) and P. vivax (77%, 378/493).

Matching prevalence to incidence
So that the data may be used to model the relationship between prevalence (PR) and incidence of clinical
disease, an estimate of prevalence was spatially and temporally matched to each incidence record in the
database. If the incidence publication source contained empirical prevalence data, this was abstracted to
provide a space-time match between PR and incidence. Averages were taken for those studies that
reported more than one cross-sectional survey (XSS) for the same community. The number and timing of
each survey was recorded where available. Half of the records had PR data available from the same
reference (840/1680). Some additional space-time prevalence matches were added using the MAP PR
database16 if a separate publication measured PR in the same community and year as the incidence data
(6%, 97/1680). For the remaining 44% of the data (743/1680) without concurrent prevalence data, PR
values were extracted for all incidence records using 2010 point estimates of the annual mean modelled
P. falciparum7 and P. vivax15 endemicity values (shown in Fig. 1) using GIS software25. For P. vivax, areas
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where Duffy negative allele frequency was predicted to exceed 90% (ref. 29) is shown in hatching and
P. vivax PR was predicted at o1% in those areas. The PR values for P. falciparum were predicted for two
to ten year-olds, whereas for P. vivax, the predictions were made for all ages (one to 99 years). Because
these age ranges did not always correspond to age groups in the incidence data, these data were age
standardized using a bespoke model parameterized for P. falciparum30 and P. vivax15. The age
standardization model was also applied as needed to PR values obtained from publications, as not all
prevalence records had matching age ranges to the incidence data. The number of parasite positive

Searched PubMed from 1985+
27 November, 2013

((malaria[MeSH Terms]) AND ("Incidence"
[Mesh] OR "Epidemiology" [Mesh] OR
"epidemiology" [Subheading]))

n = 11,272

n = 11,297

Abstracts selected n = 898

+ References from previous analyses*

References from previous analyses* n = 78

Review of full texts

References identified for data abstraction
n = 230

226 P. falciparum publications
n = 1,187 incidence records

99 P.vivax publications
n = 493 incidence records

‒ Pre-1985

n = 483

‒ PCD only/XSS

n = 477

‒ Asymptomatics

n = 441

‒ Duplicate data

n = 432

‒ ACD frequency >30 d

n = 411

‒ Unclear methods

n = 388Used in Cameron, et al.
n = 295

from 28 references

‒ less than 4 age-bands

Used in Battle, et al.
n = 176

from 46 references

‒ No concurrent PR value

‒ Duplicate data

n = 1,144

n = 1,134

‒ Asymptomatics

‒ Unclear methods

n = 1,077

‒ outside Africa

n = 607

n = 211

‒ Number tested unreported

Abstracts reviewed

‒ presumptive treatment

n = 301

Figure 1. Schematic overview of the literature search procedure and results. The data exclusions to obtain

clinical incidence records of use for model implementation for the P. falciparum (Cameron et al.13) and

P. vivax (Battle et al.14) models are also shown. References from previous analyses* include those used by Patil

et al.5 and Griffin et al.17

www.nature.com/sdata/

SCIENTIFIC DATA | 2:150012 | DOI: 10.1038/sdata.2015.12 4



Figure 2. Distribution of incidence records of 2010 prevalence surfaces for P. falciparum and P. vivax. The

geographic locations of the incidence records for P. falciparum (top panel) and P. vivax (bottom panel) are

shown over the model-based geostatistics (MBG) point estimates of the annual mean PfPR2-10 and PvPR1-99 for

2010 within the spatial limits of stable limits of transmission (annual parasite index (API) ≥ 0.1 per 1,000 per

annum (p.a.)), displayed on a continuum from blue (0% PR) to red (70% PR for P. falciparum and >7% PR for

P. vivax). Dark grey areas were predicted to be unstable (API ≤ 0.1 per 1,000 p.a.) and light grey areas were

classified as risk free. Areas in which Duffy negative allele frequency is predicted to exceed 90% (ref. 29) are

shown in hatching for additional context in the P. vivax map. Study sites used in the P. falciparum (Cameron

et al.13) and P. vivax (Battle et al.14) models are shown as yellow stars and other sites included in this dataset

not used in the cited analyses are shown as purple points.

Region P. falciparum P. vivax Total

Africa+ 661 11 672

America 117 106 223

CSE Asia 409 376 785

Total 1,187 493 1,680

Table 1. Data records for P. falciparum and P. vivax by MAP region.
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individuals was then adjusted to match the age-standardized prevalence value. See results in Data
Citation 1. A schematic illustration the process of matching prevalence and incidence data is
shown in Fig. 5.

Code availability
All age standardisation routines were implemented in an open-source software package ageStand31,
implemented in the R statistical programming environment32. The package contains one function,

Figure 3. Temporal distribution and person-years observed for all incidence records by region and country.

Plasmodium falciparum (left panel) and P. vivax (right panel) records are shown as points along an axis of the

study start year. The points vary in colour and size based on the number of person-years observed in each

study, such that studies with smaller sample sizes are small dark purple points and larger studies are large light

blue points. The points are jittered so that overlapping points can be seen.

Figure 4. Geographic zones of varying malaria epidemiology and P. vivax relapse phenotypes. The zones were

used by Battle et al.27 to illustrate large-scale patterns in of relapse behaviour. Zones 4, 6 and 9 are not shown

because they were joined with other zones as described in Battle et al.27

www.nature.com/sdata/
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convertPrevalence, which simplifies the conversion of prevalence estimates between age bounds.
Five arguments were specified for the function. The first, prevalence, is a vector specifying the
prevalence, or which PR field in this case, to convert from. Next, age_min_in and age_max_in, are
vectors that specify the minimum and maximum ages associated with the estimates given in
prevalence. age_min_out and age_max_out are vectors that provide the lower and upper
bounds of the age range that the prevalence is to be converted to. Finally, the parameters argument
specifies a set of parameters to be used in the model and was set to ‘Pf_Smith2007’ for all P. falciparum
conversions and ‘Pv_Gething2012’ for all P. vivax conversions, referring the papers where the models
were originally published for each species30,33.

Incidence records extracted from literature
n = 1,680

P. falciparum
n = 1,187 incidence records

P.vivax
n = 493 incidence records

PfPR
reported in
same

publication
n = 613

PvPR
reported in
same

publication
n = 227

No PfPR
reported
n = 574

No PvPR
reported
n = 266

+ n = 72
PfPR records

+ n = 34
PvPR records

MAP PR
database
searched

n = 685
PfPR records

n = 261
PvPR records

Records not
age matched
to incidence

data

n = 539
age matched
PfPR records

n = 192
age matched
PvPR records

Age
standardization

model

PapPR_Stand

Modelled PfPR
extracted from
Gething et al,
2011 map

Modelled PvPR
extracted from
Gething et al,
2012 map

PfPR2_10 PvPR1_99

Age
standardization

model

Age
standardization

model

MAPPR_Stand MAPPR_Stand

Amalgam of
paper and MAP
PR sources

PR_Stand

Figure 5. Schematic overview of the procedure of matching prevalence to incidence. Rectangles referring to all

data are shown in grey, P. falciparum data in green, and P. vivax data in purple. Orange rectangles indicate data

processing procedures and red rectangles symbolize fields in the final database.

www.nature.com/sdata/

SCIENTIFIC DATA | 2:150012 | DOI: 10.1038/sdata.2015.12 7



Data Records
Data on each species was abstracted separately and data were disaggregated by age groups where possible.
Values were input into a spreadsheet containing 63 fields:

1. Identification
ENL_ID. Data source identification number.
PI_ID. Unique identifier for each record.
INC_AUTHOR. First author surname of incidence data publication.
INC_PUBYEAR. Publication year of incidence data publication.
GRIFFIN. Identifies a record used in the analysis by Griffin et al.17

CAMERON. Identifies a record used in the analysis by Cameron et al.13

BATTLE. Identifies a record used in the analysis by Battle et al.14

EXCLUSION. Potential exclusion criteria as described in Table 2.
SPECIES. P. falciparum (Pf) or P. vivax (Pv).

2. Geo-positioning
REGION. MAP regions are America, Africa+ and CSE Asia.
COUNTRY. Country where ACD was conducted.
ACD_LOCATION. The town/village/district where the ACD was conducted.
LAT. Latitude in decimal degrees (WGS1984 datum).
LONG. Longitude in decimal degrees (WGS1984 datum).
LATLONG_SOURCE. Source of the coordinates: Paper (from the publication), Google22, Encarta23,

Other (other online sources or databases), Pers. Comm. (personal communication, usually reporting
GPS-read coordinate), GIS (centroid of administrative unit found using ArcGIS)25, or Combination
(a combination of the aforementioned methods).

GEOPOS_NOTES. Further information about how geo-positioning was carried out.
EPIZONE. Numerical code for geographic epidemiological zones as defined in Battle et al.27 and as

shown in Fig. 4.
BATTLEZONE. The full name of the EPIZONE described above.

3. Incidence time
START_MONTH. Survey starting month.
START_YEAR. Survey starting year.
END_MONTH. Survey ending month.
END_YEAR. Survey ending year.
TIME. Number of years of observation, using fractions to represent o1 year (1 for 12 months, 0.67

for 8 months, 1.33 for 16 months, etc.)
TIME_CAT. Categorizes the TIME column into six categories for the purpose of further exclusion if

needed (o6 months, 6–11 months, 12 months, 13–23 months, 24 months, >24 months).
FREQ_ACD. Frequency of ACD written as text (every 2nd day, weekly, fortnightly, etc.). Weekly*

indicates a record where the frequency of ACD was not explicitly reported in the study and assumed to be
one week.

Potential exclusion criteria* Description Pf Pv Total

Duplicate Data from different studies reporting the same data or data from the total population
where age-specific data were also reported

15 10 25

Asymptomatic Papers that did not diagnose based on clinical symptoms, but on infection alone, and
therefore asymptomatic cases would be included in the incidence estimates

11 6 17

Unclear Methods regarding the ACD were vague; often the frequency of ACD was not reported 50 36 86

Infrequent ACD Studies that carried out ACD at intervals greater than 30 days 22 9 31

Pre-1985 Studies that were published after 1985, but contain incidence data gathered before
1985

38 21 59

XSS Studies that appear to be cross-sectional surveys rather than longitudinal ACD studies 10 10 20

PCD Studies that appeared to use only passive case detection 54 13 67

o4 age bands Studies that either did not stratify incidence by age or did so with less than four age
groups

859 371 1,230

Approximate person-time Person-years observed (PYO) was approximated by multiplying the study population
by study time period

722 300 1,022

Rx Population was given presumptive treatment prior to ACD observation period 35 2 37

Table 2. Exclusion criteria applied to the initial dataset for P. falciparum and P. vivax. *Figure 1 illustrates
how these criteria were applied to the species-specific data records.

www.nature.com/sdata/

SCIENTIFIC DATA | 2:150012 | DOI: 10.1038/sdata.2015.12 8



FREQ_ACD_NUM. This will express the frequency of ACD numerically should scaling be applied
downstream. Records the number of days between each visit (every 2nd day= 2, every fortnight= 14,
every month= 30).

PCD. Passive Case Detection. Yes/No for if Passive Case Detection was conducted alongside the ACD.
POP. Number of people observed for TIME; the study population.
d. The number of positive species-specific clinical cases. Asymptomatic and mixed infections were not

included. Mixed infections were often a negligible proportion of the total infections and present a
challenge because it is not possible to determine the parasite that caused the symptomatic episode.

PYO. If person-time is specifically reported in the paper, that value was used after converting to
person-years. If person-time was not explicit, the length of the study period (TIME) was multiplied by the
study population (POP) such that PYO=TIME * POP.

PYO_APPR. PYO approximated. This is a binary entry to indicate if the PYO was approximated or if
an exact PYO was provided in the paper. If PYO=POP*TIME then it was approximated (value 1), and if
PYO was reported in the paper (even if it is converted to years from days/weeks/months), then it was
exact (value 0).

INC. Incidence= (d/PYO)*1,000. Incidence may have been explicitly reported in the paper. However,
the likelihoods are derived from d and PYO and therefore if incidence was provided, the PYO and d were
calculated from INC.

INC_NOTES. Description for how incidence values were obtained or derived from information given
in the publication.

DIAGNOSTIC. Diagnostic technique used (Microscopy or RDT). Data based on serology or PCR were
not included.

CLINICAL_DEF. Clinical Definition. The definition of a clinical case as given in the paper: fever+any
parasitaemia or fever+parasitaemia within a fixed or age-dependent threshold (fixed was used if the study
reported both).

CASE_DENS_THRESH. Case definition parasite threshold. Some publications specified a minimum
parasite load for a patient to be considered a positive case. If any parasite density was permitted, a
threshold of 1 was entered, otherwise the value specified in the paper was entered.

4. Incidence population
INC_LAR. Incidence lower age range. If there were multiple age groups studied in one paper, they

were entered as separate rows. If no lower age was given, it was assumed to be zero.
INC_UAR. Incidence upper age range. If no upper age was given, it was assumed to be 85.
EIR. Entomological inoculation rate. This was recorded if given in the reference to provide a measure

of transmission intensity.
INTERVENTION. Any interventions taking place in the study population. Control and intervention

arms should be entered in different rows. For control groups or if there was no intervention, None
was entered.

5. Prevalence data
PR_AUTHOR. The author of the source of the parasite rate (PR) data. If the data was found in the

same paper as the incidence data, it was entered as Same.
PR_PUBYEAR. The year that the reference that cites the parasite rate was published. If it is the same

paper as the incidence paper, it was entered as Same.
PR_MONTH. The month prevalence that the survey was conducted. If not provided, NA was

recorded.
PR_YEAR. The year that the prevalence survey was conducted.
N_SURVEYS. This refers to the number of prevalence surveys (XSS) included in the PR estimate

reported. Several studies reported PR values that are averaged from more than one survey.
PR_LAR. Lower age range of individuals tested in XSS. If no lower age was given, it was assumed to

be zero.
PR_UAR. Upper age range of individuals tested in XSS. If no upper age was given, it was assumed

to be 85.
AGE_MATCH. If the PR age range was the same as the incidence age range, the value was 1. If they

did not match, the value was 0. If there was no PR value from the paper, the value was 99.
N. Number of individuals examined in the prevalence survey, or if slide positivity rate was reported,

the number of slides examined was used.
N_POS. Number of individuals positive for parasite in question.
N_POS_ADJ. Adjusted number positive based on age-standardized prevalence value (PapPR_Stand or

PR_Stand below).
PR. Calculated parasite rate= (N_POS/N).
PR_NOTES. Description of how a concurrent PR estimate was obtained.
PR_DIAGNOSTIC. Diagnostic technique used to identify P. falciparum or P. vivax prevalence within

the population (microscopy or RDT). Data based serology or PCR were not included.
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6. Matched prevalence data
PfPR2_10. Predicted PfPR values from the P. falciparum MAP endemicity surface7.
PvPR1_99. Predicted PvPR values from the P. vivax MAP endemicity surface15.
MAPPR_Stand. Estimate from the P. falciparum or P. vivax MAP surface age-standardized to

the age-range used in the incidence data.
PapPR_Stand. Concurrent PR estimate age-standardized to the incidence age-range.
PR_Stand. If a concurrent PR estimate was available, the age-standardized one is used here, if not, the

age-standardized MAP estimate is used.

7. Citations
REF_ACD. Reference for the incidence data.
PMID. PubMed identification number for ACD reference. Unpublished sources were left blank, but

the type of source (e.g. thesis or conference proceedings) was noted in the full reference given in
REF_ACD.

REF_PR. Reference for the PR data (if available).
PMID_PR. PubMed identification for PR reference. Unpublished sources were left blank, but the type

of source (e.g. thesis or conference proceedings) was noted in the full reference given in REF_PR. If no
concurrently measured PR was found, this was field also left blank.

Technical Validation
There were 1,680 rows of incidence data following initial data extraction (Data Citation 1). All records
were entered by one team member and checked by a second. Cells where there was disagreement were
highlighted and checked by a third person where possible. Checking was done to ensure that entries were
accurate and that the inclusion criteria outlined above were met. Some exceptions to inclusion criteria
described were made to allow for studies used in previous analyses5,17 to be added to the database.

To record any exceptions to the inclusion criteria used in the Cameron et al.13 and Battle et al.14

studies and to flag other records for potential exclusion in future analyses, an additional field was added
to the database (see EXCLUSION field above). The first exclusion, which applied to both P. falciparum
and P. vivax data, was to remove records from different studies that reported the same data (same
population at the same time). The records prioritized for inclusion were those that had been included in
previous analyses5,17. Next, studies that measured both symptomatic and asymptomatic cases that passed
the first inclusion stage, but found during validation, were marked for potential exclusion as the incidence
measure would not be specific to clinical cases. Studies with unclear methods, such as un-specified
frequency of detection or the number of cases or person-time could not be derived, were also marked for
potential exclusion. For P. falciparum, the remaining potential exclusion criteria based on the analysis by
Cameron et al.13 was to not include studies that (i) had fewer than four age-specific estimates from the
same population during the same time to remove studies under-powered for inference of the P.
falciparum age-incidence relationship and or (ii) where the population were treated presumptively at the
start of the transmission season. There were only six P. falciparum records excluded from the Cameron
et al. analysis for presumptive treatment, but it was noted in INTERVENTION field for other records that
had been flagged for potential exclusion for other reasons. For the P. vivax analysis by Battle et al.14,
studies that made ACD visits more than one month apart were excluded, as were studies conducted prior
to 1985. Incidence reports from retrospective analyses or passive case detection (PCD)-only were marked
in the EXCLUSION field, as were XSS because they are not longitudinal and measure both symptomatic
and asymptomatic cases. The records flagged as PCD and XSS had originally been abstracted because
they were used in previous analyses5,17.

A summary of the exclusion criteria described above is shown in Table 2 and a schematic of the
exclusion procedures is shown in Fig. 1. Table 3 shows the regional distribution of the 328 P. falciparum
and the 152 P. vivax records remaining after the species-specific exclusions described above were applied.
The study by Cameron et al.13 was restricted to Africa, but the lack of data in Africa in the P. vivax
analysis conducted by Battle et al.14 represents a genuine absence of P. vivax data in the region. Note that
all 1,680 records originally abstracted remain in the database so that customized exclusions can be applied
for any future analyses using this data.

Region P. falciparum—Cameron* P. vivax—Battle†

Africa+ 295 —

America — 43

CSE Asia — 133

Total 295 176

Table 3. Data records for used in analysis by Cameron et al.13 and Battle et al.14 by MAP region. *The
study by Cameron et al. was restricted to Africa. †The study by Battle et al. was global and therefore lack of
records in Africa+ represents a genuine absence of data that matched the inclusion criteria from that region.
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Usage Notes
This dataset was generated for the purpose of modelling the relationship between incidence of clinical
malaria and the more commonly measured PR. This database has been directly applied to the models
described in Cameron et al.13 and Battle et al.14, and is similar to the smaller dataset published by Patil
et al.5, with the intention of developing species-specific global burden maps for P. falciparum and P. vivax
malaria. Those in turn directly inform global estimates of the burden of clinical disease attributable to
each species. This information is critical to efficiently allocate resources and direct efforts to combat these
illnesses.

As described above, this database reports incidence of all infections, not only new infections, and
therefore include relapses (P. vivax only), recrudescences and reinfections in both the prevalence and
incidence measures27,34,35. For P. vivax in particular, these data could be used in conjunction with data on
patients who have received radical cure treatment (with either primaquine or tafenoquine) or treatment
without primaquine to determine the incidence of new infections or relapses, respectively. This would be
done by taking the overall incidence in a location, as reported here, and subtracting the incidence of new
infections from patients treated with a radical cure or without a radical cure. This would be essential data
for determining sporozoite- and hypnozoite-specific attack rates, the relative proportions of which may
directly inform the character of interventions against endemic malaria.

It has been hypothesised that a key driver of relapse in P. vivax is infection with P. falciparum. To
allow for investigation of the potential interactions between the endemicity of one species on the
incidence of another, a prevalence measure for both P. vivax and P. falciparum is provided for each entry.

This database may also be of use for other analyses of clinical burden. Where possible, data has been
disaggregated by age. This allows for studies of how burden of disease changes with age, as was done by
Griffin et al. using a smaller dataset of P. falciparum in children in Africa12. The database also contains
incidence data from intervention studies with data from both intervention and control arms entered. This
would offer insight into the impact of control on incidence of disease as compared to prevalence of
infection. Finally, the collection of data from 1985 until the present may improve our understanding in
the change of malaria burden over time.
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