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RESEARCH ARTICLE

G6PD Deficiency at Sumba in Eastern
Indonesia Is Prevalent, Diverse and Severe:
Implications for Primaquine Therapy against
Relapsing Vivax Malaria
Ari Winasti Satyagraha1*, Arkasha Sadhewa1, Vanessa Baramuli1, Rosalie Elvira1,
Chase Ridenour2, Iqbal Elyazar3, Rintis Noviyanti1, Farah Novita Coutrier1, Alida
Roswita Harahap1, J. Kevin Baird3,4

1 Eijkman Institute for Molecular Biology, Jakarta, Indonesia, 2 University of Northern Arizona, Flagstaff,
Arizona, United States of America, 3 Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia, 4 Centre
for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom

* ari@eijkman.go.id

Abstract
Safe treatment of Plasmodium vivax requires diagnosis of both the infection and status of

erythrocytic glucose-6-phosphate dehydrogenase (G6PD) activity because hypnozoitocidal

therapy against relapse requires primaquine, which causes a mild to severe acute hemolytic

anemia in G6PD deficient patients. Many national malaria control programs recommend pri-

maquine therapy without G6PD screening but with monitoring due to a broad lack of G6PD

deficiency screening capacity. The degree of risk in doing so hinges upon the level of resid-

ual G6PD activity among the variants present in any given area. We conducted studies on

Sumba Island in eastern Indonesia in order to assess the potential threat posed by prima-

quine therapy without G6PD screening. We sampled 2,033 residents of three separate dis-

tricts in western Sumba for quantitative G6PD activity and 104 (5.1%) were phenotypically

deficient (<4.6U/gHb; median normal 10U/gHb). The villages were in two distinct ecosys-

tems, coastal and inland. A positive correlation occurred between the prevalence of malaria

and G6PD deficiency: 5.9% coastal versus inland 0.2% for malaria (P<0.001), and 6.7%

and 3.1% for G6PD deficiency (P<0.001) at coastal and inland sites, respectively. The

dominant genotypes of G6PD deficiency were Vanua Lava, Viangchan, and Chatham, ac-

counting for 98.5% of the 70 samples genotyped. Subjects expressing the dominant geno-

types all had less than 10% of normal enzyme activities and were thus considered severe

variants. Blind administration of anti-relapse primaquine therapy at Sumba would likely im-

pose risk of serious harm.

Author Summary

G6PD deficiency affects over 400 million people worldwide. This enormously diverse disor-
der causes acute hemolytic anemia upon exposure to oxidizing chemicals, e.g., naphthalene,
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some sulfa drugs, and certain antimalarials, including primaquine. The primary public
health concern with G6PD deficiency involves that latter drug, the only one available for the
radical cure of vivax and ovale malarias. Absent primaquine therapy, patients will suffer
multiple recurrent attacks called relapses in the two years following the primary attack. Pri-
maquine in G6PD-deficient patients triggers a mild to severe acute hemolytic anemia, de-
pending upon dose administered and the specific variant involved. Relatively high
therapeutic doses in severely deficient variants will threaten life. Malaria therapeutic policy
and practice regarding primaquine may hinge upon the prevalence and severity of G6PD de-
ficiency weighed against the therapeutic benefit of averting risk of relapse and attendant
morbidity, mortality and onward transmission. In the current study we aimed to inform
that weighing by characterizing the frequency and type of G6PD deficiency occurring in
populations enduring endemic vivax malaria transmission on a single island in eastern Indo-
nesia. The findings infer risk of serious harm caused by primaquine administered to resi-
dents of unknown G6PD status.

Introduction
The majority of people suffering acute malaria caused by Plasmodium vivax cannot safely re-
ceive primaquine therapy to prevent multiple recurrent attacks called relapses. This extraordi-
nary gap likely explains most of the heavy burdens of morbidity and mortality imposed by this
long neglected species of parasite. Misunderstood as relatively harmless over past decades, re-
cent work affirms an often pernicious and sometime fatal course with a diagnosis of P. vivax
malaria [1][2][3][4][5]. This realization awakened concern regarding the long neglect of thera-
py against relapse due to the problem of primaquine toxicity in patients with an inborn defi-
ciency of glucose-6-phosphate dehydrogenase (G6PD).

Glucose-6-phosphate dehydrogenase deficiency (G6PDd) affects more than 400 million
people, or about 8% of the general population of malaria endemic nations [6][7]. This problem
hampers the malaria elimination aims employing primaquine as anti relaps therapy. G6PD is
an inherited, X-linked recessive trait expressed by any one of many dozens of known single nu-
cleotide polymorphisms (SNPs) impairing the function of G6PD enzyme to an extent ranging
from very slightly to almost completely [8]. G6PDd remains silent in almost everyone until ex-
posure to certain infections, foods, chemicals or drugs provokes an acute hemolytic anemia
(AHA) ranging from mild and self-limiting to severe and life threatening [9]. The severity of
AHA appears to be directly correlated with the extent to which G6PD activity is impaired, and
such is the basis of the classification of the many known G6PDd variants put forth by the
World Health Organization [10].

The most important clinical and public health problem with G6PDd stems from the hemo-
lytic toxicity of primaquine. This drug stands alone as the only available therapy against both
onward transmission of the infection via sexual blood stages (called gametocytes) and in pre-
venting relapses caused by latent forms in the liver (called hypnozoites). Therapeutic doses of
primaquine cause a mild to severe AHA, depending upon dose delivered and the G6PDd vari-
ant involved, and there is great variation in each in the clinical setting.

Gametocytocidal therapy has been a single adult dose of 45mg primaquine base, whereas
hypnozoitocidal therapy has been a daily dose of 15 or 30mg daily for 14 days (210 or 420mg
total dose) [11][12]. Even the single 45mg dose provoked a substantial AHA in otherwise
healthy adult volunteers with the relatively severe Mediterranean variant of G6PDd [13], but
not among those with a mild A- variant common in Africa and African-Americans [14]. That
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toxicity, along with recognition of good gametocytocidal efficacy at a single 15mg adult dose,
prompted WHO in 2012 to recommend the lower dose [15].

Hypnozoitocidal therapy applies much greater amounts of primaquine, and important dif-
ferences also occur with regard to variant-specific sensitivity to the drug. When otherwise
healthy G6PDd A- adult volunteers were exposed to daily doses of 15mg or 30mg primaquine,
hemolysis typically did not commence until after the third or fourth day, and the nadir of he-
matocrit occurred on about day 7 or 8 of dosing [16]. Thereafter hemolysis seemed to cease
and subjects recovered normal hematocrit despite continuous daily dosing of 30mg for many
weeks [17]. Only older red blood cells (RBC) were destroyed and the younger RBC replacing
them could manage continued primaquine dosing. AHA in those subjects was thus considered
mild and self-limiting. In stark contrast, similar experiments in adult Mediterranean G6PDd
variants showed exquisite sensitivity to daily dosing without induction of even the slightest tol-
erance of primaquine [17]. Even reticulocytes of those subjects were destroyed by primaquine
challenge. Continued dosing would cause severe and threatening AHA. The danger of prima-
quine therapy thus hinges upon single (gametocytocidal) versus daily (hypnozoitocidal) dos-
ing, and the ability to identify those most at risk of a relatively severe AHA, i.e., patients having
severe G6PDd variants, like Mediterranean.

The majority of malaria patients live where G6PDd cannot be even crudely assessed using
commercially available qualitative kits [18][19][20]. These kits are expensive, require special-
ized equipment and laboratory skills, and a cold chain of supply and storage [21]. Consequent-
ly, most malaria patients are not offered primaquine therapy due to the danger it poses to a
minority of patients. The opportunity to prevent multiple relapses in the coming weeks and
months is thus lost. Multiple preventable attacks, typically at least 3 and sometime 10 or more,
occur with attendant deepening risk of morbidity, mortality, and onward transmission [22].
The benefit of withholding primaquine therapy for fear of causing harm among unscreened
G6PDd patients must be weighed against the risks borne of repeated clinical attacks and new
opportunities for onward transmission. Risk versus benefit deliberation of primaquine therapy
should be informed by the prevalence and severity of G6PDd in any given population burdened
with endemic malaria vivax transmission. The proportion of people vulnerable to primaquine
therapy and the extent of their sensitivity to primaquine underpin that weighing.

In the current study, we characterized the epidemiology of G6PDd at three sites on Sumba
Island in the malaria-endemic eastern Indonesian archipelago. Those sites represented relative-
ly low to high risk of malaria. We quantitatively assessed G6PD activity in blood from nearly
2000 residents of most ages and both sexes and genotyped those exhibiting impaired G6PD ac-
tivity. The effort represents a primary step in beginning to grasp the likely clinical conse-
quences of primaquine therapy without G6PDd screening by delineating quantitative G6PD
activity and genotype in a population at risk. The study also lays the foundation for quantitative
definition of G6PDd diagnostic device performance and pitfalls in anticipation of practical
point-of-care screening later becoming available in such settings.

Materials and Methods

Ethics Statement
The study has been approved by the Eijkman Institute Research Ethics Commission (Project
Number 46, July 29th, 2011) and the study has been conducted according to the principles ex-
pressed in the Declaration of Helsinki. Written informed consent was obtained from all sub-
jects whose 8 ml of blood were taken. Parents or guardians signed the informed consent
for minors.

G6PD Deficiency and Its Implication for Primaquine Therapy
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Study Site and Population
Screening of 2033 residents from two different ecosystems (inland and coastal) in western
Sumba in the Lesser Sundas Archipelago of eastern Indonesia (Fig. 1) occurred during Janu-
ary-February 2012. The cross-sectional surveys were conducted at three districts in western
Sumba comprising inland and coastal ecosystems. The inland ecosystem included Lendiwacu
andWairasa in Central Sumba and Palla health centres in Southwest Sumba whereas the coast-
al ecosystems included Kabukarodi and Lahihuruk health centres in West Sumba and Bondo
Kodi in Southwest Sumba. The sample represented 1–3% of the total population in the areas
assessed. The villages sampled represented those in proximity to the health centres from which
the research team operated. Most villages were beyond practical reach of sampling that includ-
ed quantitative G6PD assessments in the field. Residents were invited for screening and the
sample thus represents all of those willing to do so.

All volunteers were assessed for malaria, hemoglobin level, and quantitative G6PD activity
in an improvised field laboratory utilizing a finger-stick sample of blood in EDTA micro-tubes.
Subjects were classified as G6PD normal or deficient by employing 4.6 U/gHb G6PD as cut off
point as per recommendation of the quantitative assay manufacturer’s instructions. All G6PDd
subjects and 31 G6PD normal subjects who were available on the day of blood collection, hav-
ing at least 10g/dL hemoglobin (Hb) and being more than 6 years of age were invited to submit
to venipuncture (8mL whole blood) for assessment of purified G6PD enzyme kinetics and gen-
otyping at a laboratory in Jakarta. Among the 104 G6PDd residents identified, only 80 volun-
teered to submit to venipuncture and provided written informed consents, the balance of 24
people were either absent or declined.

Finger Stick Blood Processing, Parasitological and Hemoglobin
Examination and G6PD Assay
Finger stick blood was first placed on a clean glass slide and prepared for thin and thick blood
film staining by Giemsa in the standard manner. Certified malaria microscopists read at least
100 visual fields of oil immersion (1000X) magnification of the stained thick film prior to con-
sidering a slide negative. Positive slides were reported according to species observed in the mi-
croscopic examination from thin blood film. Blood from finger stick of volunteers was placed
in EDTA micro-tubes (Becton-Dickinson Microtainer), placed in a cool dark container, and
within 8hr was quantitatively assayed for G6PD activity using a commercially available kit
(Trinity Biotech, Ireland; Cat. No. 345-B) with deficient (Cat. No. G5888), intermediate (Cat.
No. G5029) and normal (Cat. No. G6888) G6PD controls. The reaction was read at 340nm
wavelength using a Biochrom (UK) WPA Biowave II UV/Vis spectrophotometer. G6PD activi-
ty was calculated from that optical density reading as instructed by the kit manufacturer. Ten
microliters of EDTA blood from the microtube was put into a micro-cuvette supplied by the
manufacturer of the HemoCue system (HemoCue AB, Sweden) and immediately read in the
instrument (Hb201+) of that system for hemoglobin measurement prior to the G6PD
quantitative assay.

Venipuncture Blood Processing
A qualified phlebotomist collected 8mL venous blood from the arm into 8.5mL vacuum capped
tubes containing acid citrate dextrose (ACD; Becton Dickinson yellow top vacutainer). These
tubes were immediately stored at 4°C for no more than 5 days in Sumba prior to transport by
air to the laboratory in Jakarta. The tubes were also stored at 4°C in the laboratory until the day
of processing. All blood was analyzed within 30 days of collection.

G6PD Deficiency and Its Implication for Primaquine Therapy
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Fig 1. A) Schematic work flow of the study in western Sumba in 2012 and B) map of G6PD deficiency andmalaria prevalences in study sites in
Sumba. Small inlet showed the map of Indonesia and where Sumba island is located.

doi:10.1371/journal.pntd.0003602.g001
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Venous blood was processed for genotyping and G6PD purification and enzyme kinetics as-
says. After being spun 1500xg for 15min, the plasma was decanted by pipette, followed by
transfer of the buffy coat into a 1.5mL Eppendorf tube held at −25°C for later genotyping. The
red blood cell (RBC) pellet was then washed with isotonic solution (0.9% NaCl with 1mM
EDTA) and spun at 500xg for 15min 3 times before adding lysis solution (2.7 mM EDTA with
0.7 mM β-mercaptoethanol) in 1:5 ratios. The hemolysate was then centrifuged at 20,000xg for
30 min and the supernatant poured slowly into the DEAE column (GE Healthcare, USA) equil-
ibrated with Buffer 1 (5 mM Na-phosphate buffer, pH 6.4). After lysate was loaded to this col-
umn, Buffer 2 (5 mM Na-phosphate buffer, pH 6.4 containing: 1mM EDTA, 20 μMNADP,
1 mM β-mercaptoethanol) was added. Partially purified G6PD was eluted from the column
using Buffer 3 (0.1 M Na-phosphate Buffer pH 5.8 containing: 0.5 M NaCl, 1 mM EDTA,
20 μMNADP, 1 mM β-mercaptoethanol). G6PD activity of this crude eluate (DEAE fraction)
was measured prior to being put through a 10 KDMilipore size-exclusion chromatography spin
column to concentrate and to exchange Buffer 3 with ADPWash Buffer 1 (0.1M K-acetate +
0.1M K-phosphate pH 6) ready for next purification step. That eluate (Millipore fraction) was
then put into 2’,5’ ADP-Sepharose affinity chromatography column (BioRad, USA) and the
column was washed in ADPWash Buffer 2 (0.1M K-acetate + 0.1M K-phosphate pH 7.85),
ADPWash Buffer 3 (0.1M KCl + 0.1M K-phosphate pH 7.85), and finally with Equilibration
Buffer (50nM K-phosphate buffer containing 1 mM EDTA pH 7.5) all with flow rate of 50ml/
hr. The elution buffer (80mM K-phosphate, 80mM KCl, 1 mM EDTA pH 7.85 and 0.4mM
NADP+) was added and fractions 4 and 5 (1 ml each), containing purified G6PD from 2’5’
ADP-Sepharose affinity chromatography, were stored on ice no more than 4hr prior to bio-
chemical characterization. This enzyme purification method was adapted from protocols de-
scribe elsewhere [23][24].

Enzymatic Activity, Kinetics of Purified G6PD
In each tube, 0.2mMNADP+, 0.1M Tris HCl pH 8.0, 0.01MMgCl2 and purified enzyme from
fractions 4 and 5 of 2’5’ ADP-Sepharose affinity chromatography (diluted 1:5 with lysis solu-
tion) was incubated for 10 min at 30°C. Water (blank) or substrate (0.6mM glucose-6-phos-
phate, G6P) was then added to the mixture and absorbance read at 340nm using the 25
Lambda™UV/Vis spectrophotometer (Perkin Elmer, USA) for 5 min with 1 min interval for
optical density (OD) readings. The calculation of activity was as follows:

Activity ðUÞ ¼ DOD=min� 105

6:22� enzyme volume

(enzyme volume = μl of enzyme/ml reaction mixture) where one unit of G6PD consists of the
amount of enzyme which reduces one μmol of NADP+ per minute. One μmol/min of reduced
NADP (NADPH) has an absorbance of 6.22 in a light path of 1 cm.

Five different concentrations of NADP+ (0.01mM, 0.02mM, 0.03mM, 0.04mM and
0.05 mM) and constant G6P concentration or 5 different concentrations of G6P (0.03mM,
0.06mM, 0.12mM, 0.18mM and 0.16mM) with constant NADP+ and all reactions used con-
stant amount of enzyme pooled from fraction 4 and 5 of 2’,5’ ADP-Sepharose affinity chro-
matography column [10]. These activities were then measured at 340 nm wavelength as
described above and used to calculate enzyme activity.

G6PDGenotyping
The frozen buffy coat from venous blood samples was thawed and its DNA was extracted using
Qiagen Flexigene DNA extraction kit according to the manufacturer’s instruction. PCR of the
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G6PD gene was done essentially as described by Saunders et al [25]. The gene was divided into
3 segments in which internal primers were designed to amplify the entire gene starting from
exon 3 to 13. Primers (ordered from 1stBASE) for sequencing were designed internally from
each of the 3 parts and employed a primer walking sequencing strategy [25]. Purifications of
the PCR products with High Pure PCR Product Purification Kit from Roche were done prior
to cycle sequencing. Sequencing reaction was performed by using the ABI Prism BigDye Ter-
minator cycle sequencing ready kit version 31 and run on 3130 XL genetic analyzer (Applied
Biosystems, France). Electropherograms were visualized and analyzed with FinchTV. Nucleo-
tide sequences were compared to the sequence of G6PD in GenBank (accession no.
NG_009015.1) for mutation identification.

Statistical Analyses
Subjects were classified as normal or deficient on the basis of Trinity Biotech’s quantitative
G6PD activity above 4.6 U/gHb as normal G6PD. For those with G6PD deficiency, their en-
zyme activities (phenotype) and G6PD mutations (genotype) were measured. The primary out-
come was the prevalence of people in the sample with G6PD deficiency. The result was
stratified by study site and gender. Statistical significance of G6PDd prevalence by site and gen-
der was evaluated by Chi-square test. Odd ratios and Fisher’s exact 95% confidence intervals
were used to determine the relationship between haemoglobin, gender and parasitemia on defi-
cient phenotype. Mean, median, standard deviation and range of G6PD enzymatic activities
were calculated to determine reference values in normal and deficient subjects. An extended
Wilcoxon rank-sum test was used to evaluate the trend of G6PD activities across anemia and
normal Hb level. Data were analyzed using Stata 9.

Results

Demography, Parasitology, G6PD Prevalence and Genotypes
In total we covered the villages surrounding the six health centres from these three districts,
with three health centres per ecosystem. Among the screened 2,033 subjects, 58% were female
at both habitat types. The median age at the inland sites was 29 and 33 years of age (males and
females which ranged from 5–76 years and 4–80 years, respectively), older than at the coastal
sites (median 16 and 26 for males and females which ranged from 3–80 years old and 3–78
years old respectively) as summarized in Table 1. Hemoglobin levels were essentially similar
between inland and coastal sites, with females consistently showing higher rates of anemia. The
prevalence of G6PDd phenotype among males at the coastal sites was significantly higher than
among those at inland sites (10.8% vs. 3.6%; OR = 3.2; 95%CI = 1.7–6.4; P<0.0001). Among fe-
males, no such difference occurred (4.2% vs. 3.0%; OR = 1.4; 95%CI = 0.7–2.8; P = 0.282).
Among the 70 G6PDd subjects successfully genotyped, 32 were Vanua Lava (17303T!C), 22
Viangchan (19451G!A), 15 Chatham (19583G!A), and 1 Kaiping (20316G!A).

The prevalence of malaria differed sharply between the two habitat types as shown in
Table 1. At the inland sites only 0.2% of the sample was parasitemic compared to 5.9% among
coastal residents (P<0.0001). Likewise, the prevalence of of G6PDd among males also differed;
3.8% (16/417) and 10.5% (45/427), respectively (OR = 0.33, 95%CI = 0.18–0.59). The risk of
parasitemia among the G6PD normal was slightly lower than among G6PDd, but not signifi-
cantly different; 3.0% vs.4.8% (OR = 0.60, 95%CI = 0.23–1.54; P = 0.29).

G6PD Deficiency and Its Implication for Primaquine Therapy
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G6PD Activity in the Community
Fig. 2 shows the distributions of G6PD activity values at each of the 2 different ecosystems. Vi-
sually, the manufacturer’s recommended cut off for deficient versus normal G6PD activity ap-
pears valid. The tail of the normal distribution of G6PD activity approaches a frequency of zero
at about that point at both locations. Below that level, the frequency of subjects rises, in most
instances to the highest frequency at or near the lowest increment of enzyme activity (0–0.5 U/
gHb). Put another way, G6PD activity below about 45% of normal represented the classifica-
tion of deficient, and the majority of these measurements in men were<10% of normal.
Fig. 2B showed that the 45% of normal cut off was even more distinct in inland compared to
coastal (Fig. 2A) populations. Table 2 summarizes the essential statistics of G6PD activity
among normal and deficient subpopulations with Hb� 8g/dL, respectively, and for male and
female subpopulations within each. Normal male G6PD activity ranged from 4.1–47.7 U/gHb
and female G6PD activity ranged from 4.6 to 129.9 U/gHb compared to deficient male and
female G6PD activities ranged from 0–2.83 U/gHb and 0.46–8.12 U/gHb respectively. The
sample with 8.12 U/g Hb had been selected as a normal control for female, however gene
sequencing revealed this person was heterozygous for Vanua Lava mutation. The value of

Table 1. Demographic, malaria and G6PDd prevalence data by gender and ecosystem in western Sumba.

Parameter Inland Coastal

Male Female Total Male Female Total
(n = 417) (n = 595) (n = 1012) (n = 427) (n = 594) (n = 1021)

Total population in the area1 (n) 19315 18610 37925 41798 37836 79634

Proportioned included in the study (%) 2 3 2.7 1 1.6 1.3

Age (n, %)

< 10 74 (18) 61 (10) 135 (13) 113 (26) 102 (17) 215 (22)

10–20 116 (28) 108 (18) 224 (22) 126 (30) 154 (26) 280 (27)

> 20 226 (54) 426 (72) 652 (65) 188 (44) 337 (57) 525 (51)

Median age 29 (5–76) 33 (4–80) 32 (4–80) 16 (3–80) 26 (3–78) 25.5 (3–80)

Subject with malaria2 (n, %) 1 (0.2) 1 (0.2) 2 (0.2) 30 (7) 30 (5.1) 605.9)

P. falciparum - 1 1 27 27 54

P. vivax3 1 - 1 2 3 5

Mix - - - 1 - 1

Median Hb 13 (6–17.5) 12.3 (3.3–20.6) 12.6 (3.3–20.6) 12.7 (2.8–17.7) 12.1 (3.3–18.6) 12.3 (2.8–18.6)

Subject with anemia4 17 (4.1) 46 (7.7) 63 (6.2) 21 (4.9) 48 (8.1) 69 (6.8)

Subject with G6PDd5 (%) 16 (3.8) 15 (2.5) 31 (3.1) 45 (10.5) 23 (3.9) 68 (6.7)

Vanua Lava 6 7 13 12 4 16

Viangchan 3 4 7 6 6 12

Chatham 2 1 3 8 1 9

Kaiping - - - 1 - 1

Not genotyped6 5 3 8 19 12 31

n = sample number.
1 Population number was obtained from central agency statistic from each district.
2 Microscopy diagnosed.
3 One subject experienced mixed infection of P. falciparum and P. vivax.
4 Hb < 10 g/dl.
5 G6PD activities �4.6 U/gHb.
6 Samples screened as G6PD deficient but declined, absent or failed to be DNA extracted.

doi:10.1371/journal.pntd.0003602.t001
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4.1 U/gHb in one normal male was later classified as falsely deficient in the field quantitative
test since this individual showed no mutation by sequencing analysis. In this subject both geno-
typing and enzyme kinetics were wild type and normal (11.61 U/gHb), respectively.

Fig. 3 illustrates the statistical summary of these measurements according to genotype and
zygosity in scatterplot. The normal median of 10.6 U/gHb came with a great deal of variance
skewed to higher G6PD levels. Relative to the mostly balanced variance among all classes of
G6PDd summarized, the G6PD normal class is relatively very wide and imbalanced. This may
be attributed to the outliers seen to the right of the normal distributions of Fig. 2. Variance in

Fig 2. G6PD activity distribution curves in both males (blue) and females (red) in 2 different
ecosystems. Black line in both graphs represents the 4.6 U/g Hb as cut off from the Trinity quantitative test
manual. A) represents coastal and B) inland areas of western Sumba.

doi:10.1371/journal.pntd.0003602.g002
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G6PD activity among the three dominant genotypes observed (Vanua Lava, Viangchan, and
Chatham; VL, VC, & CT, respectively) was very slight among the hemizygous males but was
comparatively prominent among heterozygous females especially for VL (Fig. 3). The median

Table 2. G6PD activities in normal and deficient subjects by gender in western Sumba.

Parameter Normal Deficient

Male Female Total Male Female Total

Subject examined 784 1145 1929 60 44 104

G6PD enzymatic activity

Median 10.2 10.4 10.3 0.9 2.8 1.6

(95% CI) (10.0–10.3) (10.3–10.6) (10.2–10.4) (0.7–1.1) (2.4–3.2) (1.3–1.9)

G6PD Activity in Malaria infection*

P. falciparum (n) 10.5 (26) 10.4 (24) 10.5 (50) 0.6 (1) 3.2(3) 2.4(4)

(95% CI) (9.7–11.3) (9.4–11.6) (9.8–11.1) (1.4–4.1) (0.6–4.1)

P. vivax (n) 9.9 (2) 12.0 (2) 10.5 (4) - 3.2 (1) 3.2 (1)

(95% CI) (8.5–11.7) (9.2–14.8) (8.5–14.8)

Mix (Pf and Pv) 0.1 (1) - 0.1 (1) - - -

SD: standard deviation; all activities are measured in U/g Hb; CI: Confidence Interval

*Median of G6PD activities

doi:10.1371/journal.pntd.0003602.t002

Fig 3. Scatter plot of G6PD activities of G6PD deficient and normal subjects from Trinity quantitative versus kinetics assaysmeasured in U/g Hb.
The different colours represented different variant (V in either normal, heterozygous and hemizygous mutants. VL Het, VC Het and CT Het represented
heterozygous females having Vanua Lava, Viangchan and Chatham variant respectively. VL Hem, VC Hem and CT Hem represented hemizyogous males
having Vanua Lava, Viangchan and Chatham variant respectively.

doi:10.1371/journal.pntd.0003602.g003
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G6PD activity among hemizygotes for VL, VC, and CT was 0.13, 0.27, and 0.12 U/gHb, respec-
tively. These are approximately 1% to 2% of normal G6PD activity. The G6PD activities for
heterozygous females of these genotypes were 5.3, 1.9, and 2.4 U/gHb for VL, VC, and CT, re-
spectively. These medians ranged from 18% to 52% of normal G6PD activity. Note that the
95% confidence intervals for these heterozygous females all exceed 50% of normal G6PD activi-
ty at the upper end, and all reach below 8% at the lower end.

Impact of Anemia on G6PD Activity
Hb level as a covariate of G6PD activity is illustrated in Fig. 4. We considered subjects having
Hb levels less than 10g/dL as at least moderately anemic. The cluster of normal Hb between 10
and 15g/dL also falls along the G6PD activity norm of about 10 U/gHb. The minor cluster
below, representing the G6PDd residents, also scatters evenly between 10 and 15g/dL Hb. The
G6PD activity trend line for all of the Hb values above 10g/dL is relatively flat, i.e., apparently
not impacting or biasing G6PD activity measurements. In stark contrast, below 10g/dL the
trend line rises sharply with diminishing Hb levels, i.e., increasingly severe anemia. Although
represented by relatively few data points, the trend was statistically significant (P<0.001). Age
may bear upon risk of anemia, and could possibly account for the trend observed, but when
G6PD activity was plotted as a function of age (Fig. 5), no trends emerged. Anemia alone pro-
foundly impacted observed G6PD activity measurements.

Purified G6PD Activity and Michaelis Constants
Table 3 summarizes the enzymatic analyses conducted on purified G6PD from study subjects.
The first column from the left lists normal Km values for G6P substrate and NADP+ cofactor,
along with activity of the purified enzyme. These results, though based on relatively few sam-
ples (listed), essentially agreed with the quantitative results derived from hemolysate already
detailed. In other words, hemizygous males ranged from 1% to 3% of normal G6PD activity,

Fig 4. Impact of Hb level on G6PD activities. Blue line represents those samples having extremely high
G6PD activity and some degree of anemia (R2 = 0.08) and red line represents those having normal Hb level
(R2 = 0.48) and t-value = 28.6 (p<0.001).

doi:10.1371/journal.pntd.0003602.g004
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whereas heterozygous females ranged from 13% to 35% of normal. Low Km for NADP in all
variants except CT indicated resistance to inhibition by NADPH and conversely high Km for
NADP indicated strong competitive inhibition by NADPH which rendered the variant enzyme
to be scarcely functional [26]. High Km for G6P normally resulted in little residual activity in
the red cells but does not necessarily mean chronic hemolysis. However, Km values for G6P in
hemizygous males for all 3 variants are well below that of normal in comparison to heterozy-
gous females showing close to normal Km for the substrate.

All the kinetics parameters (Km for G6P and NADP) as well as the hemolysate enzymes ac-
tivities showed that the 3 dominant variants found in Sumba have very low activity in the red
cell which was in line with reported Km values for each variant. These Km values generally re-
flect on the characteristic of the enzyme variant in vivo. Similarly, pH optimum for each hemi-
zygous variant was found to be in line with the reported values for each (VL is between pH
8.5–9.5, VC is between pH 8.0–9.5 and CT is between pH 9.0–10.0). However, to further char-
acterize the enzyme according to the genotype, further biochemical experiments such as elec-
trophoretic mobility and thermostability were needed, which were not feasible in this study
due to time limitation and limited amount of extracted enzyme

Discussion
The findings reported here corroborate smaller G6PDd surveys done at various locations on
Sumba [27][28]. The diversity of G6PDd variants surprises in light of the ethnic homogeneity
of people native to Sumba and presumed island founder effect [29][30][31]. It thus seems likely
that they acquired that diversity prior to settling Sumba about 30 000–10 000 years ago [32]. In

Fig 5. Scatter plot showing the relationship between age and G6PD activity in Sumba.

doi:10.1371/journal.pntd.0003602.g005
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contrast, the Khmer people of Cambodia typically have higher prevalence of G6PDd and over
95% of it represented by Viangchan variant alone [33][34]. Our findings cannot be directly ex-
trapolated to any of Indonesia’s many hundreds of other ethnic groups, but the limited data
now available also suggest relatively diverse G6PDd variant representation among them [27]
[35][36][37][38][39][28]. The apparent diversity of G6PDd in Indonesia imposes difficulties
for those evaluating risk of primaquine therapeutic policy and practice in the nation. Under-
standing this may be illustrated by exploring the implications to such made evident by the ob-
servations from Sumba. Each of the three dominant variants among hemizygous males
expressed relatively very low residual G6PD enzyme activity—as low or lower than typically re-
ported for the exquisitely primaquine-sensitive Mediterranean variant [40]. We would con-
clude that all G6PDd males resident in western Sumba would also be exquisitely sensitive to
primaquine anti-relapse therapy (not necessarily gametocytocidal therapy) in terms of risk of
AHA. Indeed, one male G6PDd subject enrolled in a study executed at western Sumba experi-
enced a steep hemolytic crisis after being dosed for 5 days with 30mg primaquine daily follow-
ing his misclassification as G6PD normal (Syafruddin D, personal communication). A baseline
Hb of 12.4 g/dL registered at 7.2g/dL at clinical assessment, and then 5.6 g/dL at admission to
hospital a few hours later. After six days in hospital and blood transfusion therapy, he
completely recovered. Close clinical monitoring by the research team had averted deeper harm
to that research subject. The blind administration of primaquine anti-relapse therapy on
Sumba, in light of our findings and that event and the reality of impractical and improbable
clinical monitoring in routine practice, would appear to incur significant risk of serious harm.
Screening for G6PDd prior to primaquine therapy would likely be required to protect patients
diagnosed with vivax malaria on Sumba.

The heterozygous females impose greater complexity to consideration of primaquine thera-
py and its safety even with G6PDd screening. The random inactivation of one or the other X
chromosome during embryonic development (Lyonization) results in individual females hav-
ing populations of RBC expressing G6PDd in fixed proportions ranging between 0% to 100%.
This may be visualized most clearly among the Vanua Lava heterozygotes (Fig. 3). Although
the mean and 95% confidence intervals for G6PD activity are well below normal, the range of
values extends above the mean for normal G6PD. These values appear to represent a normal
distribution between 0 and 100% of normal, as random Lyonization would yield. About half of
these females may have more than 50% of their RBC populations as fully deficient as seen

Table 3. Enzymatic parameters from purified G6PD from study subjects in western Sumba according to genotype.

Normal Heterozygotes Hemi/homozygotes

VL VC CT VL VC CT

Sample (n) 14 10 3 2 16 10 9

G6PD (U/gHb)* (95%
CI)

14.04 (9.3–20.1) 5.9 (2.8–9.6) 2.05 (0.4–
4.0)

4.4 (2.4–6.3) 0.24 (0.1–0.5) 0.28 (0.1–0.9) 0.30 (0.08–0.5)

Km G6P(mM)*(95%
CI)

0.28 (0.08–1.6) 0.08 (0.04–0.7) <0.01 ** 0.08 (0.06–
0.1)

0.06 (0.03–0.1) 0.04 (0.03–0.05) 0.03 (0.02–0.04)

Km NADP+ (mM)*
(95% CI)

0.005 (0.004–
0.012)

0.008 (0.004–
0.03)

0.001 ** 0.05 (0.003–
0.09)

0.004 (0.001–
0.03)

0.001 (0.0003–
0.002)

0.0009(0.0005–
0.61)

* median of the samples analyzed;

**cannot be calculated because the interval between the data are too small;

CI is confidence interval

doi:10.1371/journal.pntd.0003602.t003

G6PD Deficiency and Its Implication for Primaquine Therapy

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003602 March 6, 2015 13 / 17



among Vanua Lava male hemizygotes. They also would perhaps prove vulnerable to a threat-
ening AHA with primaquine anti-relapse therapy.

The females heterozygous for Viangchan exhibited a significantly narrower and lower range
of G6PD activity. The reasons for this difference are unclear, but the finding bears important
clinical, public health and genetic implications worthy of follow up investigation. Non-random
Lyonization somehow favoring the mutant X chromosome would perhaps explain the observa-
tions [41]. Although Lyonization is random as a whole organism, non-random or skewed lyo-
nization does occur in individual cells or tissues [41][42]. Regardless of mechanism, the
findings from Sumba suggest that Viangchan females may be intrinsically more vulnerable to
primaquine therapy than females heterozygous for Vanua Lava. Chatham appears intermediate
between the two (Fig. 3).

Another important phenomenon observed in the survey at Sumba is also evident in Fig. 3.
The mean value of those expressing normal G6PD activity was sharply skewed upwards. Fig. 4
illustrates the basis of this skewing. Below a hemoglobin level of 10g/dL, G6PD activity rose
sharply in linear fashion with decreasing hemoglobin levels. In other words, anemia appeared
to directly impact G6PD activity in a quantitative manner. There are at least two possible expla-
nations for this observation: 1) reticulocytemia among the anemic; or 2) mathematical treat-
ment of G6PD activity estimates based on hemoglobin levels systematically biasing the
estimate. Reticulocytes express the highest levels of G6PD activity, and that decays naturally as
RBC age [43][44]. That subpopulation being overrepresented among the anemic would push
G6PD values upwards. Alternatively, this effect may simply be due to the hemoglobin concen-
tration being the denominator of the observed enzymatic activity for the per g/dL hemoglobin
estimation. In other words, actual enzyme activity may be artificially inflated when the concen-
tration of Hb is naturally low. This phenomenon may obscure truly deficient G6PD by falsely
reporting normal activity. Kinetic parameters of G6PD activity may provide deeper insights
into relative vulnerability to AHA by primaquine. NADPH competitively inhibits G6PD in the
phosphate pentose shunt pathway. Further, G6PD is very strictly regulated in the cytosol
where inhibition by NADPH becomes stronger with lower concentration of substrate, glucose-
6-phosphate. Therefore, a high Km for NADP or low Ki for NADPH would more strongly in-
hibit G6PD, rendering the enzyme far less functional, whereas low Km for NADP (high Ki for
NADPH) would result in diminished NADPH inhibition and more active G6PD [26]. These
parameters obviously bear upon realized G6PD activity under conditions of oxidative stress
and threat of RBC destruction by it. Our findings with G6PD kinetics hint at possibly impor-
tant distinctions among the variants. Whereas Vanua Lava and Viangchan hemi/homozygotes
had markedly low Km for NADP+ compared to normal (Table 3), Chatham variants were
higher than normal. How this may bear upon primaquine sensitivity bears further investiga-
tion. The kinetics studies were hampered by relatively low numbers of successfully analyzed
samples, and no firm conclusions may be drawn from them. The kinetics studies were severely
limited by the relatively low volume of blood collected and the laborious and expensive meth-
ods of analysis required within a short span of time. Pioneering G6PD scientist Ernest Beutler
expressed that low residual enzyme in a deficient sample may be a product of transportation of
samples, extraction steps, length of sample storage or estimations during the biochemical pa-
rameters themselves [45]. We accept that such may have occured in our experiments, but the
kinetics trends among variants and accordance with the quantitative lysate measurements of-
fers reassurance. The sample for kinetics was not controlled for reticulocyte counts or for the
presence of other inherited blood disorder common in Sumba, like Southeast Ovalocytosis, he-
moglobin E, and other thalassemias. The possibility of an important sampling bias in the kinet-
ics analyses may not be ruled out. We considered these analyses exploratory in nature rather
than conclusive in findings.
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In summary, our large survey of G6PDd in western Sumba revealed the disorder to be prev-
alent, diverse and severe, informing the assessment of risk versus benefit with primaquine ther-
apy, both with and without G6PDd screening. We observed possibly important differences in
G6PD expression among heterozygous variants, and revealed anemia as the basis of G6PD
measurements skewed far above normal. This epidemiological evaluation of G6PDd at Sumba
highlights the complexity of this disorder in light of primaquine safety with therapy against re-
lapse of vivax malaria.

Supporting Information
S1 Checklist. STROBE checklist.
(DOCX)

Acknowledgments
The authors would like to thank Georgina Tapiheru, Maria Endang Sumiwi and Faiza Az
Zahra for their assistance in helping with the kinetics studies and data input, respectively. We
also would like to thank the local staff from the Health Department of Southwest Sumba, West
Sumba and Central Sumba: Yustus Selan, drg. Bonar Sinaga, Sukowanandi, Agustinus Rabilla,
Agustinus Bani, and Andreas for their help in the field, as well as Denny Feriandika and Retno
Ayu Setya Utami for malaria data input from the Eijkman Institute for Molecular Biology and
Ungke Antonjaya from the Eijkman-Oxford Clinical Research Unit.

Author Contributions
Conceived and designed the experiments: AWS JKB. Performed the experiments: AWS AS VB
RE CR RN FNC ARH. Analyzed the data: AWS AS IE JKB. Contributed reagents/materials/
analysis tools: AS RN ARH JKB. Wrote the paper: AWS IE JKB.

References
1. Quispe AM, Pozo E, Guerrero E, Durand S, Baldeviano GC, et al. (2014) Plasmodium vivax Hospitali-

zations in a Monoendemic Malaria Region: Severe Vivax Malaria? Am J Trop Med Hyg 91: 11–7. doi:
10.4269/ajtmh.12-0610 PMID: 24752683

2. Mittal M, Jain R, Talukdar B, Kumar M, Kapoor K (2014) Emerging new trends of malaria in children: A
study from a tertiary care centre in northern India. J Vector Borne Dis 51: 115–118. PMID: 24947218

3. Nayak KC, Meena SL, Gupta BK, Kumar S, Pareek V (2013) Cardiovascular involvement in severe
vivax and falciparummalaria. J Vector Borne Dis 50: 285–291. PMID: 24499851

4. Nurleila S, Syafruddin D, Elyazar IRF, Baird JK (2012) Serious and fatal illness associated with falcipa-
rum and vivax malaria among patients admitted to hospital at West Sumba in eastern Indonesia. Am J
Trop Med Hyg 87: 41–49. doi: 10.4269/ajtmh.2012.11-0577 PMID: 22764290

5. Naing C, Whittaker MA, Nyunt Wai V, Mak JW (2014) Is Plasmodium vivax malaria a severe malaria?:
a systematic review and meta-analysis. PLoS Negl Trop Dis 8: e3071. doi: 10.1371/journal.pntd.
0003071 PMID: 25121491

6. Howes RE, Piel FB, Patil AP, Nyangiri OA, Gething PW, et al. (2012) G6PD deficiency prevalence and
estimates of affected populations in malaria endemic countries: a geostatistical model-based map.
PLoSMed 9: e1001339. doi: 10.1371/journal.pmed.1001339 PMID: 23152723

7. Nkhoma ET, Poole C, Vannappagari V, Hall SA, Beutler E (2009) The global prevalence of glucose-6-
phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells Mol Dis 42:
267–278. doi: 10.1016/j.bcmd.2008.12.005 PMID: 19233695

8. Minucci A, Moradkhani K, Hwang MJ, Zuppi C, Giardina B, et al. (2012) Glucose-6-phosphate dehydro-
genase (G6PD) mutations database: review of the “old” and update of the newmutations. Blood Cells
Mol Dis 48: 154–165. doi: 10.1016/j.bcmd.2012.01.001 PMID: 22293322

9. Mason PJ, Bautista JM, Gilsanz F (2007) G6PD deficiency: the genotype-phenotype association.
Blood Rev 21: 267–283. PMID: 17611006

G6PD Deficiency and Its Implication for Primaquine Therapy

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003602 March 6, 2015 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0003602.s001
http://dx.doi.org/10.4269/ajtmh.12-0610
http://www.ncbi.nlm.nih.gov/pubmed/24752683
http://www.ncbi.nlm.nih.gov/pubmed/24947218
http://www.ncbi.nlm.nih.gov/pubmed/24499851
http://dx.doi.org/10.4269/ajtmh.2012.11-0577
http://www.ncbi.nlm.nih.gov/pubmed/22764290
http://dx.doi.org/10.1371/journal.pntd.0003071
http://dx.doi.org/10.1371/journal.pntd.0003071
http://www.ncbi.nlm.nih.gov/pubmed/25121491
http://dx.doi.org/10.1371/journal.pmed.1001339
http://www.ncbi.nlm.nih.gov/pubmed/23152723
http://dx.doi.org/10.1016/j.bcmd.2008.12.005
http://www.ncbi.nlm.nih.gov/pubmed/19233695
http://dx.doi.org/10.1016/j.bcmd.2012.01.001
http://www.ncbi.nlm.nih.gov/pubmed/22293322
http://www.ncbi.nlm.nih.gov/pubmed/17611006


10. Standardization of procedures for the study of glucose-6-phosphate dehydrogenase. Report of a WHO
Scientific Group (1967). World Health Organ Tech Rep Ser 366: 1–53. PMID: 4963040

11. Krudsood S, Tangpukdee N, Wilairatana P, Phophak N, Baird JK, et al. (2008) High-dose primaquine
regimens against relapse of Plasmodium vivax malaria. Am J Trop Med Hyg 78: 736–740. PMID:
18458306

12. Galappaththy GNL, Tharyan P, Kirubakaran R (2013) Primaquine for preventing relapse in people with
Plasmodium vivax malaria treated with chloroquine. Cochrane Database Syst Rev 10: CD004389.

13. Salvidio E, Pannacciulli I, Tizianello A, Ajmar F (1967) Nature of hemolytic crises and the fate of G6PD
deficient, drug-damaged erythrocytes in Sardinians. N Engl J Med 276: 1339–1344. PMID: 6024564

14. Eziefula AC, Pett H, Grignard L, Opus S, Kiggundu M, et al. (2014) Glucose-6-phosphate dehydroge-
nase status and risk of hemolysis in Plasmodium falciparum-infected African children receiving single-
dose primaquine. Antimicrob Agents Chemother 58: 4971–3. doi: 10.1128/AAC.02889-14 PMID:
24913169

15. WHOMalaria Policy Advisory Committee and Secretariat (2012) Malaria Policy Advisory Committee to
the WHO: conclusions and recommendations of September 2012 meeting. Malar J 11: 424. doi: 10.
1186/1475-2875-11-424 PMID: 23253143

16. Clyde DF (1981) Clinical problems associated with the use of primaquine as a tissue schizontocidal
and gametocytocidal drug. Bull World Health Organ 59: 391–395. PMID: 6976846

17. Pannacciulli I, Tizianello A, Ajmar F, Salvidio E (1965) THE COURSE OF EXPERIMENTALLY IN-
DUCEDHEMOLYTIC ANEMIA IN A PRIMAQUINE-SENSITIVE CAUCASIAN. A CASE STUDY. Blood
25: 92–95. PMID: 14255977

18. Amiwero CE, Olatunji PO (2007) Re-evaluation of methaemoglobin reduction as a screening procedure
for glucose-6-phosphate dehydrogenase (G6PD). Afr J Med Med Sci 36: 177–181. PMID: 19205582

19. Kim S, Nguon C, Guillard B, Duong S, Chy S, et al. (2011) Performance of the CareStartTM G6PD defi-
ciency screening test, a point-of-care diagnostic for primaquine therapy screening. PloS One 6:
e28357. doi: 10.1371/journal.pone.0028357 PMID: 22164279

20. Tinley KE, Loughlin AM, Jepson A, Barnett ED (2010) Evaluation of a rapid qualitative enzyme chro-
matographic test for glucose-6-phosphate dehydrogenase deficiency. Am J Trop Med Hyg 82: 210–
214. doi: 10.4269/ajtmh.2010.09-0416 PMID: 20133993

21. Von Seidlein L, Auburn S, Espino F, Shanks D, Cheng Q, et al. (2013) Review of key knowledge gaps
in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment
of 8-aminoquinoline treatment regimens: a workshop report. Malar J 12: 112. doi: 10.1186/1475-2875-
12-112 PMID: 23537118

22. Battle KE, Karhunen MS, Bhatt S, Gething PW, Howes RE, et al. (2014) Geographical variation in Plas-
modium vivax relapse. Malar J 13: 144. doi: 10.1186/1475-2875-13-144 PMID: 24731298

23. Pittalis S, Martinez di Montemuros F, Tavazzi D, Fiorelli G (1992) Rapid isolation of glucose-6-phos-
phate dehydrogenase from human erythrocytes by combined affinity and anion-exchange chromatog-
raphy for biochemical characterization of variants. J Chromatogr 573: 29–34. PMID: 1564103

24. Ninfali P, Orsenigo I, Baronciani L, Rapa S (1990) Rapid purification of glucose-6-phosphate dehydro-
genase frommammal’s erythrocytes. Prep Biochem 20: 297–309. PMID: 2287610

25. Saunders MA, Hammer MF, NachmanMW (2002) Nucleotide variability at G6pd and the signature of
malarial selection in humans. Genetics 162: 1849–1861. PMID: 12524354

26. Yoshida A, Lin M (1973) Regulation of glucose-6-phosphate dehydrogenase activity in red blood cells
from hemolytic and nonhemolytic variant subjects. Blood 41: 877–891. PMID: 4145828

27. Tantular IS, Matsuoka H, Kasahara Y, Pusarawati S, Kanbe T, et al. (2010) Incidence and mutation
analysis of glucose-6-phosphate dehydrogenase deficiency in eastern Indonesian populations. Acta
Med Okayama 64: 367–373. PMID: 21173806

28. Shimizu H, TamamM, Soemantri A, Ishida T (2005) Glucose-6-phosphate dehydrogenase deficiency
and Southeast Asian ovalocytosis in asymptomatic Plasmodium carriers in Sumba island, Indonesia. J
HumGenet 50: 420–424. PMID: 16059744

29. Lansing JS, Cox MP, Downey SS, Gabler BM, Hallmark B, et al. (2007) Coevolution of languages and
genes on the island of Sumba, eastern Indonesia. Proc Natl Acad Sci U S A 104: 16022–16026. PMID:
17913885

30. Cox MP, Karafet TM, Lansing JS, Sudoyo H, Hammer MF (2010) Autosomal and X-linked single nucle-
otide polymorphisms reveal a steep Asian-Melanesian ancestry cline in eastern Indonesia and a sex
bias in admixture rates. Proc Biol Sci 277: 1589–1596. doi: 10.1098/rspb.2009.2041 PMID: 20106848

31. Henn BM, Cavalli-Sforza LL, FeldmanMW (2012) The great human expansion. Proc Natl Acad Sci U S
A 109: 17758–17764. doi: 10.1073/pnas.1212380109 PMID: 23077256

G6PD Deficiency and Its Implication for Primaquine Therapy

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003602 March 6, 2015 16 / 17

http://www.ncbi.nlm.nih.gov/pubmed/4963040
http://www.ncbi.nlm.nih.gov/pubmed/18458306
http://www.ncbi.nlm.nih.gov/pubmed/6024564
http://dx.doi.org/10.1128/AAC.02889-14
http://www.ncbi.nlm.nih.gov/pubmed/24913169
http://dx.doi.org/10.1186/1475-2875-11-424
http://dx.doi.org/10.1186/1475-2875-11-424
http://www.ncbi.nlm.nih.gov/pubmed/23253143
http://www.ncbi.nlm.nih.gov/pubmed/6976846
http://www.ncbi.nlm.nih.gov/pubmed/14255977
http://www.ncbi.nlm.nih.gov/pubmed/19205582
http://dx.doi.org/10.1371/journal.pone.0028357
http://www.ncbi.nlm.nih.gov/pubmed/22164279
http://dx.doi.org/10.4269/ajtmh.2010.09-0416
http://www.ncbi.nlm.nih.gov/pubmed/20133993
http://dx.doi.org/10.1186/1475-2875-12-112
http://dx.doi.org/10.1186/1475-2875-12-112
http://www.ncbi.nlm.nih.gov/pubmed/23537118
http://dx.doi.org/10.1186/1475-2875-13-144
http://www.ncbi.nlm.nih.gov/pubmed/24731298
http://www.ncbi.nlm.nih.gov/pubmed/1564103
http://www.ncbi.nlm.nih.gov/pubmed/2287610
http://www.ncbi.nlm.nih.gov/pubmed/12524354
http://www.ncbi.nlm.nih.gov/pubmed/4145828
http://www.ncbi.nlm.nih.gov/pubmed/21173806
http://www.ncbi.nlm.nih.gov/pubmed/16059744
http://www.ncbi.nlm.nih.gov/pubmed/17913885
http://dx.doi.org/10.1098/rspb.2009.2041
http://www.ncbi.nlm.nih.gov/pubmed/20106848
http://dx.doi.org/10.1073/pnas.1212380109
http://www.ncbi.nlm.nih.gov/pubmed/23077256


32. Jinam TA, Hong L-C, Phipps ME, Stoneking M, Ameen M, et al. (2012) Evolutionary history of continen-
tal southeast Asians: “early train” hypothesis based on genetic analysis of mitochondrial and autosomal
DNA data. Mol Biol Evol 29: 3513–3527. doi: 10.1093/molbev/mss169 PMID: 22729749

33. Matsuoka H, Nguon C, Kanbe T, Jalloh A, Sato H, et al. (2005) Glucose-6-phosphate dehydrogenase
(G6PD) mutations in Cambodia: G6PD Viangchan (871G>A) is the most common variant in the Cam-
bodian population. J HumGenet 50: 468–472. PMID: 16136268

34. Louicharoen C, Nuchprayoon I (2005) G6PD Viangchan (871G>A) is the most common G6PD-defi-
cient variant in the Cambodian population. J HumGenet 50: 448–452. PMID: 16155737

35. Shimizu H, TamamM, Soemantri A, Ishida T (2005) Glucose-6-phosphate dehydrogenase deficiency
and Southeast Asian ovalocytosis in asymptomatic Plasmodium carriers in Sumba island, Indonesia. J
HumGenet 50: 420–424. PMID: 16059744

36. Matsuoka H, Arai M, Yoshida S, Tantular IS, Pusarawati S, et al. (2003) Five different glucose-6-pho-
phate [correction phosphate]dehydrogenase (G6PD) variants found among 11 G6PD-deficient persons
in Flores Island, Indonesia. J HumGenet 48: 541–544. PMID: 14505231

37. Kawamoto F, Matsuoka H, Kanbe T, Tantular IS, Pusarawati S, et al. (2006) Further investigations of
glucose-6-phosphate dehydrogenase variants in Flores Island, eastern Indonesia. J HumGenet 51:
952–957. PMID: 16927025

38. Pasaribu AP, Chokejindachai W, Sirivichayakul C, Tanomsing N, Chavez I, et al. (2013) A randomized
comparison of dihydroartemisinin-piperaquine and artesunate-amodiaquine combined with primaquine
for radical treatment of vivax malaria in Sumatera, Indonesia. J Infect Dis 208: 1906–1913. doi: 10.
1093/infdis/jit407 PMID: 23926329

39. Soemantri AG, Saha S, Saha N, Tay JS (1995) Molecular variants of red cell glucose-6-phosphate de-
hydrogenase deficiency in Central Java, Indonesia. Hum Hered 45: 346–350. PMID: 8537082

40. Pietrapertosa A, Palma A, Campanale D, Delios G, Vitucci A, et al. (2001) Genotype and phenotype
correlation in glucose-6-phosphate dehydrogenase deficiency. Haematologica 86: 30–35. PMID:
11146567

41. Filosa S, Giacometti N, Wangwei C, De Mattia D, Pagnini D, et al. (1996) Somatic-cell selection is a
major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydroge-
nase mutations causing severe enzyme deficiency. Am J HumGenet 59: 887–895. PMID: 8808605

42. Rinaldi A, Filippi G, Siniscalco M (1976) Variability of red cell phenotypes between and within individu-
als in an unbiased sample of 77 heterozygotes for G6PD deficiency in Sardinia. Am J HumGenet 28:
496–505. PMID: 984045

43. Jansen G, Koenderman L, Rijksen G, Cats BP, Staal GE (1985) Characteristics of hexokinase, pyru-
vate kinase, and glucose-6-phosphate dehydrogenase during adult and neonatal reticulocyte matura-
tion. Am J Hematol 20: 203–215. PMID: 4061449

44. Ajlaan SK, al-Naama LM, al-NaamaMM (2000) Correlation between normal glucose-6-phosphate de-
hydrogenase level and haematological parameters. East Mediterr Health J Rev Santé Méditerranée
Orient Al-Majallah Al- Ṣiḥḥīyah Li-Sharq Al-Mutawassiṭ 6: 391–395.

45. Beutler E (1992) The molecular biology of G6PD variants and other red cell enzyme defects. Annu Rev
Med 43: 47–59. PMID: 1580603

G6PD Deficiency and Its Implication for Primaquine Therapy

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003602 March 6, 2015 17 / 17

http://dx.doi.org/10.1093/molbev/mss169
http://www.ncbi.nlm.nih.gov/pubmed/22729749
http://www.ncbi.nlm.nih.gov/pubmed/16136268
http://www.ncbi.nlm.nih.gov/pubmed/16155737
http://www.ncbi.nlm.nih.gov/pubmed/16059744
http://www.ncbi.nlm.nih.gov/pubmed/14505231
http://www.ncbi.nlm.nih.gov/pubmed/16927025
http://dx.doi.org/10.1093/infdis/jit407
http://dx.doi.org/10.1093/infdis/jit407
http://www.ncbi.nlm.nih.gov/pubmed/23926329
http://www.ncbi.nlm.nih.gov/pubmed/8537082
http://www.ncbi.nlm.nih.gov/pubmed/11146567
http://www.ncbi.nlm.nih.gov/pubmed/8808605
http://www.ncbi.nlm.nih.gov/pubmed/984045
http://www.ncbi.nlm.nih.gov/pubmed/4061449
http://www.ncbi.nlm.nih.gov/pubmed/1580603

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2015

	G6PD Deficiency at Sumba in Eastern Indonesia Is Prevalent, Diverse and Severe: Implications for Primaquine Therapy against Relapsing Vivax Malaria
	Ari Winasti Satyagraha
	Arkasha Sadhewa
	Vanessa Baramuli
	Rosalie Elvira
	Chase Ridenour
	See next page for additional authors
	Authors


	G6PD Deficiency at Sumba in Eastern Indonesia is Prevalent, Diverse and Severe: Implications for Primaquine Therapy Against Relapsing Vivax Malaria

