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Applications and Research, NESDIS/NOAA, College Park, USA; cInstitute of Remote Sensing and Digital
Earth, Chinese Academy of Sciences, Beijing, China

ABSTRACT
Accurate representation of actual terrestrial surface types at regio-
nal to global scales is an important element for many applications.
Based on National Aeronautics and Space Administration Moderate
Resolution Imaging Spectroradiometer land cover algorithms, a
global surface-type product from observations of the Visible
Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi
National Polar-orbiting Partnership, provides consistent global
land cover classification map for various studies, such as land sur-
face modelling for numerical weather predictions, land manage-
ment, biodiversity and hydrological modelling, and carbon and
ecosystem studies. This letter introduces the development and
validation of the VIIRS global surface-type product using the land
cover classification scheme of the International Geosphere-
Biosphere Programme. Surface reflectance data from VIIRS were
composited into monthly data and then into annual metrics. The
C5.0 decision tree classifier was used to determine the surface type
for each pixel in a 1 km grid. To quantitatively evaluate accuracies of
the new surface type product, a visual interpretation-based valida-
tion was performed in which high-resolution satellite images and
other ancillary data were used as the reference. The validation result
based on the large validation data set indicated that (78.64 ± 0.57)%
overall classification accuracy was achieved.
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1. Introduction

Global mapping of land cover is critical for a wide range of applications, such as land
surface parameterization (Feddema 2005), modelling of biogeochemical cycles (Cramer
et al. 1999) and carbon cycle studies (Friedlingstein et al. 2006). Since the 1990s, a variety
of global surface-type products with different spatial resolutions and legend definitions
have been introduced into the scientific community. The best-known land cover pro-
ducts include International Geosphere-Biosphere Program (IGBP) DISCover, created
using 1992–1993 1 km resolution Advanced Very High Resolution Radiometer (AVHRR)
data (Loveland et al. 1999), the University of Maryland (UMD) land cover product, which
was also based on the 1 km AVHRR data (Hansen et al. 2000), Global Land Cover 2000
(Bartholomé and Belward 2005) by the Joint Research Centre of the European
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Commission, which was generated using the 2000 VEGETATION sensor on board
Satellite Pour l’Observation de la Terre 4 satellite, and the Moderate Resolution
Imaging Spectroradiometer (MODIS) land cover product using MODIS-based surface
reflectance data (Friedl et al. 2010).

With the launch of the Suomi National Polar-orbiting Partnership (S-NPP) satellite on
28 October 2011, and the data from the Visible Infrared Imaging Radiometer Suite (VIIRS)
on board S-NPP having become available since early 2012, the National Oceanic and
Atmospheric Administration (NOAA) Joint Polar Satellite System (JPSS) land surface-type
team began generating a new global surface-type classification map using the new VIIRS
data. Here, the term ‘surface type’ is a renaming of the ‘land cover’ in the JPSS S-NPP
program. The VIIRS global surface-type map followed the definition of the 17 IGBP
classes (Herold et al. 2008), with approximately 1 km spatial resolution. The C5.0 decision
tree algorithm, which was inherited from MODIS land cover development, was
employed as the main classification algorithm to produce the global map. Daily surface
reflectance data were composited into monthly data, and then a series of annual metrics
was generated for input to the classifier. This entire process generally followed the
approach used by the MODIS land cover products (Friedl et al. 2010). The VIIRS global
gridded surface-type (GST) classification map, also known as surface-type intermediate
product in the JPSS level 1 requirement document (NOAA 2014b), is the base layer in the
surface type environmental data record product (EDR), in which dynamic snow/ice and
active fire flags are incorporated on top of the classification map. The surface-type EDR
will be produced for every acquired set of VIIRS granule data, but the classification map
(GST) will be updated once a year, which is adequate and practical based on experiences
learned from developments of the MODIS land cover products.

In this letter, the development and validation of VIIRS surface-type map are pre-
sented. The validation results suggested that the new VIIRS surface-type classification
map achieved (78.64 ± 0.57)% overall correct rate, which exceeded the accuracy require-
ment of 70% for this product defined in the JPSS level 1 requirement document.

2. Development of the VIIRS global surface-type classification map

2.1. VIIRS data processing

The VIIRS sensor represents a continuation of National Aeronautics and Space
Administration (NASA)’s Earth Observing System MODIS sensors and NOAA’s Polar
Orbiting Environmental Satellites AVHRR sensors. The VIIRS has five high-resolution
imagery bands (I-bands) with a nadir resolution of 375 m and 16 moderate resolution
bands (M-bands) with 750 m resolution. In addition, a 750 m day/night band (DNB),
which provides low-light night-time sensing capability, is designed to replace
Operational Linescan System instruments on board Defense Meteorological Satellite
Program satellites. The VIIRS band information is listed in Table 1 (Lee et al. 2006), and
the bands used in surface-type generation are shown in bold.

2012 VIIRS reflectance data from bands M1 to M11 (excluding M6 and M9) and the
brightness temperature of band M14 were downloaded from NASA’s Level 1 and
Atmosphere Archive and Distribution System, reprojected into sinusoidal projection
and mosaicked into global daily data. Data from 32 consecutive days were then
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composited into 32-day data that represented monthly reflectance conditions.
Maximum normalized difference vegetation index (NDVI) value composite procedure
was used to generate the composite data (Holben 1986). The compositing processes
were used to remove residual cloud, cloud shadow and anomaly data and other noises.
Annual metrics were then created from 32-day composite data, which followed the
method that Hansen et al. (2000) proposed for producing the UMD land cover data. The
generated 69 annual metrics are listed in Table 2.

Annual metrics used in the VIIRS surface-type algorithm include the maximum,
minimum, mean and amplitude values calculated using the monthly composites of
the eight greenest months of the past 12 months. Use of the eight greenest months
instead of all 12 months of a calendar year to calculate these metrics effectively reduces
the complications caused by seasonal snow cover and yet retains the seasonal variability
associated with vegetation phenology. The eight greenest months are not necessarily
consecutive, but represent the 8 months with the clearest view of green vegetation.
Another two sets of metrics include individual monthly composite values of the greenest
month indicated by the highest monthly NDVI value and the warmest month indicated
by highest monthly M14 brightness temperature. Another set of metrics is calculated
using the mean value of four warmest months as measured by monthly M14 brightness
temperature to capture some of the information not included in the eight greenest
months. The four warmest months were found to be associated with the dry season or

Table 1. VIIRS band information.
Band Wavelength (µm) Band Wavelength (µm)

M1 0.412 M9 1.38
M2 0.445 M10 1.61
M3 0.488 I3 1.61
M4 0.555 M11 2.25
I1 0.64 M12 3.7
M5 0.672 I4 3.74
M6 0.746 M13 4.05
I2 0.865 M14 8.55
M7 0.865 M15 10.76
DNB 0.7 I5 11.45
M8 1.24 M16 12.01

Note: The bolded bands were used for surface-type classification.

Table 2. Details of annual metrics used in classification.
Metrics number(s) Description

1 Maximum NDVI value
2 Minimum NDVI value of eight greenest months
3 Mean NDVI value of eight greenest months
4 Amplitude of NDVI over eight greenest months
5 Mean NDVI value of four warmest months
6 NDVI value of warmest month
7,14,21,28,35,42,49,56,63 Maximum band x value of eight greenest months
8,15,22,29,36,43,50,57,64 Minimum band x value of eight greenest months
9,16,23,30,37,44,51,58,65 Mean band x value of eight greenest months
10,17,24,31,38,45,52,59,66 Amplitude of band x value over eight greenest months
11,18,25,32,39,46,53,60,67 Band x value from month of maximum NDVI
12,19,26,33,40,47,54,61,68 Mean band x value of four warmest months
13,20,27,34,41,48,55,62,69 Band x value of warmest month

Note: x is the band used in annual metrics, which includes M1, M2, M3, M4, M5, M7, M8, M10 and M11.
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the senescent phase of tropical vegetation. Using this set of metrics allows data not
included in the eight greenest months to be used for some areas without introducing
snow values at high latitudes and elevations.

2.2. Classification

In this study, training sites data provided by the MODIS land cover team were used to
extract training samples from the VIIRS annual metrics for the training process. After
removing urban and water samples, which were not involved in the training, small
portions of additional croplands and cropland/natural vegetation mosaic samples were
included into the training data. All newly added training areas were visually inspected
against Google Earth high-resolution images. Details of the training samples are listed in
Table 3. Urban and built-up (class 13) pixels were not labelled in the classification
process, but assigned using a separate urban extent data (Schneider, Friedl, and
Potere 2009). Therefore, the number of training samples for this class is zero in
Table 3. Similarly, water body pixels were mapped from an existing land/water mask,
which was introduced in Carroll et al. (2009).

The S-NPP VIIRS surface-type map was produced using the C5.0 decision tree classifier
(Quinlan 2004). Boosting technique (Freund and Schapire 1997) in the C5.0 package,
which is designed to improve the predictive accuracy by combining multiple trees, was
used in the map classification. Because the C5.0 decision tree classification algorithm is

Table 3. Number of training and validation samples, validation sample distribution and area
proportions in classified map for each class.
IGBP
class
number IGBP class name

Number of observations
in training sample

Number of observations
in validation sample

Validation sample
allocations (%)

Area
in classified
map (%)

1 Evergreen
needleleaf forests

481 164 4 2.24

2 Evergreen
broadleaf forests

1051 491 10 9.68

3 Deciduous
needleleaf forests

177 104 2 1.24

4 Deciduous
broadleaf forest

631 210 3 0.81

5 Mixed forests 747 270 6 6.28
6 Closed shrublands 369 111 2 0.06
7 Open shrublands 1106 497 11 16.64
8 Woody savannahs 920 559 11 8.65
9 Savannahs 829 357 5 8.39
10 Grasslands 1720 562 12 8.78
11 Permanent

wetlands
1241 42 1 1.15

12 Croplands 4038 752 16 7.59
13 Urban and built-

up lands
0 98 2 0.43

14 Cropland/natural
vegetation
mosaics

1283 411 9 4.29

15 Snow and ice 180 45 1 10.88
16 Barren 851 285 5 12.89
Total 15,624 4958 100 100

Note: Water bodies class (17) is not included.
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generally well known and has been utilized by many previous land cover products, the
mathematical equations of the C5.0 are not included in this letter. The technical details
may be found from Quinlan (1993, 2004). The processing steps of creating the S-NPP
VIIRS surface-type map were similar to those from the MODIS collection 5 land cover
product. A boosted decision tree (or classification model) was applied to the annual
metrics (input variables), and the IGBP labels were predicted in the classification process.
MODIS collection 5 land cover used 3-year classification results to stabilize the final class
labels (Friedl et al. 2010), but the S-NPP VIIRS did not include this step due to limited
data availability. Detailed descriptions of the entire classification process may be found
in the JPSS Algorithm Theoretical Basis Document for the VIIRS surface-type product
(NOAA 2014a).

After the initial classification map was obtained, multiple post-classification processes
were applied to improve the quality of the surface-type map, which included filling in
unclassified ocean pixels and missing high-latitude regions. In addition, a crop prob-
ability product from a global cropland extent project was used to help reassign portions
of cropland labels if high crop probability was identified (Pittman et al. 2010). After post-
classification processes, the final VIIRS global GST classification map was created, which
is shown in Figure 1. The VIIRS GST data product may be downloaded from ftp://vct.
geog.umd.edu/ST/.

3. Validation of the VIIRS global surface-type classification map

3.1. Stratified random sampling and reference data

Visual interpretation of high spatial resolution imagery was used to validate the VIIRS
global classification product described above. Locations of the validation data set were
selected through a stratified random sampling process. Stratified random sampling is a
commonly used sampling method for validating global land cover products. For exam-
ple, this technique has been used to validate the GLC2000 (Mayaux et al. 2006) and the

Figure 1. Delivered VIIRS global surface-type classification map in 17 IGBP classes.
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MODIS collection 5 land cover product (Friedl et al. 2010). Thorough studies have been
conducted to evaluate this method (Olofsson et al. 2012; Stehman et al. 2012), and it has
been proven to be effective. The stratified random sampling follows a probability
sampling design that provides adequate sample size for rare land cover classes. In this
study, IGBP classes were used as the strata in the stratification, and percentages of
validation samples in different IGBP land cover classes, which were derived from Figure 1
of Olofsson et al. (2012), were used to allocate validation samples. In total, 5000
validation pixels were initially selected to represent the entire globe; 4958 points were
taken into accuracy assessments and the rest were dropped due to uncertainties in
interpretations. Sample sizes and distribution percentages are presented in Table 3.

Visual interpretation procedures were performed in an integrated validation tool, in
which Google Map/Earth high spatial resolution images were retrieved as the primary
reference data source. Other supplemental reference data, including archived Landsat
images and other land cover products, such as MODIS collection 5 land cover and
GLC2000 product, were also used. Class labels from other land cover products were
checked to increase interpretation confidences in case qualities of reference images for
interpretations were not high. To label a heterogeneous pixel, the corresponding
ground area (1 km2 for each pixel) in reference images was divided into 25 equal
subareas (dynamically overlaid 5 × 5 grid) in the validation tool interface to help
interpreters to determine the dominant land cover type on the ground, which was
taken as the reference class label.

3.2. Validation results

Error matrices were used to assess the classification performance in this study, which
was also used in the validation of the MODIS collection 5 land cover product. Other
studies, such as Zhu et al. (2000), used map category marginal frequencies-based error
matrix to evaluate classification accuracies (Card 1982), in which proportions of areas for
each class in classification maps and statistical sampling designs were taken into
probabilistic estimates. In this study, the error matrix of estimated proportions of area
alongside estimated overall, user’s and producer’s accuracy and their corresponding
standard errors are generated and presented in Table 4. The equations used here for the
stratified random sampling design were introduced in Olofsson et al. (2014; eq. (4)-(7))
and Card (1982). The proportions of area per class, which are essential for the calcula-
tion, are listed in Table 3. The estimated overall accuracy calculated from the error matrix
of estimated proportions of area is (78.64 ± 0.57)%.

3.3. Analyses

As shown in Table 4, high user’s and producer’s accuracy were achieved for the snow
and ice, barren and evergreen broadleaf forests classes. Because the spectral character-
istics of these classes are quite distinctive, it was not surprising that high classification
accuracies were achieved. Above or close to 70% user’s and producer’s accuracies were
obtained for both the evergreen needleleaf forests and the deciduous needleleaf forests
classes; most misclassified pixels for these two classes belonged to mixed forests or
woody savannahs. Mixed forests are very difficult to be accurately classified because the
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spectral and temporal feature of this type is relatively ambiguous. Therefore, confusion
between mixed forests and other woody cover types, such as other forest classes and
woody savannahs, was to be expected.

Closed shrublands and open shrublands presented similar user’s accuracy, but
many closed shrublands pixels were incorrectly classified, mainly as open shrublands.
Some confusion regarding closed or open shrublands pixels with grasslands was also
observed. Portions of savannah pixels in the validation were misclassified as woody
savannahs and the cropland/natural vegetation mosaic classes. The confusion with
woody savannahs is understandable because the thematic ‘distance’ between these
two classes is close. The confusion with cropland/natural vegetation mosaic can be
explained by these two classes sharing very heterogeneous spatial patterns.

The landscape of grasslands may vary significantly in different areas. Some sparse
grasslands pixels in dry areas may be easily confused with open shrublands; other dense
grasslands, which have similar spectral and temporal features, tend to be misclassified as
croplands. The permanent wetland class is generally difficult to be accurately classified
because shallow water mixed with vegetative cover tends to be confused with inland
water and herbaceous vegetation. However, the validation result suggested that the
classification of permanent wetland was better than expected.

Because a large number of croplands training samples have been carefully selected
in various agricultural areas to help increase the representativeness of croplands
characteristics, and further post-classification processes have been applied for the
croplands class, satisfactory classification accuracy for this class has been achieved
according to the validation. However, the user’s and producer’s accuracy for the
cropland/natural vegetation mosaics were significantly lower than those from the
croplands class, which might be explained by the highly heterogeneous nature of
this mosaic class.

4. Conclusion

In this study, the processes of development and validation of the new VIIRS global GST
classification map are introduced. The MODIS land cover heritage classification algo-
rithm was adopted by the new product, but different annual metrics and processing
steps were applied. Stratified random sampling was used to select validation points, and
error matrices were used to evaluate the classification performance. The validation result
suggested that (78.64 ± 0.57)% overall accuracy was obtained, which exceeded the 70%
correct rate threshold in the JPSS Level 1 requirements document. Compared to accura-
cies of existing land cover products (67–68% for IGBP-DISCover and GLC2000 (Herold
et al. 2008; Mayaux et al. 2006) and around 75% for MODIS collection 5 (Friedl et al.
2010)), the classification accuracy of the new VIIRS surface-type map is comparable to
the accuracy of the MODIS land cover map and exceeds those from the IGBP-DISCover
and GLC2000 products.
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