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Abstract. We conducted an aquatic macroinvertebrate assessment in the channelized reach of the
lower Missouri River, and used statistical analysis of individual metrics and multimetric scores to
identify community response patterns and evaluate relative biological condition. We examined lon-
gitudinal site differences that are potentially associated with water quality related factors originating
from the Kansas City metropolitan area, using data from coarse rock substrate in flowing water
habitats (outside river bends), and depositional mud substrate in slack water habitats (dike fields).
Three sites above river mile (RM) 369 in Kansas City (Nebraska City, RM = 560; St. Joseph, RM =
530; Parkville, RM = 377) and three below (Lexington, RM = 319; Glasgow, RM = 228; Hermann,
RM = 94) were sampled with rock basket artificial substrates, a qualitative kicknet method, and
the Petite Ponar. We also compared the performance of the methods used. A total of 132 aquatic
macroinvertebrate taxa were collected from the lower Missouri River; one third of these taxa be-
longed to the sensitive EPOT insect orders (Ephemeroptera, Plecoptera, Odonata, and Trichoptera).
Rock baskets had the highest mean efficiency (34.1%) of the methods, and the largest number of taxa
was collected by Ponar (n = 69) and kicknet (n = 69) methods. Seven of the 15 metrics calculated from
rock basket data, and five of the nine metrics calculated from Ponar data showed highly significant
differences (ANOVA, P < 0.001) at one or more sites below Kansas City. We observed a substantial
reduction in net-spinning Trichoptera in rock habitats below Kansas City (Lexington), an increase in
relative dominance of Oligochaeta in depositional habitats at the next site downstream (Glasgow),
and lower relative condition scores in rock habitat at Lexington and depositional habitat at Glasgow.
Collectively, these data indicate that some urban-related impacts on the aquatic macroinvertebrate
community are occurring. Our results suggest that the methods and assessment framework we used
in this study could be successfully applied on a larger scale with concurrent water and sediment
chemistry to validate metrics, establish impairment levels, and develop a specific macroinvertebrate
community index for the lower Missouri River. We recommend accomplishing this with longitudinal
multi-habitat sampling at a larger number of sites related to all potential sources of impairment,
including major tributaries, urban areas, and point sources.

Keywords: assessment, biological condition, habitat, Kansas City, macroinvertebrates, Missouri
River, petite ponar, rock substrate
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1. Introduction

Aquatic macroinvertebrates are an important component in bioassessment studies
designed to evaluate overall water resource quality (Shackleford, 1988; Fausch
et al., 1990; Karr and Kerans, 1991), food habits of benthic fishes (Todd and
Stewart, 1985), ecological function (Benke et al., 1979; Newswanger et al., 1982;
Benke et al., 1986), and effects of specific anthropogenic disturbances (Hellawell,
1986; House et al., 1993; Wildhaber and Schmitt, 1998) in flowing waters. Aquatic
macroinvertebrates are valuable for determining biological condition because they
are limited in mobility and complete the majority of their life cycle in water. They
are effective indicators of historical conditions and integrate the combined effects
of all impacts acting on a water body (Friedrich et al., 1992), and are therefore
especially valuable in cases where chemical-specific analysis cannot separate the
cumulative effects of multiple stressors. Of the nation’s ‘great’ rivers that have
recently been defined as those with watersheds exceeding 3226 sq mi. (Simon
and Lyons, 1995), few macroinvertebrate community studies have been conduc-
ted. Large river macroinvertebrate community studies are greatly outnumbered by
those in wadeable streams, partially due to greater ecological complexity, severely
altered habitat conditions, and a resident aquatic fauna that is usually more poorly
known and difficult to sample. Most community-level biological assessments in
larger rivers have occurred in Europe (Battagazzore et al., 1992; Camargo, 1992;
Depauw et al., 1994), although some have recently been conducted in the U.S.
based on surveys of fishes (Gammon, 1991; Simon and Emery, 1995). However,
no community-level longitudinal evaluations of biological condition have been
completed for the Missouri River. Most lower Missouri River studies were con-
ducted during or shortly after reservoir construction in North and South Dakota and
concentrated on comparisons between channelized and non-channelized portions
along the Nebraska, South Dakota, and Iowa borders (McMahon et al., 1972; Wolf
et al., 1972; Nord and Schmulbach, 1973; Hesse and Mestl, 1985). Others were
designed to evaluate effects of power plant discharges (Camp Dresser and McKee,
1981; Carter et al., 1982) or to describe biological assemblages that utilize river
training structures such as rip-rap, revetments, and dike fields (Burress et al., 1982;
Atchison et al., 1986). Early literature suggested that turbidity and high current
velocities in the lower river were unfavorable for optimum macroinvertebrate pro-
ductivity, and the channelized portion was thought to have low species richness
(Berner, 1951; Morris et al., 1968; Hansen and Dillon, 1973). Other studies on
channelized segments have documented differences in benthic density (Beckett and
Pennington, 1986), productivity (Dixon, 1986; Mestl and Hesse, 1993), and spe-
cies richness (Barnum and Bachmann, 1988) among habitats or have characterized
communities inhabiting specific habitats (Jennings, 1979; Brunsing, 1993). The
macroinvertebrate community monitoring programs that exist on other great rivers
such as the Ohio (Ohio River Valley Water Sanitation Commission, ORSANCO,
unpublished) are in the early stages of development (E. Emery, pers. comm.), or in
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the case of the Mississippi River system, have only relied on specific indicator taxa
(e.g. Long Term Resource Monitoring Program; Thiel and Sauer, 1995).

There is a critical need to identify relationships between macroinvertebrate
community structure and the combined effects of water quality and habitat degrad-
ation in all interjurisdictional rivers, because aquatic resources are still declining
in many systems. There is an even greater need for developing and implementing
bioassessments in large rivers to fulfill legislative mandates regarding ecological
integrity, use attainment status for aquatic life, and the identification of causes and
sources of impairment (Yoder, 1991; Karr, 1993; Barbour, 1997). In the 1970s,
Munger et al. (1974) documented benthic macroinvertebrate community responses
related to urban and industrial sources of water pollutants in the lower Missouri
River below Kansas City and St. Joseph, MO. During the same period, the U.S.
Army Corps of Engineers (USACE) also conducted several studies that docu-
mented the success of macroinvertebrate sampling methods (Mathis et al., 1982;
Beckett and Pennington, 1986) and included initial characterization of communit-
ies inhabiting different habitats and substrates (Atchison et al., 1986; Barnum and
Bachmann, 1988). Since that time, improvements in the treatment of municipal
and industrial wastewater and other regulatory changes have been implemented
under the Clean Water Act. In recent years, ecologists have begun to incorporate
the concept of biological integrity into the assessment frameworks currently used
to evaluate water resource quality (Karr, 1991, 1993; Friedrich et al., 1992). It
is now recognized that implementation of chemical criteria alone is not enough
to substantially improve ecological integrity in all cases, since physical habitat
degradation, effects of persistent contaminant mixtures, and exotic species are
still impeding biological recovery in many systems (U.S. EPA, 1990). The U.S.
EPA now requires state pollution control agencies to include more comprehensive,
systematic evaluations of biological condition and impairment in lotic systems. The
currently accepted process of biological evaluation for flowing waters includes site
comparisons based on multimetric approaches and interpretation of community
attributes (i.e. metrics, Karr, 1993; Barbour et al., 1995). Application of this pro-
cess to both current and historical macroinvertebrate data is considered a valid
and sensitive approach as long as methods are comparable (Kerans et al., 1992;
Barbour et al., 1996). However, none of the previous macroinvertebrate studies on
the lower Missouri River have used this approach to determine biological integrity
or relative condition, even though the entire lower segment in the state of Missouri
is listed as an impaired waterway under Section 303(d) of the Clean Water Act and
is slated for mandatory development of TMDL’s (total maximum daily loads, Mis-
souri Dept. of Natural Resources, unpublished). This is largely due to difficulties
in data collection, lack of standard methods, differences in criteria and aquatic life
use designations among states, and the unknown pollution tolerances for large river
aquatic species.

The goal of our study was to utilize aquatic macroinvertebrate communities as
a screening tool for evaluating relative biological condition in relation to effects
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of water quality factors originating from the Kansas City metropolitan area. To
achieve this goal, we utilized methods that would characterize the aquatic macroin-
vertebrate community in selected habitats on the lower, channelized portion of the
Missouri River. We selected methods and assessment procedures for interpreta-
tion of community attributes that are widely used for evaluating wadeable streams
(Karr and Kerans, 1991; Barbour et al., 1995, 1999). Kansas City was selected
as a potential source of cumulative stressors in the lower river based on previ-
ous literature that has identified combined sewer outflows, industrial pollutants,
and other historical water quality problems directly downstream (Walter, 1971;
Ford, 1980; Schmulbach et al., 1992; Welsh, 1992). Our specific objectives were:
(1) to evaluate longitudinal differences in macroinvertebrate community structure
at six locations (three above Kansas City, and three below) in the mainstem of
the lower Missouri River using multimetric community data from two important
habitats, (2) to evaluate performance of specific gear types, (3) to compare our
data with that of previous lower Missouri River studies conducted in the same
habitats (Munger et al., 1974; Carter et al., 1982; Atchison et al., 1986), and (4) to
make recommendations for future large river macroinvertebrate assessments in this
system.

2. Study Area

The Missouri River basin drains approximately 22 million ha of the U.S. and con-
tains a population of over 25 million people. Lower portions of the river have been
highly modified by reservoir discharges, channelization, and flood control; only
10% of the predevelopment floodplain of the lower Missouri River remains (Hesse,
1987). Modifications to facilitate agriculture and navigation between Sioux City,
IA and St. Louis, MO have isolated the lower Missouri River from its historically
productive floodplain (Hesse et al., 1988; Junk et al., 1989; Schmulbach et al.,
1992). Wing deflectors (dikes), rip-rap, and revetments composed of rock were
added to reduce bank erosion as part of the quarry-stone construction method of
channel modification approved in 1949 (Ferrell, 1996). By 1981, the USACE re-
ported that channelization and bank stabilization projects had been completed for
the lower 1187 km of the Missouri River. The outside bend of nearly all meanders
has been reveted with rock or mattress blocks in the channelized section of the
river (Ferrell, 1996), and rock is still added for maintenance and repair. In 1993
alone, 194,000 tons of waterway improvement material were carried by barges
to maintain these river training structures (USACE, 1993). Channel modifications
coincided with observed declines in the abundance of several Missouri River native
fishes, many of which are considered benthic and feed on aquatic macroinverteb-
rates (reviewed by Hesse et al., 1989; Hesse et al., 1993). Water quality problems
have also been documented in the lower Missouri River since 1910. The Kansas
City metropolitan area contains municipal and industrial point source discharges,
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including petroleum refineries, industrial chemical manufacturing plants, and pro-
cessing wastes from meatpacking and livestock yards (Ford, 1980; Schmulbach et
al., 1992). Oxygen depletion and associated fish kills caused by municipal sewage
pollution occurred below Kansas City during the 1960s and 1970s, and the pres-
ence of oil, floating debris, and objectionable tastes and odors in drinking water and
fish were considered problems during this period. More recently, elevated concen-
trations of polychlorinated biphenyls (PCB’s) and organochlorine pesticides (OC’s)
such as chlordane have been reported in several Missouri River fishes, resulting
in the issuance of public health advisories during the 1980s for the river reach
between Kansas City and St. Louis (Missouri Dept. of Conservation, unpublished).
Contaminant sampling with Semi-Permeable Membrane Devices (SPMD’S) has
documented elevated levels of toxaphene, chlordane, dieldren, PCB’s, and polycyc-
lic aromatic hydrocarbons (PAHs) associated with urban runoff below Kansas City
(Petty et al., 1995, 1998). Aquatic community structure of fish and macroinverteb-
rates in the lower portions of the Missouri River system had been largely ignored
until the recent 500 yr flood events in the 1990s, which created improvements in
floodplain habitats and partial restoration of river connectivity.

3. Methods

To provide longitudinal site comparisons in the lower Missouri River, six sites were
selected (three above and three below Kansas City) based on available access, and
included one site directly below the metropolitan area where cumulative impacts,
if present, would be the least difficult to detect (Figure 1): (1) Nebraska City, NE
(RM = 560), (2) St. Joseph, MO (RM = 530), (3) Parkville, MO immediately
above Kansas City (RM = 377), (4) Lexington, MO about 25 km below Kansas
City (RM = 319), (5) Glasgow, MO (RM = 228), and (6) Hermann, MO (RM
= 94). The sampling methods, season of collection, and habitats were chosen to
yield repeatable, representative samples under the harsh conditions inherent with
the Missouri River system–water level fluctuations, high current velocities, and a
predominance of unstable substrates. The difficulty in obtaining macroinvertebrate
samples under these conditions, and large rivers in general, has been identified
previously (Anderson and Mason, 1968; Rosenberg and Resh, 1982). Artificial
substrates such as baskets filled with rock or gravel (Jacobi, 1971) are among
the most successful options for deep riverine habitats where water level fluctu-
ations are common (Dickson et al., 1971; Mason et al., 1973; Slack et al., 1986),
and are consistent with other large river macroinvertebrate studies (Anderson and
Mason, 1968; Depauw et al., 1994). We selected late autumn as an index period
for sampling because during this season, water levels in the Missouri River are
relatively stable and provide the best opportunity for successful retrieval of artificial
substrates. Stable water levels also allowed the use of qualitative kicknet sampling
along the shoreline, with a method similar to that used in wadable streams (Lenat,
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Figure 1. Map of aquatic macroinvertebrate sampling sites evaluated during a longitudinal assess-
ment of biological condition in the channelized lower Missouri River.

1988; Shackleford, 1988; Barbour et al., 1999). Two habitat types were selected for
study: (1) main channel revetments or rock wing dikes with visible flow and coarse
rock substrate, and (2) slack water areas behind wing dikes with no apparent flow
containing soft-bottom mud substrate with visible organic matter.

3.1. ROCK HABITATS

Artificial substrates were constructed of 3.5 cm mesh plastic aquaculture netting
folded into a 15 cm cubical design and fastened together with plastic zip-ties. Bas-
kets were tied onto an 8 m section of nylon rope fastened to the bank with steel rod
about 1–2 m above the waterline. The baskets were filled with 4 L of 5 cm crushed
limestone, tossed upstream into the current, and allowed to settle to the bottom in
about 2–3 m of water with the rope positioned perpendicular to the bank. Limestone
substrate was chosen because it closely simulated the construction materials used
for wing dikes and revetments on the river. At each site, the baskets were deployed
for six weeks of macroinvertebrate colonization from late October through early
December 1996. To select segments of each revetment that conformed to a current
velocity range of 0.4–0.7 m sec−1, velocity measurements were taken at mid-depth
with a Marsh McBurney 2000 digital current meter during rock basket deployment
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and immediately before basket retrieval in December. Substrates were retrieved
from a boat by detaching the bank end of the rope, and gently raising the basket
vertically through the water column in a hand-over-hand fashion, to reduce the
possibility of organism loss due to vibrations or abrupt movements. Baskets were
immediately placed into buckets at the waterline. Substrate was removed from the
baskets and the entire mesh, rocks, and associated organic matter were rinsed in the
buckets to isolate organisms. The sample was concentrated into a 530 µm sieve and
placed into labeled 1 L sample jars with 90% ethanol preservative. Concurrently
with rock basket sampling, a D-frame kicknet with 500 µm mesh was used to
collect two, 100 organism field-sorted samples from rock habitats at each site – one
at substrate deployment in October and one at basket retrieval in December. We ex-
pected similar community composition between kicknet and rock basket methods;
kicknet samples were taken from the same locations as the rock basket deployment
to provide method comparisons and identify any excessive loss of organisms or
taxa during basket retrieval. Kicknet samples were taken by repeatedly disturbing
rock and gravel substrate upstream of the net in about 0.5–1.0 m water depths along
the river margin. Samples were placed in a large white tray, and alternating large
and small organisms were picked from the tray and net in an attempt to reduce
possible bias towards the larger sized individuals. One hundred organisms were
selected over a 45–60 min period to acquire the maximum diversity, and were
preserved in labeled sample bottles with 80% ethanol.

3.2. DEPOSITIONAL HABITATS

Slack water depositional areas behind wing dikes were sampled concurrently with
rock basket retrieval, with a Petite Ponar as recommended for sediment-dwelling
organisms in large rivers (Slack et al., 1986; Burt et al., 1991). We selected relat-
ively stable locations corresponding with dike fields at inside river bends with no
visible flow, and where dark-colored sediments containing fine organic matter had
not been covered by sand from previous high water events. Five separate Ponar
samples were taken and rinsed with a 500 µm sieve bucket. Organic matter and
organisms were concentrated in the bucket, removed with a plastic spoon and
forceps, and preserved with 80% ethanol in labeled 1 L jars.

3.3. LABORATORY PROCESSING

Aquatic macroinvertebrates in Ponar samples were separated from debris in their
entirety under a dissecting stereomicroscope using fine forceps and 10× magnific-
ation. Due to the large amounts of organic debris present in rock basket samples, a
0.75 m × 0.5 m subsampling tray marked with 54 numbered 5 cm square grids was
used to randomly split these samples similar to the method described by Moulton
et al. (2000). Debris and organisms from 11 of the 54 grids (20% of the sample)
were removed and sorted in the same manner as the Ponar samples. Organisms
from all methods and samples were identified to the lowest possible taxonomic
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level, usually genus or species. Midges (Diptera: Chironomidae) were mounted on
glass slides with CMCP-10 mounting media (Masters Chemical Co.) and identified
to genus level with a compound microscope. The Oligochaeta were identified to
family; Tubificidae and Naididae were lumped together as one taxon due to the
low numbers of Naididae and numerous tubificid fragments.

3.4. STATISTICAL ANALYSIS

We evaluated the efficiency of different sampling methodologies (Elliot and Drake,
1981) using the total taxa archive that included every distinct taxon collected in the
lower Missouri River by all methods (including light-trap data and other qualitative
collections) from ongoing studies on the lower Missouri River since 1992. This
reference taxa list was used as the basis for comparisons of community composition
between the two habitats and among the three methods used, in addition to identi-
fying taxa that were unique to one habitat or collected with only one method. The
degree of resemblance in catch composition between methods was expressed as
% taxa similarity, calculated by determining the percentage of overlap in taxa col-
lected between the two methods being compared (Sanders, 1960; Boesch, 1977).
Mean % efficiency was calculated separately for each method by dividing the mean
number of taxa collected across all samples, by the total number of taxa collected
by that method. The % of total taxa in each of the two habitats was also calculated
for each method.

Aquatic macroinvertebrate community metrics used for this assessment were
selected from those in current literature, and those that have potential value as
indicators of biological condition for large rivers or specific habitats. We selected
metrics ‘a priori’ from each of the categories outlined by Barbour et al. (1992,
1995) and from the Rapid Bioassessment Protocols (Plafkin et al., 1989; Barbour
et al., 1999) which included commonly used indicators of biological condition
in wadeable streams. The selected metrics and their abbreviations used throughout
this paper include: (1) structure metrics (total taxa richness = TTR; percent Ephem-
eroptera, Plecoptera and Trichoptera = % EPT; EPT taxa richness = EPT; percent
Chironomidae = % CH; Chironomidae taxa richness = CHR); (2) community bal-
ance metrics (Hilsenhoff Biotic Index, Hilsenhoff, 1982, 1987 = HBI; ratio of EPT
and Chironomidae abundances = EPT/C; percent dominant taxon = % DT; percent
model affinity, Novak and Bode 1992 = % MA); and (3) functional feeding group
metrics (ratio of scrapers to filtering collectors = SFR). Assignment of functional
groups for individual taxa followed the designations given in Merritt and Cummins
(1996). Other commonly used metrics we included were the Shannon-Wiener Di-
versity Index (SDI), and percent Ephemeroptera (% EPH). Additional metrics were
added to the analysis based on their potential use in describing large river com-
munity characteristics, and included richness of EPT and Odonata taxa (EPOT),
percent EPOT (% EPOT), and percent large river restricted taxa (% LRRT). The
selection of % LRRT as a metric was based on preliminary sampling that indicated
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several large river invertebrate species were present in the lower Missouri system,
and is parallel to the choice of metrics for the large river fish guild used by Simon
and Emery (1995). Density (DEN) was the only quantitative metric calculated
in this study, and is expressed as number per m2 for ponar samples and number
per L interstitial volume for rock baskets. Interstitial volume was calculated by
subtracting water displacement of the 5 cm limestone used as substrate in the rock
baskets.

We performed two different statistical analyses on individual metrics: (1) com-
parisons among all six sites, and (2) comparing above versus below Kansas City.
Since the five samples taken at each site were essentially independent of each
other within a site, we used all samples in analyses for among site differences
(n = 29, one sample missing from both Ponar and rock basket methods). Because
the six sites were not independent, we averaged samples at each site to evaluate
differences above versus below Kansas City (n = 6). Before any statistical analyses
could be conducted, the data were analyzed for assumptions of normality using
SAS/LAB software (SAS, 1992), and we tested variance constancy with Lavene’s
Test (Milliken and Johnson, 1984). After applying the transformations suggested
by the software, the data for each metric were analyzed using one-way analysis
of variance (ANOVA). The experiment-wise error rate was controlled using the
Tukey method for multiple comparisons (SAS, 1992), and significant differences
were indicated at the P < 0.05 level.

The individual metrics used for relative scoring of sites for both rock and de-
positional habitats were selected based on a combination of the following criteria:
(1) discrimination among sites identified with statistical significance, (2) wide-
spread historical use in wadeable stream studies, and (3) where a longitudinal
pattern was observed even where there was no statistical significance among sites.
The 4-metric score (TTR, EPT, HBI, SDI) for rock basket and kicknet sampling
methods included the four standard attributes presently used for site scoring by
the Missouri Dept. of Natural Resources for coarse substrate samples in wadeable
streams as part of the development of state biocriteria (MDNR, unpublished and
R. Sarver, pers. comm.). A 10 metric score was calculated for rock basket data
and included the above four standard metrics, plus six additional metrics which
included % EPOT, % CH, DEN, % LRRT, SFR, and EPT/C. The 5 metric score
calculated from ponar data included the most appropriate metrics for depositional
habitats based on the above criteria (TTR, % CH, SDI, DEN, and % EPH). We
scored sites using a conservative percentile of 50% for each metric across all sites
and split the lower 50% in half to provide reasonable cut-off ranges for progress-
ively lower scores, similar to that suggested by Barbour et al. (1995) for cases
where no true reference conditions exist. This approach was also used by Simon
and Emery (1995) for fish community data from the Ohio River. For each site,
individual metrics were scored as 5 (above 50th percentile), 3 (between 25th and
50th percentile), and 1 (lower quartile). Scores for each combination of metrics
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were obtained for each site by adding individual scores for each of the metrics
used.

4. Results

4.1. METHOD AND HABITAT COMPARISONS

A total of 118 distinct macroinvertebrate taxa were collected from the Missouri
River during this study, and an additional 14 species were collected with supple-
mentary qualitative and blacklight collection methods. Of these 132 known taxa,
approximately one third belong to the EPOT insect orders. In rock habitats, rock
baskets had the highest mean efficiency (34.1%) but collected lower numbers of
unique taxa (15) and lower percentage of the total number of taxa (Table I). Kicknet
sampling collected a larger mean number of taxa (19.2) and the highest percentage
of the total known taxa within the habitat (88.4%). Depositional habitats sampled
with the Ponar yielded the largest number of unique taxa (22). Rock basket and
kicknet methods were the most similar to each other, with a 75.3% overlap in spe-
cies composition. Rock basket and Ponar methods were nearly as similar (73.1%);
however, this high similarity is partially due to incidental taxa (N = 11) normally
found in flowing water habitats that were collected frequently in depositional zones
with Ponar sampling. Net-spinning caddisflies (Trichoptera: Hydropsychidae), sev-
eral species of mayflies in the family Heptageniidae, and stoneflies (Plecoptera)
were the dominant organisms colonizing the rock basket samples (Figure 2). The
kicknet samples contained higher overall taxa richness in the EPOT orders. In
particular, the number of stonefly and mayfly species found in kicknet samples was
more than twice that colonizing rock basket samples (Figure 2). Oligochaeta and
Chironomidae were the dominant organisms in the depositional habitat samples
(Figure 2). Chironomidae taxa richness made up from 10% in the kicknet samples
and up to 40% in the Ponar samples.

4.2. SITE COMPARISONS

Rock basket and ponar data indicated statistically significant differences in metric
values, both among sites and above versus below Kansas City. Analysis of rock
basket data for sites upstream vs. downstream of Kansas City indicated weakly sig-
nificant differences in means (P < 0.10) for three of the metrics (ANOVA, Table II);
% DT and EPT/C were lower and HBI was higher downstream. For among-site
analysis of rock basket samples, 12 of 15 metrics showed highly significant dif-
ferences in means at one or more sites (ANOVA, P < 0.001). Of these metrics,
seven indicated that one or two of the sites below Kansas City were significantly
different than the other sites. At Lexington, the metrics EPT, % EPT, % EPOT,
% DT, DEN, % LRRT, and EPT/C were all lower as compared to the other sites.
The lower percentage of EPOT individuals colonizing rock baskets at Lexington is
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TABLE I

Similarity and % efficiency matrix for macroinvertebrate species collected by 3 sampling
methods used to evaluate biological condition in the lower Missouri River. The total of 132
species known to occur in this river reach include an additional 14 species collected by
qualitative methods (including light-trapped specimens) from 1992–1998. Unique taxa are
those collected with only one method. Percent efficiency was calculated by dividing the
mean number of taxa collected with the method, by the total number of taxa collected with
the method, across all sites. Percent Similarity was calculated by dividing the total number
of taxa common to both methods by the combined total collected by both methods

Similarity comparison Macroinvertebrate sampling method

Rock basket Kicknet Petite ponar

(n = 29) (n = 12) (n = 29)

Total taxa collected by method 52 69 69

Unique taxa collected by method 15 19 22

Mean # of taxa collected by method 17.7 19.2 14.2

(standard deviation in parentheses) (7.1) (3.4) (3.9)

Mean % efficiency of method 34.1 27.8 20.6

(range in parentheses) (15.3–69.2) (15.9–34.7) (8.6–36.2)

% Of total known taxa (N = 132) 39.4 52.2 52.2

% Of taxa known within habitat 66.6 88.4 97.1
(rock) (rock) (depositional)

% Taxa similarity with Rock Basket – 75.3 73.1

% Taxa similarity with Kicknet 75.3 – 39.1

% Taxa similarity with Ponar 73.1 39.1 –

partially due to higher numbers (and relative abundance) of oligochaeta at this site
(Figure 3). Only four stoneflies were found among the five rock baskets deployed
at Lexington, yet stoneflies were among the numerically dominant organisms at
the other sites. Lexington and Glasgow also had significantly higher HBI values
(Table II), suggesting a higher degree of organic enrichment. Analysis of ponar data
upstream vs. downstream of Kansas City yielded four metrics with significantly
different (P < 0.05) means: % MA, % EPH, and SDI were all lower and % DT
was higher below Kansas City (Table III). Among-site analysis of ponar samples
indicated that the first three of these metrics were significantly lower at Glasgow.
Glasgow also had the lowest % CH in ponar samples (3.8%), whereas Nebraska
City had the highest (30.9%, Table III).

Relative biological condition scores for all sites using different combinations
of metrics are given in Table IV. For rock basket data, the 4 metric score was
slightly lower directly below Kansas City at Lexington, and at Nebraska City. The
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Figure 2. Number of aquatic macroinvertebrate taxa and relative contribution of taxonomic groups
collected by 3 sampling methods in the lower Missouri River. Basket artificial substrates and kicknet
methods were used in rock habitats, while the Petite Ponar was used in depositional habitats behind
wing dikes. E = Ephemeroptera, P = Plecoptera, O = Odonata, T = Trichoptera.

10 metric score, which includes other potentially valuable large river metrics such
as % LRRT and % CH, indicated substantially lower scores at Lexington. The 5
metric score for depositional habitats indicated a slightly lower score for Glasgow
(Table IV). The kicknet data did not show any discernable longitudinal pattern
between sites for individual metrics, but the 4 metric score was substantially lower
at Lexington. The four commonly used metrics calculated for both kicknet and rock
basket data showed consistent differences; for kicknet samples, HBI values were
lower and SDI values were higher than for rock baskets. However, both October
and December kicknet samples were comparable to each other (Table IV), and
individual methods were consistent within a site. Of the seven metrics for which
Lexington differed significantly from the others, % EPT and % EPOT were signi-
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Figure 3. Mean density of net-spinning Trichoptera in rock baskets deployed on rock revetments and
mean density of Oligochaeta in depositional habitats behind wing dikes sampled with a Petite Ponar
(plus one standard deviation), for 6 sites in the channelized lower Missouri River. NC = Nebraska
City, SJ = St. Joseph, PK = Parkville, LX = Lexington, GL = Glasgow, HE = Hermann, UKC = sites
above Kansas City, and BKC = sites below Kansas City.

ficantly lower because of the relatively higher numbers of oligochaeta and lower
numbers of net-spinning Trichoptera at this site (Table II, Figure 3).

5. Discussion

Our research is the first attempt to determine relative biological condition in the
lower Missouri River using a multimetric community-level assessment and provid-
ing support for the interpretations with statistical analysis of the individual metrics.
Assessments that use additive combinations of community attributes to measure
and describe whether resident biota of aquatic systems within a region, stream
reach or watershed are similar to one another, have become the basis for determin-
ation of biological status in flowing waters (Gerritsen, 1995). Multimetric indices
such as the Index of Biotic Integrity (IBI, Karr et al., 1986) and the Invertebrate
Community Index (ICI, Karr and Kerans, 1991) are currently well-established as
measures of biological condition (Lenat, 1993; Kerans and Karr, 1994), and have
succeeded because they use sound ecological theory to integrate the cumulative ef-
fects of all human activities, including chemical contamination (Fore et al., 1994).
We utilized multiple-attributes in our assessment because this method of interpret-
ation has received widespread usage in wadeable streams, and recent literature has
identified the potential of modifying these indices (Simon and Emery, 1995; Lyons
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TABLE IV

Total combined scores (mean and range) of relative biological condition for 6 sites and 2 habitats
on the lower Missouri River using different combinations of benthic macroinvertebrate metrics.
Individual values for the 4 standard metrics (TRR, EPT, SDI, and HBI) determined from the kicknet
method are also given. Combined scores were determined by adding individual scores for each of
the metrics, using the following criteria: above 50th percentile = score of 5, between 25th and 50th
percentile = score of 3, and lower quartile = score of 1. Metrics included in scoring are marked in
Tables II—III and explained in the methods section of the text

Combination Sites above Kansas City Sites below Kansas City

of metrics Nebraska St. Joseph Parkville Lexington Glasgow Hermann

City

10 Metrics (Rock) 36.4 38.8 44.4 18.8 40.8 37.5

Rock Basket (32–42) (36–42) (40–48) (14–22) (34–48) (34–42)

5 Metrics 21.4 19.4 18.5 18.6 11.4 19.4

(Depositional) (19–23) (17–23) (15–21) (15–23) (9–13) (13–25)

Petite Ponar

4 Standard Metrics 12.8 18.0 16.0 12.0 14.8 18.0

(Rock) Rock Basket (10–16) (16–20) (14–18) (8–14) (8–20) (14–20)

4 Standard Metrics 23.6 20.8 28.0 6.8 26.0 20.8

(Rock) Kicknet (20–28) (16–26) (24–30) (6–8) (24–28) (14–26)

Kicknet 10/96 11 20 24 16 18 23

Taxa richness 12/96 20 18 19 20 20 22

Kicknet EPT 10/96 10 13 15 10 13 14

Taxa richness 12/96 17 12 15 13 13 17

Kicknet Shannon 10/96 1.81 2.42 2.45 2.33 2.37 2.59

Diversity 12/96 2.44 2.37 2.43 2.40 2.66 2.47

Kicknet 10/96 4.36 3.88 4.73 3.94 5.02 4.33

HBI 12/96 4.32 3.53 3.63 4.02 4.11 3.58

et al., 1996) or developing new ones (Kerans and Karr, 1994; Barbour et al., 1996;
Barbour, 1997) for large rivers. Although reference or best-attainable conditions
have never been defined for the Missouri River, alternative interpretation methods
have been suggested for comparing sites in cases where no reference condition can
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be determined. We used the cumulative data set for each attribute to define metric
expectations and provide percentiles for relative scoring of sites as done previously
in both larger rivers (Simon and Emery, 1995) and smaller streams (Lenat, 1993;
Barbour et al., 1995).

We selected both commonly used metrics and those that represent modifications
for potential application in large rivers. The information provided here is only an
initial step towards full-scale evaluation and validation of metrics that has been
done in other studies. We observed patterns and statistically significant differences
among sites for many metrics that have been selected by others as core attributes
for biotic assessments and state monitoring programs (TTR, EPT, CHR, and %
DT, Barbour et al., 1996). These metrics are typically among the least variable
(HBI, TTR, % EPT, % DT, and EPT/C, Hannaford and Resh, 1995; Poulton et al.,
1995), are reliable predictors of water quality (TTR, EPT, Lenat, 1988; Barbour et
al., 1992; Yoder and Rankin, 1995), or both. Even though density of Oligochaeta
(# m−2) in depositional habitats and net-spinning Trichoptera (# L−1 interstitial
volume) in rock habitats were not analyzed statistically, these ‘a posteriori’ attrib-
utes were depicted graphically in this paper (Figure 3) because they helped interpret
patterns we observed in some of the other metrics. The selection of metrics to be
used for relative scoring of sites was based primarily on the criteria listed earlier,
although some were not used because they had a high similarity with other metrics
(% EPT and EPOT) or the validity of their use for large rivers is uncertain (%
DT and % MA). Chironomid richness (CHR) was not used because it has been
known to provide a somewhat bimodal response to perturbations (Lenat, 1983).
Even though % DT and % MA showed among-site differences, they were not used
for scoring because a reduction in net-spinning Trichoptera (primarily the domin-
ant taxa Hydropsyche orris) directly below Kansas City at Lexington (Figure 3)
resulted in a lower % DT and a higher % MA as compared to other sites, both
of which are opposite of the response that might be expected due to perturbation
(Novak and Bode, 1992). Other metrics such as SFR suggested that the reduction
in net-spinning Trichoptera at Lexington is possibly due to other pollution-related
factors such as bound toxicants (see Plafkin et al,. 1989; Camargo, 1992). Simil-
arly, SDI was higher in rock habitats at Lexington, but this metric was retained for
site scoring because of its widespread usage in the literature and to enhance data
comparisons with wadeable stream monitoring programs. Although many of the
attributes we selected should theoretically be useful for large rivers, their suitability
for larger systems will remain uncertain until they can be validated. Tolerances to
different pollutants for some large river taxa are unknown, and for metrics such
as HBI, tolerance values for large river taxa had to be assigned based on the most
closely related species. Taxa such as Attaneuria ruralis (Plecoptera: Perlidae) and
Raptoheptagenia cruenata (Ephemeroptera: Heptageniidae) are examples of lower
Missouri River species that are restricted to large rivers in the central U.S. and for
which tolerance values are not listed by Lenat (1988) or Hilsenhoff (1987). Fore
et al. (1994) indicated that impaired sites should have had higher variability due to
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loss of ability in the community to buffer changes. Nevertheless, taxa not listed in
these publications did not make up a significant portion of the samples, and HBI
variability was low as has been found in other studies (Poulton et al., 1995).

5.1. ROCK HABITATS

The heterogeneous nature of the crushed limestone substrate that makes up the
dikes and revetments on the Missouri River includes a large range of particle sizes
from finer gravel to large boulders (5–50 cm and occasionally up to 1.0 m, see
Atchison et al., 1986; Sandheinrich and Atchison, 1986) and probably provides
turbulent conditions with a much larger range of velocities and microhabitats than
that of unstable fine material. Rock is the most stable and heterogeneous substrate
in flowing waters of the main channel, and due to the removal and reduction of
large woody debris during channelization, rock habitats may represent the largest
in total area along the river margins. In our study, rock baskets were meant to
simulate the community composition in these habitats. The dominant taxa in rock
basket samples at all sites were the net-spinning caddisflies Hydropsyche orris,
H. scalaris, and Potamyia flava, and the mayfly Stenonema integrum and many
small instars of the stonefly species Isoperla bilineata. We added the Odonata to
the EPT index (EPOT) because of their large size, potential importance as fish
food items, taxonomic richness in the river (N = eight species), and the frequency
of collection in both depositional and rock substrates. Artificial rock substrates
have been shown to provide representative macroinvertebrate samples from rock
habitats (Slack et al., 1986), even though Mason et al. (1973), and Carter et al.
(1982), both reported that dominance by a few taxa is a common occurrence in
artificial substrates deployed in large rivers. In our study, these samplers yielded a
mean efficiency estimate of 34.1% (Table III) and collected a larger number of taxa
than that reported by other studies (Slack et al., 1986).

The density estimates (#/m or #/L) we generated from rock basket samples
could not be directly compared with some previous studies because others either
did not sample in areas with current flow (Carter et al., 1982), the volume of rock
used in the baskets was not measured (Munger et al., 1974), or a rock removal
method that did not sample interstitial invertebrates was used (Atchison et al.,
1986). Mathis et al. (1982) implanted rock baskets on top of revetments in the
lower Mississippi River and reported densities of over 100 000 m−2, which falls in
the range of the mean estimates in our study (range = 16,116–122,536 m−2 or 237–
1802 L−1 interstitial volume). Carter et al. (1982) did not deploy rock baskets in
flowing water habitats but rather behind the dikes in areas with lower velocity. This
factor, along with a summer sampling season, may explain why their samples had
lower numbers of taxa, higher dominance of oligochaeta, and lacked a significant
stonefly (Plecoptera) fauna. We lost only one artificial substrate sampler during
this study; however, it is not known whether our method of deploying rock baskets
would allow successful retrieval during spring or early summer when flood pulses
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are more common. Our results suggest that rock baskets deployed during late fall
seasons can be easily retrieved and yield representative samples from rock habitats
adjacent to the main channel without being covered with silt, a problem noted in
other large river studies (Munger et al., 1974; Mathis et al., 1982).

We used a kicknet concurrent with deployment of artificial substrates to provide
a more complete list of taxa inhabiting rock habitats, identify any taxa lost during
retrieval of rock baskets, and generate data that could be compared with other
methods and studies. This method was included because of the accessibility of
rock rubble substrate along revetments during stable or declining water levels, and
because several variations of this method have received widespread use in wadeable
stream studies. Fluctuating water levels in depths of 1 m or less which occur often
in regulated rivers, may prevent use of this method for long-term monitoring studies
that require a well-defined index period each year. Kicknet samples had 75.3%
taxonomic similarity with rock baskets, but these two methods did not reveal the
same longitudinal patterns. Even though we attempted to reduce any possible bias
towards larger individuals during field picking, only four metrics were calculated
from these samples because of their qualitative nature. The 4 metric combination
indicated a lower score at Lexington, and based on our scoring criteria this equates
to a higher probability that a sample taken from rock habitats at this site would
yield values for these four metrics that would fall below the 50th percentile. These
four standard metrics are used in rapid assessment techniques (Plafkin et al., 1989)
and in stream monitoring programs by many state agencies, including Missouri
(MDNR, unpublished). Both combined scores and several individual metrics de-
rived from rock basket data indicated that the Lexington site may have a more
impaired benthic fauna than the other sites, but kicknet data revealed this pattern
only with the combined relative score of the four metrics. Because we simultan-
eously attempted to obtain the highest taxa richness in a 45–60 min period with the
kicknet method, our estimates for the other three metrics may be biased.

Both SDI and HBI were consistently different between the two methods used
in rock habitats, and the kicknet method yielded taxa richness estimates that were
nearly always higher than that of rock baskets. However, no distinct pattern in
taxa richness among sites was evident with either method. Kicknet samples were
dominated by the mayflies Isonychia sp., Baetis sp., and S. integrum, the caddisfly
P. flava, and the stoneflies Acroneuria abnormis and Isoperla bilineata. Kicknet
samples had higher mean and total numbers of taxa and higher numbers of unique
taxa than rock basket samples deployed in the same habitat (Table I). Highly mobile
swimming mayflies Isonychia sp. and Baetis sp. that were common in the kicknet
samples, were nearly absent from rock baskets; it is possible that a significant num-
ber of individuals belonging to these taxa escaped from rock baskets upon retrieval.
Although these two methods were used within the same habitat, the differences in
relative abundance and taxa richness we observed may be due to spatial differences
in communities between near-shore areas sampled with the kicknet (1 m depths)
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and that of deeper water a further distance from shore where the rock baskets were
deployed (2–4 m).

5.2. DEPOSITIONAL HABITATS

In this study, ponar sampling from depositional habitats yielded a larger number
of taxa (69) and efficiency estimate (20.6%) than in some lentic studies (Tsui and
Breedlove, 1978) and in other large river macroinvertebrate research (Carter et al.,
1982; Slack et al., 1986; Hornbach et al., 1989). Chironomids and Oligochaeta
were numerically dominant and overall composition was similar to that reported for
mud substrates in abandoned channels of the lower Missouri River (Atchison et al.,
1986; Beckett and Pennington, 1986) and backwater lakes on the upper Mississippi
(Hornbach et al., 1989). However, previous studies have not reported burrowing
mayflies (Ephemeroptera: Ephemeridae, Hexagenia spp., Pentagenia vittigera) as
a significant portion of the fauna in the lower Missouri system, even though a recent
study documented large densities of stranded individuals behind dikes after drops
in water levels (Braaten and Guy, 1997). These mayflies require specific sediment
texture with sufficient oxygen and organic matter content for survival (Ericksen,
1968; Wright and Mattice, 1981; Elstad, 1986). We suggest that they have not
regularly been reported as a significant portion of the fauna in other Missouri River
studies because their distribution behind dikes is patchy. Barnum and Bachmann
(1988) documented that coarse-textured sediments in flowing areas behind dikes
were nearly void of benthic organisms. At all sites, we commonly collected these
mayflies from the stable zone of dark colored mud substrate with visible organic
matter and no current flow. This substrate may have been more suitable for mayflies
than that sampled in other Missouri River studies (Carter et al., 1982; Atchison et
al., 1986; Beckett and Pennington, 1986). Therefore, % EPH may be an appropriate
metric for large river assessments if this zone can be specifically targeted during
ponar sampling because burrowing mayflies can make up a significant portion of
the biomass in depositional areas of large rivers (Hornbach et al., 1989) and are
known to be positively correlated with water and sediment quality (Fremling, 1964;
Schloesser et al., 1991).

The range of our total density estimates (#/m) from backwater areas (2421–
10,393) was comparable to that reported from abandoned channels (12,624, Atchi-
son et al., 1986; 7243, Beckett and Pennington, 1986) and the depositional areas
behind dikes (maximum of 4410, Carter et al., 1982) in the middle Missouri River,
but were much higher than those reported from silt areas in the same river reaches
(79.5, Johnson et al., 1974). We also documented the presence of incidental taxa
that were unexpected in backwaters. Even though no visible flow was present in this
habitat, the ponar regularly collected taxa that are normally associated with flow
and stony substrate, including net-spinning caddisflies, stoneflies, and heptageniid
mayflies. It is possible that the large numbers of individuals of these taxa that are
in the drift (Modde and Schmulbach, 1973; Carter et al., 1982) are inadvertently
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transported to slack water habitats behind wing dikes and may not be able to readily
move back into adjacent flowing areas after they settle out of the water column.
This phenomenon was observed at every site, and may be related to channel flow
patterns and formation of depositional zones behind dikes.

5.3. ASSESSMENT OF BIOLOGICAL CONDITION

Our study design was based on the assumption that upstream/downstream site
comparisons relative to a metropolitan area would offer the best possibility for
detecting cumulative effects of all potential anthropogenic influences on large river
macroinvertebrate communities. We also relied on extant water quality information
from previous studies suggesting that the Kansas City metropolitan area represents
a significant cumulative source of contaminants and urban-related impacts in the
lower Missouri River (Ballentine et al., 1970; Ford, 1980; Schmulbach et al., 1992;
Petty et al., 1995, 1998). This is further supported by unpublished information on
contaminants and unregulated chemical constituents originating from tributaries
in the Kansas City metro area (Dale Blevins and Don Wilkison, USGS, pers.
comm.), and by recent documentation of elevated levels of OC’s, urban-related
PAH’s, and xenoestrogenic compounds in SPMD’s deployed below Kansas City at
the Napoleon-Lexington reach (Petty et al., 1995, 1998).

Yoder and Rankin (1995) recognized nine types of pollution and disturbance
sources that result in discernable response patterns (i.e. biological response sig-
natures) in fish and macroinvertebrate communities, all of which may affect these
communities when urban areas are geographically situated on large, regulated rivers.
Several of the urban-related source types they listed have been suspected as causes
of aquatic community changes in other large river macroinvertebrate studies, and
include combined sewer outflows (Seager and Abrams, 1990), industrial discharges
(Camargo, 1992; Battegazzore et al., 1992), toxics and complex mixtures (Hella-
well, 1986; Ramade, 1989), and oxygen-demanding substances associated with
urban stormwater runoff (Pratt and Coler, 1979; Willemsen et al., 1990). These
studies have also demonstrated specific responses in macroinvertebrate community
attributes, many of which were observed to some degree in the results of our study.
Rock habitats at Lexington, directly below Kansas City, had lower mean richness
and percent of clean-water EPT organisms (EPT and % EPT), EPT/C, DEN, and
% LRRT. Only four stoneflies were found in the five replicate samples from this
site. Depositional habitats further downstream at Glasgow had significantly lower
SDI and % EPH, and had lower % CH, % LRRT, and % MA. Only five burrowing
mayflies were found in the replicate samples taken from depositional habitats at
this site. Rock habitats at both Lexington and Glasgow had significantly higher
HBI values, indicating a higher level of organic enrichment than the other sites. A
higher dominance of Oligochaeta in rock habitats at Lexington (Figure 3) and a
community comprising over 90% Oligochaeta in the depositional habitats at Glas-
gow, also indicate organic pollution (Burt et al., 1991; Lenat, 1993). Oligochaete
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worms as a group are also tolerant of toxics (Yoder and Rankin, 1995). A noticeably
lower number of filtering Trichoptera that we observed at Lexington (Figure 3),
has been documented in large rivers below urban areas in other studies, and the
presence of toxicants from industrial effluents has been the suspected cause of this
response (Plafkin et al., 1989; Camargo, 1992; Yoder and Rankin, 1995). All of
these indicators, including the lower relative condition scores at Lexington and
in the depositional habitats at Glasgow, suggest that some impacts resulting from
the Kansas City area were detected. In sampling with artificial substrates in the
River Po in Italy, Battegazzore et al. (1992) found that effects of pollutants from
industrial point sources were relatively short-lived from a longitudinal standpoint.
Our study also suggests this pattern because relative condition scores and values for
most of the metrics at Glasgow and Hermann were more similar to sites upstream
of Kansas City than those at Lexington.

Our data do not suggest whether Chironomidae taxa richness and relative abund-
ance would be important indicators in large rivers or for particular habitats, because
Nebraska City had the highest CHR and % CH in depositional zones, and the
lowest values for these parameters in rock habitats. Lenat (1983) reported that
reduced chironomid taxa richness can be associated with either severe water pol-
lution or clean water and relatively undisturbed habitats, and that often the highest
chironomid taxa richness can be found where moderate levels of pollution prevail.
Dominant chironomid taxa such as Cricotopus, Dicrotendipes, Ablabesmyia and
certain species of Polypedilum are known to be associated with agricultural and
sewage inputs (Rae, 1989). These taxa were among the dominant chironomid gen-
era at all of our sites, in both depositional and rock habitats. The lower amount of
fine interstitial substrate material we observed in the rock habitats at Nebraska City
suggested that this revetment had been more recently constructed than those at the
other sites. Low numbers of chironomids and the second lowest density estimates
at this site suggest that rock revetments, as colonization habitat for macroinver-
tebrates, may improve with age when they become more embedded with finer
material. It is also possible that the Omaha, NE metropolitan area, about 89 km
upstream, may be influencing the community composition at this site. However,
our condition scores for Nebraska City were relatively similar among all other sites
except for rock habitat at Lexington and the depositional habitat at Glasgow.

6. Conclusions and Recommendations

Perhaps the most important conclusion reached in this research is that a multi-
metric bioassessment approach utilizing upstream-downstream comparisons can
be used as an initial screening tool for determining relative biological condition
and measuring cumulative effects of urban-related anthropogenic stressors in large
rivers. Our study is the first to apply this approach to the lower Missouri River.
Previous macroinvertebrate studies on the channelized reaches have attributed low
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estimates of productivity, diversity, and density with high current velocities and
substrate instability (Berner, 1951; Morris et al., 1968; Mestl and Hesse, 1993).
Our density and taxa richness estimates are comparable to that reported for other
physically altered large rivers including the lower Mississippi (Mathis et al., 1982),
the Illinois (Richardson, 1921), and the Ohio (Mason et al., 1971). Sandheinrich
and Atchison (1986) noted the importance of rock structures in providing habitat
for macroinvertebrates that may not otherwise be available; our study confirms that
rock revetments and wing dikes represent a diverse and productive habitat in the
lower Missouri river even though most of this substrate has been artificially added.
Future large river monitoring programs should take advantage of the availability
of this stable substrate for acquiring representative, quantitative macroinvertebrate
data in situations where logistical problems in sampling are much greater than
in wadeable streams. Selection of this habitat for pollution assessment in large
rivers is parallel to the current usage of heterogeneous substrate in riffle areas of
smaller streams. In addition to flowing water areas adjacent to the main channel, we
recommend a multi-habitat approach with inclusion of soft-bottom mud substrates
in depositional zones, because this habitat contributes unique taxa and additional
contaminant-related information that may not be evident from sampling of rock
substrates alone.

State agencies are responsible for evaluating the biological condition of flowing
waters and the ability of these waters to support aquatic life. The development
of biocriteria (Southerland and Stribling, 1995) and determination of use attain-
ment status for large rivers will require further understanding of cause-effect re-
lationships and application of an upstream/downstream study design related to all
influences from urban areas, major tributaries, point sources, and biogeographic
factors. This is a formidable task in large, interjurisdictional rivers when there is
often a shortage of resources and lack of agreement on approaches. Alternative
assessment methods and site comparisons that have been suggested in cases where
reference conditions cannot be determined (Simon and Emery, 1995; Barbour et
al., 1995), such as those used in this study, may be the best available framework
for measuring relative biological condition in these systems. Large river modifica-
tions of aquatic community indices such as the ICI (Karr and Kerans, 1991), and
subsequent identification of least-impaired or best-attainable community character-
istics for specific reaches, are in its early stages for the Ohio River (ORSANCO, E.
Emery, pers. comm.). To further evaluate metrics and to aid in the development of
large river biological criteria, we recommend a similar approach for the Missouri
River system. The index period and methodologies we used in this study appear
replicable and our initial results could be fine-tuned by applying this framework
over extended spatial and temporal scales at a larger number of sites. We also
propose additional metrics that have potential as sensitive community indicators
for evaluating relative condition attributable to anthropogenic influences in large
rivers, such as those associated with species restricted to large systems (% LRRT)
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and those directly associated with potential contaminant loading in sediments (%
EPH).

Since our study did not include a temporal component or comprehensive samp-
ling of water and sediment quality, we did not attempt to validate individual met-
rics, identify reference conditions and reaches, establish impairment thresholds,
or develop a specific macroinvertebrate community index for the lower Missouri
River. However, this could be accomplished by acquiring data from a large number
of sites and simultaneous analysis of water chemistry parameters, sediment con-
taminants, and body burdens in taxa such as burrowing mayflies. This information
would have strengthened our interpretations, although including these measure-
ments at a scale that would have been required to demonstrate cause-effect rela-
tionships was beyond the scope of this study. The numerous categories of urban
impacts simultaneously affecting biota in large rivers and the intermittent nature of
water quality-related stressors, often prevents the separation of individual effects
on biota as has been attempted previously in environments where complex contam-
inant mixtures are a problem (Wildhaber and Schmitt, 1998). For this reason, the
value of macroinvertebrate communities as integrators of cumulative effects may
be especially important for determining biological condition in large rivers such
as the Missouri system, where native aquatic species are still in decline (Karr and
Chu, 1999) and biota may still be adjusting to the broad scale physical alterations
that have occurred (Hesse and Sheets, 1993).
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