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Abstract

Understanding protein adsorption kinetics to surfaces is of importance for various environ-
mental and biomedical applications. Adsorption of bovine serum albumin to various self-
assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic
surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissi-
pation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a
function of surface properties, bovine serum albumin concentration and pH value. Charged
surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine
serum albumin layer thickness, and increased density of bovine serum albumin protein
compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum
albumin protein increased with increasing bovine serum albumin concentration. After equi-
librium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when
pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our
data provide further evidence that combinatorial quartz crystal microbalance with dissipa-
tion and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and
detachment of adsorbed proteins in systems with environmental implications.

Introduction

Protein adsorption onto surfaces plays a significant role in many fields including medicine,
biology, pharmaceutical development and environmental engineering [1] with applications in
protein—DNA interactions; drug formulation and storage; and environmental
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decontamination. Protein attachment processes have been investigated on a variety of natural
and engineered surfaces [2-11]. Generally, protein adsorption at the solid/liquid interface can
occur due to electrostatic interactions, hydrophobic interactions, and hydrogen-bonding inter-
actions. This process is influenced by properties of the protein (such as stability), the adsorbent
surface, and solution such as ionic strength and pH value [12]. Once a protein is associated
with a surface, processes such as protein reorientation can induce conformational changes
accompanied by protein unfolding, lateral protein-protein interactions, and desorption [2].
Structural changes of an adsorbed protein may alter protein biological function [13], but obser-
vation of structural changes of an adsorbed protein are challenging. We propose the use of
quartz crystal microbalance with dissipation (QCM-D) combined with spectroscopic ellipso-
metry (SE) to allow for measurement of complementary information in-situ which allows
simultaneous determination of adsorption thickness, adsorption mass, and porosity. QCM-D/
SE is a technique with broad potential applications in characterizing biological phenomena on
the nanoscale. This technique can provide insight into protein interactions at solid/liquid inter-
faces including structural arrangements, cooperative adsorption, cross-linking, adsorption
kinetics, and protein aggregation [14-17].

Bovine serum albumin (BSA) is suitable for attachment studies because of its high stability,
its availability at high purity and its water solubility [4, 18]. Solution pH affects BSA adsorption
as the isoelectric point (IEP) of BSA is at pH 4.5-5.0, therefore the protein is negatively charged
at neutral pH [3, 4, 7, 18-20], and positively charged under acidic conditions. The three
domains of BSA with varying surface charge density influences BSA adsorption on charged
surfaces [21, 22]. For instance, the occurrence of both negatively charged amino acids (glu-
tamic acid, aspartic acid) and positively charged residues (lysine, histidine) on BSA can result
in attachment to both positively and negatively charged surfaces [3, 18]. At pH values above
the IEP of the protein, adsorption was observed on negatively charged surfaces due to electro-
static interactions with positively charged amino acid residues [3, 7]. In addition, BSA adsorp-
tion is a pH-dependent phenomenon, whereby maximum protein adsorption is observed near
the IEP with decreasing adsorption observed at pH above or below the IEP [4, 6, 7].

BSA adsorbs to a variety of surfaces such as titanium powder [19], TiO, [4], clays [3], poly-
mers [7], and oxide minerals [6] as measured by spectrophotometric measurements [4], colori-
metric estimation [7], and various spectroscopic techniques including NMR, fluorescence,
circular dichroism, and FTIR-spectroscopy [3]. There are a limited number of studies of BSA
adsorption on biofunctional and environmentally-relevant surfaces such as self-assembled
monolayers (SAMs). A recent study analyzing DNA nanoparticle and fetal bovine serum (FBS)
protein attachment to model biomaterial substrates was one of the first to evaluate protein
adsorption using QCM-D/SE [15, 23].

The objective of this study was to use combinatorial in-situ QCM-D/SE to investigate the
dynamic adsorption processes of BSA to various environmentally-relevant SAM surfaces. The
selected SAM surfaces carried distinct terminal functional groups represent dominant func-
tional groups in soil minerals and soil organic matter and are used in this study to represent
environmentally relevant surfaces. We determined BSA physical adsorption characteristics of
BSA as a function of SAM properties, solution pH, and BSA concentration. We hypothesize
that the attachment of BSA is strongly dependent on surface properties of the SAM monolayer,
including the surface charge and hydrophobicity. Previous BSA adsorption studies have mainly
focused on kinetic measurements and BSA conformational changes after surface adsorption.
The combinatorial in-situ QCM-D/SE technique provides an additional parameter, volume
fraction of adsorbate or porosity, which is a valuable parameter in determining biological prop-
erties of organic mass. To date, limited studies have measured BSA adsorption onto various
SAM surfaces and no previous studies have reported the volume fraction (porosity) of
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adsorbed BSA to SAMs, which can provide information about the conformation of surface-
adsorbed BSA.

Materials and Methods
SAM preparation

SAMs investigated in this study include 11-Mercapto-1-undecanol (MUOH, 99%, Fisher Sci-
entific), 11-Mercaptoundecanoic acid (MUA, 98%, Fisher Scientific), 1-Decanthiol (DT10,
99%, Fisher Scientific), and 11-Amino-1-undecanthiol hydrochloride (AUT, > 90%, Dojindo).
MUOH, MUA, and AUT have hydrophilic hydroxyl (-OH), carboxyl (-COOH), and amine (-
NH,) terminal functional groups, respectively, while DT10 has a hydrophobic methyl (-CH3)
terminal functional group (Table 1). At the neutral pH conditions used in this study (pH 6.7),
MUOH and DT10 are neutral while AUT is positively charged and MUA is negatively charged.
These SAMs are well characterized and used extensively as model surfaces [24, 25]. n-Alka-
nethiols attach to Au surfaces by chemisorption at a thiol group to form close-packed SAMs,
leaving the other end of function groups (-CH;, ~OH, -COOH, and -NH,) available to bind
proteins [26]. The Au substrate was chosen because it is biocompatible and can be easily modi-
fied with SAM attachment by forming stable metal-sulfur bonds [18, 27, 28].

To prepare the SAM surface, 2 mM of each alkanethiol solution was prepared using filtered
and degassed 200 proof ethanol (Fisher Scientific). Quartz crystal sensors coated with a 100 nm
Au layer were used as substrates. The sensors were manufactured by Biolin Scientific and used
as received.

The Au-coated sensors were first rinsed with copious amounts of acetone (Fisher Scientific)
followed by 200 proof ethanol before forming the SAM by immersing the wafer in 20 mL of 2.0
mM alkanethiol solution in an amber bottle covered by Ar gas stream for at least 45 min
(MUOH and MUA), 60 min (AUT), and 18 hr (DT10) at room temperature. The prepared
SAM-coated Au sensors were then rinsed with 200 proof ethanol to ensure the removal of
physically-absorbed thiol molecules. The SAM surfaces were dried under N, gas.

Contact angle measurements

The contact angle quantitatively describes the wettability of a surface [2]. The static contact
angles of the clean Au surfaces before SAM deposition and Au surfaces after SAM deposition
were measured. To examine the difference in contact angle due to the presence of a SAM, we
used a micro-syringe to place a sessile water drop on the Au surface. Contact angles were quan-
tified using a Ramé-Hart Imaging system (Ramé-Hart, Inc.) and Image] software.

Ex-situ ellipsometry

Ex-situ ellipsometry measurements were made using an M-2000-VI Spectroscopic Ellips-
ometer (J.A.Woollam Co., Inc.) to evaluate the thickness of the SAM layer deposited on a Au
surface. Ex-situ ellipsometry measurements on the Au surfaces were made at room temperature
both before and after SAM chemisorption in the spectral range of 370-1640 nm and at multiple
angles of incidence with respect to the substrate normal from 45 to 75 in 10” increments. We
used a two-layer substrate-SAM optical model. The SAM was modeled by a Cauchy layer,
where the extinction coefficient k is necessarily 0 and where we assumed the index of refraction
nto be 1.5. The optical constants of the Au surface were determined from the measurement
taken before SAM chemisorption, while the Cauchy layer had a thickness of 0. The Cauchy
layer thickness was then allowed to vary by the optical model as model-calculated data and the

PLOS ONE | DOI:10.1371/journal.pone.0141282 October 27,2015 3/20



@’PLOS ‘ ONE

Bovine Serum Albumin Attachment on Self-Assembled Monolayers

Table 1. Investigated SAMs.

Short name Long name Chemical formula Features Charge (at pH 6.7)
MUOH 11-Mercapto-1-undecanol HSCH,(CH,)9CH,OH Hydrophilic (-OH tail) Neutral

MUA 11-Mercaptoundecanoic acid HSCH5(CH,)gCH,COOH Hydrophilic (-COOH tail) -

AUT 11-Amino-1-undecanthiol, hydrochloride HSCHy,(CHy)gCH2NH, HCI Hydrophilic (-NH tail) +

DT10 1-Decanethiol HSCH,(CH,)sCH3 Hydrophobic (-CHj tail) Neutral

doi:10.1371/journal.pone.0141282.1001

experimental data taken after SAM chemisorption were best-matched by the WV ASE>? soft-
ware package (J.A.-Woollam Co., Inc.).

BSA protein

The BSA stock solution was generated by dissolving BSA powder (Fisher Scientific) in DI H,O
to a final concentration of 1.0 mg/mL. BSA is a globular protein with the approximate shape of
a prolate spheroid of dimensions 4 nm x 4 nm x 14 nm in aqueous solution [29]. To investigate
adsorption as a function of BSA concentration, a set of experiments was conducted using the
AUT SAM with BSA solution concentrations of 1,000 ug/mL, 1.0 pg/mL, 0.5 pg/mL, and

0.1 pg/mL.

In-situ combinatorial QCM-D/SE

BSA adsorption to SAM-coated surfaces was monitored in real-time using in-situ combinato-
rial QCM-D/SE. Details about data acquisition and comparison between QCM-D and SE are
described in a prior study by two of the authors [30]. Briefly, for a porous organic adsorbate
layer, QCM-D is sensitive to the presence of both attached adsorbate and ambient liquid that is
coupled to the adsorbate. On the other hand, for porous, transparent adsorbate layers with
thickness that is very small compared to the wavelength of probing light (i.e., on the order of
10 nm or less), SE is not sensitive to ambient liquid within the adsorbate layer. Thus, the adsor-
bate volumetric porosity (f,y) may be found if the SE-determined adsorbate thickness parame-
ter dgg and the QCM-D-determined adsorbate thickness parameter docyp are known. For the
special case where the adsorbate and liquid densities are assumed equivalent (for simplicity), f,,
v is the ratio of dsg to docmp [30, 31].

The combinatorial QCM-D/SE instrumentation consists of an M-2000-V SE (J. A. Woollam
Co., Inc.), which measures 512 wavelengths in the visible and near-infrared spectrum simulta-
neously (370-1000 nm), with a mounted E1 QCM-D (Biolin Scientific). The optical model for
in-situ measurements was a three-layer substrate-SAM-BSA layer under DI H,O solution
ambient. Similarly, the protein layer was modeled by a Cauchy layer assuming #n = 1.5. If there
is error in this assumption, that error will propagate to the SE thickness value. For organic
materials that are powders under experimental conditions, including the -NH, terminated
alkanethiols, quantitatively finding the index of refraction is problematic. Furthermore, we are
also assuming BSA to be an organic thin layer. Prior to the in-situ QCM-D/SE measurement,
three ex-situ SE measurements were taken to develop the optical model. Starting values were
taken from the two-layer optical model described above. First, the SAM-coated sample was
measured under air at a 65 angle of incidence with respect to the substrate normal to confirm
the optical model starting values. Second, the sample was placed in a windowed liquid chamber
that allows for QCM-D measurements and for probing light to enter and exit at a 65 angle of
incidence with respect to the substrate normal; an SE measurement was taken under air ambi-
ent. Wavelength-dependent ellipsometric parameter A offsets, which considered window bire-
fringence effects, were varied by the optical model for data best-matching. Third, DI H,0 was
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pumped into the liquid chamber by a peristaltic pump (Ismatec IPC-N 4, IDEX Health & Sci-
ence GmbH), and an SE measurement was taken under liquid ambient. The substrate optical
constants were allowed to vary by the optical model for data best-matching, but the differences
were found to be negligible [32]. Finally, from a starting point of zero, the thickness of the Cau-
chy layer for BSA was allowed to vary for subsequent in-situ measurements.

All solutions were passed through the liquid cell using a peristaltic pump (Ismatec IPC-N 4)
(Biolin Scientific) attached to Tygon tubing (Fisher Scientific) and a 90" flow path 3-port valve
(Hamilton) at a flow rate of 0.1 mL/min. DI H,O was pumped into the liquid chamber and
both instruments were allowed to equilibrate for approximately 2 hr to develop a baseline read-
ing [27]. After stabilization with DI H,0O, BSA solution was introduced into the flow cell for 30
min and then the flow was stopped to allow the BSA molecules to adsorb to the SAM surface
for approximately 70 min. DI H,O was then pumped into the liquid cell to remove any pas-
sively-attached BSA molecules [27]. Thickness, mass and porosity changes in SE and QCM-D
induced by BSA attachment were monitored continuously, and data acquisition was performed
using CompleteEASE (J.A. Woollam Co., Inc) and QSoft (Biolin Scientific) software packages
for SE and QCM-D, respectively. In order to ensure measurement reproducibility for each
SAM-coated Au surface, triplicate QCM-D/SE measurements for each type of SAM were
acquired. QCM-D data demonstrated (data not shown) that the maximum dissipation shift
was small compared to the frequency shift during the measurements. Thus, the organic thin
film was assumed to be rigid and its QCM-D thickness was calculated using the Sauerbrey
equation with the third frequency overtone [30, 31]. Data obtained from QCM-D/SE were sta-
tistically presented by pooling the final 30 data points of each replicate experiment for a total of
90 data points for each SAM from which adsorbed thickness, volume fraction and correspond-
ing standard error values were determined [27]. The BSA adsorption rate over a specific period
of time was calculated by dividing the areal mass of adsorbed BSA by the adsorption time [33].

To investigate BSA adsorption as a function of pH, an experiment was conducted as
described above with an additional rinse step. In this experiment, after stabilization with DI
H,O, the system was flushed with pH 2 buffer solution. A 1.0 ug/mL BSA concentration and
AUT SAM were used in this experiment.

Results
Confirmation of SAM formation

To verify SAM coverage of the Au surfaces, an ex-situ measurement was done before and after
SAM attachment using the spectroscopic ellipsometer and contact angle goniometer (S1 Fig).
Averages SAM thickness and average water contact angles of each SAM-coated Au surface are
presented in Table 2.

The length of the SAM layer can be calculated by multiplying its number of C-C bonds by
the C-C length of 0.154 nm and by taking into account the C-C bond angle of 109.5". The
expected SAM thickness was determined by multiplying the calculated SAM length by sin(60)
[31]. The contact angles of MUOH, MUA, and AUT were all less than 90’ while that of DT10
was greater than 90, indicating the formation of hydrophilic-terminal and hydrophobic-termi-
nal SAMs, respectively [34, 35]. SAM adsorption on Au surfaces has been investigated in a
number of previous studies with inconsistent results [2, 36, 37]. In a previous study, static con-
tact angles of MUOH, MUA, and DT10 were reported as 10° 15 and 97, respectively [2],
while those of MUA and DT10 were reported as < 10" and ~ 110, respectively, in another
study [36]. The discrepancy in reported contact angles of MUOH, MUA, and DT10 were also
observed in a previous study, which might indicate that the yield of SAMs was incomplete as
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Table 2. Contact angles, SAM thickness (dsam), and theoretical SAM thickness (one triplicate measurement for each SAM).

SAM

Contact angles (degree)
dsam (Nm)
Theoretical dgay (nm)

doi:10.1371/journal.pone.0141282.1002

MUOH MUA AUT DT10
23.37 £1.82 246+0.9 47.83 £ 3.22 96.8 + 1.1
0.87 £ 0.03 1.34 £ 0.02 1.74 £ 0.39 1.5+0.1

1.31 1.31 1.31 1.09

monolayer formation depends on the immersion time, the purity of the thiols, and the quality
of the Au surface [2].

The measured SAM thicknesses corresponded to the estimated SAM thickness for MUA
and AUT SAMs (Table 2). The thickness of DT10 observed in this study is in agreement with a
prior study by Mendoza et. al. [36]. The combination of contact angle and ex-situ measurement
data demonstrates the existence of near-complete coverage of hydrophobic SAMs (contact
angles > 90°) and hydrophilic SAMs (contact angle < 90°) on the Au surfaces used in this
study; however, we cannot exclude the possibility that a discontinuous monolayer was formed
for all SAMs used in this study.

In-situ thickness and porosity of BSA deposited thin film on different
SAMs

Representative in-situ QCM-D/SE measurements of BSA adsorption are presented in Fig 1. dsg
only represents the contribution of adsorbate while docymp represents both adsorbate and asso-
ciated solvent entrapped by the adsorbate layer [30-32, 38, 39]. The combination of these two
parameters allows for determination of an additional parameter, the adsorbate volume fraction
(fo,v = dse/dqemp)- The volume fraction quantitatively describes the porosity of thin films [30-
32, 38, 39] with increasing volume fraction indicative of decreasing porosity (i.e. less ambient
solvent inclusion) [27]. A summary of changes in absorbed thickness and volume fraction for
in-situ QCM-D/SE measurements is presented in Fig 2. The thickness presented in Panel A is
the difference in adsorbed BSA upon rinsing with DI H,O relative to the measured thickness
prior to BSA adsorption.

BSA adsorption occurred on all SAM surfaces and, as expected, the immobilized BSA thick-
ness varied across different SAMs (Fig 1). The lowest amount of BSA attachment was measured
on the neutral hydrophilic MUOH surface (Fig 1A), with dgg = (0.450£0.019) nm (95% CI
[0.41, 0.49]). BSA attachment to the neutral hydrophobic DT10 surface was larger with a mea-
sured dgg = (0.891+0.009) nm (95% CI [0.87, 0.91]). For charged surfaces, BSA adsorption to
MUA (Fig 1B), a negatively charged hydrophilic surface, was comparable to adsorption to
AUT (Fig 1C), a positively charged hydrophilic surface as measured by SE. For charged sur-
faces, BSA adsorption was approximately 4.5-5.2 and 2.3-2.6 times greater when compared
with adsorption to the neutral MUOH and DT10 surfaces, respectively.

The thickness of the adsorbed BSA layer as determined by QCM-D on the neutral hydro-
philic MUOH surface was dqcmp = (1.430+0.048) nm. BSA adsorption to neutral hydrophobic
DT10 surface was 2.5 times greater than to the MUOH surface (Fig 1A and 1D). BSA adsorp-
tion to charged surfaces was observed to be 3.0 and 1.2 times greater than BSA attachment
onto neutral MUOH and DT10 surfaces, respectively (Fig 1). BSA adsorption to the charged
hydrophilic AUT and MUA surfaces was comparable (S1 Table). Results from QCM-D/SE
indicate that BSA adsorption increases as MUOH < DT10 < MUA < AUT.

Data on the volume fraction of the attached BSA proteins indicates SAM surface properties
influence the packing arrangement of surface-associated BSA protein (Fig 2). The volume frac-
tion of BSA proteins attached to MUOH and DT10 surfaces were similar with f, y; for
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Fig 1. In-situ SE (dsg), QCM-D (dqcmp) thickness and adsorbate volume fraction (f, v) on various SAM surfaces. (A) MUOH; (B) MUA; (C) AUT; and

(D) DT10.
doi:10.1371/journal.pone.0141282.g001

MUOH = 0.303+0.045 (95% CI [0.29, 0.31]) and f, v for DT10 = 0.251+0.009 (95% CI [0.23,
0.27]), indicating that BSA molecules likely had similar arrangement on these surfaces or BSA
adsorption on theses surfaces had similar porosity. The BSA volume fraction (f, v = 0.552
+0.009 (95% CI [0.53, 0.57])) was highest on the positively-charged hydrophilic AUT surface,
followed by the negatively-charged hydrophilic MUA surface (f,y = 0.477+0.002 (95% CI
[0.45, 0.46])).

Areal mass BSA and number of deposited BSA molecules on different
SAMs

Fig 3 shows the calculated areal mass of BSA attached to each of the four different SAMs sur-
faces. “Dry mass” (mgg, Fig 3A) and “wet mass” (mqcmp, Fig 3B) show similar shapes, and
mqcmp of a given SAM is always higher as the measured mass includes the liquid solvent.
Although the BSA equilibration periods were slightly different for each SAM evaluated, the
ultimate BSA mass adsorbed was not influenced as maximum adsorption was reached prior to
the DI H,O rinse phases.

Using the ‘dry mass’ of BSA attached to the surface, 2.77 x 10'*-3.17 x 10'> BSA molecules
were deposited on MUA and AUT and represented 2.3-5.2 times the number of BSA molecules
deposited on DT10 and MUOH, respectively (S1 Table). Similar to trends observed for dgg and
daocmp the wet and dry mass deposited were highest on MUA and AUT, and were lower on DT10
and MUOH. The trend in mass deposited was MUOH < DT10 < MUA < AUT (S1 Table).
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Fig 2. Averages from triplicate SE/QCM-D measurements. (A) SE and QCM-D thickness parameters (dsg, dacwmp, respectively) of different SAM surfaces
with associated standard errors. (B) Adsorbate volume fractions (f, v) of different SAM surfaces with associated standard errors.

doi:10.1371/journal.pone.0141282.9002
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Interaction of BSA on AUT SAM as a function of BSA solution
concentration

Decreasing BSA concentration from 1.0 pg/mL to 0.1 pg/mL generally resulted in decreased
protein adsorption (Fig 4). The average areal mass from triplicate measurements using the
1,000 pg/mL BSA solution was (0.46+0.008) ug/cm?® (S1 Table) which is similar to the area
mass of 0.47 pg/cm” measured for the 1.0 ug/mL BSA solution concentration. At a solution
concentration lower than 0.1 pg/mL, the adsorption was not detected (data not shown), there-
fore, the limit of combinatorial in-situ QCM-D/SE detection for BSA occurs at aqueous con-
centrations between 0.1 and 1.0 ug/mL BSA, highlighting the sensitivity of this instrument.

Although the adsorbed protein was comparable at both 1,000 pg/mL and 1.0 pg/mL concen-
trations, their respective porosities were not similar (Fig 4B). At 1,000 ug/mL, the volume frac-
tion of BSA was approximately 0.55+0.009 (S1 Table) and 10-25% higher than the volume
fractions determined for the 1.0 ug/mL BSA solution concentration. Higher BSA concentration
resulted in more densely packed BSA molecules.

BSA adsorption rate as a function of surface properties and of BSA
concentration

Adsorption kinetics are important in applications such as organic foulants adsorption onto
clean membranes [40]. Fig 5 represents the initial BSA adsorption rates, determined from the
linear section of the kinetic curves, and overall BSA adsorption rates, determined from mea-
surements when the system was at equilibrium, as a function of SAM surfaces properties. The
BSA adsorption to surfaces can be observed as a two-phase process which the first phase repre-
sented rapid deposition (represented as initial adsorption rate) of BSA followed by a second
phase with slower adsorption (Fig 1) [31]. The SAM surfaces strongly affected the BSA adsorp-
tion rate. The initial adsorption rate was observed to be highest on the AUT surface ((39.0
+10.1) ng/min.cm2 (95% CI [-14.41, 92.43])), which was four times greater than adsorption to
the MUOH and MUA surfaces; and ten times greater than adsorption to the DT10 surface (Fig
5A). The trend in overall adsorption rate was different from the initial adsorption rate as
MUA > AUT > MUOH > DT10 (Fig 5B).

Influence of pH on the adsorption of BSA to AUT SAM

The areal mass of adsorbed BSA decreased after approximately 40 min of flushing with pH 2
solution (Fig 6). After the pH 2 rinsing phase, it is likely that all the adsorbed BSA molecules
were detached from the surface yielding a nearly zero volume fraction. An areal mass of
approximately 50 ng/cm* was detected by QCM-D after the pH 2 solution rinsing phase and
represented the amount of solvent only.

Discussion

In this study, we demonstrate BSA adsorption to selected alkanethiol SAMs, which represent
various types of environmentally-relevant surfaces and included variability in surface charge
and hydrophobicity.

BSA interaction with surfaces as a function of surface properties

Because the SAMs investigated in this study had similar carbon chain lengths (Table 1), we can
attribute differences in BSA adsorption to differences between SAM functional tail groups. The
highest adsorbed thickness occurred on the charged, hydrophilic MUA and AUT surfaces (i.e.
carboxyl and amine groups, respectively). Meanwhile neutral surfaces such as DT10 and
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MUOH had lower BSA adsorption thicknesses, in which the hydrophilic tail group (hydroxyl
group) attracted fewer BSA molecules than the hydrophobic one (methyl group). The areal
adsorbed mass exhibited a similar trend as the adsorbed thicknesses (S1 Table). This finding
was also observed in previous research in which the absorbed mass decreased as the surfaces
became more hydrophilic [1, 12, 14, 40-43]. The predominant mechanism attributed to BSA
adsorption to DT10 is the hydrophobic interactions between the methyl group and the hydro-
phobic domains of BSA [42, 43]. The predominant mechanism likely responsible for BSA
adsorption to hydroxyl-terminated MUOH is the hydrogen-bonding interactions between the
terminal alcohol and the protein [40, 42-44].

For the charged surfaces, since both negatively and positively charged MUA and AUT sur-
faces exhibited BSA adsorption at neutral pH, electrostatic interaction is not likely to be the
predominant adsorption mechanism [43]. At neutral pH, the BSA proteins are negatively
charged and are repelled from the negatively charged MUA surface and a decrease in BSA
adsorption are expected, however, the adsorption of BSA proteins to negatively charged sur-
faces in aqueous solution at neutral pH was observed (Fig 1B). The adsorption of BSA proteins
to negatively charged surface at neutral pH was also observed in previous studies [18, 40, 42].
The adsorption to the MUA surface in other studies may be explained by the presence of posi-
tively charged domains (lysine, histidine) on the BSA surface. In a previous study [43], Human
Serum Albumin (HSA) attachment to negatively charged surfaces was observed at neutral pH.
An increase in pK, of the carboxylic functional group when adsorbed in a tightly packed SAM
surface can lead to the protonation of the carboxylic-terminated groups at neutral pH, resulting
in the strong hydrogen bonding interactions with the BSA proteins [43, 45, 46]. The exposure
of the hydrophobic regions of the alkyl chains due to the disordered MUA SAM:s could
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contribute BSA adsorption to this surface [43]. The large BSA adsorption to positively charged
surface can be attributed to the strong electrostatic interactions between the AUT surface and
BSA proteins.

Among all SAMs investigated, MUOH exhibited the least adsorption of BSA, which is in
agreement with a prior study evaluating BSA adsorption to OH-terminal surfaces [40, 41]. BSA
adsorption to MUOH was (0.143+0.005) pg/cm2 (S1 Table), which compares well with a value
of 0.19 pg/cm’ reported in Frida’s study of BSA adsorption to MUOH on Au after 50 min [2].
However, the BSA adsorption process in Frida’s study continues to level out after 50 min while
the BSA adsorption to MUOH in this study saturated after 1 min of BSA introduction to the
liquid cell (Fig 3B) [2]. From this study, it was observed that the quantity of BSA adsorption
was found to decrease in the order -NH, > -COOH > -CHj; > -OH, which agrees with a pre-
vious study where positively-charged SAMs surface exhibited a greater amount of BSA adsorp-
tion than negatively-charged surfaces and greater BSA adsorption was observed on
hydrophobic surfaces [40, 42].

Charged surfaces had greater BSA packing density when compared with neutral surfaces
(Fig 2B). This finding is consistent with a previous study demonstrated MUA SAMs form a
compact monolayer while DT10 SAMs present largely uniform but less compact areas in scan-
ning tunneling microscopy images [36]. The densely-packed monolayer of MUA compared to
DT10 is likely the reason leading to a higher density of BSA molecules on MUA given that
more binding sites are available. A similar explanation can be applied for amine- and hydroxyl-
terminated alkanethiols however more research is necessary. In general, Fig 2B implies that
BSA proteins are loosely packed on neutral surfaces while increasing packing occurs on
charged surfaces.

The measured thickness (dsg and dgcmp) of BSA adsorption to MUOH and DT10 are not
directly proportional to the volume fraction (Fig 2). Although DT10 has a higher dgg, more
ambient solvent was entrapped within the attached proteins leading to higher docmp. For BSA
adsorption to MUA and AUT, it is likely that during the adsorption process, BSA adsorbed to
MUA substrate entrapped more ambient solvent compared to AUT leading to observation of a
lower volume fraction on MUA.

Due to its three dimensional shape, BSA molecules may align in side-on or end-on arrange-
ments [14, 21] (Fig 7). BSA has the approximate dimensions 4 nm x 4 nm x 14 nm in aqueous
solution [29], therefore the thickness of a BSA monolayer should be 4 nm in a side-on scenario
and 14 nm in an end-on scenario. For the side-on scenario, a BSA molecule occupies an area of
approximately 56 nm” resulting in a maximal density of 2.75 x 10'> BSA molecules per sensor
given that the sensor area available for attachment is 154 mm”. For the end-on scenario, a BSA
molecule occupies an area of 16 nm? corresponding to 9.63 x10'* BSA molecules per sensor. It
was observed that the average number of deposited BSA molecules measured on MUA and
AUT SAM surfaces were slightly greater than the maximum number of BSA molecules in the
side-on scenario and approximately three times lower in the end-on scenario (S1 Table). It
should be noted that QCM-D/SE detects the average thickness of the thin film on the Au sur-
face. Therefore, if the SAMs were not ideally packed, for instance with SAM patches oriented at
different rotations or contaminants blocking potential chemisorption sites [31], BSA molecules
attachment would be incomplete leading to lower than expected values of dqcyp. Additionally,
since the measured thickness of the BSA adsorption layer was greater than 4.0 nm (Fig 7 and
S1 Table), the end-on scenario may be a likely arrangement for BSA adsorption to MUA and
AUT. For MUOH and DT10 surfaces, both scenarios are possible (Fig 7) as the maximum
number of BSA molecules were 2-16 times greater than the measured number of BSA mole-
cules and the measured thickness was lower than 4.0 nm (Fig 7 and S1 Table). The BSA
arrangement scenarios as a monolayer are further supported by a previous study that BSA
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aggregation was not observed (no expansion of BSA hydrodynamic diameter) at BSA concen-
tration of 1.0 mg/mL at room temperature [5].

BSA adsorption rate as a function of surface properties and of BSA
concentration

Two-phase BSA adsorption on SAMs surfaces in aqueous solution was also observed in previ-
ous studies [6, 27, 31, 41]. The first phase occurred as BSA solution was initially in contact with
excess sorption sites on SAM. The second phase was then slower until it reached a plateau as
most binding sites are occupied in the first phase and the monolayer uniformity is improved by
the molecule ordering and packing in this phase [31]. The BSA initial adsorption rate was
greatest on the positively-charged hydrophilic AUT surface (Fig 5A). The lowest affinity was
towards the neutral hydrophobic DT10 surface (Fig 5A). The trend in intial adsorption rate is
consistent with the trend of both volume fraction and adsorbed areal mass (S1 Table). It can be
implied that the electrostatic interactions responsible for BSA adsorption to positively charged
AUT surfaces are stronger than the hydrophobic interaction between BSA and hydrophobic
DT10 surface.

The overall BSA adsorption rate to neutral MUOH and DT10 surfaces were comparable
and were lower than the overall BSA adsorption rate to charged AUT and MUA surfaces.
These results suggest that higher initial BSA adsorption rates occur on -NH, and ~-COOH sur-
faces, which is supported by a previous finding [40].

Despite comparable adsorbed areal mass of BSA at equilibrium on AUT and MUA (S1
Table), initial adsorption rates were markedly higher for AUT than MUA (Fig 5) suggesting
that SAM type could be a controlling component in the initial adsorption phase and conse-
quently play a critical role in monolayer uniformity.

BSA interaction with a surface as a function of BSA concentrations

BSA adsorption increased with increasing protein concentration in the range of 0.1-1.0 pug/mL.
BSA solution concentrations of 1.0 pug/mL and 1,000 ug/mL yielded no difference in adsorbed
BSA, indicating that BSA adsorption was at saturation (S1 Table). At concentrations lower
than 0.1 pg/mL, no adsorption could be detected by the combinatorial in-situ QCM-D/SE. We
observed that at high BSA concentrations (1,000 pg/mL), a higher volume fraction was mea-
sured when compared to lower concentrations (0.1-1.0 pg/mL) (Fig 4B). The smaller number
of BSA molecules resulted in looser packing on the SAM surface. When more BSA molecules
were available in solution, more binding sites were occupied leading to a higher adsorbate vol-
ume fraction.

Influence of pH on BSA adsorption

BSA adsorption/desorption to AUT was influenced by solution pH. Since BSA is negatively
charged at neutral pH, BSA molecules would electrostatically adsorb to the positively charged
AUT SAM. Inversely, the electrostatic repulsion between positively charged AUT substrate
and positively charged BSA may prevent the binding of protein to AUT surface at pH 2, leading
to BSA desorption [6] (Fig 6). At pH 2, BSA molecules fold and expose the hydrophobic por-
tions of the molecules to the AUT surface leading to desorption from the surface. Since the
adsorbed BSA molecules were completely removed after the pH 2 rinsing phase (f, v ~ 0), we
believe that the positive QCM-D signal can be attributed to the desorption of BSA molecules
on AUT surface.
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Conclusions

Kinetic adsorption of BSA to various SAM surfaces were evaluated using in-situ combinatorial
QCM-D/SE. Adsorption of BSA varied as a function of surface properties, BSA concentrations
and pH. BSA adsorption to the investigated SAM:s is a two-phase process in which the initial
adsorption rate is greatest for the positively-charged hydrophilic AUT surface and smallest for
the neutral hydrophobic DT10 surface. A greater quantity of BSA molecules, a larger thickness
of the BSA thin film layer, and a more densely-packed BSA molecules occur on charged sur-
faces when compared to neutral surfaces. Both negatively and positively charged surfaces have
similar adsorption in terms of the film thickness, the quantity of adsorbed BSA, and the thin
film porosity. However, the initial kinetic adsorption rate of BSA for positively charged surface
is faster than for negatively charged surfaces. The density of adsorbed BSA depends on the
molecular structure of the free-tail functional group of SAM, which was observed as highly
packed for -COOH and -NH,, and less densely packed for -CH; and ~-OH. Hydrophobic
interactions and hydrogen bonding are responsible for BSA adsorption to hydrophobic DT10
and neutral MUOH surfaces, respectively, while the combination of electrostatic and hydro-
phobic interactions are involved in BSA adsorption to charged AUT and MUA surfaces. The
quantity of adsorbed BSA molecules to AUT surface increased under increasing BSA concen-
trations. It was confirmed in the study that the adsorbed BSA molecules desorbed at aqueous
pH lower than its IEP.

Supporting Information

S1 Fig. Contact angles measurements of Au surfaces before and after coated with SAMs.
(A) MUOH, (B) MUA, (C) AUT, and (D) DT10.
(TIF)

S2 Fig. BSA thickness on AUT-coated Au surface as a function of BSA concentrations. dgg:
SE thickness, dqcymp: QCM-D thickness, and £, v: adsorbate volume fraction. (A) 1.0 pg/mL
with additional rinse phase with pH 2 following DI water rinse phase; (B) 0.5 pg/mL; and (C)
0.1 pg/mL.

(TIF)

S3 Fig. BSA areal mass on AUT-coated Au surface as a function of BSA concentrations. (A)
1.0 pg/mL with an additional rinse phase with pH 2 following with DI water rinse phase; (B)
0.5 ug/mL; and (C) 0.1 pg/mL.

(TIF)

S1 Table. Summary of measured and calculated results with corresponding standard errors.
dsg: SE thickness; dgcyp: QCM-D thickness; Amgg: SE adsorbate areal mass changes;
Amqcmp: QCM-D adsorbate areal mass changes; and f,, y: adsorbate volume fraction.

(PDF)
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