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Deviations from Matthiessen’s rule and resistivity saturation effects in Gd and Fe
from first principles

J. K. Glasbrenner,1,* B. S. Pujari,1,† and K. D. Belashchenko1,2

1Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska–Lincoln, Lincoln,
Nebraska 68588, USA

2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
(Received 31 December 2013; revised manuscript received 11 April 2014; published 7 May 2014)

According to earlier first-principles calculations, the spin-disorder contribution to the resistivity of rare-earth
metals in the paramagnetic state is strongly underestimated if Matthiessen’s rule is assumed to hold. To understand
this discrepancy, the resistivity of paramagnetic Fe and Gd is evaluated by taking into account both spin and
phonon disorder. Calculations are performed using the supercell approach within the linear muffin-tin orbital
method. Phonon disorder is modeled by introducing random displacements of the atomic nuclei, and the results
are compared with the case of fictitious Anderson disorder. In both cases, the resistivity shows a nonlinear
dependence on the square of the disorder potential, which is interpreted as a resistivity saturation effect. This
effect is much stronger in Gd than in Fe. The nonlinearity makes the phonon and spin-disorder contributions to
the resistivity nonadditive, and the standard procedure of extracting the spin-disorder resistivity by extrapolation
from high temperatures becomes ambiguous. An “apparent” spin-disorder resistivity obtained through such
extrapolation is in much better agreement with experiment compared to the results obtained by considering only
spin disorder. By analyzing the spectral function of the paramagnetic Gd in the presence of Anderson disorder, the
resistivity saturation is explained by the collapse of a large area of the Fermi surface due to the disorder-induced
mixing between the electron and hole sheets.

DOI: 10.1103/PhysRevB.89.174408 PACS number(s): 75.47.−m, 72.15.Eb, 71.20.Eh

I. INTRODUCTION

The electric resistivity of magnetic metals is due to several
scattering mechanisms, including scattering on impurities,
lattice vibrations, and spin fluctuations [1–3]. While the
impurity and phonon scattering are well understood both on
the general level [4] and quantitatively [5–8], spin-disorder
scattering has not been studied based on the first-principles
electronic structure theory until recently [9,10]. Understanding
of this scattering mechanism is important, because it provides
quantitative information about the character of thermal spin
fluctuations in metals [11].

The interpretation of resistivity measurements in magnetic
metals usually assumes that Matthiessen’s rule holds, i.e.,
that different scattering mechanisms contribute additively to
the resistivity [12]. Under this assumption, it makes sense
to talk about the individual spin-disorder contribution to the
resistivity, which does not depend on the intensity of other
scattering mechanisms. If the local moments are temperature-
independent, this contribution saturates in the paramagnetic
state, which allows one to fit and subtract out the residual
and phonon contributions. The remaining part obtained in this
way will be referred to below as the apparent spin-disorder
resitivity (SDR).

To calculate the SDR from first principles, the most general
approach is to construct supercells representing an ensemble
of spin disorder configurations, average the Landauer-Büttiker
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conductance over this ensemble, and extract the resistivity
from the scaling of the result with the dimensions of the
supercell. This approach has been applied to transition metals
Fe and Ni [9] and to the Gd-Tm series of heavy rare-earth
metals [10]. A simpler procedure is to calculate the resistivity
using the Kubo-Greenwood formula applied to the disordered
local moment (DLM) state [13], which represents the coherent
potential approximation (CPA) applied to the paramagnetic
state. The application of this procedure is similar to the calcu-
lation of the residual resistivity of substitutional alloys [14,15].
The results for transition metal ferromagnets [16] and heavy
rare-earth metals [10] were found to agree very well with the
supercell calculations.

For transition metals and alloys, the calculated SDR is
generally in good agreement with experimental data [9,16].
In contrast, for heavy rare-earth metals in the Gd-Tm series
the calculated SDR is systematically underestimated [10]. For
heavier elements in the series, the agreement with experiment
is significantly improved by applying the (S + 1)/S quantum
correction, which corresponds to the limit of weak spin-orbit
coupling. The justification for this choice is lacking, absent a
consistent description of the conduction electron scattering on
localized spins in the regime when hybridization is comparable
to spin-orbit multiplet splittings. This uncertainty complicates
the comparison of the calculated SDR with experimental data
for the heavier elements. However, for lighter elements with
large spin moments, particularly Gd, a large underestimation
of the resistivity by more than a factor of 2 can not be explained
by any kind of quantum correction, and its origin should
therefore be sought in the details of the electronic structure
and scattering. In particular, the validity of Matthiessen’s rule
in the presence of strong spin and phonon disorder should be
brought into question.
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When the electrical resistivity ρ is not too large, i.e.,
ρ � 100 μ� cm, the deviations from Matthiessen’s rule in
nonmagnetic metals usually amount to a small fraction of the
total resistivity [17,18]. One possible source of such deviations
is anisotropic electron-phonon scattering (violation of the
τ approximation) [19], which may occur on an anisotropic
Fermi surface [20–22] and is well captured by the two-band
model [23]. In ferromagnetic metals and alloys the deviations
can be quite large [17,24] due to the fact that the current
flows in parallel through two approximately independent
spin channels [25–27]. The latter mechanism is irrelevant
for the paramagnetic state. Deviations from Matthiessen’s
rule in dilute nonmagnetic and ferromagnetic alloys were
studied using first-principles calculations combined with the
Boltzmann equation [28]. The results confirmed that the
deviations in the weak-scattering case are generally small (in
the ferromagnetic case, this statement applies to the individual
spin channels).

A different kind of Matthiessen’s rule violation, called
resistivity saturation [29], manifests itself as a sharp decrease
in the slope dρ/dT above some critical value of ρ, as observed,
for example, in the A15 compound Nb3Sb [30,31] and in
Ti1−xAlx alloys [32]. In many such materials, the resistivity
appears to saturate at a typical value of 150–200 μ� cm,
which corresponds approximately to �/a ∼ 1, where � is the
mean free path and a is the lattice parameter. This is the
strong-scattering, or “dirty” regime where the semiclassical
Boltzmann equation breaks down. The condition � � a is
known as the Ioffe-Regel criterion [33]. Later it was found
that high-Tc cuprates [34] and alkali-doped C60 systems such
as Rb3C60 [35,36] violate the Ioffe-Regel criterion and do not
exhibit saturation for resistivities extending into the m�cm
range, which suggests more complicated, or even exotic,
physics in these “bad metals.”

Considerable efforts were invested in the theoretical study
of resistivity saturation [29,37–41]. Gunnarsson and cowork-
ers [42–45] studied the optical conductivity in the strong
scattering regime using quantum Monte Carlo simulations with
models appropriate for weakly correlated transition metals,
strongly correlated cuprates, and alkali-doped C60 materials
with a substantial phonon renormalization of the bandwidth.
They found saturation magnitudes consistent with experiment
when phonons are coupled to hopping matrix elements.
Other numerical studies based on tight-binding Hamiltonians
[46–48] did not yield a general picture of resistivity saturation
but showed that its features depend on the system and on the
model of disorder. Thus understanding of the phenomenon
remains incomplete [49]. To our knowledge, detailed first-
principles studies of resistivity saturation are lacking, although
Butler [50], using qualitative arguments within the coherent
potential approximation, proposed a rough estimate of the
saturated resistivity of 150 μ� cm in the strong scattering
regime.

Coming back to heavy rare-earth metals, we note that their
resistivities reach 150–180 μ� cm at elevated temperatures,
with slopes depending strongly on the element and temper-
ature [see Fig. 2(b) below]. This suggests that resistivity
saturationlike effects are likely to be present, which may
be related to the underestimation of SDR in first-principles
calculations [10]. In this paper, we address this issue by

extending our supercell approach [9,10] to evaluate the
resistivity in the presence of both spin and phonon disorder. We
apply this method to Fe and Gd and find significant deviations
from Matthiessen’s rule with increasing disorder, which are
particularly strong for Gd and indicate a resistivity saturation
effect, which is partially hidden by the anomalous temperature
dependence due to spin-disorder scattering. As a result, the
SDR calculated at zero lattice displacements becomes much
smaller than the value obtained by extrapolating the high-
temperature data. This finding provides an explanation for
the apparent underestimation of SDR in previous calculations
neglecting the phonons.

The rest of the paper is organized as follows. In Sec. II, we
describe the methods used in the calculations of the resistivity,
and in Sec. III, the results for Fe and Gd are presented. In
Sec. IV, we analyze the electronic structure of Gd in the
presence of disorder and identify the origin of the resistivity
saturation effect. The conclusions are drawn in Sec. V.

II. COMPUTATIONAL METHODS

Atomic displacements can be included explicitly in super-
cell calculations. Electron scattering on such frozen thermal
lattice disorder is a good representation of phonon scattering
at temperatures that are not too low compared to the Debye
temperature. With an uncorrelated Gaussian distribution for
the lattice displacements, this approach was recently employed
to study Gilbert damping [51]. The lattice displacements can
also be determined more realistically from the Born model
or ab initio molecular dynamics simulations [52]. It is also
possible to include uncorrelated atomic displacements within
the CPA [53–55]. We have followed the approach of Ref. [51]
in this work.

All calculations were performed using the tight-binding
linear muffin-tin orbitals (LMTO) method within the atomic
sphere approximation and with the local spin density approx-
imation (LSDA) for the exchange-correlation potential. Spin
disorder is introduced by randomly assigning the direction
of the local magnetic moment vector on each atom in the
supercell [9,10]. The effects of spin and lattice disorder can
thus be studied on the same footing.

We have considered both α and γ phases of Fe, setting
the lattice parameters to their experimental values: 2.8655
Å for α and 3.6394 Å for γ -Fe, the latter measured close
to the α-γ phase transition [56]. For hcp Gd, we also used
the experimental parameters a = 3.629 Å and c/a = 1.597.
The conduction electrons were represented by the basis set
including s, p, and d electrons. For Gd, the 4f electrons were
treated in the “open core” approximation as in our earlier
calculations [10].

The conductance of each supercell was calculated using the
Landauer-Büttiker approach. The results for different lengths
of the disordered scattering region were fitted to Ohm’s law
as shown in Fig. 1, and the resistivity is obtained from the
slope of this dependence. For longer lengths of the scattering
region, the system becomes effectively one-dimensional and
Ohmic scaling breaks down due to Anderson localization [57].
As shown in Fig. 1, the fits to Ohm’s law were based on the
range of lengths where the localization effects are negligible.
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FIG. 1. The area-resistance product as a function of the active
disordered region length for two separate sets of calculations. The
black circles (read using bottom and left axes) are calculations with
collinear ferromagnetic α-Fe and a phonon mean-square displace-
ment ū = 0.1572Å, and the gray circles (read using top and right axes)
are calculations of Gd with random noncollinear spin disorder, current
flowing parallel to the c axis, and phonon mean-square displacement
ū = 0.3629Å.

The resistivity is isotropic for Fe, while for hcp Gd, the
tensor has two independent components for current flowing
parallel and perpendicular to the c axis. We used supercells
with a cross-section of 4a × 4a (16 atoms per monolayer) for
α-Fe; 3a × 3a (18 atoms per monolayer) for γ -Fe; 4a × 4a

(16 atoms per monolayer) for Gd with current flowing along
the c axis; and 3

√
3a × 2c (12 atoms per monolayer) for Gd

with current along an in-plane translation vector. The Brillouin
zone integration was performed using meshes that ranged from
15 × 15 for α-Fe with vector spin disorder to 25 × 25 for
α-Fe with collinear (Ising) spin disorder. The conductance
was averaged over 15 or 30 disorder configurations when the
root mean-squared atomic displacement ū was less than or
greater than 0.08a, respectively.

For γ -Fe and Gd with the in-plane transport direction, the
dependence of the resistivity on the magnitude of the local
magnetic moments was checked by using the atomic potentials
taken from the ferromagnetic or the paramagnetic state as
input for the transport calculations. The paramagnetic state
was modeled using the DLM approach in this case [13]. For
α-Fe and Gd with the transport along the c axis, we only used
the potentials from the ferromagnetic state.

For further analysis, we calculated the c axis resistivity
of Gd with artificial Anderson disorder introduced instead of
the lattice displacements. This was done by adding random
shifts to the atomic potentials of different sites (on-site
band-center parameters C and linearization energies Eν in
LMTO), which were distributed uniformly in the range of
(−	,	). We performed two sets of calculations for this
system, one with random vector spin disorder and atomic
potentials from the ferromagnetic state (averaging over 15

disorder configurations), and another with zero magnetic
moments on all sites (30 configurations).

The densities of states (DOS) of Gd with spin and lattice
disorder were calculated using a 64-atom supercell (four
hexagonal monolayers with 16 atoms per monolayer). The
atomic potentials were taken from the ferromagnetic state
(local moment m = 7.72μB ). Seven random vector spin
disorder configurations were generated for averaging, and
random lattice displacements of different amplitudes were
introduced as described above. The partial spin-dependent
density of states (DOS) was then calculated for each atom
in the local reference frame in which the z axis is parallel
to the direction of the local magnetic moment. This par-
tial DOS was then averaged over all atoms and disorder
configurations.

The Bloch spectral functions of Gd with spin and Anderson
disorder were calculated using the standard technique within
the CPA [58]. Here, instead of a uniform distribution of
the disorder potential, we assumed that the local potential
shift randomly takes two values, 	 and −	. The two spin
orientations combined with two values of the potential shift
are then formally treated in CPA as a four-component random
alloy.

III. ELECTRICAL RESISTIVITY OF Fe AND Gd

It has become common practice to determine the SDR by
extrapolating the high-temperature resistivity data back to zero
temperature. This procedure relies on the assumption that spin-
disorder and phonon scattering processes are independent,
which is a good approximation as long as the electronic states
retain their quasiparticle character and their band structure is
weakly affected by disorder. If these conditions are satisfied,
a linear temperature dependence of resistivity is expected
at temperatures above the Debye temperature. Deviations
from linearity are, however, rather common. Consider the
resistivity measurements for Fe [59–61], which are assembled
in Fig. 2(a). Our fits to these data are included in the figure and
summarized in Table I. The α (T < 1180 K) and δ (T > 1680
K) phases of Fe are crystallographically identical, and the
corresponding resistivity data should lie on the same smooth
curve. It seems clear that this curve deviates significantly from
the straight line in the paramagnetic region. In particular,
the intercept of fit 3 is 1.3 times larger and its slope two
times smaller compared to fit 1 (see Table I). The same trend
(sublinear temperature dependence) has also been observed for
polycrystalline samples of heavy rare-earth metals measured
between room temperature and 1000 K [62], which we have
compiled in Fig. 2(b). As an example, the slope of the
resistivity data for paramagnetic Er decreases by nearly a
factor of 2 over this temperature range. A similar deviation
from linearity is seen for single-crystal paramagnetic Gd [63].
This behavior makes the definition of SDR ambiguous and
calls for the calculation of the total resistivity in the presence
of both spin and phonon scattering. This is the purpose of this
section.

Figure 3(a) shows ρ as a function of ū2 for α-Fe calculated
in the ferromagnetic state without introducing spin disorder.
The linear dependence is, of course, typical since the average
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FIG. 2. (Color online) Electrical resistivity data taken from
experiment. (a) Fe resistivity measurements compiled from
Refs. [59–61]. The three lines correspond to fits to data from (1)
Pallister [59]; (2) and (3) Cezairliyan et al. [61]. The temperature
range, slopes, and intercepts of the fits are in Table I. (b) High-
temperature resistivity data for polycrystalline rare-earth metals
compiled from Ref. [62].

scattering potential is proportional to ū2. The slope (1381 ± 15
μ� cm/Å2) agrees very well with the results of Liu et al. [51]
obtained with a similar method.

TABLE I. The data set and temperature ranges used for the fits in
Fig. 2(a) and the resulting slopes and intercepts.

Fit T range Slope Intercept
# Reference (K) (μ� cm/K) (μ� cm)

1 Pallister 1223–1523 0.0304 77.1
2 Cezairliyan et al. 1500–1660 0.0218 88.0
3 Cezairliyan et al. 1700–1800 0.0150 100

Figure 3(b) shows the ρ(ū2) dependence for α-Fe and γ -
Fe with random vector spin disorder combined with atomic
displacements, and Fig. 3(c) the results for c axis and in-plane
transport directions in Gd. The error bars in both panels are
approximately half the height of the data symbols (0.5 and 0.9
μ� cm for Fe and Gd, respectively). The slopes and intercepts
of the fits in Figs. 3(b) and 3(c) are listed in Table II.

The values of ū2 used in our calculations can be com-
pared with experimental data. Several authors extracted the
temperature dependence of ū2 from the measurements of the
Debye-Waller factor for α-Fe [64,65] and compared the results
with models [66–68]. The experimental data for ū2 are noisy
at elevated temperatures, but the theoretical model plotted
in Ref. [68] may be considered as the lower bound for ū2

at all temperatures. At the Curie temperature (1040 K) the
lower bound for ū2 is estimated at 0.053 Å2. The data for
Cu [69] is more stable at elevated temperatures, and ū2 at
1040 K is estimated at 0.094 Å2. For Gd, the value of ū2 at
room temperature is estimated to be 0.0105 Å2 [70], while a
model calculation for Er gives ū2 ≈ 0.169 Å2 at its melting
point [71]. The data used in our calculations are in line with
these estimates.

The resistivity curves for α-Fe and γ -Fe are very similar.
This agrees with an experimental fact that the α-γ phase
transition at 1180 K is barely noticeable in the resistivity plot
[see Fig. 2(a)].

The ρ(ū2) curves for both Fe and Gd [Figs. 3(b) and 3(c)]
deviate strongly from linearity. As ū2 is increased, the slope
decreases and eventually becomes almost constant. Below we
will show that this feature is due to the breakdown of certain
parts of the Fermi surface and is insensitive to the type of
disorder. We interpret this as a resistivity saturation effect
which takes place when the resistivity becomes of the order
100 μ� cm.

Clearly, Matthiessen’s rule breaks down in the nonlinear
regime, and the separation of the total resistivity into phonon
and spin-disorder contributions becomes impossible. To facil-
itate further discussion, we will use the term “bare SDR” for
the resistivity obtained at ū = 0 with random spin disorder,
and “apparent SDR” for the intercept of the linear fit to the
ρ(ū2) curve at larger ū2 (as listed in Table II). The definition
of apparent SDR is only possible as long as the slope of ρ(ū2)
becomes approximately constant in the strong disorder regime,
as it does in our calculations for Fe and Gd. The usual method
of extracting the SDR from high-temperature experimental
data yields the apparent SDR.

Figure 3(b) and 3(c) show that the bare and apparent SDR
are quite different in Fe and particularly in Gd. For α-Fe (γ -
Fe), the apparent SDR is 1.34 (1.32) times greater than the bare
SDR, and for the c-axis (in-plane) transport in Gd it is 2.4 (2.3)
times greater. The apparent SDR for Fe and Gd (intercepts in
Table II) are somewhat larger than the experimental estimates
of SDR obtained by extrapolating the high-temperature data
(80, 108, and 96 μ� cm for Fe, Gd with in-plane and c axis
transport, respectively). In the case of Fe, a portion of this
discrepancy is likely due to the fact that the crossover to the
resistivity saturation regime is incomplete, which is strongly
suggested by Fig. 2(a). We also note that the inclusion of 4f

orbitals in the basis set led to a reduction of the bare SDR [9]
by about 15% and could similarly lower the apparent SDR.
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FIG. 3. Calculated resistivities for α and γ Fe and hcp Gd. (a) ρ(ū2) for ferromagnetic α-Fe with atomic displacements. Filled circles: this
work; open circles: data of Ref. [51]. (b) ρ(ū2) for two phases of Fe with random vector spin disorder and atomic displacements. Open circles
and solid line: α-Fe, filled circles and dashed line: γ -Fe. (c) ρ(ū2) for hcp Gd with random vector spin disorder and atomic displacements.
Filled gray circles and gray fit line: c-axis transport, m = 7.72μB . Filled black circles and solid black fit line: in-plane transport, m = 7.72μB .
Open circles and dashed fit line: in-plane transport, m = 7.45μB . (Inset) Enlarged plot of the linear region. (d) In-plane resistivity of Gd as
a function of the squared Anderson disorder amplitude 	2. Closed circles: with fictitious non-magnetic atomic potentials. Open circles: with
random vector spin disorder (m = 7.72μB ).

For Gd, the in-plane apparent SDR is 28% greater compared
to the experimental extrapolated SDR, and the c-axis resistivity
is 11% greater. Taking into account the experimental and
computational uncertainties (particularly the absence of the
4f states in the basis), this agreement can be judged as
good.

As noted earlier [10], the magnitude of the local moment
has a significant effect on the bare SDR. In particular, with
the local moment taken from a self-consistent CPA-DLM
calculation, the bare in-plane SDR for Gd is almost 30%
lower compared to the case when the local moment is taken
from the ferromagnetic calculation. We therefore performed
a similar comparison for the resistivity in the presence of
lattice vibrations; the corresponding curve is shown by open
circles in Fig. 3(c). We observe that the difference between the
resistivities calculated for m = 7.72 and 7.45 μB decreases as

TABLE II. Parameters of the fits in Fig. 3.

Slope Intercept
Element m (μB ) (μ� cm/Å2) (μ� cm)

α-Fe 2.27 134 ± 5 129 ± 1
γ -Fe 2.11 120 ± 6 126 ± 1
Gd (c axis) 7.72 340 ± 11 107 ± 2
Gd (in-plane) 7.72 269 ± 9 138 ± 2

7.45 303 ± 9 130 ± 1

ū2 is increased and eventually almost disappears (see also
the inset). The apparent SDR is only reduced by 6% in
the latter case, which is likely within the uncertainty of the
extrapolation. This feature is consistent with the resistivity
saturation phenomenon.

In principle, our computational method permits the calcu-
lation of the temperature-dependent resistivity [9], although
direct comparison with experiment may be hampered by the
imprecise knowledge of ū2(T ). We leave this issue for future
studies. Note that the apparent SDR is not affected by the
uncertainty in the slope of ū2(T ).

To gain further insight in the role of different scattering
mechanisms, we repeated the calculations of the in-plane
resistivity of Gd with a fictitious Anderson disorder introduced
in lieu of the random lattice displacements. For comparison,
we considered the spin-disordered system with m = 7.72μB

and its nonmagnetic counterpart with unpolarized 4f cores.
Anderson disorder is characterized by an amplitude 	 (see
Sec. II), and the results are plotted in Fig. 3(d) as a function
of 	2.

The shape of the ρ(	2) curve in Fig. 3(d) for a system
with spin disorder (open circles) is similar to ρ(ū2) for
phonon disorder in Fig. 3(c). A similar curve is obtained
for a nonmagnetic system [filled circles Fig. 3(d)] with an
obvious exception that the curve starts from zero rather than
from the bare SDR. The similarity of the resistivity curves
for different types of disorder indicates that the resistivity
saturation effect is primarily controlled by the features of
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the electronic structure. These features will be studied in
the following section. Similar to the case of the phonon
disorder discussed above, the two curves for spin-disordered
and magnetic systems shown in Fig. 3(d) approach each other
at large 	2.

We return to the high-temperature resistivity measure-
ments [62] taken on polycrystalline samples compiled in
Fig. 2(b) and compare with our results. The shape of the curves
is remarkably similar to those in Fig. 3(d). First, the resistivity
saturation trend is clearly seen for all elements including the
nonmagnetic lutetium, with deviations from linearity setting
in when the resistivity exceeds about 100 μ� cm. Second,
while the intercept of the resistivity steadily increases with
the magnitude of the spin magnetic moment (i.e., with the
decreasing atomic number), the curves tend to converge at
high temperatures. Our results are in excellent agreement with
both of these features. By comparing the total resistivities, we
can also estimate that at T ∼ 1000 K the magnitude of lattice
disorder ū ∼ 0.4 Å, and a similar relaxation rate is generated
by Anderson disorder with 	 ∼ 1.8 eV.

IV. DISORDER-INDUCED PARTIAL FERMI SURFACE
COLLAPSE IN Gd

In order to understand the origin of the resistivity saturation
effect, in this section, we analyze the influence of disorder
on the electronic structure of Gd. First, let us examine the
evolution of the DOS in spin-disordered Gd as the lattice
disorder is increased, which is presented in Fig. 4 (see Sec. II).
At ū, the DOS is the same as in Ref. [10] and similar to the
DLM calculation [72]. Although spin disorder smears out the

sharp variations of the DOS, one can still see pronounced
features. As lattice disorder is introduced, these features are
also gradually smeared out. The suppression of the DOS
structure correlates with the reduction of the slope of the
resistivity in Fig. 3(c).

Further, we have calculated the Bloch spectral function for
paramagnetic Gd including Anderson disorder of a varying
amplitude (see Sec. II). Anderson disorder is used instead
of lattice disorder in order to simplify its treatment within
CPA. Figure 5 shows the energy-dependent spectral function
plotted along several high-symmetry lines in the Brillouin
zone. The three panels represent different disorder amplitudes.
In addition, Figs. 6 and 7 display several slices of the spectral
function at the Fermi energy.

The spectral function of paramagnetic Gd without lattice
disorder [Fig. 5(a)] shows that it has a well-defined, weakly
broadened Fermi surface, and that the exchange splitting
is completely absent. This corresponds to the Stoner pic-
ture, which is consistent with several photoemission experi-
ments [73–75] and calculations [76], although this conclusion
has been controversial [77]. Note that although the band
structure is very similar to that of a fictional material with
unpolarized 4f states, it coexists with fluctuating local
magnetic moments and with the exchange splitting of the local
DOS shown in Fig. 4(a). The absence of exchange splitting is
consistent with the fact that the d-f exchange is much smaller
than the conduction bandwidth.

The Fermi surface is also readily identified in Fig. 6 and
panels (a), (d), and (g) of Fig. 7 which correspond to pure spin
disorder. This Fermi surface has a holelike cylindrical sheet
centered around the �-A line and an electronlike sheet outside

FIG. 4. Average spin-projected local density of states of spin-disordered Gd (m = 7.72μB ) for different amplitudes of lattice disorder ū:
(a) no phonon disorder, (b) ū = 0.183 Å, (c) ū = 0.257Å, and (d) ū = 0.316 Å.
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FIG. 5. (Color online) The spectral function of paramagnetic Gd
for different amplitudes 	 of Anderson disorder plotted along high-
symmetry lines of the hexagonal Brillouin zone. (a) 	 = 0, (b) 	 =
0.95 eV, and (c) 	 = 1.8 eV.

it [78,79]. There are several points where the electron and hole
sheets approach each other, such as along the �-K line; the
sheets cross near the �-H line and are degenerate everywhere
on the AHL plane.

The spectral function in Fig. 6 is plotted in the same cross-
section as Fig. 2 in Ref. [80], which was obtained using the
self-interaction-corrected LSDA. Although the Fermi surface
features appearing in these plots are immediately identifiable

FIG. 6. (Color online) The spectral function of paramagnetic Gd
evaluated at the Fermi energy for the HLMK plane in the Brillouin
zone.

with each other, there are notable differences in their shapes.
These differences are due to the different approximations used
in the description of the 4f electrons. They are immaterial to
the general conclusions that follow.

As the Anderson disorder amplitude is increased
[Figs. 5(a)–5(c)], the bands broaden, and eventually a large
portion of the Fermi surface is destroyed. This evolution can
also be clearly observed in Fig. 7 showing the Brillouin zone
cuts at the Fermi energy. The second row of panels (b), (e),
and (h) in Fig. 7 corresponds to the same disorder amplitude as
Fig. 5(b), and the third row (c), (f), and (i) to the same amplitude
as Fig. 5(c). For 	 = 0.95 eV, disorder has a much stronger
effect on the Fermi surface close to the ALH plane compared
to the remainder of the Brillouin zone. Only a portion of the
holelike Fermi surface sheet near the �MK plane survives in
the presence of disorder. The states near the ALH plane are
strongly affected due to the degeneracy of the electronlike
and holelike sheets on this plane, which are therefore strongly
mixed by disorder. In addition, the surviving part of the Fermi
surface corresponds to the bands with a higher Fermi velocity
(see Fig. 7), which reduces the extent of the broadening in k

space observed at a given energy. For 	 = 1.8 eV, the few
remaining features of the Fermi surface are destroyed and an
incoherent spectral weight spans the entire Brillouin zone.

The collapse of a large portion of the Fermi surface
correlates with the large decrease in the slope of the resistivity
in Fig. 3(d), giving additional support to the interpretation of
these results as a resistivity saturation effect.

The results in Fig. 7 can also help reconcile the recent angle-
resolved photoemission spectroscopy (ARPES) measurements
for paramagnetic Gd [81] with the calculated Fermi surface
of nonmagnetic (or spin-disordered) Gd [78,79]. At room
temperature ARPES only reveals a corrugated-cylinder fea-
ture, while the theoretical Fermi surface also has complicated
features centered at the AHL plane of the Brillouin zone.
As discussed above, disorder strongly broadens the spectral
features near this plane due to the presence of degeneracy. This
suggests that lattice vibrations may suppress the additional
features of the Fermi surface and make them indiscernible in
ARPES. The ARPES signal in the �MLA plane has a diffuse
“halo” outside of the cylindrical sheet, and its shape is in
reasonable agreement with Fig. 7(h). Thus the presence of a
diffuse scattering region instead of a sharp electronlike sheet in
ARPES measurements may be due to disorder-induced band
broadening.

We note that the resistivity of alloys with spin and phonon-
induced on-site disorder has been studied [82] using an s-d
Hamiltonian designed to model Gd-based alloys, but the
assumption that a conduction electron forms a pair of bound
states with the 4f spin (whose occupation depends on temper-
ature) led to a negligible SDR at room temperature and lack of
its saturation even at 3000 K. In our opinion, this picture based
on the zero-bandwidth limit [83] is unphysical, because the s-d
exchange coupling is much smaller than the conduction-band
width, and no localized resonances should form.

Although we have focused on Gd in this paper, we can
consider the implications of the results for the whole rare-earth
series. The issue of quantum corrections is of particular
interest. If the 4f orbitals are treated as fully localized with
a well-defined total angular momentum J (strong spin-orbit

174408-7



GLASBRENNER, PUJARI, AND BELASHCHENKO PHYSICAL REVIEW B 89, 174408 (2014)

FIG. 7. (Color online) The spectral function of paramagnetic Gd evaluated at the Fermi energy on the indicated planes of the Brillouin
zone for different values of the Anderson disorder amplitude 	. (a), (d), and (g) 	 = 0. (b), (e), and (h) 	 = 0.95 eV. (c), (f), and (i) 	 =
1.8 eV.

coupling limit), the resistivity in the paramagnetic state should
be proportional [84–86] to the so-called de Gennes factor (g −
1)2J (J + 1) [87]. This factor takes into account the quantum
structure of the J mutliplet. The analysis of early experimental
data [88] suggested that the out-of-plane resistivity in the
Gd-Tm series scales with the de Gennes factor, while the in-
plane resistivity scales with S(S + 1). In order to reconcile this
unexpected trend with the model, Legvold [88] claimed that
the S(S + 1) scaling is accidental and introduced an empirical
correction based on the slope dρ/dT of the resistivity above
the magnetic transition temperature, assuming that the large

factor-of-two variation of this slope through the Gd-Tm series
is due to the changes in the Fermi surface area. However,
the calculated variation in the relevant Fermi-velocity integral
across the series is only about 20% [10], which is too small
compared with the observed variation of dρ/dT . The results
presented above along with the high-temperature resistivity
measurements [62] show that the variation in dρ/dT is largely
due to the resistivity saturation trend and not to the changes in
the Fermi surface.

As regards the absolute values of the resistivity, we found
that the comparison with experimental data for lighter elements
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in the Gd-Tm series requires that lattice disorder is included
in the calculation along with spin disorder. At least for
Gd, the resistivity calculated in this way is in reasonable
agreement with experiment. For heavier elements with lower
transition temperatures, saturation effects remain insignificant
in the region used for the fitting, and the SDR extracted
from experiment can therefore be directly compared with the
calculated bare SDR. For these heavier elements the agreement
with experiment appears to be significantly improved by
assuming S(S + 1) scaling [10]. This kind of scaling occurs if
the spin and orbital moments are not strongly coupled to each
other, which is surprising for heavy rare-earth elements. While
understanding the origin of this behavior is beyond the scope
of this paper, we suggest that the finite width of the 4f band,
if comparable to the spin-orbit multiplet splitting, can destroy
the strong correlation between the spin and orbital moment.
This issue requires further investigation.

V. CONCLUSIONS

We have analyzed the resistivity of α-Fe, γ -Fe, and hcp
Gd in the presence of both spin and lattice disorder. Strong
deviations from Matthiessen rule were found. As the resistivity
approaches values of order 100 μ� cm, resistivity saturation
effects start to manifest themselves. When plotted against the

square of the disorder amplitude, the resistivity crosses over
into a high-disorder regime with a much smaller slope, which
tends to approach a constant. These results are in excellent
agreement with high-temperature resistivity data for rare-earth
metals.

Extrapolation from the quasilinear region in the param-
agnetic state leads to an “apparent” spin-disorder resistivity
(SDR) which exceeds the “bare” SDR (calculated without
lattice disorder) by a factor 2.4 in Gd and 1.3 in both phases
of Fe. Thus taking lattice disorder into account resolves the
large discrepancy between earlier calculations of SDR with
experimental data for Gd. By analyzing the spectral functions
in the presence of disorder, we have argued that the resistivity
saturation in Gd is due to the collapse of a large portion of
the Fermi surface, which is promoted by the degeneracy of the
electron and hole-like sheets at the ALH plane in the Brillouin
zone.
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