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Assimilation Design and Testing 

John N. McHenry and Jeffery M. Vukovich 

Baron Advanced Meteorological Systems, Raleigh, NC 

N. Christina Hsu 
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Implication Statement 

Air quality forecasts are now routinely used to understand when air pollution may reach 

unhealthy levels. For the first time, an operational air quality forecast model that includes the 

assimilation of remotely-sensed aerosol optical depth and ground based PM2.5 observations is 

being used. The assimilation enables quantifiable improvements in model forecast skill, which 

improves confidence in the accuracy of the officially-issued forecasts. This helps air quality 

stakeholders be more effective in taking mitigating actions (reducing power consumption, ride-

sharing, etc.) and avoiding exposures that could otherwise result in more serious air quality 

episodes or more deleterious health effects. 

ABOUT THE AUTHORS 
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Vukovich is a Senior Environmental Modeler, also at BAMS. N. Christina Hsu is the Suomi 

National Polar-orbiting Partnership (Suomi-NPP) Deputy Project Scientist in the Climate and 

Radiation Laboratory at NASA/Goddard Space Flight Center in Greenbelt, MD. 

INTRODUCTION 

Decision support systems for air quality planning and evaluation have been in place in the United 

States for nearly 40-years. Spurred by the original Clean Air Act of 1970, the identification of 

“criteria” pollutants (ground level ozone, particulate matter, carbon monoxide, nitrogen oxides, 

sulfur dioxide, and lead) created the need for air chemistry models that would help decision 

makers construct policy to improve public health. Initially, the 1970’s saw the development of a 

number of such “first-generation” offline simulation models. By the 1980’s, “second-generation” 

models were utilized by the US Environmental Protection Agency (EPA) to address pressing 

issues: (1) the two-layer Regional Oxidant Model (ROM) was being applied to develop ozone 

control strategies for the NE US Corridor; (2) the Urban Airshed Model (UAM) was being used 

for similar purposes at urban scales within “confined” locations such as Los Angeles; and (3) the 

newer Regional Acid Deposition Model (RADM) was developed and deployed as part of an 

integrated assessment to reduce the effects of sulfuric acid deposition (e.g. McHenry, et 

al.,1992). All of these air chemistry models were driven offline in retrospective simulation mode. 

Each used a different vertical layer structure and approach to account for the effect of 

meteorology on the transport, transformation, and fate of the targeted pollutants. Further, 

development of emissions inputs to the models was both disparate and complex. Large resource 
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expenditures were required to collect, process, quality control, archive, and distribute emissions 

inventories that the models could then read and use. 

With the advent of ever increasing computational speed and the legacy of the second generation 

models, EPA embarked on a third generation system that would integrate the ability to represent 

all the criteria pollutants (except lead) within a single modeling framework (Models-3). The first 

prototype was the Multiscale Air Quality Simulation Platform (MAQSIP, Mathur et al., 2005). It 

was then replaced with what is now EPA’s current-generation system, the Community Multi-

Scale Air Quality (CMAQ) Model (Byun and Ching, 1999). 

Despite these advancements, it was not clear that Eulerian chemistry-transport computer models 

(CTMs) could play a role in providing prognostic guidance to alert officials and the public about 

real-time air quality threats. Historically the National Weather Service had issued “Total 

Suspended Particulate (TSP)” forecasts (circa 1970s/1980s), but largely on their own, state 

agencies in the 1990s developed statistically based (regression) ozone models. The agencies did 

this in part to obtain forecast outlooks (1-2 day lead time) with the hope that local real-time 

mitigation efforts (reduced driving, lawn-mowing, air conditioning use; ride-sharing etc.) could 

be effective enough to avoid ozone air quality violations – too many of which could trigger 

automatic and expensive State Implementation Plans (SIPs) required to meet federal standards. 

While these developments set the stage for CTMs to be applied in forecast mode, there were 

many hurdles to overcome. First, there was a certain institutional resistance to the idea at both 

federal and state levels. Second, to attain status as a useful tool, the ability to run a tripartite 

(numerical weather prediction, emissions, air chemistry) Eulerian air quality forecast decision 
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support system (AQF-DSS) would not only have to be demonstrated as practical (by meeting 

real-world forecast deadlines), but the ability to achieve results on par with locally developed 

statistical models and expert human air quality forecasters would also have to be shown. In the 

US, these accomplishments were met in a series of projects and papers beginning in the late 

1990’s (McHenry et al., 1999, 2000, 2001, 2004). Alongside other efforts at NCAR and 

NOAA/ARL (McKeen et al., 2005; Eder et al., 2005), this success helped encourage NOAA to 

begin investing in a National Air Quality Forecast capability beginning in FY 2000-2001 which 

continues to the present (Lee et al., 2012; Stajner et al., 2012). Zhang et al., 2012a,b, provide a 

recent comprehensive overview of the history, status, state-of-science, and future prospects of 

real-time/operational air quality forecasting. 

In the case of the lead author, his early contributions resulted in a subscription business 

providing prognostic AQF-DSS ozone-only decision support to state, local, and federal agencies 

(such as DOE). At the same time, fine-particulate health effects became better understood and 

PM2.5 standards came into effect. Thus, interest in expanding AQF capabilities to include 

particles was growing. In 2006, the lead author’s institution, Baron Advanced Meteorological 

Systems (BAMS), a subsidiary of http://www.baronweather.com, implemented the first available 

CMAQ-based PM2.5 forecasts to its client base. Concurrently, evaluations of offline CMAQ runs 

against both in-situ and remotely-sensed particle and aerosol-optical thickness data also emerged 

(McKeen et al. 2007; Roy et al., 2007). These studies showed that CMAQ particle deficiencies 

(especially in smoke, dust, secondary organics, and nitrates) could potentially benefit from 

remotely-sensed data-assimilation (DA). They also showed that improved science process sub-

models, including better emissions, were needed (Morris et al., 2006). 
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This two-part paper reports on the development and implementation of a version of the CMAQ 

model that operationally assimilates real-time remotely-sensed aerosol optical depth (AOD) 

information and ground-based EPA-AirNow (http://www.airnow.gov) PM2.5 monitor data. In 

Part 1 herein, the offline design and testing of the approach used to assimilate Collection 5 AOD 

data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments flying on 

NASA’s Terra and Aqua satellites is described. Aqua is part of NASA’s “A-Train” 

(http://atrain.nasa.gov) of polar orbiter satellites with an overpass of about 1030 local solar time. 

Terra’s overpass time is later in the day, around 1330 local solar time. By combining the 

differing time and space “windows” of the two satellites, a more complete picture of each 

daylight period’s total column aerosol loading can be obtained. In the assimilation scheme, the 

AOD data serve as a surrogate for observed total column particulate concentrations. In Part 2 of 

the paper, operational implementation including the addition of real-time 

surface PM2.5 monitoring data to improve the assimilation and an initial evaluation of the 

modeling system across the continental United States (CONUS) is presented.  

BACKGROUND 

A number of previous and contemporary studies have developed and tested methods to 

assimilate MODIS AOD and/or surface PM2.5 data into atmospheric chemistry models, including 

CMAQ. Park et al., 2011 describe the assimilation of MODIS AOD data into CMAQ using an 

optimal interpolation (OI) method, whereby a number of free parameters establish both the 

model background and observational error covariance matrices. To compute the model 

background, CMAQ particle concentrations are converted to aerosol optical depth using a 
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parameterization—with small modifications--described in Malm and Hand, 2007. The authors 

note that Mie theory could be have been used, but that time-invariant log-normal size distribution 

assumptions and uncertainties in particle mixing states in CMAQ lead to large uncertainties in 

Mie-estimated CMAQ AODs.    

More recently, Tang et al., 2015, in support of NOAA’s National Center for Environmental 

Prediction (NCEP) National Air Quality Forecast System (Davidson, et. al., 2008), also 

implement an optimal interpolation (OI) approach to test MODIS AOD data assimilation in 

CMAQ. For meteorological inputs, they used the Weather Research and Forecasting Advanced 

Research WRF (WRF-ARW) model (Skamarock and Klemp, 2007) with emissions borrowed 

from archived real-time results at NCEP. They found that using frequent daytime assimilation 

updates produced the most improvement upon hourly evaluation for the 24-hour test period 

studied during July of 2011. Overall, model PM2.5 biases were reduced significantly. However 

correlation coefficients calculated against the PM2.5 measurements were still relatively low (at or 

below r=0.4; see Table 4 in Tang et al., 2015). Curiously, they did not use the same 

meteorological model driver that is used operationally at NCEP (WRF-NMM, see Pan et al., 

2012), and only conducted the numerical experiment for a single day.  

Additionally, several different approaches using the Weather Research and Forecasting 

Chemistry model (WRF-CHEM; Grell et al., 2005) have been explored. Using MODIS AOD 

data alone, Liu et al., 2011 implemented a three-dimensional variational data-assimilation 

(3DVAR) method based on the NCEP Gridpoint Statistical Interpolation system (GSI, Wu et al., 

2002; Kleist et al., 2009) applied to the Goddard  Chemistry  Aerosol  Radiation  and  Transport  
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(GOCART, Chin et al., 2002)  module within WRF-CHEM. Their results yielded a modest 

improvement of surface PM10 forecasts when tested on a dust storm case in Asia, but no attempt 

was made to study the impact on surface PM2.5. They suggested additional benefit might be 

gained by simultaneously assimilating surface PM10 data. Schwartz et al., 2012 extended this 

work by augmenting the WRF-CHEM GSI system to synergistically assimilate both surface 

PM2.5 measurements and MODIS-derived AOD over the CONUS. They concluded that the 

simultaneous assimilation of both datasets produced the most improvement vis-à-vis the non-

assimilating WRF-CHEM simulations. Pagowski and Grell, 2012 compared the performance of 

this system with another DA approach using an ensemble square-root Kalman filter (EnSRF; 

Whitaker and Hamill, 2002). Their intent was to explore the value, if any, of applying flow-

dependent background error-covariances (BECs) versus the climatologically derived BECs used 

in the 3DVAR algorithm (Schwartz et al., 2012). They showed that while the EnSRF provides a 

small but reliable improvement over 3DVAR due to flow-dependence, their ensemble spread 

was too small, indicating an underestimate of the flow-dependent model error. A significant 

source of concern was the restriction that the GOCART module does not contain gas-phase 

chemistry. CMAQ, however, does represent gas-phase chemistry and includes gas-particle 

interactions (Binkowski and Roselle, 2003). Recently the WRF-CHEM-GOCART 3DVAR 

system has been updated for GSI Version 3.2 and WRF-CHEM version 4.3.1, and is now 

available for community application (Pagowski, et. al, 2014). 

In distinction to the above, the present work relies heavily on the variational assimilation 

formalism and MODIS AOD data quality processing used within the operational Naval Aerosol 

Analysis and Prediction System (NAAPS,  Zhang et al, 2008; Zhang and Reid, 2006; Hyer et al., 
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2011, Daley and Barker, 2001). However, it comprises a fully independent and unique 

implementation configured for CMAQ. As opposed to optimal interpolation, this method uses a 

variational approach, in this case two-dimensional (2DVAR), exploiting the fact that the AOD is 

the vertical integral of the aerosol extinction coefficient. Furthermore, it differs from other 

reported CMAQ assimilation methods in that the assimilation is done in the state-space of the 

observations (Cohn et al., 1998). Moreover, as compared to NAAPS which represents only 

sulfur, dust, biomass-burning smoke and sea-salt, CMAQ contains a much more complete 

process-representation of photochemical/particle evolution, interaction, and fate (Binkowski and 

Roselle, 2003). Furthermore, we implement the assimilation using aerosol optical depth 

retrievals from both “Dark Target” (hereafter DT; Levy et al., 2007) and ─ for the first time ─ 

the newer “Deep Blue” (hereafter DB; Hsu et al., 2004) methods, expanding the density of 

remotely-sensed observations available for assimilation. This overall approach was chosen 

because the assimilation method had precedent in the operational community (NAAPS), yet 

appeared adaptable to a more complex model like CMAQ targeted for real-time prognostic 

application while at the same time utilizing a broader range of MODIS AOD retrievals (DT and 

DB). In that sense, our work represents a novel and efficient approach that should contribute to 

our overall understanding of the value of assimilating AOD data in complex state-of-science 

models like CMAQ being used within AQF-DSSs. 

The offline design and testing work was conducted in partnership with NASA and the Visibility 

Improvement State and Tribal Association of the Southeast (VISTAS) regional planning 

organization (RPO). NASA was responsible for improving and providing the MODIS AOD real-

time and retrospective data, and also supplied archived AERONET sun-photometer data 
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(http://aeronet.gsfc.nasa.gov). VISTAS provided the initial CMAQ test case consisting of its 

2002 baseline annual CMAQ run, as well as its model performance evaluation (MPE, Morris et 

al, 2009). The MPE was invaluable in both informing the project and assuring that the author’s 

implementation of the modeling system, including meteorology and emissions, reproduced the 

baseline results published by VISTAS. From this vetted baseline, changes could be made to 

CMAQ that would allow assessment of the impact of the assimilated AOD data against the 

baseline CMAQ annual run. 

DEVELOPMENT OF CMAQ MODEL MODIS-AOD 

DATA-ASSIMILATION MODULE 

Baseline CMAQ Model Version 

As noted in Morris et al., 2009, VISTAS adopted the Version 4.5 release of the CMAQ model to 

support regional haze planning. Relatively early in the effort, VISTAS found that this version 

significantly under-represented concentrations of secondary organic aerosols (SOAs). Three 

processes, having to do with polymerization, sesqsquiterpenes, and isoprene formation were 

added to the model, resulting in improved SOA performance (Morris et al., 2006). This revised 

version, “CMAQ V4.5_soamods,” was then used by VISTAS for its subsequent regional haze 

analysis. A slightly newer version of the model, V4.51, with the identical SOA modifications 

was used herein to reproduce the full 36km CONUS VISTAS 2002 annual baseline. Differences 

between BAMS’ re-run and the original VISTAS baseline were negligible, providing confidence 
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that BAMS had correctly implemented the SOA-improved model and its driving meteorology 

and emissions. At that time, BAMS also updated its operational CMAQ model to version 

V4.51_soamods. This remains the current real-time forecast version that assimilates MODIS 

AOD data, and will be referred to simply as CMAQ or CMAQ-DA below. 

AOD Data Assimilation Module 

Because MODIS-observed aerosol optical depth represents an atmospheric column integral, the 

kernel for assimilating such data can be formulated in two dimensions absent any other source of 

vertical discrimination of the observations. While approaches were developed that could provide 

additional vertical information based on the “A-Train” satellite constellation (Jeong and Hsu, 

2008), these were not available with the real-time reliability needed for the operational model. 

Following Zhang et al., 2008 and Cohn et al., 1998, the implemented 2-dimensional-variational 

(2DVAR) data-assimilation algorithm takes the following form: 

Τbλ  = Hmt(Cm) + Ɛbλ  (1) 

Τaλ  = Τbλ + PbHT[HPbHT + R0]-1[Τ0λ – H(Τbλ)]  (2) 

Cm =  Htm(Τaλ) + Ɛm (3) 

The first equation represents the forward operator (also known as the forward model or 

observation operator) which takes model state variable output – concentrations of all aerosol 

species contributing to light reduction – and produces CMAQ’s best estimate of the AOD for 

each grid column. This is called the model background, or Τbλ. The second equation states that 
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the updated AOD analysis Τaλ is the “best-fit” (in a least-squares sense) combination of the 

model background AOD plus a correction term times the difference between the model 

background and the observations at the observation locations. Once an updated analysis is 

obtained, the third equation is applied, which inverts the updated aerosol optical depth to obtain 

updated model mass concentrations. More details on the implementation of each step in this 

process follow. 

Forward Operator 

In order to construct an “AOD forward operator,” the project considered three light extinction 

algorithms. These included a parameterized Mie scheme available with CMAQ (Binkowski and 

Roselle, 2003), the original Interagency Monitoring of PROtected Visual Environments 

(IMPROVE) reconstructed mass-extinction method (RM method, following Malm et al., 1994), 

and a revised version of the IMPROVE RM method (Pitchford et al., 2007). Pitchford et al., 

2007 showed that the revised version better replicated nephelometer data at 21 rural IMPROVE 

monitoring sites, especially through reducing the bias (as compared to the original method) at the 

high and low extremes. This effect was most apparent for the hazier eastern sites with less 

difference being noted in the generally clearer west. Based on these improvements, VISTAS 

adopted the revised parameterization and applied it to CMAQ outputs ranging from the 2002 

baseline to projected-emissions-year 2018 (Morris et al., 2009). While we considered adopting 

the CMAQ-available Mie parameterization, and recognize that a number of AOD data-

assimilation studies (e.g. Liu et al, 2011 and related) utilize Mie theory as a kernel for the 
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forward model, many other studies use approaches based on the original (Roy et al., 2007; Tang 

et al. 2015) or newer IMPROVE RM methods (Park et al., 2011; Sousan et al., 2011). 

Using all viable model versus observation pairs from the 2002 annual baseline rerun, Figure 1 

shows CMAQ AOD calculated using both (a) original and (b) revised IMPROVE methods 

against a complete set of 2002 AERONET AOD surface observations. Consistent with Pitchford 

et al., 2007, the figure reveals an “improvement” in the slope of the best fit line when using the 

revised method. This is not a true model improvement, but simply reflects improvement in the 

bias at both low and high extremes in revised versus original RM methods. The online Mie 

parameterization was also applied to the 2002 CMAQ baseline run, but it produced considerably 

more scatter against the AERONET observations (not shown), consistent with the previous 

discussion about Mie method uncertainties (Park et al., 2011). Given that VISTAS adopted the 

revised approach, our adoption thereof facilitated direct comparison with VISTAS results while 

also being consistent with the findings and approach being used by various other authors as 

noted above. 

Figure 1 here 

The revised RM method for extinction-efficiencies (bext) in 10.0 Megameter-1 is piece-wise 

linear and is expressed below, where sulfate, nitrate, and organic carbon are split into two 

fractions, representing small and large size distributions of those fractions, and aerosol 

concentrations are expressed in ug/m3: 

bSulfate = 2.2 x fs(RH) x [Small Sulfate] + 4.8 x fl(RH) x [Large Sulfate]  (4) 
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bNitrate = 2.2 x fs(RH) x [Small Nitrate] + 4.8 x fl(RH) x [Large Nitrate]   (5) 

bEC = 10.0 x [Elemental Carbon]   (6) 

bOCM = 2.8 x [Small Organic Mass] + 6.1 x [Large Organic Mass]   (7) 

bSoil = 1.0 x [Fine Soil]   (8) 

bCM = 0.6 x [Coarse Mass]   (9) 

bNaCl = 1.7 x fss(RH) x [Sea Salt]   (10) 

bNO2 = 0.33 x [NO2 (ppb)]   (11) 

Details on the apportionment of sulfate, nitrate, and total organic mass into small and large size 

fractions, as well as hygroscopic growth factors for small, large, and sea-salt particles are 

available in Pitchford et al., 2007 and IMPROVE, 2007. In our implementation, we built both 

online and offline (post-processing) versions of the revised RM scheme to evaluate archived 

model runs as well as to handle online applications, particularly real-time forecasting. Because of 

the highly-transient nature of NO2 and because the MODIS AOD retrieval algorithms do not 

account for light extinction due to NO2 (Levy et al., 2010), we calculate CMAQ AOD, 

implement the 2DVAR equations, and quantify improvements due to MODIS AOD assimilation 

without the NO2 term throughout. In the above, the total extinction coefficient is the sum over all 

the individual species’ extinction efficiencies, and the aerosol optical depth Tau is calculated as 

the total coefficient vertically integrated over the entire CMAQ column. Noting the improvement 

in CMAQ-calculated AOD gained as a result of the SOA modifications, along with the “apparent 
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improvement” when the revised RM scheme is used, there is still a CMAQ low-bias in AOD as 

compared to the AERONET observations (Figure 1, b). This model bias in the baseline VISTAS 

case results from underestimation of some of the CMAQ aerosol concentration fields as noted in 

the VISTAS model-performance evaluation. 

Assimilation Step 

The assimilation step is represented by equation (2). Software for this step was designed, tested 

and implemented following the observation-space formulation described fully in Zhang et al., 

2008 and Daly and Barker, 2001. In order to obtain the least-squares best fit (or most likely) 

result indicated by equation (2), errors for both MODIS AOD observations and CMAQ 

calculated AOD’s should ideally be Gaussian and un-biased. In reality, this may be more or less 

true depending upon the type of observation or their process representations in the atmospheric 

chemistry model. Clearly there is evidence that some CMAQ species (dust, wintertime nitrates, 

smoke, etc.) were systematically underrepresented in the 2002 results. External independent 

comparison of MODIS, CMAQ, and surface AERONET AOD results for summer 2001 also 

showed that both modeled AOD and average tropospheric mass concentrations are 

underestimated relative to the MODIS retrievals (Roy et al., 2007). However, these biases may 

be largely due to problems with external forcing (emissions) and not internal to the model itself, 

especially after implementing better SOA science. Schwartz et al., 2012 provide an excellent 

discussion of the ongoing problems with emissions inputs vis-à-vis the data-assimilation 

experiments they have conducted. 
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As noted in Zhang et al., 2008, significant care is required in pre-processing MODIS 

observations to produce an assimilation ready dataset. Poor quality data can ruin even the most 

well-intentioned data assimilation system. Further, retrievals over land and over ocean are 

marked by different issues and thus require different quality control procedures. For our system, 

the entire suite of Dark Target (DT) over-ocean and over-land quality assurance checks as fully 

described in Zhang and Reid, 2006 and Hyer et al., 2011 was independently implemented for 

application to CMAQ’s 36km grid spacing (as opposed to the 1.0x1.0 degree global grid spacing 

of the NAAPS). Because the system also includes the relatively new Deep Blue (DB) method, in 

the absence of a robust error analysis the following was adopted for DB: (a) use only over-land 

when (b) its internal quality assurance flag is highest and where (c) no high-quality DT retrieval 

exists. Further, once a pixel can potentially use a DB observation, it is used only after passing all 

of the equivalent DT quality assurance checks. Application of this approach yields a final 

MODIS assimilation-ready dataset that is quality assured to the same extent as that being used in 

the NAAPS but augmented by DB retrievals (intended to specifically help with dust and smoke 

over bright reflecting land areas). 

The observational error for over-land and over-ocean MODIS AOD retrievals are also adapted 

directly from Zhang and Reid, 2006 (Table 4), Zhang et al., 2008 (eq. 5), and Hyer et al., 2011 

(Table 3). These formulate the standard deviation of the MODIS error (the AOD RMSE) as a 

linear function of the retrieved MODIS AOD, where the level 2 10km retrievals are binned as 

needed and grouped into super-observations per 36km CMAQ grid-cell. Super-observations are 

defined as the mean MODIS-retrieved AOD among all quality assured level 2 10km retrievals 

per CMAQ 36km grid cell and located at the mean latitude/longitude of all valid retrievals within 
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that grid cell at the time of Terra or Aqua overpass. Coefficients from Zhang and Reid, 2006 

(Table 4, DT over ocean) and Hyer et al., 2011 (Table 3, DT over land) are used to estimate the 

instrument error variance, whereas spatial data variation is estimated by the spatial sample 

variance from the averaging of MODIS Tau within each 36km grid cell. Within any one 36km 

grid cell, each super-observation thus also represents a temporal average (“oversample”) of the 

acceptable satellite observations therein, consistent with how Zhu et al., 2014; Wilkins and 

deFoy, 2012, and other authors have utilized Ozone Monitoring Instrument (OMI) data.  

The MODIS pre-processing software outputs the super-observation mean MODIS AOD at 

550nm, the number of underlying accepted retrievals per super-observation, the standard 

deviation of the expected super-observation error as determined via the above-noted tables, the 

spatial variance of each super-observation, and the average latitude/longitude of all 10km 

retrievals comprising each super-observation. While we did not use the newer Collection 5 Dark 

Target error statistics for the development and testing reported here, we plan to update the error 

for Collection 5 Dark Target over-ocean retrievals from those published in Zhang and Reid, 2006 

to the newer results following Shi et al., 2011 for the operational model that will be described in 

Part 2 of this paper. 

The software also outputs an estimate of the (dominant) type of the observed MODIS aerosol as 

determined by a decision tree based on one or more of the aerosol type flags, retrieved AOD, 

Optical Depth Ratio Small (“Eta-MODIS water) and the Angstrom exponent. The decision trees 

for DB (land) and DT (land and water) are shown in Table 1, and they result in eight possible 

categorizations of the “likely” aerosol mix. This information is used later in preferentially 
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“nudging” model species during the step that inverts the final analyzed AOD to recover the 

aerosol species mixing ratios in the vertical (eq. 3). Levy, et al., 2010 elucidate significant 

limitations on the physical validity of the MODIS Collection 5 aerosol size parameters for DT 

over-land. More discussion on our approach – and its limitations, is provided below. 

Table 1a here. 

Table 1b here. 

Table 1c here. 

An estimate must also be made for the CMAQ AOD “background error.” This is done following 

Zhang et al., 2008, adapted for CMAQ. In this method, CMAQ 2002 AOD estimates (computed 

using the revised RM approach without NO2 extinction) are bi-linearly (and temporally, if 

needed) interpolated to each available AERONET latitude/longitude location within the CMAQ 

modeling domain. They are then paired with the AERONET observations. Model-observation 

pairs are subsequently binned in 0.1 Tau (i.e. AOD) intervals, and from these sets of binned 

pairs, the standard deviations of CMAQ errors are computed as a function of CMAQ estimated 

Tau. For the full 2002 year including all AERONET locations CONUS-wide, the following 

baseline (non-assimilated) results were obtained: 

CMAQ_Tau_errorstandard_deviation ≈ 0.13481 + 0.320207 * TauCMAQ     (12a) 

Because the error model for MODIS AOD over-land is sub-divided into east and west land-areas 

of the CONUS (Hyer et al., 2011), a similar sub-division at -100 degrees west longitude was also 
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made for baseline CMAQ Tau errors. The following equations for eastern and western sections 

of the CONUS emerged from the 2002 data: 

CMAQ_east_Tau_errorstandard_deviation ≈ 0.220210 + 0.056791 * TauCMAQ_east     (12b) 

CMAQ_west_Tau_errorstandard_deviation ≈ 0.123674 + 0.419799 * TauCMAQ_west     (12c) 

For the baseline model, the standard deviation of the errors rises only very slowly in the east as 

TauCMAQ_east increases, indicative of CMAQ’s “reasonably good,” although low-biased, 

performance east of the Rockies (at least as measured for total AOD vis-à-vis the AERONET 

sites). The west tells a somewhat different story, with errors rising quite rapidly as TauCMAQ_west 

increases there. As in Zhang et al., 2008, both MODIS and CMAQ make use of the independent 

AERONET surface AOD observations as a “ground-truth” means to quantify the relative 

importance of MODIS errors vis-à-vis CMAQ errors in the solution of equation (2). This 

approach contrasts with, for example, Liu et al., 2011 who use background error covariance 

matrices for each aerosol species in the GOCART model computed using the “NMC method” 

(Parrish and Derber, 1992). 

The Q/A’d and processed MODIS DT/DB observations and their associated error estimates 

along with the above error model for CMAQ AOD provide the inputs needed to solve equation 

(2). This holds any time both observations and model estimates are available. In practice, 

MODIS granule overpasses are assigned to the nearest half-hour. CMAQ output is obtained on 

the half-hour and from it a background AOD estimate is calculated. The solver then minimizes a 

quadratic cost function resulting from equation (2), producing a final AOD analysis that – if the 
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statistics of the errors are exact – has the lowest possible overall error among all possible 

analyses that could result from the data available. CMAQ then continues its run until another set 

of MODIS observations becomes available, when the model is stopped again and a further 

assimilation is performed. Figure 2 shows an example of MODIS data valid between 1815 GMT 

and 1845 GMT overlaid as diamonds against the 36km CONUS grid depicting a daily composite 

of all valid MODIS retrievals “super-obbed” into their respective 36km CMAQ grid cells for an 

operational run made on July 16, 2015. 

Figure 2 here 

While the error covariance matrix for the MODIS observations is assumed diagonal, it is the 

correlation of the CMAQ errors (in space) that modulate the extent of the influence of any one 

set of observations within the final analysis. Again following Zhang et al., 2008 a typical second 

order auto-regressive function of the form found in equation (7) of that paper is employed: 

Cb(m,n) = (1 + Rmn/L)exp(-Rmn/L) (13), where 

Cb(m,n) is the error correlation between two CMAQ grid cells, Rmn is the great circle distance 

between the two grid cells, and L is the horizontal error correlation length scale. L becomes, in 

some sense, a tuning parameter: the smaller the overall error correlation length, the “tighter” the 

region of influence of the observations on the final analysis. After testing, results described in 

Zhang et al., 2008, setting L = 2DX = 72km were used for the 2002 VISTAS initial 

implementation, but have since been reduced to L=54km for operational application. 

Inverse Operator 
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The variational formulation in equation (2) makes it attractive to include possibly non-linear 

forward models in the solution approach. In this case, the H operator would become a Jacobean 

matrix δ(Aerosol-Concentration )/δ(Tau), potentially requiring either a tangent linear 

approximation to the revised IMPROVE equations or an outer loop (e.g. Daley and Barker, 2001, 

equations 5.2 and 6.2; Liu et al., 2011, equation 4). Following Zhang et al., 2008 the somewhat 

simpler inverse operator, whereby equation (2) is fully solved for the Tau increment and then 

equation (3) is used to independently recover the species concentration increments was chosen. 

The procedure iterates through the revised RM equations, calculating a revised Tau in the 

presence of equilibrated semi-volatile organics (SVOCs). The SVOC equilibration is 

accomplished in an inner iteration loop using the ORGAER3 sub-routine extracted from CMAQ. 

Within each iteration, preferential nudging of species increments is applied by utilizing the 

results of the appropriate decision tree until the equilibrated vertical profile of aerosol 

concentrations (in ug/m3) converges to the updated optimal Tau. The method accounts for the 

piece-wise linearity of H through iterative convergence, and is applied throughout the depth of 

the modeled atmosphere.  

CASE-STUDY APPLICATION 

To examine the impact of assimilating MODIS observations on the 2002 VISTAS CMAQ 

performance, a subset of 9 five-day cases that each feature elevated particulates/degraded 

visibility was selected. To comprise the set, events were chosen based on a range of processes 

responsible for visibility reduction.  Selecting such a subset was required on two accounts – first, 

data from MODIS/Aqua was not available at all for the 2002 calendar year, while data from 
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MODIS/Terra (Collection 5.1) was only available at certain times. Second, limited 

computational resources made the ability to conduct an entire year of data-assimilating runs 

impractical. Nonetheless, the “full-year” error models (as described above) for both MODIS 

observations and CMAQ baseline run were applied within the case studies to better characterize 

the overall error climatologies; the developed error models are then used as a basis to provide 

“event-specific” error covariance matrices for each of the cases. Event-specificity arises because 

the previously described regression equations recover the error standard deviations for any given 

modeled grid cell unique to any retrieval time as a function of MODIS observed or CMAQ 

estimated AODs in that grid cell. However, no flow dependent errors are to be implied. Again, 

this approach is based on that implemented within the operational NAAPS. 

Table 2 shows the original nine cases and their features. Unfortunately, the March 24th case had 

to be dropped due to lack of MODIS/Terra observations, leaving a total of eight five day cases 

for the assimilation verification/benchmark. The initial case selection could have benefitted from 

choosing a clean case to provide a cross-check that the assimilation was not spuriously creating 

AOD, however this has now been done as part of the operational implementation and will be 

discussed in Part 2 of the manuscript. 

Table 2 here 

Once the cases had been selected, daily composite MODIS AOD images were examined to gain 

a qualitative sense for the coverage (and thus the potential impact) that could be expected from 

assimilation. Clearly, significant cloud cover or snow reduces and/or even masks satellites’ 

ability to contribute to AOD/pollutant assessment—and assimilation of the data into a model. 
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This is likely to be worse in northern hemisphere winter time, when cloud and snow cover are at 

a maximum. For example, little if any MODIS coverage of the Upper Midwest February nitrate 

event occurred due to cloudiness. To evaluate the cases, tile plots, scatter plots and statistics were 

developed for both baseline runs and benchmark assimilated runs (CMAQ-DA herein), for both 

total column AOD and for surface aerosol measurements collected at monitoring networks 

during the case periods. Statistics include the best fit line, RMSE, bias error, R2, Index-of-

Agreement (IA), and correlation-coefficient. These are all defined in the conventional way. 

While these were generated for each case independently, results aggregated across the eight 

cases will be presented here. The lack of ideal MODIS/Terra coverage of some of the events 

along with the complete lack of any MODIS/Aqua observations should be borne in mind 

throughout the discussion to follow. 

Figure 3 here 

Figure 3 shows CMAQ baseline versus CMAQ-DA results for total column aerosol optical 

depth. The figure reveals a striking improvement in the shape of the scatter about the 1:1 line, 

with the slope of the best fit line improving from 0.3242 to 0.5131, indicative of the reduction in 

low AOD bias due to the MODIS/Terra Tau assimilation. Table 3 shows the associated discreet 

statistical improvements: while the baseline model was biased nearly 50% low, the low bias in 

the assimilated model was reduced to ~20%. Tau mean absolute error (MAE) was reduced from 

0.114 to 0.092, the RMSE improved from 0.1864 to 0.1532, R2 improved from 0.401 to 0.468, 

and the Index of Agreement (IA) improved from 0.6511 to 0.7922. These improvements were 
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realized even though not all AERONET locations paired with CMAQ output experience a 

concurrent MODIS/Terra overpass. 

As previously described, both MODIS and CMAQ error models (equations 12b and 12c) were 

independently developed for eastern and western US sub-domains and were applied as such for 

each of the case studies.  Both CMAQ and MODIS had poorer error statistics in the western part 

of the US. Hyer et al., 2011 note that the western CONUS presents one of the greatest challenges 

for MODIS (DT) retrievals due to large errors. Plots (not shown) of baseline CMAQ versus 

AERONET observations also showed much larger scatter in the west. Previously it was noted 

that while Deep Blue retrievals were included in our assimilation--and were expected to benefit 

the west more than in the east--the DB error model is “borrowed” from the Dark Target over-

land results (Hyer et al, 2011). Thus, in the first version of the system, too much error could be 

attributed to DB. This would result in not allowing it to provide as much correction to CMAQ as 

it potentially could. 

Three surface measurement networks were used to evaluate the impact of AOD data assimilation 

on ground-level model aerosol species concentrations. The data from these networks was 

supplied by VISTAS and represents a subset of the same data used in the final VISTAS MPE 

(Morris et al. 2009). These data include observations from the EPA Federal Reference Method 

PM2.5 and PM10 mass Network (FRM), the IMPROVE network, and the EPA Speciated Trends 

Network of PM2.5 species (STN), now referred to as the Chemical Speciation Network. BAMS’ 

rerun of the annual 2002 baseline showed negligible differences across all species at the surface 

as compared to the native VISTAS CMAQ 36km outputs. Thus, although in some cases the 
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metrics or presentation methods differ, our baseline results faithfully represent the performance 

obtained by the VISTAS MPE, with two caveats. First, because the VISTAS MPE was 

conducted east of the Rockies, observations used for species-specific evaluation were available 

only in the eastern half of the CONUS. Secondly, we used the VISTAS CMAQ 36km CONUS 

results as our baseline, whereas the VISTAS evaluation focused on their nested (within the 36km 

CONUS grid) eastern 12km grid. With this understanding, the potential for surface aerosol 

species improvements can be initially quantified. 

The following mappings between CMAQ aerosol output and components measured by the three 

networks were followed. These are consistent with VISTAS and shown in Table 4. Again, results 

are aggregated over all eight 5-day cases. 

Table 4 here 

Twenty-four hour averaged total PM2.5 mass in ug/m3 was evaluated for FRM, IMPROVE, and 

STN networks by pairing CMAQ output with the observations at each station time and location 

throughout the averaging day. Figure 4 reveals that for the FRM network, which had the vast 

majority of valid PM2.5 measurements, there is improvement in both slope (.547 versus .493) and 

intercept (5.548 versus 6.074) of the best-fit line (a versus b; top left versus top right). Similar 

improvement is seen in Figure 4 for the IMPROVE sites (c versus d; bottom left versus bottom 

right). 

Figure 4 here 
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Table 5 presents PM2.5 discreet statistical results for the networks, revealing consistent 

improvements in bias error, RMSE, R2, and Index of Agreement across the networks. Within the 

FRM network, more than 10,000 data pairs from the aggregated set of 40 case days contributed. 

The overall bias in 24-hour average PM2.5 mass decreases from an under-prediction of about -3.5 

ug/m3 to about -3 ug/m3, whereas the RMSE decreases from ~9.3 ug/m3 to approximately ~8.8 

ug/m3. Both the R2 and IA statistics show improved skill as well. Clearly, assimilation of 

MODIS/Terra AOD has a positive impact on model skill in the eastern US for total surface 

PM2.5. 

Table 5 here 

Organic carbon results, also representing 24-hour averages, were also encouraging. Scatter plots 

(not shown) from the IMPROVE and STN networks showed improvements in slope (both 

networks) and intercept (IMPROVE) of the best-fit lines (IMPROVE slope/intercept: 0.351-to-

0.530 / 2.472-to-2.404; STN slope/intercept 0.348-to-0.448 / 2.459-to-2.560), with the 

improvement in slope for STN being more relevant than the marginal worsening of the intercept. 

This is supported by the across the board improvements in RMSE, R2, and IA for both networks 

shown in Table 6. 

Table 6 here 

For elemental carbon (EC) measured by the STN network, the slope of the best-fit-line improves 

from 0.713 to 0.815 with little change in intercept (not shown), while for the IMPROVE 

network, the slope improves from 0.759 to 1.136, again with little change in intercept (not 
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shown). The discrete statistics shown in Table 7 indicate modest performance gains among the 

IMPROVE measurement sites (e.g. R2 improves from 0.409 to 0.530) but very slight degradation 

at the STN sites. It appears that some STN network outliers (in which the baseline CMAQ was 

already too high) were nudged upwards by the assimilation resulting in the minor deterioration in 

EC statistics for that network (Table 7). 

Table 7 here 

The IMPROVE network offered the only set of viable measurements for fine soil dust and coarse 

material, again analyzed as 24-hour average concentrations. Scatter plots (not shown) revealed 

little change in either intercept or slope for either of these two constituents. Tables 8 and 9 hint at 

slight performance degradations for fine soil dust and enhancements for coarse matter, but the 

sample size is quite small. Moreover, the selected episode types (Table 2) suggest that these two 

constituents would not have been a significant fraction of the assimilated Tau signal. 

Table 8 here 

Table 9 here 

DISCUSSION 

Species Specific Nudging Algorithm 

Levy et al., 2010 report significant limitations with Collection 5 based retrieved aerosol 

properties over land, such that the species-specific nudging algorithm that we implement may 
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not be globally justifiable for DT over land. Briefly, the MODIS algorithm look-up table (LUT) 

is based on three distinct fine mode models (sizes << 1.0um, including most smoke-related 

aerosol), and one coarse mode model generally assumed to be dust. The final AOD at .55um is in 

turn based on a weighting factor (ETA) between the coarse mode model and the most closely fit 

fine mode model. However, the determination of aerosol size properties by the algorithm is fully 

dependent on the assigned aerosol model type given the best fit to the LUT, thus the retrieved 

size properties are wholly dependent on the underlying assumptions contained within the four 

representative models. As Levy et al., 2010 conclude, in general MODIS size parameters are too 

burdened by a priori assumptions within the LUT for the errors in the retrieved size parameters 

to be globally quantifiable (against AERONET measured aerosol size properties, which are used 

as ground truth, see Figure 2 in that paper). 

As shown in Table 1b, our algorithm for DT over-land is consistent with the information 

provided by the MODIS algorithm for Collection 5. For AOD < 0.2, we simply use the final 

assigned aerosol type without attempting any further discrimination. Noting that we never 

assimilate observations whose confidence flags are not the highest possible, a retrieved MODIS 

value of AOD=0.15 over land whose type flag indicates dust would contribute to preferential 

nudging of the CMAQ dust (coarse mode) species. However, within each 36km CMAQ grid cell 

there are usually >1 than one valid 10km retrieval (Levy et al., 2010). Again referring to Table 

1b, if within that cell there was another valid retrieval with MODIS AOD = 0.30, we would first 

use its type information and then use its reported Angstrom Exponent (AE, see Levy et al., 2010 

for a description of how the MODIS DT over-land AE is computed, along with its problems) to 

arrive at a final type categorization among the eight possible shown in Table 1. The additional 
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discrimination is theoretically consistent with Eck et al., 1999, who note that the AE is related to 

aerosol size whereby larger values of AE indicate smaller column-effective particles size, and 

conversely (Levy et al., 2010, pp. 10402). Thus, within each CMAQ grid cell occupied by one or 

more valid retrievals, we can compute the MODIS AOD retrieved fractions (MDFR) for each of 

the eight categorical types. 

We then make use of this information in the inversion step (eq. 3) after the analyzed (cost-

function-minimized) AOD is established by aggregating the retrieved categorical fractions to 

arrive at lumped AOD type fractions according to: 

MDFRDUST = MDFRcmdst + MDFRucdst +0.75* MDFRcmdstfm + 0.25*MDFRfmsmkcm        (14a) 

MDFRSMOK = MDFRfmsmk + MDFRucsmk + 0.25*MDFRcmdustfm + 0.75* MDFRfmsmkcm  (14b) 

MDFRMIXD = MDFucmixd + MDFRsulf                (14c), 

where the sum of the final lumped AOD fractions “observed” by MODIS is guaranteed to = 1.0. 

But we still can’t apply these lumped AOD fractions until they can be appropriated to the 

relevant CMAQ species. In the initial implementation, we consider the speciation provided to 

CMAQ by smoke and dust emissions respectively as shown in Tables 10 and 11. In practice this 

means that the final lumped MDFRDUST is apportioned (Table 10) to 70.2% ASOIL, 22% A25J, 

and 7.8% ACORS, where ASOIL is coarse (>2.5um) CMAQ dust (sand), A25J is a fine mode 

soil-dust species (<=2.5um), and ACORS is generalized coarse mode suspended aerosol. Table 

11 shows the weightings applied to the lumped MDFRSMOK fraction based on the emissions of 

biomass burn material. All species are equally weighted for application to the lumped 
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MDFRMIXD fraction. Thus, any one species re-weighting is calculated using all of the lumped 

categorical fractions multiplied by the appropriate speciation weighting per category (Tables 10, 

11, or no preference). As noted above, the inversion algorithm iterates using these initial 

weightings and the ratio of the background to analyzed AOD to arrive at a final model AOD that 

matches the variationally analyzed AOD. Care must be taken when the analyzed AOD represents 

a reduction of the background CMAQ AOD, so as not to allows species concentrations to 

become <=0.0ug/m3. We note that due to gravitational settling of airborne dust, the assimilated 

dust apportionment may not be completely faithful to the atmospheric dust apportionment.  

Table 10 here. 

Table 11 here. 

While this approach is a reasonable first attempt, Levy et al., 2010 note that the derived AE 

cannot capture the variability in the ground truth – it is in general binary, indicating that either 

fine or coarse modes have been selected by the algorithm – that is, the ETA weighting over land 

is almost always either 0.0 or 1.0. They find that when MODIS indicates the dominance of one 

of the fine aerosol models, it typically agrees with AERONET; however MODIS tends to “find 

dust when there is none.” However, they also note that for coarse dominated conditions of high 

AOD that are properly retrieved over land, MODIS typically underestimates by 20%, and that 

this underestimation is largest in heavy, dusty conditions. Given this, we would expect our 

algorithm to statistically over-nudge the CMAQ dust components slightly (especially at lower 

AOD values), and perhaps under nudge smoke or mixed aerosol components slightly across a 

very large land-based sample size of events, except for heavy dust events properly retrieved, 
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where due to the MODIS DT land low-bias our dust nudging could be underestimated. On the 

other hand, a large fraction of dust emitting events in the US come from the desert southwest, 

where Deep Blue is expected to be more accurate than DT. Hence at this juncture, our use of the 

combined DT/DB dataset plays to the strengths of DB and that may help mitigate some of the 

dust related problems with DT if the suspended plumes are localized to the dust emitting region. 

The relatively small sample size represented by our 40 case-days is almost certainly not large 

enough to have any statistically meaningful assessment of how our scheme is works versus 

quantifiable ground truth. Nonetheless, where DT retrievals are used over the continental US 

land-surface, the arrived at categorical AOD fractions are subject to the underlying assumptions 

(and weaknesses) of the MODIS DT-land retrieval algorithm as reported in Levy et al., 2010. In 

any event, the final model AOD always matches the analyzed AOD, even if the input speciated 

weighting factors cannot be fully trusted. A much larger sample size of CMAQ-DA results 

against speciated surface observations is needed to more fully assess our scheme.  

Comparison of Results with Similar Studies and Implications for Operational Forecast 

Implementation 

To help mitigate negative health consequences from exposure to fine particles, EPA estimates 

risk level using a five-color scale, based on the 24-hour average total PM2.5 concentration as 

follows: 

Table 12 here. 
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For this reason, the operational BAMS CMAQ-DA provides daily forecasts (out to five days) of 

24-hour-average total surface PM2.5 concentrations portrayed using the EPA color scale. Thus, 

any improvement in the model’s ability to correctly forecast these color codes increases the 

confidence that official forecasters have in the model’s guidance. 

Evaluation of the effect of assimilating MODIS/Terra AOD data in the eastern half of the US for 

the 40 case-day 2002 development period shows that the overall low bias in CMAQ modeled 

total fine particle concentrations measured at the surface improves by 13.35%, considering an 

average weighted by the number of observations within each of the three networks (Table 5). Not 

surprisingly this is smaller than the 30% bias improvement than occurs in the Tau field (Table 

3), simply because Tau-based species increments must in general be applied throughout the 

depth of the CMAQ model atmosphere, not just at the surface. Similarly, the modeled total 

surface PM2.5 RMSE improves by just over 6%, the R2 statistic improves by 11.4%, and the 

Index-of-Agreement improves by 4.88%, again considering the weighted average across all 

measurement networks. As noted above, our results are valid for 24-hour model versus surface 

observation averages. 

Organic species – a crucial component of PM2.5 -- also improved significantly. Taking an 

ensemble average, sulfates, nitrates, and ammonium contribute almost 50% of total PM2.5, with 

roughly 35% coming from organics. Elemental carbon (light absorbing) makes up 3-4%, with 

fine soil dust accounting for the other 10%. Known model difficulties representing both nitrates 

(especially in winter) and ammonium do exist, but the data-assimilation does affect these species 

as well. Since our analysis showed little if any improvement in fine soil dust and only a hint of 
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improvement in EC, PM2.5 performance gains over the selected case days is mostly attributable 

to the other 85% of the CMAQ total PM2.5 signal. We already noted that both the cases selected 

and the location of the speciated observations (eastern US) leads us to expect little impact from 

fine soil dust for this analysis. 

For their single-day OI experiment, Tang et al., 2015 similarly report improvement in surface 

PM2.5 bias. However, they also report what could be considerably worse results for PM2.5 

correlation coefficient – among all experiments, the statistically best run resulted in an R2 value 

of 0.16 (r=0.40) across the CONUS, and R2=0.048 (r=0.22) over the southeast US. They indicate 

(but do not explain the procedure) that hourly data pairs were used within the 24-hour 

experimental period, which could significantly affect their reported correlations due to sub-

diurnal effects. Differences in the domain, experimental length, dates of application, assimilation 

algorithm, model resolution, and other nuances make conclusive quantitative comparison with 

our results nearly impossible. 

For visibility applications, all of the modeled fine and coarse particle species contribute to 

surface visibility degradation per the revised IMPROVE equations. While complexity in coarse 

material composition arises near salt-water boundaries, well inland sea-salt should not be a 

factor. Taken alone, the negative bias in coarse matter improved slightly, by about 4%, with 

RMSE improvements around 2%. When considered against an “improved” R2 of only 0.1828 

versus a baseline of 0.1499 (Table 9), MODIS/Terra Tau assimilation provided only a small 

boost in the model’s rather poor ability to capture overall coarse matter fate for the 40 case-days. 

Since the sample size was small, these increases are almost certainly statistically insignificant. 
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While DB retrievals are expected to help substantially with windblown (coarse) dust, as 

discussed this advantage should be largely limited to the desert southwest. In the east, the 

number of high quality Deep Blue retrievals that occur when Dark Target fails should be fairly 

small, if not negligible. More work is needed to further disentangle windblown dust issues, 

especially in light of the MODIS DT-land retrieval issues. 

The most important metric for visibility applications is the aerosol optical depth. To derive the 

error model for CMAQ, a full year of baseline non-assimilated CMAQ results paired with 

“ground-truth” AERONET sun-photometer measurements was utilized. This was done for the 

full CONUS, as well as sub-dividing the domain into eastern and western sections. The latter two  

equations (12b and 12c above) were applied in the 2DVAR algorithm for each of the 8 five-day 

case periods. Because the assimilated model was not run for the full-year, it could not be used to 

re-estimate the full-year error equations in order to draw “before” versus “after” comparisons. 

Instead, we used the 40-day case study period to examine the improvement in the estimated error 

by re-estimating the error equations for both baseline and assimilated models, for both east and 

west sub-domains. 

The results are shown in Table 13.  In the east, there is unequivocal improvement in the modeled 

AOD errors, such that the overall standard deviation of the CMAQ AOD error as measured 

against surface sun photometer data remains nearly flat (slope of 0.00360) as concentrations 

increase. That is, the errors grow much more slowly as a function of total modeled AOD in the 

assimilated versus baseline CMAQ models in the east. Further, the assimilated model intercept is 

lower as well. 
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Table 13 here. 

In the west, while there is improvement in the error range at smaller Tau (assimilated intercept 

of 0.04 versus baseline of 0.15), the error steadily grows larger due to the higher slope (0.50 

versus 0.22), such that at Tau=1.0, the standard deviation of the baseline model error is 0.3832, 

whereas for the assimilated model it is 0.5489. This is consistent with the previous discussion 

indicating that both the baseline CMAQ and MODIS DT retrievals have larger errors in the west. 

Because of the uncertainty in the DB error model (now borrowed from DT), we cannot draw any 

definitive conclusions about how much, if any, improvement DB could ultimately make in the 

quality of the MODIS Tau retrievals in the west for data-assimilation, even though we think we 

could be overestimating the DB errors. 

By way of comparison against our “progenitor approach,” the NAAPS global model reported its 

baseline standard-deviation error equation as 0.20 + 0.4*Tau prior to implementing MODIS 

AOD data-assimilation, and 0.15 + 0.3*Tau after implementation (Zhang et al. 2008). For the 

40-case days in the east, our baseline standard-deviation error equation is ~0.22 + 0.09*Tau 

prior to implementing MODIS AOD data-assimilation, and ~0.18 + 0.003*Tau after 

implementation. Our improvement compares favorably (perhaps better, considering the relative 

slope improvement) with the NAAPS error improvement. In the west our assimilated model 

improves for lower values of Tau but error standard-deviations rise more rapidly and exceed the 

baseline for values of Tau greater than about 0.50.  
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For operational application, one might consider nesting a more complete process model like 

CMAQ within a global lower resolution forecast model like NAAPS in which both assimilate 

AOD data using very similar algorithms. Equation (12) indicates the baseline (non-assimilated) 

CMAQ model full-domain full-year error model was 0.13481 + 0.320207*Tau. Although model 

resolution and coverage differences prevent quantitative conclusions, it is interesting that this 

baseline error is actually slightly better than the final assimilated NAAPS global model error. 

This would support the idea that there could be significant value in nesting a more “complete 

process model” such as CMAQ inside a high-quality global model like NAAPS to obtain 

forecast aerosol boundary conditions for the nested CMAQ. 

Other authors describe results that are qualitatively consistent with ours, but due to significant 

differences in experimental design, conclusive quantitative comparisons are again not possible. 

For example, using optimal interpolation and CMAQ over east-Asia and including improved 

emissions, Park et al., 2011 (Table 8 therein) showed that model simulated AOD correlations 

improved from about r=.67 (R2=.45) to r=.76 (R2=.59) when all four seasons’ results from their 

2006 simulation year were averaged. For the 40-case days we used in development, the Tau 

correlation coefficient improved from r=0.633 to r=0.684, while our assimilated Tau RMSE was 

lower than Park et al.’s. Liu et al., 2011 did not present statistical results. However, hourly time 

series plots over a simulation week at six AERONET locations in east-Asia indicate obvious 

improvement in low AOD bias for the assimilated WRF-CHEM model using GOCART.  

AOD forecasts were also evaluated by Schwartz et al., 2012, who showed that over their six-

week experimental period WRF-CHEM (GOCART) assimilation of both MODIS AOD and EPA 
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AIRNow (http://www.airnow.gov) surface PM2.5 observations resulted in an improved in AOD 

correlation coefficient at AERONET sites from the “noDA” baseline of r=0.288 (R2 =.083) to 

r=0.319 (R2=.101). In their case the statistics were calculated using model vs. MODIS-Tau (as 

opposed to AERONET) observations, making comparisons with other studies challenging. (Time 

series at several AERONET locations are given with AERONET observations plotted, but 

model-AERONET Tau improvement statistics are not provided). Improvements in bias, de-

biased RMSE, and correlation coefficients for hourly forecast surface PM2.5 are also presented in 

time-series (not tabular) form. Visual assessment indicates that combined surface PM2.5 and 

MODIS Tau assimilation provides the most improvement and that correlation against EPA 

AIRNow surface PM2.5 observations increases from r=~0.40 (R2=0.16) to r=~0.55 (R2=.30). 

Looking at Table 5, our surface PM2.5 correlations improve from a baseline of ~r=.67 (R2 = .46) 

to ~r=.72 (R2=.52). Here again, their statistics are based on hourly data-pairs, whereas ours are 

based on 24-hour averaged data-pairs (since this is the metric used by EPA to set the health 

effects standard). 

CONCLUSION 

This paper has described the initial development and validation of a version of the CMAQ air 

quality model that assimilates MODIS aerosol optical depth measurements from both the Terra 

and Aqua polar orbiting satellites in real-time (Collection 5). Our approach is unique to versions 

of CMAQ that are being applied for operational forecasting in that we implement an observation-

space variational algorithm for computing the final analyzed AOD fields. In contrast to simpler 

optimal interpolation, our approach allows for the utilization of more robust statistically 
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consistent weighting. Furthermore, in addition to DT retrievals, we make use of the newer DB 

retrievals to augment and improve the quality of the MODIS AOD data over brighter reflecting 

surfaces. While clearly subject to the uncertainties of the MODIS retrieval algorithms, our 

species-nudging approach based on the best available aerosol physical property data available 

within the MODIS retrievals is also innovative. 

The initial offline development was conducted using a vetted annual case study for baseline year 

2002 in partnership with the VISTAS Regional Planning Organization. The CMAQ run was first 

reproduced retrospectively and then modified to assimilate the Tau observations using 8 

representative five-day events. Over these 40-case days in the eastern US, the overall low bias in 

modeled total fine particle concentration improved by 13.35%, considering a weighted average 

of bias improvements among all measurement networks. Similarly, the modeled total PM2.5 

RMSE improved by just over 6%, the R2 statistic improved by 11.4%, and the Index-of-

Agreement improved by 4.88%, again considering a weighted average across all measurement 

networks. With respect to total column aerosol optical depth, unequivocal improvement in total 

AOD east of the Rockies was demonstrated, such that the revised standard deviation of the AQF-

DSS AOD error as measured against surface sun photometer data has a lower initial value 

(intercept) and remains nearly flat as concentrations increase. Further, the assimilated model 

intercept was lower as well. In the western U.S., the impact of MODIS AOD data-assimilation 

was less evident. However, a better error model for the new Deep Blue retrieval method, which 

holds promise over the brighter reflecting land-surfaces characteristic there, should help rectify 

this. Notwithstanding, MODIS coverage of dust-based events was very limited, restricting our 
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ability to fully assess its potential to increase forecast skill in the west as measured within the 

2002 VISTAS baseline run. 

Unfortunately, only MODIS/Terra observations were available for the initial VISTAS 2002 

baseline development period. However, had MODIS/Aqua retrievals been available, the density 

of high quality assimilated observations would have approximately doubled, almost certainly 

resulting in larger statistical improvements than were realized with MODIS/Terra alone. 

Nevertheless, our results compare very favorably against a number of contemporary studies 

which assimilate MODIS Tau data into air quality simulation models, including CMAQ, and 

they serve as the basis for our decision to extend the retrospective CMAQ-DA to real-

time/operational forecast mode. In Part 2 of the paper, we will describe the operational forecast 

implementation and real-time improvement of the BAMS CMAQ-DA model along with an 

assessment of forecast performance for both warm and cool seasons across the entire CONUS. 
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Table 1a: MODIS-retrieved Aerosol Type Decision Tree: Dark-Target Over Ocean 
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Table 1b: MODIS-retrieved Aerosol Type Decision Tree: Dark-Target Over Land 
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Table 1c: MODIS-retrieved Aerosol Type Decision Tree: Deep Blue Over Land 
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Table 2: Eight five-day benchmark cases featuring a visibility reducing event from 2002. 

Five Day Case Ending (2002) Feature 

February 7 Upper Midwest Nitrate Aerosol 

March 24 Texas Dust* 

July 1 Eastern US Stagnation Pollution 

July 7 Quebec Fire, SE US Biogenic Organic 

July 19 Eastern US Mixed Aerosol 

July 30 Texas Sahara Dust 

August 3 Oregon Smoke and Eastern US Sulfate 

August 12 Eastern US fine-particulate and ozone 

September 8 Midwest fine-particulate and ozone 

*MODIS observations unavailable 
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Table 3. Improvement in CMAQ Tau Estimation Using MODIS AOD Data Assimilation as 
compared to Baseline CMAQ for 40 “case days” within the VISTAS 2002 annual simulation. 

40 Case 

Days 

Statistics 

#PAIR

S 

MODIS 

Tau 

Average 

CMAQ 

Tau 

Average 

Bias 

Error 

MAE  RMSE R2 Index of 

Agreement 

CMAQ 

baseline  

19488 0.2127 0.1132 -

0.0995 

0.1147 0.1864 0.4012 0.6511 

CMAQ with 

MODIS Tau 

Assimilatio

n  

19488 0.2127 0.1718 -

0.0408 

0.0924 0.1532 0.4681 0.7922 
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Table 4: CMAQ aerosol species mappings to surface measured aerosol components at three 
networks used in data-assimilation verification. 

Evaluated Component and Network CMAQ V4.51_(soamods) Species 

Total PM2.5 (IMPROVE, FRM, STN) ASO4I +         ASO4J + 

ANO3I +         ANO3J + 

AORGAI +        AORGAJ + 

AORGPAI +       AORGPAJ + 

AORGBI +        AORGBJ + 

ASOC1J +        ASOC1I + 

ASOC2I +        ASOC2J + 

ASOC3I +        ASOC3J + 

AECI +          AECJ + 

A25I +          A25J + 

ANH4I +         ANH4J 

Organic Carbon (IMPROVE, STN) AORGAI +        AORGAJ + 
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AORGPAI +       AORGPAJ + 

AORGBI +        AORGBJ + 

ASOC1J +        ASOC1I + 

ASOC2I +        ASOC2J + 

ASOC3I +        ASOC3J 

Light Absorbing Carbon (STN, IMPROVE) AECI +          AECJ 

Fine Soil Dust (IMPROVE) A25I +          A25J 

Coarse Matter (IMPROVE)  ACORS + ASOIL + ASO4K + ACLK + 

ANAK 

 



 
58 

Table 5: CMAQ total PM2.5 results for baseline versus assimilated case-days from various 
measurement network sites for VISTAS baseline evaluation year 2002. 

Network Run-Type Number of 

Pairs 

Bias 

(ug/m3) 

RMSE 

(ug/m3) 

R2 Index of 

Agreement 

FRM Baseline 10197 -3.5147 9.3265 0.4752 0.7760 

Assimilated 10197 -3.0307 8.7903 0.5218 0.8100 

IMPROVE Baseline 445 -3.0932 8.3193 0.4385 0.7551 

Assimilated 445 -2.7701 7.5179 0.5395 0.8114 

STN Baseline 1108 -5.5152 13.6227 0.3726 0.6768 

 Assimilated 1108 -4.9363 12.6576 0.4526 0.7343 
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Table 6. CMAQ total Organic Carbon results for baseline versus assimilated case-days from 
various measurement network sites for VISTAS baseline evaluation year 2002. 

Network Run-Type Number of 

Pairs 

Bias 

(ug/m3) 

RMSE 

(ug/m3) 

R2 Index of 

Agreement 

IMPROVE Baseline 446 0.1208 4.1806 0.3593 0.6946 

Assimilated 446 0.7033 3.5302 0.5626 0.8267 

STN Baseline 1106 -1.8812 5.9147 0.4246 0.6896 

Assimilated 1106 -1.1139 5.2519 0.5151 0.7806 

 



 
60 

Table 7. CMAQ total Elemental Carbon results for baseline versus assimilated case-days from 
various measurement network sites for VISTAS baseline evaluation year 2002. 

Network Run-Type Number of 

Pairs 

Bias 

(ug/m3) 

RMSE 

(ug/m3) 

R2 Index of 

Agreement 

IMPROVE Baseline 446 -0.0712 0.3686 0.4095 0.7848 

Assimilated 446 0.0681 0.4195 0.5297 0.8006 

STN Baseline 1106 0.1031 0.6896 0.2051 0.6030 

Assimilated 1106 0.2827 0.8398 0.1956 0.5440 
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Table 8. CMAQ total Fine Soil Dust for baseline versus assimilated case-days from various 
measurement network sites for VISTAS baseline evaluation year 2002. 

Network Run-Type Number of 

Pairs 

Bias 

(ug/m3) 

RMSE 

(ug/m3) 

R2 Index of 

Agreement 

IMPROVE Baseline 443 -0.1573 2.7206 0.0220 0.3063 

Assimilated 443 -0.0160 2.7616 0.0137 0.2883 
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Table 9. CMAQ total Coarse Matter for baseline versus assimilated case-days from various 
measurement network sites for VISTAS baseline evaluation year 2002. 

Network Run-Type Number of 

Pairs 

Bias 

(ug/m3) 

RMSE 

(ug/m3) 

R2 Index of 

Agreement 

IMPROVE Baseline 429 -4.5660 7.6191 0.1499 0.4017 

Assimilated 429 -4.3807 7.4448 0.1828 0.4070 
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Table 10: Allocation of dust emissions flux to CMAQ species by percent. 

Windblown Dust: 

Percentage of Emitted Flux 

CMAQ Species Allocation Species Size 

70.2% ASOIL Coarse 

22% A25J Fine 

7.8% ACORS Coarse 
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Table 11: Allocation of biomass burn emissions flux to CMAQ species by percent. 

Biomass Burn Smoke: 

Percentage of Emitted Flux 

Species Allocation Species Size 

1% ACORS Course  

9% ASOIL Course 

69.3% ORGPAI + ORGPAJ Fine 

14.4% ECI + ECJ Fine 

4.32% A25J Fine 

1.8% SO4I + SO4J Fine 

0.18% NO3I + NO3J Fine 
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Table 12: EPA health risk for daily exposure to total PM2.5 concentrations between Clow and 
Chigh ug/m3 

Clow Chigh Ilow Ihigh Category Color Code 

0 15.4 0 50 Good Green 

15.5 40.4 51 100 Moderate Yellow 

40.5 65.4 101 150 Unhealthy for Sensitive Groups Orange 

65.5 150.4 151 200 Unhealthy Red 

150.5 250.4 201 300 Very Unhealthy Purple 

250.5 350.4 301 400 Hazardous Dark Red/Brown 

350.5 500.4 401 500 Hazardous Dark Red/Brown 
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Table 13: Estimated CMAQ linear model for standard deviation of the error as a function of 
CMAQ estimated Tau, based on 40-case days with and without MODIS data-assimilation: 
CMAQ_Tau_errorstandard_deviation ≈ INTERCEPT + SLOPE * (Tau_CMAQ) 

CMAQ Subdomain and 40-day Run SLOPE Intercept 

East baseline 0.09743 0.21986 

East assimilated 0.00360 0.18484 

West baseline 0.22793 0.15535 

West assimilated 0.50498 0.04393 
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Figure 1. Comparison of baseline (non-assimilating) CMAQ total AOD calculated using the (a) 
original IMPROVE method and (b) the revised-IMPROVE method against all viable surface 
AERONET observations for the 2002 annual VISTAS simulation. 
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Figure 2. MODIS data valid between 1815 GMT and 1845 GMT overlaid as diamonds against 
the CMAQ 36km CONUS grid depicting a daily composite of all valid MODIS retrievals “super-
obbed” into their respective 36km CMAQ grid cells for an operational run made on July 16, 
2015. Grid cells in white contained no valid MODIS observations across the entire day. 
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Figure 3. Aggregated result of MODIS/Terra AOD data assimilation in CMAQ across 40 
selected 2002 case days for the entire CONUS measured against surface AERONET AOD 
observations: (a) The baseline, non-assimilated result; (b) the assimilated result. Significant 
improvement in the slope of the best fit line is noted. 
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Figure 4. Results for eastern US total PM2.5 mass from the FRM network (a and b, top row) and 
the IMPROVE network (c and d, bottom row). Baseline VISTAS results are shown in the left-
hand column (a and c), CMAQ-data-assimilating results are shown in the right-hand column (b 
and d). Daily average (24-hour) values are paired to make the comparison. 
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