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Title
Research-driven facilitation of systems thinking with computational models in life sciences education

Abstract

Systems thinking, computational modeling, and simulating systems are examples of important skills
stressed in life sciences education by Vision and Change. In response to these calls, we have designed a
computational modeling and simulation-driven intervention to supplement current instruction in the life
sciences curriculum. As part of our pre-intervention assessment we evaluated students on their systems
thinking in the context of cellular respiration. For this assessment, we had students create conceptual
models. We found that students with lecture instruction are able to recall more components associated
with the cellular respiration process but are not better able to integrate these components into the
system compared to students without lecture instruction. As a result, we have designed computational
interventions to facilitate learning about complex biological processes. In these activities, we have
students make and test predictions and apply simulation results to cellular mechanisms. We then assess
student thinking to examine if the computational intervention improves systems thinking and modeling
skills. Our preliminary data suggest that this intervention increases students’ mechanistic reasoning
abilities. Currently, we are deploying computational activities and assessing students thinking on the
topics of cellular respiration and gene regulation in all LIFE 120 laboratories. Finally, we are in the
process of developing new computational activities to be used as learning tools for additional topics on
complex biological systems.
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Slide 1

1 delete slide

Heather Bergan,

3 whatever terminology we use, we need to be consistent and are jargon-less as possible so the audience can easily follow
Heather Bergan,

4 Do you want me to talk here?
Heather Bergan,

5 are we cutting this slide? if so, can you move it to the end section?
Heather Bergan,

6 what does this mean? I don't think we need to spend a lot of time talking about the new versus old user interface
Heather Bergan,

7 I vote we skip this and jump right into our CML I think I have set it up well for this.

Heather Bergan,

8 maybe move this to the beginning of your section (around slide 13) because my "baseline" results are in the context of cellular

respiration, and then we switch to Gene regulation abruptly.
Heather Bergan,
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is complex

Our world




VISION

ANDCHANGE

IN UNDE

Core Concepts

m Systems

m Structure and function

m Information flow, exchange,
storage

m Evolution

m Pathways and transformation
of energy and matter

LOGY EDUCATION
A CALLTO ACTIOI\J i

Core Competencies
Modeling, simulations,
computational, and systems-level
approaches to discovery and analysis
Process of science
Quantitative reasoning
Interdisciplinary communication and
collaboration
Science and Society

AAAS, 2011



Modeling and Learning

1.

Externalize mental models

Decrease cognitive load

Address explicit interactions/mechanisms
Facilitate metacognition

Facilitate instructor feedback

Facilitate assessment of thinking




Computational
model learning
activities for
improved systems

thinking




What is the state of systems thinking in our
introductory

biology students?




Systems thinking hierarchy framework

Assaraf and Orion, 2010



Conceptual models to assess thinking

(Jordan et al., 2013; Dauer et al., 2013; Vattam et al., 2011; Ifenthaler, 2010; Hmelo, Holton, Kolodner, 2000)

breaks down into

made of:

made of

made of

protons

electrons

produce

recycles

produces

ATP




Baseline Timeline
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instruction groups: 0

1 P
A A

=h ~ Conceptual Modeling

Lecture {! B B E
n=283
0 n=30
1 n=32




Baseline Results
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Baseline Results

1.5 20

1.0

Web-like Causality Index

0.0 05

Connectivity —
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Correctness —
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1.0
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Baseline Conclusions

Instruction increases the
number of structures

Instruction does not
affect relationships,
connectivity,
or correctness

1ceptual models

Assaraf and Orion, 2010



Computational Model Learning Activities




Why computational modeling?

e Manage content knowledge

e C(Create, simulate and perturb complex
biological systems

e Observe the dynamic behavior of
systems



Why computational modeling?

Manage content knowledge

Create, simulate and perturb complex
biological systems

Observe the dynamic behavior of
systems

Promote systems thinking

Assaraf and Orion, 2010



Why computational modeling?

e Manage content knowledge

e Create, simulate and perturb complex
biological systems

e Observe the dynamic behavior of
systems

e Promote systems thinking

e Less memorizing = more fun

Assaraf and Orion, 2010



Computational Modeling Platform: Cell Collective

e Web-based (thecellcollective.org)
e Accessible and easy to use
e No entering/modifying mathematical expressions or computer code

Computational Model Dynamic Simulation
e Home | Models | Simulate Knowledge Base | Forum | GSoC | Tutorials Home | Models | Simulaf te | Knowledge Base | Forum | GSoC | Tutorials
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Computational Model
Learning Activities

Topic Selection
e Whatis needed?

Topic
Selection

Literature
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| Learning
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b 4
a ‘ N

Design

Implement ‘
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Computational Model
Learning Activities

Topic Selection
e Whatis needed?

Literature

e What does the literature recommend?

e What do experts value?

Topic
Selection

:
Learning

Objectives

¥

Design |

4

L Implement J

¥

juswauyay



Computational Model
Learning Activities

Topic Selection
e Whatis needed?

Literature
e What does the literature recommend?
e What do experts value?

Learning Objectives

Topic
Selection

Learning
Objectives

¥

‘ Implement J

= 2

Assess
4

jusawauyay




Computational Model ot

Learning Activities \ ‘ |
Design oﬁ%u::gs

a. Background Information
b. Introduction to Computational Model

c. Simulation Setup

d. Investigations [ Implement

)
i —‘ ™y

Assess

Jusawiauyay
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Computational Model
Learning Activities

Design

a.
b.
C.
d.

Background Information
Introduction to Computational Model
Simulation Setup

Investigations

Example using the tryptophan Operon

Content Knowledge




Computational Model Learning Activities Design

Part 1: Background Information

NAME:,

Gene Expression and Regulation in Prokaryotes
by

Nicholas Galt, Heather Bergan-Roller, Joseph Daucr, and Tomis Helikar
University of Nebraska-Lincoln
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Computational Model Learning Activities Design

Part 2: Introduction to Computational Model

Activity 1: Trp Operon

Table 1 Describe/define what each interaction represents in Figure 5,
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Activity Levels of External Species

Computational Model Learning Activities Design

Part 3: Simulation Setup
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mutation
. trpC_mutal | -l > | 0
passmn - w0 ,
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Computational Model Learning Activities Design

Part 4: Investigations

The purpose of this section is to learn sow the trp operon functions. You will be conducting simulations to
verify your own predictions about the dynamic interactions between the components of the trp operon.
Complete each statement thoroughly.

Consider the following scenarios:

Investigation 1:
a. Predict how the presence of tryptophan in the environment influences the expression of the genes in the #rp operon. Support your

prediction by describing the components involved and how they interact (mechanism).

b. Test your prediction by adjusting the “environmental_tryptophan” slider to 100 (See blue box, Figure 8) (Hint: compare the activity of
the trp_repressor, trp_operon, etc.). Record and describe the simulation results in the space below.

¢. Do your simulation results match your prediction? (circle one) Yes No

d. Describe what your results indicate is occurring in the cell (use your results to support a mechanistic explanation).



Computational Model Learning Activities Design

Part 4: Investigations

a. Prediction Computational Model of
e Support prediction by describing the Trp Operon
components involved and how they
interact (mechanism) Capropressar) §——
e Encouraged to use diagram of the N _f/
computational model trp_operon

b

l;




Computational Model Learning Activities Design

Part 4: Investigations L e — J
a. Prediction O o T
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Computational Model Learning Activities Design

Part 4: Investigations . P —— —
a. Prediction s ]
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Computational Model (CM) Learning Activities

Implementation Timeline

Feedback Session q ' LIFE120L
- 4 undergraduates Honor Student Session - ~50 undergraduates
- 4 teaching assistants - 14 undergraduates - 2 CM learning activities

summer 2015

fall 2015

Honor Student Session BIOC437/837 LIFE120L

- 18 undergraduates - 7 undergraduates - ~1000 undergraduates
- 3 graduate students - 2 CM learning activities




Computational Model
Learning Activities

Assessment and Refinement

Systems Thinking
e Conceptual models
e Interviews

Mechanistic Reasoning
e Student responses to module questions

Quality Control

Student interviews

TA interviews

Usability testing
Classroom observations

‘ Topic
Selection
! 2

Literature

Learning
Objectives

‘ Implement ‘

jJuawauyay



Slide 34

2 the formatting is really inconsistent among fonts, colors, bullets, etc.
Heather Bergan,



Evidence-based Refinement of Learning Activities

Refinement Timeline with Preliminary Data

Feedback Session
- clarify directions
- less recording of results

K . Table 1. Prevalence of Mechanistic \
Honor Student Session Reasoning (MR)
- include “hints” MR | non-MR
- ask “How" not “Why" questions Implicit 1 93
Opportunities
(94 Total)
Explicit 12 22
Opportunities*

K (34 Total) J




Evidence-based Refinement of Learning Activities

Refinement Timeline with Preliminary Data

84
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Evidence-based Refinement of Learning Activities

Refinement Timeline with Preliminary Data

Feedback Session
- clarify directions
- less recording of results

# of correct predictions

1 *
*

e [ B

4

24

0 L] L) L]

ey o e fe's

6-

K

Honor Student Session

- include “hints”

- ask “How" not “Why" questions
- question clarity

-

Table 1. Prevalence of Mechanistic

Reasoning (MR)

MR

non-MR

Implicit
Opportunities
(94 Total)

1

93

Explicit
Opportunities*

(34 Total)

12

22

Mech. Reas. Score

3+

3 non-MR
B VR

LIFE120L

- improved systems thinking?

- improved mechanistic reasoning?
- improved content knowledge?

Fall 2015

Il after



Computational Models and Activities

Currently Available
- ™
Gene Regulation
Lac/Trp Operon
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In Development

Operon Construction

Food Web

Population Dynamics

Endocrine Systems



Audience Feedback

1. Questions?

1. What topics and/or concepts would you be interested in see as a
computational learning module?

1. What other elements would you want to see in the activities?

1. How would you want these learning activities to be implemented in

your class (e.g., in-class, homework, online courses, labs)



Bonus slides




Data Trp Operon

REsule Results

- N [ before
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::'8'"9 6: P"e:'cf“m C‘"”‘:c"ess dict R —— Figure 9: Mechanistic Reasoning Before and After Simulation
omparing the frequency of correct predictions when MR was identified in Identifying the effect of the dynamic simulation on MR score. (TQ=trp

= : s N= 3 . + *
student responses. (Q=question; n=13 per question; mean+SEM, *p<0.05) operon question, LQ= lac operon question; n=20; mean+SEM, *p<0.05 )
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Enable learning about complex biological systems through computational modeling
and simulations.
- E.g., by building, simulating, breaking, and re-simulating computer models of
biological systems.

Increase systems and dynamical level thinking when learning about biological
systems.

Our golas:
- address misconceptions (evidence based)
- improve systems thinking
- stand alone! Easy to use
- in-class, lab, take-home and demonstrations




Computational Learning Modules

1. Topic Selection Topic
Selection
1. Identify Learning Objectives l
a. What does the literature recommend? _
b. What do instructors value? Literature on
learning
1. Module Design l
a. Background Information
b. Introduction to Computational Model Design
c. Simulation Setup
d. Inquiry-based Questions l
2. Implementation

3. Assessment

Juswauley

: Implement
4. Refinement
Goals Assess

- designed to stand alone- start here, self-contained;
no work for instructors



Fall 2015 Experimental Design LIFE
120

Prior to class During class
[ : N : |
Pre- Group Post-
Backgrpund Worksheet conceptual conceptual Slmulat_lon & Conceptual
reading model & model questions model &
questions Questions

n = 543 students




Baseline Findings

Without any lecture instruction With 1 lecture With 2 lectures
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Baseline Findings

Without any lecture instruction With 1 lecture With 2 lectures




Baseline Findings: replace with infograph
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Baseline Findings

Without lecture instruction With lecture instruction




Baseline Findings

Without any lecture instruction
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Learning Activities Design
Tryptophan Operon

Static Diagrams

Interactive Dynamic Model

e f
lymer: - 2
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trp_operon
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Refinement of Modeling Platform
Coming soon...

Model Analysis  Knowledge Base

The Cell Collective
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Background on Cell Collective

CC network screenshots

ease of use

o
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Background on Cell Collective

T~

The Cell Collective

Home | Models | Simulate | Knowledge Base | Forum | GSoC | Tutorals
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Computational Modeling
Learning Activities

Implementation
e Feedback Sessions
o ~10 undergraduates
o ~5Teaching Assistants
e Honor Student Sessions
o ~15undergraduates
e LIFE120 Lab Summer Pilot
o 2 lab sections
o ~ 20 undergraduates per section
e LIFE120 Lab Fall 2015 Full Implementation
e Upper level

Topic W
L Selection

Literature

?

Learning
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Evidence-based Refinement of Learning Activities

Refinement Timeline with Preliminary Data
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Background on Cell Collective

observe dynamics
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The Cell Collective

Actiity Leveia of External Species



Computational Modeling Platform
Cell Collective

Content Knowledge Conceptual Model Computational Model Dynamic Simulation
...
:~ Home | Models | Simulate | Knowledge Base | Forum | GSoC | Tutorials Home | Models | Simulate | Knowledge Base | Forum | GSoC | Tutorials
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Features: _\ ¢ , - l\ | AER
- Web-based (thecellcollective.org) R = Wi B B

- Easyto use
- No mathematical expression
- No programming
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