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1Utah Climate Center/Department of Plants, Soils and Climate, Utah State University, Logan, Utah, USA, 2NASA Goddard
Space Flight Center, Greenbelt, Maryland, USA, 3Department of Atmospheric and Oceanic Science, University of Maryland,
College Park, Maryland, USA, 4Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln,
Nebraska, USA, 5Remote Sensing Systems, Santa Rosa, California, USA, 6Department of Civil Engineering and School of
Natural Resources, University of Nebraska–Lincoln, Lincoln, Nebraska, USA, 7Department of Geography and
Geoinformation Science, George Mason University, Fairfax, Virginia, USA

Abstract In the long term, precipitation in the Central U.S. decreases by 25% during the seasonal
transition from June to July. This precipitation decrease has intensified since 1979 and such intensification
could have enhanced spring drought occurrences in the Central U.S., in which conditions quickly evolve from
being abnormally dry to exceptionally dry. Various atmospheric and land reanalysis data sets were analyzed
to examine the trend in the June–July seasonal transition. The intensified deficit in precipitation is accompanied
by increased downward shortwave radiation flux, tropospheric subsidence, enhanced evaporative fraction, and
elevated planetary boundary layer height, all of which can lead to surface drying. The change in tropospheric
circulation was characterized by an anomalous ridge over the western U.S. and a trough on either side—a
pattern known to suppress rainfall in the Central U.S. This trending pattern shows similarity with the progression
of the 2012 record drought.

1. Introduction

In the Central United States, the seasonal progression from June to July involves a climatological feature of
rainfall reduction. Such rainfall reduction occurs in association with the development of the North
American Monsoon (NAM) and concurrent formation of the upper level anticyclone over the western U.S.,
nudging the jet stream northward [Barlow et al., 1998; Higgins et al., 1997; Wang and Chen, 2009]. In summer
2012, the Central U.S. underwent a severe (record) drought. A unique feature of this drought was its rapid inten-
sification during the early summer [Hoerling et al., 2013a, 2013b]. Figure 1a, reproduced from Hoerling et al.
[2013a], depicts the rapid expansion of drought conditions in Wyoming, Colorado, Kansas, Nebraska, and
South/North Dakota. Over the period of just 1month, the drought conditions worsened frommoderate to severe
status. The timing of this drought’s rapid intensification coincides with a subseasonal feature in the Central U.S.:
precipitation generally is reduced by about 25% from June to July, as shown in Figure 1b by the long-term
monthly rainfall. The precipitation difference of July minus June, denoted hereafter as “July–June,” depicts a
distinct zone of rainfall reduction to the north and east of the NAM region (Figure 2a) covering the Central
Plains and the Great Plains. While this seasonal rainfall reduction is a well-known phenomenon, the extent to
which a progression of drying may have changed has not been examined.

The extreme and widespread impacts of the 2012 record drought have prompted a number of recent studies,
including those dealing with the meteorological processes and drought prediction [Hoerling et al., 2013a;
Hoerling et al., 2013b; Kumar et al., 2013], drought depiction using various monitoring tools [Mallya et al.,
2013], drought recovery [Pan et al., 2013], low-frequency climate variability and trends [Barandiaran et al.,
2013; Wang et al., 2014], impacts on agriculture and economy [Al-Kaisi et al., 2013], and global food security
[Boyer et al., 2013]. The lack of prominent large-scale forcing factors in the tropics, such as that of
El Niño–Southern Oscillation, was thought to be a probable reason for low skill in climate models’ prediction of
the 2012 drought [Hoerling et al., 2013b;Wang et al., 2014]. In this study, our goal is to examine other possible for-
cing factors, with emphasis on regional drivers and dynamical mechanisms that may be related to the rapid
advancement and expansion of drought (such as that in 2012) including the role of land-atmosphere interactions,
circulation patterns, their interaction, and, subsequently, how some or all of these may have changed.
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To accomplish our analysis, we uti-
lized an array of surface observations
and global reanalysis data sets; these
are outlined in section 2. Surface con-
ditions associated with the change in
the June–July circulation transition
are presented in section 3, followed
by an analysis of the atmospheric
and oceanic conditions in section 4. A
climate model attribution analysis is
presented and discussed in section 5.
Concluding remarks are provided in
section 6.

2. Data and Models
2.1. Data Sources

Global reanalysis products were
adopted to support this study.
However, any exploration of long-
term changes using a single reanaly-
sis is of concern due to inconsistent
trends among different reanalyses
[Paltridge et al., 2009]. Thus, to obtain
an optimal estimate of long-term
trends in the atmosphere, we utilized
an array of global reanalyses and
sought consensus. We used four
post-1979 data sets that cover the
satellite era—the acronyms, full names,
and description of each data set are
provided in Table 1. The data group
consists of Modern-Era Retrospective
Analysis for Research and Applications
(MERRA) [Rienecker et al., 2011],
Climate Forecast System Reanalysis
(CFSR) [Saha et al., 2010], ERA-Interim
[Dee et al., 2011], and the National
Center for Environmental Prediction/
Department of Energy (NCEP/DOE)
“R-2” reanalyses [Kanamitsu et al.,
2002]. In the following analyses, the
atmospheric variables are derived

from an ensemble of these four reanalysis data sets using equal-weight averaging. In addition, the North
American Regional Reanalysis (NARR) regional reanalysis data [Mesinger et al., 2006] were used for the ana-
lysis of boundary layer heights. Other observational data sets included the monthly Climatic Research Unit
(CRU) precipitation and surface air temperature data and the Palmer Drought Severity Index (PDSI) at
0.125°—derived from the Parameter-elevation Regressions on Independent Slopes Model (PRISM), as well
as the NOAA Extended Reconstructed Sea Surface Temperature (SST) [Smith et al., 2008] for the depiction
of ocean states.

Land surface analyses were obtained from the Mosaic [Koster and Suarez, 1994] and Noah [Ek et al., 2003] land
surface models as part of the recently released North American Land Data Assimilation System project Phase 2
(NLDAS-2) [Xia et al., 2012]. All land surface models were run offline at 0.125° horizontal resolution using gauge

Figure 1. (a) Drought evolution during 2012 obtained from Hoerling et al.
[2013a], showing the percent of areas under negative PDSI from March to
September 2012. (b) Long-term (1971–2000) mean monthly precipitation in
the Central Plains from the domain outlined in Figure 2a. (c) Time series of
precipitation in June (blue), July (red), and the July-June difference (bar) from
1978 to 2014 overlaid with linear trends.
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and bias-corrected atmospheric (NLDAS-2) forcing data. Monthly means were calculated across the period of
record (1979–2012), while linear trends were calculated up to 2011 (to leave 2012 out for validation).

2.2. Model Simulations

To investigate the forcing sources of change in the June–July transition, we also examined a set of idealized
model simulations using the NASA Goddard Earth Observing System model, version 5 (GEOS-5) atmospheric

Figure 2. (a) Long-termmean of the July-June precipitation change; the yellow domain indicates the Central Plains and linear
trends in the July-June difference of (b) precipitation (CRU data), (c) PDSI (PRISM data), (d) net downward radiation flux,
(e) downward shortwave radiation flux, and (f) downward longwave radiation flux (NLDAS-2 data). In Figure 2b the red and
blue colors indicate the significance at the 95% interval, while in Figure 2c only values significant at 90% are colored.

Table 1. Global and Regional Reanalyses Used

Name Full Name and Agency Spatial Resolution

MERRA Modern-Era Retrospective Analysis for Research
and Applications, by the National Aeronautics

and Space Administration (NASA)

1.0° longitude × latitude→ extrapolated
to 2.5°

ERA-Interim European Centre for Medium-Range Weather
Forecasts Interim Reanalysis project, by the

European Centre for Medium-Range Weather Forecasts

1.5° longitude × latitude→ extrapolated
to 2.5°

CFSR Climate Forecast System Reanalysis, by the National
Oceanic and Atmospheric Administration (NOAA)

2.5° longitude × latitude

NCEP/DOE R-2 National Center for Environmental Prediction (NCEP)/
Department of Energy (DOE) Reanalysis, version 2

2.5° longitude × latitude

NARR North American Regional Analysis, by NCEP 32 km horizontal grid

Journal of Geophysical Research: Atmospheres 10.1002/2014JD023013
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general circulation model (AGCM). The AGCM simulations consist of a control run forced with a seasonally
varying SST climatology (1901–2004) and three anomaly runs forced with a warming trend pattern, a cold
Pacific Decadal Oscillation (PDO) pattern, and a warm Atlantic pattern (superimposed onto the seasonally
varying SST climatology). Following Schubert et al. [2009], the warming trend and Atlantic SST patterns were
obtained as the first and third leading rotated empirical orthogonal function (REOF) modes of annual mean
SST over the period of 1901–2004; the PDO SST pattern was obtained as the second leading REOF of low-pass
filtered monthly SST data (1901–2004) that retain time scales of about 6 years and longer, following Zhang
et al. [1997]. The amplitudes for the imposed PDO and Atlantic SST patterns were two standard deviations
of their principal components, with the assumption of linear model response. The warming trend pattern
used one standard deviation of its principal component and was used to simulate the impact of warming
during the latter half of the twentieth century. All the GEOS-5 simulations were 50 years long. The model
response to a leading SST pattern was obtained as the 50 year mean difference between the control run
and the anomaly run. For these experiments, the GEOS-5 AGCM was run with 1° horizontal resolution on a
latitude/longitude grid. Schubert et al. [2009] provides more details of the leading SST patterns and the
AGCM experiment design. The GEOS-5 AGCM is described in Rienecker et al. [2008] and Molod et al. [2012],
with the latter providing a comprehensive assessment of model fidelity. Moreover, we also utilized simula-
tions produced by five AGCMs (Community Climate Model, Version 3 (CCM3); Community Atmospheric
Model, Version 4 (CAM4); European Centre/Hamburg GCM model, Version 5 (ECHAM5); GEOS-5; and Global
Forecast System (GFS)) that are part of the NOAA Facility for Climate Assessments (FACTS), which provided
Atmospheric Model Intercomparison Project (AMIP) type of simulations (i.e., models were forced by
prescribed/observed SST forcing) for the period of 1979–2012.

3. Surface and Planetary Boundary Layer Conditions

The linear trend of the 1979 to 2011 change in the July-June precipitation difference (i.e., July minus June) is
shown in Figure 2b. In comparison with Figure 2a, the precipitation deficit in July has become greater in the
Central Plains and northern Rockies. Indeed, there has been a twofold decrease in precipitation over Iowa,
Nebraska, and portions of Illinois since the 1980s. In Figure 1c we plotted the evolutions of June and July pre-
cipitation and their difference over this area; it depicts a persistent reduction after 1995. Also noteworthy is
the predominant increase in the June rainfall with a mild decrease in July that collectively enhances the July
rainfall deficit. Likewise, the linear trend of the July-June PDSI difference (Figure 2c) indicates that drought
conditions have intensified during the June–July transition over the Central Plains. A trend analysis
conducted on the difference between the averages of May and June and July and August (not shown) also
yielded a similar result in both precipitation and PDSI.

Another factor worth noting is the trend in the July-June net downward radiation flux at the surface (Figure 2d),
derived fromNLDAS-2 data. The positive trend in the downward radiation flux change reveals a pattern very simi-
lar to the negative trend in precipitation, i.e., meridionally elongated pattern with a particularly strong increase in
the northern Great Plains. The pattern of net downward radiation flux results primarily from the change in down-
ward shortwave radiation flux (Figure 2e) caused by change in cloud cover or cloud thickness. In comparison, the
trend in the July-June downward longwave radiation (Figure 2f) depicts an east-west dipole pattern with
increased radiation in the southwest and decreased radiation in the northeast. This indicates that the Central
U.S. received either increased shortwave radiation in July or decreased radiation in June or a combination of both.

The impact of the downward radiation shift on the near-surface meteorology was examined by computing the
trend in the 2m air temperature (T2m) for June (Figure 3a), (b) July (Figure 3b), and July-June (Figure 3c). In
June, warming was observed over the Southwest U.S. and south of the U.S.-Mexico border, while a slight
cooling is found in the northwest. In July, a distinct warming trend covers the entire Interior West. Therefore,
the July-June change in T2m depicts a marked warming centered around Idaho, Montana, and surrounding
states (Figure 3c), i.e., not the Central Plains! The consequence is shown in Figure 3d by the seasonal evolution
of thickness within 200hPa and 700hPa between the recent era (1996–2012) and the earlier era (1979–1995).
The local air mass in July has evidently expanded, hence the increased rate of change in the thickness from June
to July (bar graph). These results suggest that the regional warming over the western U.S. is accompanied by an
upper air ridge formation. A stationary ridge in this vicinity is known to induce dry conditions over the Central
Plains; this will be discussed further in section 4.
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Next, we examined the changes in near-surface variables and the land-atmosphere coupling by computing
the evaporative fraction (EF; Figure 4a), soil moisture in the near surface (top 40 cm; Figure 4b), and the
planetary boundary layer (PBL) height (Figure 4c). EF is the ratio of evaporation flux to available energy,
calculated as the difference between net radiation and soil heat flux. Here EF and soil moisture (SM) were
derived from Mosaic model, and the PBL height was derived from NARR (we also analyzed the Noah model
outputs, and the results were very similar in sign and spatial pattern.) The EF estimates are independent of
precipitation inputs and generally do not reflect the influence of irrigation, which can substantially increase
evapotranspiration rates. The linear trends of EF, soil moisture, and PBL variables were computed for June,
July, and the July-June difference for the period of 1979–2011 and compared with the 2012 anomalies of
the July-June difference; the “trends” in Figure 4 represent total change as the rate of change multiplied
by the number of years from 1979 to 2011.

The decreasing trend in EF (Figure 4a) in the Central/Northern Great Plains indicates that there is a stronger
transition in the primarily rain-fed surface energy balance from June to July. Further, it appears that soil moist-
ure has mildly increased in June but subsequently decreased during July (Figure 4b); this echoes the obser-
vation by Barandiaran et al. [2013] that June has become significantly wetter in the Northern Plains while July
has become slightly drier. A trend like this would increase the difference in EF between the 2months,
although the change is not so significant. In the Southern Great Plains (e.g., Oklahoma and especially southern
Texas), the situation is reversed owing to an overall drying in the month of June and increased wetness in July.
Both soil moisture and EF do show a drying trend in July in the Central Plains, a rather small area in the
Nebraska/Iowa border. This rather small contribution of the drying trend on 2012 (Figure 4, bottom) suggests
that surface processes alone may not be adequate for the long-term change to exacerbate drought; instead,
the atmospheric processes should be taken into account, and this is discussed further next. Nevertheless, the
fact that EF shows a stronger intensification in the July-June anomaly (than soil moisture) is supportive of the
overall processes supporting the rapid onset of drought, as surface fluxes aremore directly tied to the PBL feed-
back (in this case a rapid increase (decrease) in sensible (latent) heat flux). Further, the surface drying trend in
July is also supported by increased PBL height as shown in Figure 4c. However, the translation of soil moisture
to surface fluxes is not always direct and depends on many factors such as vegetation amount and evaporative
physics, which may mask at times the direct connection of soil moisture to atmospheric impacts. This is why
additional analysis was conducted for the atmospheric processes, shown later in Figures 5–7.

Figure 3. Trends in the 2m air temperature (T2m) for (a) June, (b) July, and (c) the July-June transition and (d) the thickness
between 200 and 700 hPa averaged over the white outlined area in Figure 3c from the two periods as indicated and their
monthly tendency shown as bars. The difference of thickness between the two periods is filled with yellow.
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By comparing with the 2012 anomalies of the July-June EF, soil moisture, and the PBL height (Figure 4, bottom), it
can be seen that the 2012 patterns are similar with those of the long-term trend. Surface drying and PBL growth
from June to July 2012 are particularly pronounced over Kansas, Missouri, Illinois, and Indiana. An earlier analysis
of satellite-derived greenness vegetation fraction from Moderate Resolution Imaging Spectroradiometer
[Wang et al., 2014] also supports the observation that negative anomalies in vegetation amount and health
were already present in summer 2012. Likewise, as was shown in a companion study, Santanello et al.
[2015], the Atmospheric Radiation Measurement-Southern Great Plains Facility at Lamont, OK, observed
a record increase in the PBL height during July. Apparently, the land-PBL feedback have tended to take
hold more suddenly in recent years, leading to accelerated drying of the lower atmosphere, an increase
in the PBL height and, as inferred from Figure 4c, an increased entrainment in July. Cattiaux and Yiou
[2013] also indicated that, during 2012, the recorded high temperature and lack of rains in May played
an important role in the later development of the drought through land surface processes. These processes
can establish a deep residual boundary layer that promotes further desiccation of the soil. A positive
feedback such as this, as well as its long-term intensification, is manifest in the greater July-June change
in EF and the PBL in 2012.

4. Circulation Changes Versus Remote Forcing

As previously noted, the development of the NAM is associated with a noticeable transition in upper level
circulations from the cold season regime (trough) to midsummer regime (ridge); this is illustrated in Figure 5.
In June, a stationary trough near the West Coast characterizes the upper level circulation with the jet exit
located over the Central Plains (Figure 5a). In July, the monsoonal anticyclone develops, pushing the jet
stream northward to about 50°N (Figure 5b); consequently, the circulation forms an anticyclonic anomaly
over the western U.S. (Figure 5c) from June to July, and this induces subsidence over the Central Plains

Figure 4. Linear trends calculated from 1979 to 2011 for (a) evaporative fraction (EF; % change), (b) shallow soil moisture at
top 40 cm (SM; kg/m2), and (c) PBL height (m) for (top to bottom) June, July, July-June, and the 2012 anomalies. The
regression coefficients were multiplied by the number of years so values represent total change and not the rate of change.
The dotted areas indicate the significance at the 95% interval per t test. EF and SM were derived from Mosaic model, and
the PBL height was derived from NARR.
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[Barlow et al., 1998; Higgins et al., 1997]. The linear trends in these circulations (Figures 5d–5f) reveal an inten-
sification manifest as a deepened western trough in June and enhanced western ridge in July. As a result, the
July-June shift in the circulation (Figure 5f) depicts an amplified ridge in the northwestern U.S. and a dee-
pened trough in the northeastern U.S. The western ridge corresponds well with increased surface warming
underneath and tropospheric thickening (Figure 3). Such a change in the circulation manifests as a distinct
shortwave pattern that suppresses summer moisture in the Central U.S. [Barlow et al., 2001; Lau and Weng,
2002; Wang and Chen, 2009; Weaver and Nigam, 2008].

As indicated by the trend in the July-June velocity potential at 200 hPa in Figure 6a, there is an increase in the
upper level convergence over the Central U.S. Increased subsidence is illustrated by the significant
increase in the downward velocity at 500 hPa (Figure 6b), suggesting increased drying and stabilization
during the June–July transition. In 2012, the July-June velocity potential (Figure 6c) and downward velocity
(Figure 6d) reveal a comparable pattern indicating enhanced subsidence over the Central Plains. Recall in
Figure 3c that the maximum warming occurs in western Montana, not the Central Plains, suggesting that
increased drying in the Central U.S. is not directly linked to surface warming. This observation corresponds to
the amplified western ridge (Figure 5f) that causes midtropospheric subsidence over the Central Plains

Figure 5. Mean stream function (m2 s�1) at 200 hPa in (a) June, (b) July, and (c) July-June transition, with a contour interval
of 5 × 106 in Figures 5a and 5b and 2.5 × 106 in Figure 5c. The 1979–2011 trends in stream function for (d) June, (e) July, and
(f) July-June transition, with a contour interval of 1.5 × 106. These values are the slope of linear trends multiplied by the
number of years from 1979 to 2011, indicating a total change. The shadings in Figures 5d–5f indicate the regression
coefficients significant at the 95% confidence interval. The dashed line in Figure 5a indicates the stationary trough, while
“H” and “L” indicates high- and low-pressure anomalies, respectively.
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(Figure 6b) and resultant stabilization. Consistently, the largely negative trend in EF (Figure 4a) reflects the
enhanced surface drying in July, and this indicates positive feedback that enhance drought conditions
[Cattiaux and Yiou, 2013] after the atmospheric forcing took place. It was expected that subsidence over
the Central U.S. must have strengthened correspondingly.

Summer anticyclonic anomalies in western North America are frequently connected to remote forcing in the
North Pacific and Asia [Newman and Sardeshmukh, 1998; Teng et al., 2013]. Thus, to explore the climatic
forcing of the circulation anomalies, Figure 7a displays the trends in the July-June SST and 200 hPa stream
function: both reveal a remarkable similarity with the 2012 situation (Figure 7b). The distinct shortwave train
across the midlatitudes implies a link with remote forcing that triggers a circumglobal teleconnection, from
which Rossby wave energy propagates along the jet stream and affects North America [Schubert et al., 2011;
Teng et al., 2013; Wang et al., 2014; Wang et al., 2013]. The weak tropical SST anomalies are also consistent
with the notion for the lack of prominent tropical forcing in 2012 [Hoerling et al., 2013b; Kumar et al., 2013;
Wang et al., 2014]. By comparison, trends in the June and July circulations and SST (Figures 7c and 7d) reveal
a La Niña type of SST change in both months; this is also in agreement with previous studies analyzing the
global SST trends [e.g., Xie et al., 2010]. While the circulation anomalies between the 2months are quite
different, neither month resembles any known teleconnection pattern.

The implication from Figure 7 is that the change in the July-June circulation evolution is not directly related to
either the June or July SST anomalies but rather is related to the seasonal evolution of climatological SST
(which determines atmospheric circulation forcing such as diabatic heating) and the tropospheric back-
ground flow (which directs atmospheric teleconnections). For example, given a diabatic heating anomaly
in the tropics, the mean flow in June could still facilitate some Rossby wave propagation from the tropics
to North America [Newman and Sardeshmukh, 1998], as is suggested in Figures 7c and 7d. However, the mean
flow in July would prohibit such meridional propagation of Rossby waves but would instead facilitate zonally
propagating short waves under the guidance of summer jets, as was previously documented [Ding and
Wang, 2007; Schubert et al., 2011; Wang et al., 2010]. Likewise, an increase in regional warming over the
Rocky Mountains (Figure 3b), which expands the middle troposphere, also can facilitate drying in the
Central U.S. by inducing subsidence east of the ridge.

Figure 6. Same as Figure 5 but for the trends in the July-June (a) 200 hPa velocity potential (contours; m2 s�1) overlaid with
divergent wind vectors (m s�1) and (b) 500 hPa vertical velocity (Pa s�1; positive is downward). (c and d) Same as Figures 6a
and 6b but for the 2012 anomalies. Contour intervals are indicated at the lower left corner of each panel; unit vector is given
in the lower right.
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5. Climate Attribution

Previous studies have suggested that the trends in T2m and precipitation over the U.S. are attributable to a
combined contribution from phase changes of natural decadal-to-multidecadal oscillations, such as the
Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO), in addition to global warming
[Robinson et al., 2002;Wang et al., 2009;Weaver et al., 2009]. During the analysis period (1979–2012), the PDO
in the late 1990s had shifted from the positive to negative phase; likewise the AMO had shifted from negative
to positive phase, and the prominence of global warming has become increasingly so. Thus, to understand
the extent to which the phase changes of PDO, AMO, and warming trend might have contributed to the

Figure 7. (a) The July-June changes in stream function at 200 hPa (contours) and SST (shadings) computed from the
1979–2011 trends. (b) Same as Figure 7a but for the 2014 anomalies. (c and d) Same as Figure 7a but for the trends for
June and July, respectively. Zero contours of the stream function are omitted. Contour intervals are 2.5 × 106m2 s�1 in
Figure 7a and 2 × 106m2 s�1 in Figures 7b and 7c. SST values exceeding ±0.9°C are generally significant at the 95% interval.
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observed change in the June–July transition, we undertook a set of idealized GEOS-5 AGCM experiments
forced with three leading SST patterns: the cold PDO pattern (i.e., warmer SST in the central North Pacific),
the warm Atlantic pattern, and the warming trend pattern (reference, section 2.2). These SST patterns, respec-
tively, reflect the phase changes of the PDO and AMO during 1979–2012 and the global warming [Schubert
et al., 2009]. The responses of GEOS-5 AGCM to these SST patterns can be used to assess their relative con-
tribution to the overall observed trends.

Figure 8 displays the AGCM responses of the July-June shifts in precipitation (Figure 8a), T2m (Figure 8b), and
200 hPa geopotential height (Figure 8c) (In the midlatitudes under the quasi-geostrophic framework, stream
function is proportional to geopotential height, and the two are used interchangeably). In terms of precipita-
tion anomalies (Figure 8a), both cold PDO and warm Atlantic SST patterns force drying responses over
Northern Plains. The effect of warming trend increases precipitation in the Central U.S., and this seems oppo-
site to the cold PDO effect and observations. Note that most of the precipitation responses in the Central U.S.
are not significant. Over the northwest U.S., the cold PDO pattern forced a pronounced surface warming and
an anticyclonic anomaly (Figures 8b and 8c), alongwith a cooling and a cyclonic anomaly over the northeastern
U.S., resembling the observed changes. Both the warm Atlantic and the warming trend produced a mild T2m
increase in the vicinity of the Central Plains accompanied by a weak ridge in the Central-eastern U.S. However,
in the observation there is little to nowarming in the Central Plains (Figure 3). The implication from these AGCM
experiments is that the Pacific decadal variability (i.e., cold PDO) may contribute to the intensified June–July
seasonal transition/drying, with secondary contributions coming from the Atlantic warming and the warming
trend (similar to a La Niña response).

The result presented in Figure 8 raises the question whether or not AGCM simulations can provide convincing
attribution in this case. A diagnosis like this depends on the model performance in reproducing the observed

Figure 8. The GEOS-5 July-June responses of (a) precipitation (unit: mm/d), (b) surface air temperature (unit: K), and (c) geopotential height at 200 hPa (unit: m) to SST
patterns of (top) a cold PDO, (middle) a warm Atlantic, and (bottom) a warm trend. The PDO SST pattern was obtained as the second leading rotated empirical
orthogonal function (REOF) of low-pass filtered monthly SST data (1901–2004) that retain time scales of about 6 years and longer. The warm trend and Atlantic SST
patterns were obtained as the first and third leading REOF modes of annual mean SST over the period of 1901–2004 [Schubert et al., 2009]. The magnitudes of the
model responses shown here correspond to SST forcing of two standard deviations. Stippling indicates significance at the 95% interval based on a t test.
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July-June trend in their AMIP-style
simulations (i.e., driven by prescribed
SST forcing). Ideally, if a model can
reproduce the observed July-June
trend in its AMIP simulations, and if
such model provides idealized AGCM
runs forced with the leading SST
patterns as discussed in Figure 8, then
the comparison between its AMIP
simulations and the idealized SST runs
can indicate which leading SST pattern
may play a role. The July-June change,
however, is a second-order feature
and is further challenging for any
model, and the GEOS-5 model does
not capture this feature well. To
examine, Figure 9 shows the ensemble
AMIP simulations by five AGCMs
(CCM3, CAM4, ECHAM5, GEOS-5, and
GFS included at FACTS; Xiao-Wei Quan
2014, personal communication). While
the trend of July-June 200hPa geopo-
tential height shows some similarity
to the observed (cf., Figure 5f), any
longitudinal and latitudinal shifts of this
modeled geopotential height from the
observed—along with model handling
of local land-atmosphere feedback—
could lead to substantial model biases
in precipitation and surface tempera-
ture anomalies. This is illustrated by
the ensemble simulations of precipi-
tation change (Figure 9b) and tem-
perature change (Figure 9c), which
together reveal an intensification of
the July-June transition with a notice-
able shift in the drying/warming pattern
compared to the observation.

6. Concluding Remarks

Climatologically, precipitation in the
Central U.S. decreases by about 25%
during the June–July seasonal transi-
tion. Since 1979, this precipitation
reduction has become greater, with

decreases of 50% in recent years. At the larger scale, examination of tropospheric circulation change indi-
cated that synoptic forcing was present and that it enhanced subsidence in the Central U.S., suppressing rain-
fall. Such a long-term change has a potential effect to aggravate droughts that develop in spring. In particular,
the analyses presented here indicated a marked resemblance between the shifting June–July PDSI, precipita-
tion, temperature, and circulation in the long term and those during the 2012 drought—one which was
characterized by a rapid expansion over the Central Plains in mid-summer. As far as drought development
is concerned, one important factor revealed from this study was land-atmosphere feedback that is caused by
enhanced anticyclonic anomalies stationed over the western U.S. leading to further reductions in precipitation

Figure 9. Five model ensembles (CCM3, CAM4, ECHAM5, GEOS-5, and GFS)
of AMIP simulations for the 1979–2012 trends in the July-June (a) geopotential
height at 200 hPa (unit: m), (b) precipitation (unit: mm/d), and (c) surface air
temperature (unit: K).

Journal of Geophysical Research: Atmospheres 10.1002/2014JD023013

WANG ET AL. DROUGHT INTENSIFICATION IN CENTRAL U.S. 8814



and soil moisture in the Central U.S. In turn, the long-term changes in land surfacemoisture and evaporation can
either sustain or amplify the subsidence and stabilization, further reducing precipitation. In the long run, land
surface feedback to the atmospheric circulation anomalies is strong and can affect future drought expansion
or development in the Central U.S. Understanding these processes can help anticipate the evolution and extent
of drought in the Central U.S., especially those that occur in spring and prolong into summer. The next
important task is to evaluate climate forecastmodels for the depiction of such seasonal transition during or prior
to the occurrences of drought. The challenge of climate models lies in that they not only need to simulate the
climate mean state and its linear trends correctly for June and July but also to depict the differences between
these 2months to regional details.
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