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                             Spring phenology and timing of breeding in short-distance migrant 
birds: phenotypic responses and offspring recruitment patterns in 
common goldeneyes      

    Robert G.        Clark ,       Hannu     P ö ys ä   ,       Pentti     Runko    and        Antti     Paasivaara            

  R. G. Clark  ( bob.clark@ec.gc.ca ),  Prairie and Northern Wildlife Research Center, Environment Canada, 115 Perimeter Road, Saskatoon, SK 
S7N0X4, Canada.  –  H. P ö ys ä , Finnish Game and Fisheries Research Inst., Joensuu Game and Fisheries Research, Yliopistokatu 6, FI-80100 
Joensuu, Finland.  –  P. Runko, Jukolantie 1, FI-71750 Maaninka, Finland.  –  A. Paasivaara, Finnish Game and Fisheries Research Inst., 
Oulu Game and Fisheries Research, Tutkijantie 2 E, FI-90570 Oulu, Finland.                               

 Understanding how organisms adjust breeding dates to exploit resources that aff ect fi tness can provide insights into 
impacts of climate change on avian demography. For instance, mismatches have been reported in long-distance migrant 
bird species when environmental cues experienced during spring migration are decoupled from conditions on breeding 
grounds. Short-distance migrant bird species that store reproductive nutrients prior to breeding may avoid or buff er 
adverse phenological eff ects. Furthermore, reduced short-term reproductive success could be off set by higher future 
recruitment of surviving off spring. We evaluated whether recruitment of locally-hatched female off spring was related 
to hatching date alone or strength of mismatched breeding date for 405 individually-marked adult female common 
goldeneyes  Bucephala clangula  (a short-distance migrant) and their ducklings from a site in central Finland where 
ice-out date has advanced by  ∼  2 weeks over 24 yr. Path analyses revealed that older, early-nesting females with good 
body condition and larger broods recruited the most female off spring. Off spring recruitment decreased strongly among 
females that bred late relative to other females in the population each year; the extent of mismatched breeding date, i.e. 
hatching date scaled to annual ice-out date, was less infl uential. Overall, most females advanced breeding dates when 
ice-out occurred earlier in spring, but some females exhibited greater fl exibility in response to ice-out conditions than 
did others. In general, directional selection favoured early breeding over a wide range of ice-out dates. Our results seem 
most consistent with a hypothesis that some short-distance migrant species like goldeneyes have the capacity to track 
and respond appropriately to changing environmental conditions prior to onset of breeding.   

 Responses of organisms to global climate change have been 
the focus of much ecological research in recent years 
(Walther et   al. 2002, Parmesan and Yohe 2003, M ø ller 
et   al. 2010). For example, several large-scale analyses 
indicate that timing of breeding in birds has advanced 
with warming spring temperatures (reviewed by Dunn and 
Winkler 2010). Despite potential to advance breeding 
date in response to changing temperatures (Charmantier 
et   al .  2008), Visser et   al. (1998) reported that individual 
great tits  Parus major  were unable to fully adjust breeding 
dates to exploit earlier peaks in food resources; they 
interpreted their fi ndings in the context of a  ‘ match – 
mismatch ’  hypothesis proposed to explain recruitment pro-
cesses in marine fi shes (Cushing 1974). Th is explanation 
has since been extended to other terrestrial systems to 
account for population declines in migratory birds that are 
unable to adjust migration schedules (Both et   al. 2006). 

 Intra and interspecifi c analyses suggest that short-distance 
migrants may be better able to adjust timing of breeding 
due to closer contact with local phenological cues than are 

long-distance migrants (Both and te Marvelde 2007, Durant 
et   al. 2007, M ø ller et   al. 2008, Both et   al. 2010, Jones and 
Cresswell 2010, Rubolini et   al. 2010), although the veracity 
of this claim has been questioned (Knudsen et   al. 2011). 
Collectively, this body of work has profoundly improved our 
understanding about the infl uence of seasonally-interacting 
factors on breeding times and productivity in terrestrial 
and marine bird species. Although phenological response of 
birds to variation in climatic conditions has been studied 
extensively, especially in terms of the timing of spring 
migration and breeding (reviewed by M ø ller et   al. 2010, 
Saino et   al. 2011), studies addressing fi tness consequences 
of those responses are more limited (Nussey et   al .  2005, 
Charmantier et   al. 2008). To understand and predict eff ects 
of climate change on population dynamics we need to know 
eff ects of changing phenology on off spring recruitment. 

 Variation in breeding success of migratory birds may be 
related to carry-over eff ects of conditions on spring migra-
tion or wintering areas, timing of migration or breeding, 
food conditions, off spring characteristics, weather-related 
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events and even chance events (Forslund and P ä rt 1995, 
Verhulst and Nilsson 2008). Within species, annual and 
lifetime reproductive success may also be related to parental 
age, quality and experience, as well as longevity and 
stochastic events (Newton 1989, Grant and Grant 2000, 
Blums and Clark 2004). Th e impact of environment changes 
may also be mediated by parental quality and age. Two or 
more mechanisms acting in widely-separated areas could 
infl uence reproductive success of migratory animals, so 
it is often diffi  cult to evaluate hypothesized causes of 
fi tness variation. Other than the classic work on sedentary 
great tits (Visser et   al. 1998), and more recent Finnish 
studies on sedentary precocial black grouse  Tetrao tetrix  
(Ludwig et   al. 2006) and willow tit  Poecile   montanus  (Vatka 
et   al. 2011), we are not aware of studies addressing pheno-
logical eff ects in relatively sedentary or precocial birds, 
including short-distance migrant species. Furthermore, 
how individuals adjust their timing of breeding in response 
to changing phenology is often evaluated in terms of 
short-term reproductive success rather than off spring 
recruitment so the net impact of longer-term or interacting 
population processes could be overlooked (Wilson and 
Arcese 2003, Ahola et   al. 2012). Th us, the generality of 
climate – breeding time interactions could be clarifi ed by 
further tests based on long-term studies of species that can 
store reproductive nutrients (e.g. capital breeders) or short-
distance migrant species (see also Visser and Both 2005, 
Dunn and Winkler 2010). 

 Testing whether individuals express phenotypic plasticity 
and determining to what extent individuals diff er in their 
plasticity could provide important insights into climate 
change eff ects (Charmantier et   al. 2008, Love et   al. 2010). 
Mechanisms advanced to explain observed population level 
responses to climate change include phenotypic plasticity 
and selection against a particular strategy (i.e. microevolu-
tion; Sheldon 2010). Climate-change-driven phenotypic 
plasticity has been demonstrated (Gienapp et   al. 2008, 
Sheldon 2010), including in studies with individual data on 
the timing of breeding (Brommer et   al. 2008, Reed et   al. 
2009, Husby et   al. 2010, Porlier et   al. 2012). Here, we 
evaluate simultaneously eff ects of age, quality, reproductive 
investment and timing of hatching on annual off spring 
recruitment patterns in a short-distance migrant bird 
species, the common goldeneye  Bucephala clangula  
(hereafter, goldeneye). Th e goldeneye is a cavity-nesting 
diving duck with precocial (mobile, self-feeding) off spring 
and uniparental female care. Recent population estimates 
indicate that the European population of common golden-
eye is stable (Delany and Scott 2006). We exploited a 26-yr 
mark – recapture data set for adult female goldeneyes and 
their female off spring breeding in central Finland. We 
focused on females because, like other waterfowl (Anderson 
et   al. 1992), female off spring and adult females are 
philopatric to the breeding site (Ruusila et   al. 2000, 2001). 
We tested whether females with late breeding dates relative 
to local spring phenology would recruit fewer off spring, 
after controlling for possible mediating eff ects of parental 
age and quality, annual timing of breeding and levels of 
reproductive investment. Alternatively, if females are able to 
time their breeding dates to correspond closely with local 
environmental cues, then off spring recruitment may be 

unrelated to spring phenology. Th us, we also evaluated and 
described the extent to which goldeneye females exhibit 
phenotypic plasticity in the timing of breeding in response 
to varying spring environmental conditions.   

 Material and methods  

 Study area 

 Work was conducted near Maaninka, central Finland 
(63 ° 09 ′ N, 27 ° 17 ′ E). Th e study area consists of 23 lakes and 
ponds and four bays of larger lakes, surrounded by agricul-
tural land and intensively managed mixed and coniferous 
forests. Th e size of the study area increased in the fi rst years 
of the study and reached its current size (ca 280 km 2 ) 
in 1989 (Ruusila et   al. 2000, 2001). 

 Lake ice conditions were monitored from late winter 
through early spring to determine dates when most study 
area lakes were ice-free. Here, we used ice-out dates from 
Lake Maaninkaj ä rvi located in the middle of the study area; 
ice-out date was the date when it was possible to cross the 
lake in a rowboat. Th e ice-out dates from Lake Maaninka-
j ä rvi were strongly correlated (r    �    0.885, p    �    0.0001, n    �    23 
yr) with those from the nearest lake (Lake Kallavesi, 
ca 40 km apart) used in the national monitoring of lake ice 
conditions by the Finnish Environment Inst. (Korhonen 
2005). In general, the dates of ice break-up are strongly 
correlated between lakes within a region (Oja and P ö ys ä  
2007, Dessborn et   al. 2009 and references therein). Further-
more, there was a positive correlation (r    �    0.552, p    �    0.003, 
n    �    27 yr) between annual local lake ice-out dates and 
regional spring snow cover duration estimated using 
Northern Hemisphere spring snow cover data, derived from 
multiple satellite sources (Brown and Robinson 2011). 
Hence, we are confi dent that the ice-out dates from the 
Lake Maaninkaj ä rvi properly measure overall ice conditions 
on the study area. 

 Goldeneyes breeding in northern Europe winter mainly 
in the Baltic and North Seas (Scott and Rose 1996). As 
reported in another area of southeast Finland (P ö ys ä  1996), 
paired females in the present study area arrive on breeding 
lakes prior to ice-off , staying and feeding in an ice-free 
whitewater (Viannankoski) and two larger open-water 
sites (Ruokovirta and Mustavirta) that are free of ice consid-
erably earlier than other lakes in the area. Diets of adult 
females consist mainly of animals, including molluscs, 
small crustaceans, dytiscid beetles and larvae and dragon-
fl y larvae (Cramp and Simmons 1977). Goldeneye ducklings 
are mobile, leave the nest soon after hatching and feed 
themselves, generally on a diet similar to that of adults 
(Eriksson 1976 and references therein).   

 Reproductive performance of female goldeneyes 

 Th e number of nest boxes increased from 63 to  ∼  470 during 
1984 – 2010, and occupancy was  �    100% in every year. Nest 
boxes were checked for eggs in late April or early May and 
boxes with no eggs present during the fi rst survey were 
checked again  ∼  2 weeks later. After that, unoccupied nest 
boxes were visited at least one more time during the breeding 
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season. All nesting attempts were recorded and classifi ed as 
successful ( �    1 duckling left the nest box) or unsuccessful 
(no young left the nest box). Unsuccessful nesting attempts 
were further identifi ed as depredated, deserted during 
egg laying or deserted during incubation. Adult female 
goldeneyes were captured in the nest boxes a few days prior 
to hatch. Females were weighed (with a spring scale to the 
nearest 1 g), measured (wing length measured with a wing 
rule to the nearest 1 mm) and marked with standard num-
bered leg bands. Unmarked females were recorded as 3 yr 
old (Milonoff  et   al. 2002). All ducklings were banded at 
hatch using plasticine-fi lled leg bands similar to those 
described in Blums et   al. (1999). Subsequent recaptures and 
recoveries of these birds provided data on recruitment; thus, 
exact age could be determined for females marked as duck-
lings. Hatching date and the number of ducklings banded 
(brood size) were recorded for each brood; hatch date 
was known exactly for each brood since ducklings leave 
the nest, and therefore were ringed, within 24 h from 
hatching. 

 Nests that failed before females were captured and 
identifi ed were excluded. One might ask if the exclusion of 
failed nests could mask putative eff ects of varying breeding 
phenology. Most (38%) failed nests (n    �    459, 1985 – 2008) 
were deserted during egg laying, likely due to conspecifi c 
brood parasitism (Paasivaara et   al. 2010). About 29% of 
nests were abandoned during incubation for reasons other 
than human disturbance or predation. We estimated the 
start of egg laying for successful nests and for nests deserted 
during incubation by back-calculating from the visit when 
a nesting attempt ( �    1 egg) was fi rst recorded. For all nests 
we assumed it takes 1.5 d to lay one egg, except if fi nal 
clutch size was  �    9 eggs, in which case we assumed egg lay-
ing had taken 14 d (to adjust for parasitic eggs; see also 
Eadie et   al. 1995). For nests found during incubation, we 
used egg fl oating to estimate stage of incubation with an 
accuracy of 1 day (PR unpubl.). We compared the start of 
egg laying between nest types (i.e. deserted during incuba-
tion and successful) with linear mixed models including 
year as a random factor, ice-out date as a continuous fi xed 
eff ect, and an interaction between nest type and ice-out 
date; in other words, to see if possible diff erences in 
egg-laying date between the two types of nests vary with 
ice-out conditions. We found that egg laying date varied 
with ice-out date (F 1,1478     �    61.16, p    �    0.001) but not with 
nest type (F 1,1478     �    0.22, p    �    0.641), and there was 
no interaction between nest type and ice-out date 
(F 1,1478     �    0.65, p    �    0.420). In a simplifi ed mixed model, 
egg laying started earlier in successful nests than in deserted 
nests (F 1,1501     �    26.91, p    �    0.001). However, annual diff er-
ence between the mean date of the start of egg laying in 
deserted clutches and the mean date of the start of egg 
laying in successful clutches (i.e. the former minus the lat-
ter) was only 5.3 d (range    �     � 8.5 to 17.7 d; note that in 
some years deserted clutches were started earlier than suc-
cessful clutches), an inconsequential diff erence considering 
overall variation in relative timing of breeding within a year 
(cf. reproductive success in relation to relative hatch date in 
Fig. 2). Th erefore, we do not believe that excluding aban-
doned nests masked putative eff ects of varying breeding 
phenology. 

 Females do not start nesting until they are at least 
2 yr old, so we included nest records until 2008 because off -
spring marked at these nests could be recaptured in 2010. 
We also excluded nests monitored in 1984 because the 
study was beginning and few known-age females were avail-
able in the population. Relative hatch date was calculated 
each year by subtracting the annual date when 5% of all 
nests had hatched from a nest ’ s hatch date.   

 Spring phenology 

 Local ice phenology aff ects timing of breeding in ducks, 
including goldeneyes (Oja and P ö ys ä  2007). Other studies 
have demonstrated that the timing of ice break-up may 
aff ect lake physical and chemical conditions (Weyhenmeyer 
2009), and the phenology and population processes of dif-
ferent species throughout the aquatic food web (Adrian 
et   al. 1999, Weyhenmeyer et   al. 2008). Moreover, because 
the timing of ice break-up is driven by air temperature and 
regional atmospheric circulation (Weyhenmeyer 2001, 
2009, Blenckner et   al. 2004), it is a useful integrated mea-
sure of critical environmental variables. Th erefore, we sug-
gest that the timing of ice break-up provides a biologically 
sound basis to assess phenological events in goldeneye 
breeding (Love et   al. 2010). To account for annual variation 
in ice-out date and nesting phenology, we computed an 
annual index for each female ’ s nesting attempt as, breeding 
phenology index    �    (hatch date  –  ice-out date), with both 
dates being scaled to 1 January (day 1). Th us, a larger index 
signifi ed a later hatch date relative to annual ice-off  date 
for the study area.   

 Statistical analyses 

 Associations between variables were measured with correla-
tion and linear regression techniques (Zar 2009), whereas 
path analysis was used to evaluate interrelationships among 
explanatory variables and reproductive success (Hatcher 
1994, Shipley 2000). Path analysis is ideally suited for 
assessing multiple causal pathways in complex natural 
systems (Kingsolver and Schemske 1991). All analyses 
described below were executed in SAS (SAS Inst. 2004). 

 We related the number of recruits produced per brood to 
hatch date, breeding phenology index or relative hatch date 
while considering eff ects of other explanatory variables in a 
common analytical framework (PROC Calis). We presumed 
that the number of recruited off spring could be positively 
related to female age or body condition, as reported 
for some avian species including other duck species in the 
Baltic region (Blums et   al. 2002). Older females are typi-
cally heavier and may produce larger broods than younger, 
light-weight individuals (controlling body size as indexed 
by wing length); fi nally, we expected that number of 
recruited off spring could be positively related to brood size, 
and negatively related to breeding phenology index, hatch 
date or relative hatching date. Larger females or those with 
good body condition might initiate clutches earlier than 
smaller, light-weight individuals, but we could not ade-
quately test these ideas because females were captured in late 
incubation. In all analyses described below, we obtained 
similar results when we used the total number of young that 
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likelihood ratio tests. Clutch initiation (fi rst egg) and hatch 
dates were strongly correlated (r    �    0.944, p    �    0.001, 
n    �    499), so we used hatch dates to increase sample sizes. 
Mixed model analysis was performed for females with  �    3 
breeding attempts to balance both sample size and breeding 
experience, but we also evaluated the robustness of these 
results by repeating the analysis for females with 2, 4 and 5 
breeding attempts (Charmantier et   al. 2008). Finally, 
strength of selection on (relative) timing of breeding was 
estimated with generalized linear models (Poisson regres-
sion; PROC Genmod) by relating the number (i.e. 0, 1, 
 �    2) of females recruited per brood to their relative hatch 
dates (Janzen and Stern 1998). We also categorized 
data into early and late years according to ice-out date, and 
reran analyses. Approximate selection gradient ( β  avggrad ) was 
estimated using methods described by Janzen and Stern 
(1998: 1567).    

 Results  

 Environmental conditions and nesting 

 Annual mean ice-off  date advanced by  ∼  13 d during the 
study (linear regression:  β     �     � 0.535    �    0.190 SE, p    �    0.010, 
n    �    24 yr [1985 – 2008]), from mid-May in the mid-1980s 
to end of April by the mid-2000s (Fig. 1; Supplementary 
material Appendix 1, Table A1); annual mean hatch date 
also gradually advanced over time ( β     �     � 0.342    �    0.125, 
p    �    0.012, n    �    24 yr; Fig. 1). Mean hatch date was posi-
tively related to annual ice-out date ( β     �    0.589    �    0.060, 
p    �    0.001, n    �    24 yr), implying that in general female 
goldeneyes were able to adjust their nesting dates in 
response to changing spring conditions, but mean breeding 
phenology index tended to increase over time ( β     �    0.192    �     
0.103, p    �    0.074, n    �    24 yr). Measurement of adjusted rela-
tive recruitment rate did not change over this time period 
( β     �    0.0005    �    0.0005, p    �    0.31), nor did annual mean 
brood size ( β     �     � 0.008    �    0.014, p    �    0.59; Supplementary 
material Appendix 1, Table A1).   

were either recruited (females) or shot (both sexes) as  �    1 yr 
old; this last fi nding for older birds of both sexes implies 
that natal dispersal had limited impact on our conclusions 
(see also Blums et   al. 2002). We only report results for 
female recruitment because few banded juveniles of either 
sex were shot later in life, and we did not have to make 
unverifi able assumptions about lack of annual variation in 
hunting eff ort or success (e.g. the number of juveniles 
reported shot by hunters each year decreased during the 
study; r    �     � 0.779, p    �    0.001, n    �    24 yr). 

 To improve multivariate normality, body mass was 
square-root transformed, and extreme values of some vari-
ables were truncated by pooling with less extreme values. 
Female age was recoded to a maximum of 7 yr. In all 
path analyses, models were simplifi ed on the basis of 
modifi cation indices provided by SAS; although path 
analysis with large sample size is robust to non-normal 
data (Shipley 2000: 188), fi t of alternative models was evalu-
ated using  χ  2  values (low values [large p values] signify better 
fi t), goodness of fi t index (GFI, where 1 is best fi t) and 
inspection of multivariate residuals (Hatcher 1994: 197). 
Generalized linear modeling procedures also confi rmed that 
path analysis results were robust (Supplementary material 
Appendix 2, Tables A2.1, A2.2); however, path analysis is 
explicitly designed for evaluating inter-relationships of 
correlated variables. 

 Path analysis also allows for exploration of alternative 
models in which covariance is estimated between correlated 
explanatory variables like female age and phenology mea-
surements (Hatcher 1994: 157, 179). Obviously, breeding 
phenology index, hatch date and relative hatch date were 
positively correlated, and none has logical primacy over 
another, so we used two path analysis models that linked 
female age and  ‘ date ’  eff ects via covariance estimates, while 
also enabling us to compute direct and indirect eff ects 
of all explanatory variables on off spring recruitment via 
path coeffi  cients. Th e fi rst of these models linked three 
measurements of phenology (i.e. hatch date, breeding phe-
nology index and relative hatch date) whereas the second 
model allowed hatch date and breeding phenology index to 
compete for data. Th en, we conducted a third path analysis 
to explore directly the inter-relationships among ice-
out date, hatch date and other explanatory variables; here, 
hatch date was assumed to respond to variation in ice-out 
date (i.e. a direct casual path linked ice-out date to hatch 
date). Finally, we conducted a path analysis that included the 
best-supported date-specifi c explanatory variable determined 
from the initial sets of path analyses described above. 

 We used randomization procedures to evaluate the fi t of 
fi nal path models (Manly 1997). For this assessment, path 
analysis was performed with data sets composed of one 
randomly-selected annual record for each female (n    �    405), 
a process that was repeated 1000 times. We retained 
and reported medians (and in some cases 2.5 and 97.5% 
values, i.e. 95% confi dence interval [CI]) taken from the 
distributions of 1000 values of standardized path coeffi  cients, 
GFI and  χ  2  (and associated p) values. 

 Phenotypic fl exibility in timing of breeding (indexed 
by hatch date, 1985 – 2010) was estimated with mixed mod-
els (fi xed and random eff ects; PROC Mixed), following 
Charmantier et   al. (2008); models were compared using 

  Figure 1.     Annual estimates of ice-out (open circles) and mean 
hatch ( �  SE; closed circles) dates, central Finland, 1985 – 2008. 
Day 150 is 30 May (151 in leap years). Annual median number of 
broods was 56, and ranged from 21 (1985) to 89 (2005). Dashed 
lines were estimated by linear regression (see text for details).  
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covariances among female age, breeding phenology index, 
hatch date and relative hatch date, and linked these and 
remaining explanatory variables to off spring recruitment 
with putative causal pathways. Relative hatch date consis-
tently out-performed hatch date or breeding phenology 
index as a predictor of off spring recruitment (Supplementary 
material Appendix 3, Tables A3.1, A3.2); likewise, we 
detected only weak evidence of generally higher recruitment 
of female off spring from years with earlier ice-out dates 
(Supplementary material Appendix 3, Table A3.2). Th ere-
fore, we focused on eff ects of relative hatch date in the next 
analysis. 

 Th e best-supported model containing relative hatch date 
had ten path coeffi  cients, standardized residuals  �  |1.80| and 
fi t the data well (GFI    �    0.998;  χ  2     �    9.49, DF    �    5, p    �    0.09; 
Fig. 3). Th e randomization procedure indicated very 
good model fi t, with median GFI    �    0.995 (95% CI    �    
0.988 – 0.999), and  χ  2  and p-values of 6.24 (95% CI    �    
1.47 – 15.19) and 0.310 (95% CI    �    0.009 – 0.911), respec-
tively. Th e strongest correlate of off spring recruitment 
was relative hatch date and, with brood size, was the 
only variable with a direct eff ect on recruitment (Table 1). 

 General patterns of reproductive success 

 From 1985 – 2008, 405 adult females were individually 
marked at nests that hatched successfully; 129 (32%) of 
these birds produced one brood during their lifetime, 197 
(49%) produced 2 – 5 broods, and 79 (19%) females pro-
duced 6 – 14 broods. Median brood size was 8 ducklings 
(5 – 95% values    �    5 – 12 ducklings; n    �    1374). From 1374 
broods that hatched during this period, 454 individuals 
were shot as juveniles in their fi rst year of life, 38 were 
reported shot by hunters at least one year later and 128 adult 
females that had been banded as ducklings were recaptured 
on nests. Th e annual number of recruited females averaged 
5.3 (range    �    1 – 18); after adjusting for number of banded 
ducklings, 50:50 sex ratio (Blums and Mednis 1996) 
and removal of juvenile females shot by hunters, annual 
recruitment rate averaged 2.5% (range    �    0.3 – 5.5%). 
Most adult females (79%) produced no detected female 
recruits over their lifetime, with the remainder producing 
1 – 5 females. 

 Overall, reproductive success tended to decrease 
seasonally, especially in terms of female recruitment to the 
breeding population (Fig. 2). Th e earliest broods produced 
relatively high numbers of recruited females, whereas late 
broods produced few. Th e number of male and female juve-
nile ( �    1 yr old) goldeneyes shot by hunters revealed a 
weaker seasonal pattern of off spring survival.   

 Correlates of offspring recruitment 

 Path analyses were based on 1374 broods produced by 405 
adult females (2 yr or older) with complete information for 
all explanatory variables. For initial analyses, we estimated 

  Figure 3.     Relationships among explanatory variables and off spring 
recruitment for adult female common goldeneyes from Finland, 
1985 – 2010. Shown are median values of standardized path coeffi  -
cients for each of the variables obtained via randomization (see text 
for details), and median residual errors (E1 [recruits]  –  E5 [relative 
hatch date]), corresponding to each exogenous variable (right to 
left) in the path analysis. Th e relationship (dotted line) between 
relative hatching date and female late incubation body mass 
is equivocal. Summaries for the direct and indirect eff ects of each 
variable on off spring recruitment are given in Table 1.  

  Figure 2.     Proportions of banded ducklings either recaptured as 
breeding females (female recruits; closed circles) or reported shot by 
hunters as juveniles ( �    1 yr old; open circles) in relation to relative 
hatch date periods (in days), central Finland, 1985 – 2010. Number 
of broods is shown in parentheses. Th e proportion of females 
shot (and recruited) was adjusted to account for an assumed 
50:50 sex ratio; the number of recruited females was further cor-
rected for the number of females shot by hunters each year as 
estimated by: (known-sex females  �  [juveniles of unknown 
sex  	  C]), where C was calculated as: (1  –  [juvenile females shot 
(n    �    32)/total known-sex juveniles shot (n    �    86)    �    0.372]), using 
the ratio of known-sex juveniles reported in all years.  

  Table 1. Direct, indirect and combined effects of explanatory 
variables on offspring recruitment for female common goldeneyes, 
Finland, 1985 – 2010, as estimated by path analysis. Indirect effects 
were computed by summing the products of all indirect median 
path coeffi cients from each explanatory variable to the number 
of offspring recruited from each brood (Fig. 3). The combined effect 
is the sum of direct and indirect median path coeffi cients.  

Explanatory variable
Direct 
paths

Indirect 
paths

Combined 
effect

Female age 0  �   0.091  � 0.091
Relative hatching date  � 0.170  � 0.025  � 0.195
Wing length 0  �   0.003  � 0.003
Body mass 0  � 0.012  �   0.012
Brood size  � 0.104 0  �   0.104
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changing ice-out conditions, some females seemed more 
fl exible than others in terms of adjusting to these varying 
spring conditions (Table 2). Early breeding could be 
counter-balanced by costs of lower duckling survival when 
ice remains on lakes at the time of hatching, but we did 
not observe this phenomenon nor did we detect evidence of 
stabilizing selection on hatch date. 

 Th e importance of early breeding has also been demon-
strated earlier in goldeneyes (Milonoff  et   al. 1998), as well as 
in other waterfowl and numerous taxa (Clutton-Brock 
1988). For example, Blums et   al. (2002) reported that early-
breeding adult females produced relatively more recruited 
off spring in three duck species nesting in Latvia; Blums 
et   al. were also able to estimate correlates of duckling 
survival (using locally shot juveniles as a surrogate for sur-
vival), but we were unable to do this with certainty because 
fall hunting eff ort varied annually and gradually decreased 
over the study period in Finland (PR unpubl.). Despite this 
possible bias, duckling survival tended to decrease in late-
hatched broods (Fig. 2). Furthermore, a study of radio-
marked goldeneye females in southern Finland revealed 
that hatch date and weather conditions did not aff ect 
duckling survival during their fi rst week of life, whereas 
female body condition did (Paasivaara and P ö ys ä  2007); only 
about 47% of the ducklings survived their fi rst week in that 
study. Regardless, if duckling survival was related more 
strongly to the breeding phenology index than to relative 
hatch date in the present study, population processes occur-
ring between fl edging and fi rst breeding were suffi  cient to 
off set any deleterious eff ects of delayed nesting that were 
additive to eff ects of hatching date. A plausible mechanism 
for some species would involve density dependence, for 
instance, with higher survival rates in older pre-breeding 
cohorts following high mortality of pre-fl edged off spring. 

 Lower recruitment of late-hatched ducklings could pos-
sibly be interpreted as a form of  ‘ mismatch ’ . Females that 
were capable of advancing their nesting dates produced vir-
tually all recruited off spring, suggesting that their ability to 
respond to spring phenology (i.e. ice-out) was critical; thus, 
in a sense, late-nesting females may be strongly mismatched 
with prevailing environmental conditions. Th is pattern could 
potentially arise due to diff erences in phenotypic quality and 
fl exibility, eff ects that we could not fully ascribe to those of 
age, body mass and brood size. After accounting for eff ects of 
these last three factors with path analysis, the direct eff ect of 
relative hatching date was  � 0.195, implying that environ-
mental and individual qualities had similar eff ects on pro-
cesses aff ecting off spring recruitment (Table 1). We were 
unable to weigh females prior to egg-laying but recognise 
that the importance of body mass may be stronger if heavier 
females start nesting earlier than light-weight individuals. 

 Older females nested earlier, were bigger (as indexed by 
wing length), heavier when captured just prior to hatch, 
produced larger broods and, thus, were more productive 
than were younger females (Fig. 3). Th at only  ∼  21% of 
females produced virtually all recruits is consistent with pat-
terns reported for other vertebrates (Clutton-Brock 1988, 
Newton 1989) including several duck species (Blums and 
Clark 2004). Previous analyses of factors aff ecting recruit-
ment processes in this goldeneye population had much 
smaller sample size of recruits (n    �    31) and used statistical 

Higher off spring recruitment was related most directly to 
earlier nesting by older females, but recruitment was not 
directly related to female age.   

 Phenotypic plasticity and selection in relation to 
hatch date 

 Timing of breeding varied among females, and some females 
exhibited a more fl exible response to spring ice-out 
conditions than did other females as judged by the 
female  	  ice-out date interaction (Table 2), consistent with 
evidence of individual by environment interaction (i.e. I  	  E; 
Nussey et   al. 2007). Similar results were obtained when 
analyses were repeated using females with two, four, or fi ve 
lifetime breeding attempts. 

 Overall, directional selection favoured early breeding 
( β  avggrad     �     � 0.471    �    0.064 SE), as anticipated on the 
basis of path analysis results. We did not detect stabilizing 
selection on nesting date (p    �    0.15), consistent with the 
general female recruitment pattern illustrated in Fig. 2, nor 
was there an interaction between relative hatch and ice-out 
dates (p    �    0.11). Stronger selection for early breeding 
was not evident when ice-out was delayed (early years, 
 β  avggrad     �     � 0.484    �    0.083 SE, n    �    836 broods; late years, 
 β  avggrad     �     � 0.451    �    0.102 SE, n    �    538 broods), implying 
that early breeding is generally advantageous regardless of 
ice-out date.    

 Discussion 

 Reproductive success in common goldeneyes was directly 
related to timing of breeding, with early-hatched nests 
recruiting relatively more female off spring than late nests; 
this relationship was driven largely by earlier nesting among 
older females. Many females in this population were able to 
shift breeding time to coincide with changes in local spring 
phenology which spanned wide variation in the timing of 
spring thaw (range    �    32 d). In general, selection favoured 
early breeding regardless of the timing of ice-out from lakes. 
Furthermore, while individual females responded strongly to 

  Table 2. Phenotypic plasticity in hatch dates of female common 
goldeneyes in response to changing spring phenology (as indexed 
by ice-out dates of local lakes), central Finland, 1985 – 2010. 
Random and fi xed effects were estimated using the restricted 
maximum likelihood method in mixed effects models for 1212 
breeding attempts made by 225 females (i.e. three or more attempts 
per female) over 26 yr. Ice-out date was mean-centered; nonlinear 
effects of ice-out date were not detected. Likelihood ratio tests 
are shown for nested models of increasing complexity (top to 
bottom). NA is not applicable and DF is degrees of freedom.  

 
Log 

(likelihood)

Likelihood ratio test

Random effects  Δ DF Likelihood ratio

NA (intercept-only model)  � 4313.1
NA (fi xed effects only) a  � 4079.3 3 467.5 ∗  ∗  ∗ 
Year  � 4065.2 1 28.2 ∗  ∗  ∗ 
Year, female  � 3904.2 1 322.0 ∗  ∗  ∗ 
Year, female, female  	   

iceout date
 � 3900.3 1 7.9 ∗  ∗ 

     a  fi xed effects are ice-out date, female age, female age 2 .   
  ∗  ∗  ∗  signifi es p    �    0.001;  ∗  ∗  p    �    0.01.   
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America, patterns of nesting success aligned with predictions 
of the mismatch hypothesis in only one of fi ve dabbling duck 
species (Drever and Clark 2007). Indeed, a recent review 
suggests there is no clear evidence of mismatch eff ects in 
ducks (Guillemain et   al. 2013). 

 Our results are most consistent with a hypothesis that 
short-distance migrant species with fl exible nesting dates, 
such as common goldeneyes, are able to adjust onset 
of breeding in response to varying spring conditions. 
Our study, based on extensive long-term individual data, 
thus provides an example of a fi tness-related mechanism 
potentially explaining why populations of short-distance 
migrants may be less vulnerable than populations of 
long-distance migrants to climate change eff ects, as hypo-
thesized in recent analyses (Both and te Marvelde 2007, 
M ø ller et   al. 2008, Both et   al. 2010, Jones and Cresswell 
2010). Our fi ndings also have relevance to the concern 
about how continuous advancement of the timing of 
spring thaw might aff ect duck populations in general 
(Guillemain et   al. 2013); population-level recruitment of 
female goldeneye off spring from years with earlier ice-out 
dates was just as high as from late years. Furthermore, spe-
cies that store reproductive nutrients on wintering areas or 
during spring migration may be particularly resilient to 
shifts in spring resource availability and nest when repro-
ductive success may be optimized. If this is so, we might 
expect no relationship between adult female survival and 
timing of breeding relative to spring phenology. On the 
other hand, species with fi xed nesting dates may be less 
responsive to changing spring phenology and hence more 
vulnerable to resource mismatches (Hobson et   al. 2009, 
Drever et   al. 2011). Further work is needed to evaluate 
these hypotheses, and to determine whether and why 
the continuum between fl exible and fi xed nesting phenol-
ogy aff ects timing – productivity relationships in migratory 
species. 
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