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a  b  s  t  r  a  c  t

Tularemia  is  a  zoonotic  disease  caused  by  Francisella  tularensis,  which  is  transmitted  to
humans  most  commonly  by contact  with  infected  animals,  tick  bites, or inhalation  of
aerosolized  bacteria.  F. tularensis  is highly  infectious  via  the  aerosol  route;  inhalation  of
as few  as  10–50  organisms  can  cause pneumonic  tularemia.  Left  untreated,  the pneumonic
form  has  more  than  >30%  case-fatality  rate but with  early  antibiotic  intervention  can  be
reduced to  3%.  This  study  compared  tularemia  disease  progression  across  three  species  of
nonhuman  primates  [African  green  monkey  (AGM),  cynomolgus  macaque  (CM),  and  rhe-
sus macaque  (RM)]  following  aerosolized  F.  tularensis  Schu  S4  exposure.  Groups  of  the
animals  exposed  to various  challenge  doses  were  observed  for clinical  signs  of  infection
and  blood  samples  were  analyzed  to  characterize  the  disease  pathogenesis.  Whereas  the
AGMs  and  CMs  succumbed  to  disease  following  challenge  doses  of  40 and  32  colony  form-
ing units  (CFU),  respectively,  the  RM  lethal  dose  was  276,667  CFU.  Following  all challenge
doses  that caused  disease,  the  NHPs  experienced  weight  loss,  bacteremia,  fever  as  early  as
4 days  post  exposure,  and tissue  burden.  Necrotizing-to-pyogranulomatous  lesions  were
observed  most  commonly  in  the  lung,  lymph  nodes,  spleen,  and  bone  marrow.  Overall,  the
CM  model  consistently  manifested  pathological  responses  similar  to those  resulting  from
inhalation  of  F.  tularensis  in humans  and thereby  most  closely  emulates  human  tularemia
disease.  The  RM  model  displayed  a higher  tolerance  to  infection  and  survived  exposures  of
up  to 15,593  CFU  of aerosolized  F. tularensis.

Published  by Elsevier  Ltd.
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1. Introduction

The etiological agent of tularemia, Francisella tularen-
sis, is a highly infectious and virulent bacterial pathogen
known to persist in the environment, infect humans by
multiple modalities, including aerosol, and cause high mor-
bidity/mortality by extremely low infectious dose (<10
colony forming units [CFU)]) [1]. Frequently included in the

http://dx.doi.org/10.1016/j.cimid.2015.01.003
0147-9571/Published by Elsevier Ltd.

dx.doi.org/10.1016/j.cimid.2015.01.003
http://www.sciencedirect.com/science/journal/01479571
http://www.elsevier.com/locate/cimid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cimid.2015.01.003&domain=pdf
mailto:aysegul.nalca@us.army.mil
dx.doi.org/10.1016/j.cimid.2015.01.003
proyster2
Text Box
This document is a U.S. government work and is not subject to copyright in the United States.




14 A.R. Glynn et al. / Comparative Immunology, Microbiology and Infectious Diseases 39 (2015) 13–24

former Soviet Union and various international bioweapons
programs throughout history, the bacterium’s high viru-
lence and capacity to be weaponized led the United States
(US) Centers for Disease Control and Prevention (CDC)
and the National Institute of Allergy and Infectious Dis-
ease (NIAID) to classify it as a Category A biothreat select
agent [2–5]. Given the significant potential for aerosolized
F. tularensis as a bioterrorism agent, the need for a well-
characterized animal model of aerosol transmission is
clear.

In 2002, the US Food and Drug Administration (FDA)
implemented the Animal Rule for approval of vaccines and
therapeutics when human efficacy studies are not ethical
or feasible (21 CFR 314.610 and 21 CFR 601.91). This regu-
lation has driven the development of well-characterized
animal models designed to resemble human disease to
enable high-confidence testing of medical countermea-
sures against biothreat agents.

Mice, rats, rabbits, and nonhuman primates (NHPs) all
have been used to model the efficacy of therapeutics and
vaccines against F. tularensis [6]. Although studies in lit-
erature indicate that the NHP model resembles tularemia
disease in humans better than other models, published data
lacks critical findings regarding well-characterized animal
models for Animal Rule applications, such as clinical signs,
clinical pathology, and gross and microscopic pathology
[7].

In this series of experiments, a side-by-side disease pro-
gression study designed to identify the disease markers
resulting from highly virulent F. tularensis Schu S4 aerosol
exposure of three NHP species, African green monkeys
(AGM), cynomolgus macaques (CM), and rhesus macaques
(RM) was conducted for the first time. The resulting data
contain critical evidence supporting the selection and
development of an inhalational tularemia animal model
that adequately mimics inhalational tularemia in humans.

2. Materials and methods

2.1. Animals

Healthy, adult AGM (Chlorocebus aethiops) (n = 5), CM
(Macaca fascicularis) (n = 6), and RM (Macaca mulatta)
(n = 5) of both sexes were obtained from the US Army Med-
ical Research Institute of Infectious Diseases (USAMRIID)
approved commercial vendors. Animals were in good phys-
ical condition and were free of clinical signs of any infection.
Research was conducted under an IACUC approved proto-
col in compliance with the Animal Welfare Act, PHS Policy,
and other Federal statutes and regulations relating to ani-
mals and experiments involving animals. The facility where
this research was conducted is accredited by the Associa-
tion for Assessment and Accreditation of Laboratory Animal
Care, International and adheres to principles stated in the
Guide for the Care and Use of Laboratory Animals, National
Research Council, 2011.

2.2. Challenge agent

The F. tularensis Schu S4 strain was provided by NIAID.
A flask of Mueller Hinton II (MHII) liquid medium + 2%

isovitalex enrichment was inoculated with a F. tularensis
Schu S4 seed stock. The culture was  incubated for 23 h at
37 ◦C with shaking at a speed of 200 rpm. Following incu-
bation, the culture was measured for OD (660 nm) and the
concentration of microorganisms was determined accord-
ing to a predetermined mathematical relationship between
concentration and OD. The microorganisms were diluted in
MHII liquid media to the desired nebulizer starting concen-
trations.

2.3. Aerosol exposure

Each NHP was  anesthetized by intramuscular (IM) injec-
tion of tiletamine/zolazepam (6 mg/kg) and then subjected
to whole body plethysmography (Buxco Research Sys-
tems, Wilmington, NC) for determination of the respiratory
minute volume (MV) as previously described [8]. Subse-
quently, each NHP was exposed to F. tularensis Schu S4 in
a head-only chamber contained within a class III biologi-
cal safety cabinet located within a biosafety level 3 (BSL-3)
suite. The Automated Bioaerosol Exposure System (ABES)
served as the control platform for the aerosol exposures
[9]. Aerosol particles were generated by a three-jet collison
nebulizer (BGI, Inc., Waltham, MA). An all glass impinger
(AGI) was  used to collect integrated air samples for each
aerosol run.

After exposure, several dilutions prepared from each
AGI sample were used to inoculate Modified Thayer Mar-
tin (MTM)  agar plates for analysis. The inhaled F. tularensis
Schu S4 dose was calculated for each NHP based on the bac-
terial growth that resulted from AGI samples and dilutions
and from the minute volume (MV) measurement.

2.4. Telemetry

A radiotelemetry device TA10TA-D70 (Data Sciences
International [DSI], St. Paul, MN)  was used to monitor body
temperature following surgical implantation into each NHP
at least 14 days before exposure. Body temperatures were
recorded every 15 min  by the DataQuest A.R.T.4.1 system
(DSI). Pre-exposure baseline temperature data were used
to calculate a baseline by averaging the recorded 15 min
temperature intervals for at least 9.5 consecutive hours on
day −1. Fever was defined as an elevation of body tempera-
ture >1.5 ◦C above baseline values for at least 6 consecutive
hours.

2.5. Clinical observation

NHPs were observed and scored at least twice a day
following aerosol exposure. The scoring parameters were;
activity (1: normal, 2: active, 3; less active, 4: sluggish, 5:
inactive), behavior (1: normal, 2: antisocial, 3: depressed, 4:
hunched, 5: ignoring everything), stimuli response (1: nor-
mal, 2: entering room, 3: approaching cage, 4: rattling cage,
5: pinching), breathing (1: normal, 2: rapid, 3: abdominal,
4: agonal, 5: rales). The early endpoint criteria monitored
for humane euthanasia, indicative of very poor health sta-
tus, were cumulative clinical scores of 16–20 (maximum
score), and/or sudden drop of >3 ◦C from baseline body
temperature.
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2.6. Complete blood counts (CBCs)

Beginning one to two days before exposure, and every
other day between days 2–28 PE, blood samples were col-
lected from the femoral vein of NHPs anesthetized with
tiletamine/zolazepam (3 mg/kg). Beckman Coulter hema-
tology analyzers (Brea, CA) were used to analyze CBCs
according to the manufacturer’s instructions.

2.7. Quantitative bacteremia by real time quantitative
PCR assay

Bacterial DNA was extracted from 100 �l samples of
blood using Qiagen (Valencia, CA) QIAamp DNA blood kit
according to the manufacturer’s instructions. Real-time
qPCR was performed with the LightCycler (Roche, Indi-
anapolis, IN) using a F. tularensis (tul4) gene-specific assay
[10]. The positive extraction control samples (PEC) was
generated by spiking defined amounts of F. tularensis cul-
ture into uninfected blood samples, and extracting the
DNA.

2.8. Cytokine analysis

Plasma cytokine detection was performed using the
BIORAD Bio-PlexTM 200 Multiplex Array System (Bio-Rad
Laboratories, Hercules, CA) and Bio-PlexTM Pro Human
Cytokine 17-Plex Assay kit (Bio-Rad Laboratories, Hercules,
CA) per the manufacturer’s instructions to evaluate the lev-
els of IL-1�, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13,
IL-17, G-CSF, GM-CSF, IFN-�, MCP-1 (MCAF), MIP-1�,  and
TNF-�.

2.9. Necropsy and macroscopic pathology

Necropsies were performed in BSL-3 on animals
humanely euthanized when moribund or at the conclu-
sion of the study by (or under the direct supervision of)
a veterinary pathologist board certified by the Ameri-
can College of Veterinary Pathologists. Each complete set
of necropsied tissues included lymph nodes (mediasti-
nal/tracheobronchial, mandibular, axillary, inguinal, and
mesenteric), tongue, tonsil, heart, thymus, lung, spleen,
liver, adrenal gland, kidney, urinary bladder, testes or
ovary, prostate gland or uterus, stomach, duodenum (with
pylorus), pancreas, jejunum, ileum, ileocecal junction,
colon, sciatic nerve, skeletal muscle, bone marrow, eyes,
brain, pituitary gland, and haired skin. For histology and
immunohistochemistry analyses, tissue samples collected
from each animal were immersion-fixed in 10% neutral-
buffered formalin for a minimum of 21 days. Portions of
lung, kidney, spleen, liver, lymph nodes, adrenal gland,
heart, and brain were submitted for bacterial culture at the
time of postmortem examination.

2.10. Histology and immunohistochemistry

For light microscopy, all formalin-fixed tissues from all
animals were processed, embedded in paraffin wax, sliced
into 5–6 �m section using a rotary microtome, mounted
on glass slides, and stained with hematoxylin and eosin

(HE). Immunohistochemical staining for F. tularensis was
performed on all tissues selected from 7 animals: 2 AGMs,
2 CMs, and 3 RMs. Serial sections of these tissues were
cut and stained for F. tularensis lipopolysaccharide (LPS)
(Meridian Life Science, Inc., Cincinnati, OH) and visualized
using a mouse monoclonal antibody to F. tularensis LPS
(Meridian Life Science, Inc., Cincinnati, OH) at a (USAMRIID
immuno #927) and an immunoperoxidase assay system
(EnVision System, DAKO Corp., Carpinteria, CA). Normal
lung tissue was used as a negative control and lung from
a known F. tularensis Schu S4-infected AGM was used as
a positive control. Normal mouse IgG was used as the
negative serum control. For the immunohistochemistry
study, the unstained tissue sections were deparaffinized,
blocked using methanol–hydrogen peroxide, pretreated
with proteinase K, incubated with serum-free protein block
(DAKO) plus 5% normal goat serum followed by the mono-
clonal antibody at a dilution of 1:1200, and finally exposed
to the EnVision horseradish peroxidase labeled polymer.
All sections were exposed to 3,3′-diaminobenzidine (DAB)
permanent chromogen, counter-stained with hematoxylin,
and covered with Permount (Thermo Fisher Scientific,
Waltham, MA).

2.11. Statistical analysis

NHP temperatures were collected daily to assess
changes over time. Repeated measures analysis of vari-
ance (RM-ANOVA) was completed, however, only for time
points falling within the day −1 to day 6 post-exposure (PE)
timeframe. Comparisons of individual time points were
completed for all groups through day 14 PE. Analyses of
variance (ANOVA) were used to compare body weights at
each individual time point (with post hoc Tukey’s tests for
pairwise comparisons) for days 0, 2, 4, 6, 8, and 10 PE.
Beyond day 10 PE, the numbers of samples were insuffi-
cient to perform ANOVA.

For CBCs, ANOVA was used to test for group differences
at each time point, with post hoc Tukey’s tests for spe-
cific pairwise comparisons at −2, 2, 4, and 6 (between all
NHP groups) and 8, 10, 12, and 14 days PE (for comparison
between CM and RM groups). Beyond day 14 PE, sample
sizes were insufficient for comparison. For blood and tissue
bacterial loads Kruskal–Wallis tests were conducted with
Wilcoxon–Mann–Whitney tests for pairwise comparison.
All analyses were conducted using SAS Version 9.3.

3. Results

3.1. Exposure doses and outcome

In this study, three species of NHPs were aerosol chal-
lenged with varied doses of F. tularensis Schu S4 (Table 1).
A target dose of 100 CFU F. tularensis was sufficient to
cause the development of lethal disease in two  of the three
species (AGM and CM). The calculated inhaled doses are
listed in Table 1.

Within 2–5 days PE to target doses of 100 CFU or higher,
all NHPs displayed increased body temperature, decreased
appetite, decreased activity, and other signs of clinical dis-
ease. Upon low-dose challenges of 11 and 20 CFU, the AGMs
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Table 1
Exposure dose, onset of fever and time to death in individual NHPs.

Animal ID Target dose (CFU) Inhaled dose (CFU) Average day of fever onseta Time of death (Days) Manner of death

AGM 1 10 11 No fever NA Survived
AGM  2 100 40 4 14 Euthanized

AGM  3 100 216 4 8 Found dead
AGM  4 1,000 271 3 6 Euthanized
AGM  5 10,000 10,908 3 6 Euthanized

CM  1 10 20 No fever NA Survived
CM  2 100 32 4 22 Euthanized
CM  3 100 186 NAb 10 Found dead
CM  4 1,000 332 4 10 Euthanized
CM  5 1,000 801 3 9 Euthanized
CM  6 10,000 11,298 2 6 Euthanized

RM  1 1,000 377 3 NA Survived
RM  2 3,000 2,693 2 NA Survived
RM  3 10,000 11,211 3 NA Survived

RM  4 10,000 15,593 3 NA Survived
RM  5 100,000 276,667 3 6 Euthanized

a Fever defined as an elevation of body temperature >1.5 ◦C over baseline values, as established on study day −1, for at least 6 consecutive hours for each
individual.

b Telemetry for this animal was failed, therefore data was  not available.
NA: Not applicable.

and CMs, respectively, showed no signs of illness, however
both of these species met  euthanasia criteria after higher
challenge doses (Table 1). The RMs, however, survived
challenge doses as high as 15,593 CFU, but succumbed to
276,667 CFU. For AGMs and CMs, death occurred 11 or 16
days PE to 40 CFU (AGM 2) or 216 CFU (AGM 3) and 32 CFU
(CM 2) or 186 CFU (CM 3), respectively. The shortest time-
to-death occurred 6 days PE following exposure of the AGM
with 10, 908 CFU (AGM 5), CM with 11,298 CFU (CM 6), and
RM with 276,667 CFU (RM 5).

3.2. Body temperature and weight change

In the AGMs and CMs, fever onset occurred 2–4 days PE
depending on the dose level (Table 1); all AGMs and CMs
that developed fever eventually met  euthanasia criteria.
After most of the F. tularensis exposure doses used in this
study, the RM species developed fever that remained for
the duration of the animal’s illness (Fig. 1A). RMs exposed to
non-lethal doses maintained fever for the longest duration
compared to the other species, about 24 days. Within 4 days
of challenge, all NHPs (except for AGMs and CMs  exposed
to the lowest doses) displayed a 1.5 ◦C elevation in body
temperature. RM-ANOVA of temperature from days −1 and
through 6 PE indicated that, there were significant over-
all differences in temperature between groups (P < 0.0001),
and over time (P < 0.0001), but not in the interactive effect
of group by time (P = 0.9118), supporting the observation
of nearly parallel temperature changes between groups
over that time period (Fig. 1A). Pairwise group compar-
isons revealed statistical differences in body temperatures
between the RM and either the AGM (P < 0.0001) or the CM
(P = 0.0009). The RMs  exhibited significantly higher fever
response than AGMs or CMs.

All challenged NHPs, except for the surviving AGM
and CM,  exhibited disease-related weight loss. The mean

weight loss for the RMs  was  10% of body weight; whereas
the mean weight loss was about 5% for AGMs and CMs
(Fig. 1B). The three RMs  (RM 3–5) challenged with the high-
est doses decreased in weight throughout the study period,
whereas the two  lower dosed RMs  (RM 1 and RM 2) lost
weight initially, but gained weight with recovery after day
24 PE. Significant differences in daily body weights were
not observed among the three species of NHPs at any time
point.

3.3. Complete blood counts (CBCs)

The CBCs shifted differentially from baseline for all
three NHP species throughout disease progression. Signifi-
cant increases or decreases were determined for individual
NHPs based on baseline values obtained prior to exposure.
Overall, white blood cells (WBCs) increased early in disease
for all NHPs (Fig. 2A). Whereas WBC  levels remained ele-
vated in RMs, the WBC  changes in AGMs and CMs were
insignificant aside from peaks observed on days 12 and
14 PE. All NHP species exhibited increased granulocyte
levels until 6 days PE (Fig. 2B). Whereas RM granulocyte
levels remained elevated, AGM and CM granulocyte levels
returned to normal about 6 days PE. Similarly, lympho-
cyte levels increased in RMs  around day 10 PE but dropped
early in AGMs and CMs  (Fig. 1C). With regard to mono-
cyte levels, AGM levels peaked beginning on day 6, while
CM and RM levels maintained normal levels (Fig. 1D). For
all non-surviving NHPs, platelet counts decreased steadily
after exposure (data not shown).

3.4. Cytokine profiles

Serially collected plasma samples were assayed for sev-
eral cytokines. Prominent fluctuations were observed in
IL-6, IL-8, granulocyte-colony stimulating factor (G-CSF),
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Fig. 1. (A) Mean body temperature variation over time in three NHP species and (B) percentage changes in body weights of CM,  AGM, and RM that had
been  exposed to various doses of aerosolized F. tularensis.

IFN-�, monocyte chemoattractant protein-1 (MCP-1), and
MCP-1� profiles. Table 2 compares cytokine profiles in
three NHP species exposed to target dose of 1,000 CFU.
Similar trends were observed for other challenge doses.

The CMs  and AGMs exhibited steady increases in IL-
6 levels, whereas the RM IL-6 levels peaked on day 6 PE
and decreased thereafter. Just prior to euthanasia, IL-6 in

the single RM that was euthanized on day 6 PE elevated
600-fold above baseline (data not shown). All three NHP
species showed uniform increases in IL-8 levels just prior
to euthanasia. Increased levels of G-CSF and IFN-� were
observed in AGMs and CMs  but not in the RMs. Likewise,
elevations in MCP-1 and MCP-1� were much greater in
AGMs and CMs  than in RMs. No significant changes or

Fig. 2. Percentage changes in (A) white blood cell count (WBC), (B) granulocytes (GR), (C) lymphocytes (LY), and (D) monocytes (MO) over time in CM,
AGM, and RM exposed to various doses of aerosolized F. tularensis.
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Table 2
Comparison of serum cytokine levels (pg/ml) in 3 NHP species exposed to a target dose of 10,000 CFU aerosolized F. tularensis.

Cytokines IL-6 IL-8 G-CSF IFN-� MCP-1 MCP-1�

Days post
exposure

AGM5 CM6  RM3  AGM5 CM6  RM3  AGM5 CM6 RM3  AGM5 CM6  RM3  AGM5 CM6  RM3 AGM5 CM6  RM3

−2  OOR< OOR< OOR< OOR< 12 55 OOR< OOR< OOR< OOR< OOR< OOR< 58 18 15 24 51 51
2  13 10 1 OOR< 22 29 4 12 2 OOR< OOR< OOR< 63 63 35 24 51 49
4  827 405 53 OOR< 46 15 412 46 1 46 OOR< OOR< 1111 142 42 365 91 93
6  OOR> 4352 158 2282 783 101 2703 535 9 723 57 OOR< 34,715 1968 56 3371 397 71
8  15 131 OOR< 4 20 13
10  35 91 OOR< 4 20 23
12  10 203 OOR< 13 17 15

OOR<: Out of range below, OOR>: Out of range above.
Measurement unit: pg/ml.

patterns were observed for other cytokines tested (data not
shown).

3.5. Bacteremia—blood

Whole blood samples were collected every other day PE
and were analyzed for bacterial load by PCR (Fig. 3). The RM
blood samples consistently yielded low genome numbers
(Fig. 3C). Whereas AGMs and CMs  exposed to fatal doses
displayed higher bacterial loads detectable as early as days
4 PE (Fig. 3A and B). No differences in bacteremia were

evident in pairwise comparison among the NHP groups
between days 1 and 10.

3.6. Bacteremia—tissues

At the conclusion of the study, tissue samples were
harvested from euthanized NHPs, processed to determine
tissue bacterial burden by PCR (Fig. 4). The highest bacterial
loads were observed in the lungs and mandibular lymph
nodes of AGMs (Fig. 3A). In CMs  the brain, lung and spleen
contained the greatest numbers of bacteria; and all tissues

Fig. 3. Bacterial load (genomes/ml) in whole blood of (A) AGM, (B) CM,  and (C) RM.  Limit of detection (LOD): 5000 genome/ml.
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Fig. 4. Bacterial burden (genome/gr) in select tissues obtained from euthanized (A) AGM, (B) CM,  and (C) RM exposed to various doses of aerosolized F.
tularensis.  Limit of detection (LOD): 5000 genome/g.

obtained from CMs  exposed to fatal doses harbored signif-
icant tissue bacterial burden (Fig. 4B). The tissue bacterial
burdens in RMs  were much lower than in AGMs and CMs
with the exception of the lungs (Fig. 4C).

3.7. Pathology

Most of the aerosolized F. tularensis challenge doses in
this study led to the development of lesions that varied in
distribution and severity and affected multiple body sys-
tems. Here we describe the pathologic changes observed
in the respiratory and hematopoietic systems, which were
clearly targets of infection following aerosol administration
of F. tularensis at any dose.

3.7.1. Necropsy findings
Regardless of the NHP species, dose received, or the

time-to-death, the most common macroscopic pathologic
changes occurred in the lung, mediastinal and tracheo-
bronchial lymph nodes, and spleen (Fig. 5 and Table 3).
Compared to normal lungs (Fig. 5A), diseased lung lobes
frequently were enlarged and failed to collapse (Fig. 5C–E).
Pulmonary congestion, hemorrhage, and edema with

fibrinous pleuritis were evident in the AGM and CM
subjects (Fig. 5C–E), whereas fibrous tags between lung
lobes and attaching to the thoracic wall were com-
mon  in RMs  that survived the experimental infection.
As early as 6 days after challenge, randomly scattered,
well-circumscribed-to-coalescing, subacute abscesses and
pyogranulomas ranging in size from 6 mm to 2 cm in diam-
eter effaced the pulmonary architecture of the inferior
lung lobes but were also distributed randomly in other
lobes. The large acute lesions usually were suppurative or
caseous, whereas the more chronic lesions were dry and
brittle. Most NHPs, regardless of species, also displayed
pericardial effusion.

The most common finding in the tracheobronchial,
mesenteric, mandibular, axillary, and inguinal lymph
nodes of all three NHP species was  enlargement with
edema, hemorrhage, or congestion when excised. Caseous
lymphadenitis was  a feature observed only in the tracheo-
bronchial (Fig. 5F) and mediastinal lymph nodes. Of the 16
animals examined, 9 NHP spleens displayed distinct, 4 mm
in diameter, slightly raised necrotizing foci throughout the
parenchyma and capsular surface (Fig. 5G). Splenomegaly
also was  observed in some animals.
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Table 3
Most common macroscopic lesions observed in the AGMs, CMs and RMs following F. tularensis aerosol exposure.

Gross lesions Animal ID

African green monkeys (n = 5) Cynomolgus macaques (n = 6) Rhesus macaques (n = 5)

1 2 3 4 5 Total 1 2 3 4 5 6 Total 1 2 3 4 5 Total

Pneumonia (consolidation), abscesses,
pyogranulomas

− + − − − 1/5 − + +/− + + + 5/6 + + + + + 5/5

Pulmonary congestion, hemorrhage,
edema

+/− + + − + 4/5 − + + + + + 5/6 +/− +/− + − + 4/5

Fibrinous/fibrous pleural adhesions
(pleuritis)

− + +/− − +/− 3/5 − + − + + + 4/6 + + + + + 5/5

Thoracic fluid − + − − − 1/5 − − − + + − 2/6 − − − − − 0/5
Pericardial fluid − + + − + 3/5 − − + + − + 3/6 − − + − + 2/5
Enlarged (a), Suppurative or caseous exudate (b), congestion and/or hemorrhage (c)

Med/TB − + (a,c) + (c) + (b) + (c) 4/5 − + (a,b,c) − + (a,b,c) + (a,c) + (a,c) 4/6 + (a) + (a,b) + (a,b,c) + (a,b) + (a) 5/5
Mandibular − + (a) + (c) − + (c) 3/5 − + (a,c) +(c) − − − 2/6 − − − − − 0/5
Mesenteric − + (a) − + (a) + (c) 3/5 − + (a,c) − + (a,c) − + (c) 3/6 + (a) + (a,c) +(a,c) + (a,c) + (a) 5/5
Axillary − +(a,c) + (c) − + (c) 3/5 − + (a,c) +(c) + (c) − − 3/6 − − +(a) − − 1/5
Inguinal − + (a,c) + (a,c) − + (a,c) 3/5 − + (a,c) +(c) + (c) − − 3/6 +(a,c) + (a,c) +(a) + (a) − 4/5

Splenic  abscess/pyogranulomas +/−
splenomegaly, hemorrhage,
congestion

− + + + + 4/5 − + + + − + 4/6 − − − − + 1/5

Pancreatic abscess/pyogranulomas (*
indicates hemorrhage, congestion
only)

− − − − − 0/5 − + − −* − −* 1/6 − − − − −* 0/5

Hepatomegaly, minimal to mild − + − − − 1/5 − + + − − − 2/6 − − − − − 0/5
GI  mucosal hemorrhage/congestion − + + − + 3/5 − − + − − + 2/6 + − − − − 1/5

+ or − indicated the presence or absence of the gross lesion.
+/−  indicates the variable presence of the gross lesion.
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Fig. 5. Macroscopic findings in the lung, lymph node, and spleen of NHPs challenged by aerosol with F. tularensis. (A) Normal lung, non-challenged CM.  (B)
Normal spleen, non-challenged RM.  (C) Lung, AGM 2 (D) Lung, CM 3, and (E) Lung, RM 2. Hemorrhagic, necrotizing, and/or pyogranulomatous foci on the
pleural surface with congestion and edema and fibrinous pleuritis (most noticeable in the RM); note the failure of lung lobes to collapse. (F) Tracheobronchial
lymph node, CM 2. The lymph node is effaced by tannish-white caseous material (*). (G) Spleen, CM2. A myriad of multifocal to coalescing, pale white,
raised  or flattened necrotic foci on the capsular surface. Esop = esophagus.

Some NHPs exhibited non-specific congestion and/or
hemorrhage in the following tissues: pancreas, adrenal
gland, liver, urinary bladder, reproductive organs, and gas-
trointestinal tract (Table 3).

3.7.2. Histopathology
Significant histopathologic changes were observed in 14

of the 16 animals studied. The surviving AGM and CM did
not exhibit any pathological changes.

In those animals euthanized at day 10 or earlier, the
most prominent finding was necrotizing and suppura-
tive bronchopneumonia associated with larger conducting
airways and arterioles (Fig. 6D). Extensive foci of hemor-
rhage, fibrin, edema, cellular and necrotic debris, and a
mixed inflammatory infiltrate effaced both alveolar and
bronchiolar architecture and partially occluded terminal
bronchioles and alveoli. Fibrinous pleuritis also was  com-
mon. Significant vascular necrosis with fibrin thrombi was
observed in 3 of the 5 AGMs. By day 14, the hemorrhagic
component was less prominent as the inflammatory com-
ponent coalesced and formed vague or discrete chronic
abscesses and pyogranulomas that elevated the pleural
surface (Fig. 6E and F). Chronic abscesses were associated
with extensive pleural thickening consisting of granulation

tissue, fibrosis, and dilated lymphatic vessels. In less
affected areas, an intra-alveolar mixed inflammatory infil-
trate was  apparent and edematous and congested alveolar
septae were lined by alveolar epithelial cells (likely type II
pneumocytes). Multinucleated giant cells were rare in all
species. Multiple foci of necrotizing and ulcerative laryn-
gitis and tracheitis were observed in some CM and RM
subjects but not in any of the AGMs.

The lymph nodes, spleen, and bone marrow clearly were
targets for aerosolized F. tularensis infection in the AGMs
and CMs, and to a lesser extent in the RMs. The most con-
sistent and severe histologic lesions, particularly in the
AGMs and CMs, were observed in the mediastinal and tra-
cheobronchial lymph nodes, and consisted of necrotizing to
pyogranulomatous inflammation that effaced nodal archi-
tecture, which resulted in severe lymphoid loss (Fig. 6G).
Additional lesions seen in some but not all lymph nodes
included increased numbers of tingible body macrophages
(TBMs) in the cortex, sinus histiocytosis and edema, drain-
ing hemorrhage, and erythrophagocytosis.

Similar to the lung lesions, the splenic lesions varied in
histologic appearance from random foci of hemorrhage or
severe lytic necrosis to well-demarcated, as large as 1 cm
in diameter chronic abscesses and pyogranulomas (Fig. 6I).
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Fig. 6. Histopathological and immunohistochemical (IHC) analyses of lung, lymph node, and spleen of NHPs challenged by aerosol with F. tularensis. (A)
Normal lung, non-challenged CM,  HE 4×. (B) Normal tracheobronchial lymph node, non-challenged CM, HE 4×. (C) Normal spleen, non-challenged RM,
HE  4×. (D) Lung, AGM 2, HE 4×; (E) Lung, CM 3, HE 2×; and (F) Lung, RM 2, HE 2×. Severe necrotizing to pyogranulomatous coalescing inflammatory foci,
frequently associated with large airways and pulmonary vessels. (G, H) Tracheobronchial lymph node, AGM 3, HE 4× and F. tularensis IHC 4×. Severe lytic
necrosis (*) effaces nodal architecture especially in the subcapsular and cortical areas; a serial section highlights strong bacterial antigen staining in the
most  severely affected areas. (I) Spleen, CM 2, HE 4×. Necrotizing and pyogranulomatous foci effaces splenic architecture and elevates the capsular surface.
Br  = bronchiole.

The larger lesions compressed the adjacent architecture
and elevated and ruptured the splenic capsule. Additional
splenic findings observed in some animals included hem-
orrhage and congestion, lymphoid depletion, and fibrosis
(RMs only).

Multiple, often coalescing, necrotizing foci consistently
were observed in the sternal bone marrow (necrotizing
myelitis) of AGM and CM subjects, and less commonly
in the RM.  Generally, the marrow cavity was hypercellu-
lar with a noticeable increase in myeloid precursor cells,
whereas mature neutrophils were observed infrequently.

Random necrotizing lesions confirmed by immuno-
histochemistry also were observed in various organs
throughout the gastrointestinal, genitourinary, endocrine,
cardiovascular, ophthalmic, and nervous systems in some
animals.

3.7.3. Immunohistochemical results
In all NHP species, the strongest and most con-

sistent F. tularensis immunoreactivity occurred in the
lungs, followed by the spleen and tracheobronchial lymph
nodes. Positive immunohistochemical staining was  more
widespread and affected more tissues in the AGMs and
CMs  than the RMs. Generally, immunolabeled intra- or
extracellular bacteria, bacterial fragments, and/or antigen
were present in areas where lesions were observed his-
tologically, especially necrosis (Fig. 6H). Immunostaining

enabled the detection of subtle lesions that might have
been overlooked by routine light microscopy alone.

4. Discussion

Primary pulmonary tularemia is an important infectious
disease to study because of its high lethality, confounding
non-specific flu-like symptoms, and significant potential
for both natural and artificial transmission. The develop-
ment and licensure of tularemia medical countermeasures
are dependent on compliance with the FDA’s Animal
Rule, which requires well-characterized animal models
when human studies are not possible. The NHP is almost
invariably the preferred animal model for infectious dis-
eases, including tularemia. This study sought to identify
the species that mimics pulmonary tularemia disease in
humans most effectively.

All of the NHP species that were evaluated demon-
strated susceptibility to aerosolized F. tularensis and
development of rapidly progressing acute infection. The
AGM and CM species developed lethal infection when chal-
lenged with aerosolized F. tularensis Schu S4 at doses above
20 CFU, whereas, the observed lethal dose in the RM species
was  greater than 276,667 CFU. Following low-dose expo-
sure the RMs  developed chronic pulmonary lesions; they
were susceptible to disease but surprisingly resistant to its
fatal effects.
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Fever is one of the common clinical signs of pneumonic
tularemia in humans and it ranges from 38 ◦C to 40 ◦C [11].
In this study, fever onset (defined as a 1.5 ◦C increase from
baseline reading for 6 consecutive hours) was observed in
all three species. Exposure to higher doses resulted in an
onset of fever at 2 or 3 days PE in all three species. The AGM
and CM exposed to high doses exhibited fever throughout
the duration of the illness (i.e., animals were febrile until
euthanasia criteria were met), with body temperatures
often decreasing sharply in the hours before morbidity
to the point of required euthanasia was reached. The
range of fever in NHPs was 38–40.5 ◦C, similar to human
disease.

Cytokine storm is a common mediator of immune
responses against infectious agents. Cytokines are cell-
secreted proteins that interact with other cells of the
immune system to modulate bodily responses against
disease and infection. Altered levels of certain plasma
cytokines can indicate pathogenesis-associated inflamma-
tion, inform an intervention point, and/or predict imminent
death. Proinflammatory cytokine IL-6, which is synthesized
by macrophages and T-cells during fever and acute-phase
response, increased sharply in all NHP species immediately
before euthanasia criteria were met. G-CSF is produced
by macrophages and endothelial cells in response to cer-
tain types of infections and conditions, and it stimulates
the bone marrow to produce and release granulocytes.
Most blood samples that were collected immediately prior
to euthanasia exhibited increased G-CSF levels, possibly
indicating the immune system’s attempts to replenish the
depleted granulocyte supply. Having observed associations
between certain cytokine response patterns and immi-
nent death, we believe the detection of certain cytokine
patterns may  serve as intervention and/or euthanasia
criteria. However, studies with larger number of animals
are needed to ascertain the statistical validity of these
observations.

Individuals subjected to fatal or near-fatal aerosolized
doses of infectious agents often develop bacteremia in the
blood and/or tissues. The overall bacterial burden tended to
be much lower in RM subjects relative to AGMs and CMs.
All RM subjects, except for one, survived the experimen-
tal aerosol challenge. The longer survival times observed
in these animals may  explain the relatively low tissue
burden but does not explain the low bacteremia results.
As expected, the highest tissue bacterial burden was
detected in the lungs. CMs  consistently exhibited wide-
spread dissemination with bacterial loads in all tissues
tested.

Gross and histologic findings and immunohistochemi-
cal results are consistent with those previously described
by Twenhafel et al. [12]. The obvious targets of F. tularen-
sis following aerosol challenge of all three species included
respiratory (e.g., lung, trachea, larynx) and hematopoietic
(e.g., lymph nodes, spleen, bone marrow, tonsils) systems.
However, macroscopic and histopathologic lesions varied
in distribution and severity and often affected multiple
body systems. As expected, pneumonic disease was the
most common manifestation observed in all but the two
animals challenged with the lowest doses of F. tularensis;

the AGM (11 CFU) and CM (20 CFU) displayed no lesions 28
days after challenge.

Although necrotizing and hemorrhagic lesions were
observed in multiple tissues of the animals that received
the highest inhaled doses (except AGM 1 and CM 1), equally
severe lesions often affecting a greater number of organs
were observed in the AGM and CM subjects that had
received considerably lower inhaled doses (40–801 CFU).
Since all 3 of the highest dosed animals of each species suc-
cumbed to infection (i.e., met  euthanasia criteria) by day
6, it is plausible that bacterial dissemination was  stunted
because the host died so soon. However, the three RMs
that received 15,593 CFU, 11,211 CFU, or 2693 CFU survived
the challenge, and upon necropsy, exhibited fewer changes
in fewer target organs. Additionally, by day 8, histiocytic
to pyogranulomatous inflammation was observed more
readily in all animals although hemorrhage and necro-
sis remained typical histologic features, regardless of the
inhaled dose.

In addition to the respiratory and hematopoietic
lesions, random microscopic lesions were observed in
various organs throughout the gastrointestinal, genitouri-
nary, endocrine, cardiovascular, ophthalmic, and nervous
systems in some but not all animals. Liver pathology sim-
ilar to human disease was observed in all three NHP
species following exposure to aerosolized F. tularensis.
These pathologic findings, in addition to the bacterial
load in the blood and tissues, indicate hematogeneous
spread to other organs can cause a “typhoidal-like”
disease syndrome in the NHP model following inhala-
tion.

Of the three NHP species in this study, the RM was the
most resistant to fatal outcomes of pulmonary tularemia,
and its disease progression with chronic lesions is simi-
lar to human disease progression. Despite the advantages
inherent to a model that mimics the human disease course,
the RM model is problematic from the perspective of study
planning since the signs of the disease are less clear and
longer study periods are required to evaluate health, recov-
ery, and survival. In addition, the lethal challenge doses for
the RM are very high when compared to the infectious dose
in humans.

Lethality was  demonstrated in both the CMs  and AGMs
following exposure to relatively low doses of aerosolized
F. tularensis, however, the CMs  survived a few days longer
at comparable doses. Disease progression of the CM also
aligns with human disease progression, albeit not as well
as the RM,  but better than the AGM. Compared to the
other 2 species, the CM most consistently manifested a
clinical presentation of tularemia disease with fever, bac-
teremia, tissue bacterial burden, and clinical pathology,
which are considered most heavily among various char-
acteristics of an ideal laboratory-based model of human
disease.

A major limitation of this study is the small number
of subjects, which precludes strong statistical inference.
However, this study provides a foundation for future
research on medical countermeasures, enabling evidence-
based development of protocols, dose schedules, animal
model selection, and study length.
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