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Abstract: One important challenge with networked systems is that communication delays can 
significantly deteriorate system performance. This paper considers a model-free predictor framework 
to compensate for communication delays and improve networked system performance, where the term 
"model-free" indicates that the predictor does not need to know the dynamic equations governing the 
system. Stability analysis of this predictor is available in the literature; however, ensuring stability 
does not guarantee a good performance. Understanding when the predictor can perform well and 
what its limitations are is critical, but the performance characteristics of the predictor are unknown. 
Hence, this paper aims to fill this gap by providing a predictor performance analysis for constant time 
delays. First, a frequency-domain analysis is performed for the predictor and the relationship between 
the predictor design parameter, time delay, and steady-state performance is revealed. Fundamental 
limitations of the predictor at higher frequencies are laid out. Next, this analysis is confirmed on a 
case study. The case study further allows for testing the transient performance of the predictor in 
closed-loop with the networked system, and shows that the predictor holds significant potential to 
alleviate the negative impact of communication delays, even if its higher frequency performance may 
be limited. 
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1. INTRODUCTION 

Networked systems are systems that are coupled through 
information exchange over a communication channel. Ex­
ample applications include tele-operation, network control, 
and networked hardware-in-the-Ioop simulation systems. 

Typically, the communication channel introduces delays, 
which could deteriorate the system performance signifi­
cantly and could even destabilize the system. The litera­
ture presents many techniques to address this challenge. 
Some of these techniques leverage the system models. For 
example, in the tele-operation literature, model predic­
tive control has been applied to time delay systems to 
predict future commands with maximized tracking per­
formance (Bemporad, 1998). Methods to predict oper­
ator inputs have been developed (Smith and Jensfelt, 
2010). The network control system literature describes 
many techniques to handle both deterministic (Lian et al., 
2002; Montestruque and Antsaklis, 2003) and stochastic 
network delays (Nilsson, 1998; Goktas, 2000; Liu et al., 
2007; Wang et al., 2010). When system models are not 
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available, other methods can be used. For example, re­
searchers from the tele-operation field designed a PD-type 
predictor in the form of prediction of observation (Kawada 
and Namerikawa, 2008) and extended it to a state pre­
dictor based on solution trajectories of the dynamics 
(Yoshida et al., 2008). The passivity approach guarantees 
stability without requiring knowledge about system dy­
namics (Anderson and Spong, 1989); however, this guar­
antee comes at the expense of performance (Lawrence, 
1993). Networked hardware-in-the-Ioop simulation litera­
ture presents learning-based methods to ensure a high­
fidelity integration with no or minimal knowledge about 
the system (Ersal et al., 2013, 2014; Ge et al., 2014). 
However, these methods are more suitable in an experi­
mental setting, where experiments can be repeated under 
controlled environments. 

Recently, a predictor was developed that does not require 
repeated experiments or system models (Tandon et al., 
2013). This model-free predictor allows for making predic­
tions regardless of the direction of the communication and 
hence can be applied bilaterally. The relationship between 
the design parameter of this predictor and time delay has 
been established to ensure a stable predictor for constant 
delays (Tandon et al., 2013). However, a stable predictor is 
not guaranteed to lead to a good performance, and the per­
formance characteristics of this predictor has not yet been 
studied. This is a critical research question to address, if 
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Networked systems are systems that are coupled through
information exchange over a communication channel. Ex-
ample applications include tele-operation, network control,
and networked hardware-in-the-loop simulation systems.

Typically, the communication channel introduces delays,
which could deteriorate the system performance signifi-
cantly and could even destabilize the system. The litera-
ture presents many techniques to address this challenge.
Some of these techniques leverage the system models. For
example, in the tele-operation literature, model predic-
tive control has been applied to time delay systems to
predict future commands with maximized tracking per-
formance (Bemporad, 1998). Methods to predict oper-
ator inputs have been developed (Smith and Jensfelt,
2010). The network control system literature describes
many techniques to handle both deterministic (Lian et al.,
2002; Montestruque and Antsaklis, 2003) and stochastic
network delays (Nilsson, 1998; Goktas, 2000; Liu et al.,
2007; Wang et al., 2010). When system models are not
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available, other methods can be used. For example, re-
searchers from the tele-operation field designed a PD-type
predictor in the form of prediction of observation (Kawada
and Namerikawa, 2008) and extended it to a state pre-
dictor based on solution trajectories of the dynamics
(Yoshida et al., 2008). The passivity approach guarantees
stability without requiring knowledge about system dy-
namics (Anderson and Spong, 1989); however, this guar-
antee comes at the expense of performance (Lawrence,
1993). Networked hardware-in-the-loop simulation litera-
ture presents learning-based methods to ensure a high-
fidelity integration with no or minimal knowledge about
the system (Ersal et al., 2013, 2014; Ge et al., 2014).
However, these methods are more suitable in an experi-
mental setting, where experiments can be repeated under
controlled environments.

Recently, a predictor was developed that does not require
repeated experiments or system models (Tandon et al.,
2013). This model-free predictor allows for making predic-
tions regardless of the direction of the communication and
hence can be applied bilaterally. The relationship between
the design parameter of this predictor and time delay has
been established to ensure a stable predictor for constant
delays (Tandon et al., 2013). However, a stable predictor is
not guaranteed to lead to a good performance, and the per-
formance characteristics of this predictor has not yet been
studied. This is a critical research question to address, if
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predictor in the form of prediction of observation (Kawada
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fidelity integration with no or minimal knowledge about
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mental setting, where experiments can be repeated under
controlled environments.

Recently, a predictor was developed that does not require
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and Namerikawa, 2008) and extended it to a state pre-
dictor based on solution trajectories of the dynamics
(Yoshida et al., 2008). The passivity approach guarantees
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ture presents learning-based methods to ensure a high-
fidelity integration with no or minimal knowledge about
the system (Ersal et al., 2013, 2014; Ge et al., 2014).
However, these methods are more suitable in an experi-
mental setting, where experiments can be repeated under
controlled environments.

Recently, a predictor was developed that does not require
repeated experiments or system models (Tandon et al.,
2013). This model-free predictor allows for making predic-
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hence can be applied bilaterally. The relationship between
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formance characteristics of this predictor has not yet been
studied. This is a critical research question to address, if

Proceedings of the 12th IFAC Workshop on Time Delay Systems
June 28-30, 2015. Ann Arbor, MI, USA

Copyright © IFAC 2015 434

a systematic way to design the predictor is desired and its
performance limitations is to be understood.

Thus, this paper considers the model-free predictor frame-
work originally conceived in (Tandon et al., 2013) and
performs a frequency-domain study as a first step to un-
derstand the performance characteristics of the predictor.
Specifically, this analysis reveals the relationship between
the design parameter of the predictor, time delay, and
steady-state performance. This helps establish the funda-
mental performance limitations of the predictor beyond
a certain frequency determined by the time delay. Then,
a case study is performed to validate this analysis and
further study the transient performance of the predictor.
The case study also demonstrates that the predictor can
perform well in transient even when its high-frequency
steady-state performance is very limited.

The rest of the paper is organized as follows. Section
2 presents the problem formulation using a generic net-
worked system framework and summarizes the technique
considered in this paper, including the existing stability
analysis result. The frequency domain analysis on the
steady-state performance of the predictor is performed in
Section 3. In Section 4, the predictor is applied to a net-
worked motor-gear-shaft system to evaluate its transient
performance. Conclusions are given in Section 5.

2. PROBLEM FORMULATION AND BACKGROUND

Consider the generic networked system with communica-
tion delay as shown in Fig. 1. System 1 and System 2 are
the two remote systems that are coupled over the network,
where the network is considered as a pure, constant delay.
If the delay from System 1 to System 2 and from System
2 to System 1 are denoted with td1 and td2, respectively,
then there is a total delay of td1 + td2 between System 1
sending out a signal to and receiving the response from
System 2. This delay distorts the system dynamics and
reduces performance. It may even cause instability.

To alleviate the negative impact of communication delay,
a predictor-based framework as illustrated in Fig. 2 is
considered. The site of System 1 contains a predictor for
System 2 that aims to predict the non-delayed response
of System 2. Instead of interacting with System 2 di-
rectly over the network, System 1 interacts with System
2 indirectly through its predictor and without delay. The
System 2 Predictor receives the information about System
2 with the delay td2. Ensuring that the System 2 Predictor
can track the outputs of System 2 satisfactorily despite
the delay is the problem of interest. A similar predictor
structure applies to the site of System 2, as well.

Assume that System 1 and System 2 are both nonlinear
systems of the form:

ẋf (t) = f(xf (t)) + g(xf (t))uf (t) (1)

where xf (t) and uf (t) are the states and inputs of the
system, and f(·) and g(·) are nonlinear functions. The

System 1 System 2Delay

Fig. 1. A generic networked system with communication
delay

System 1

System 2

System 2 Predictor

System 1 Predictor

Delay Delay
1d
t 2d

t

( ) ( )1 1
,

d d
x t x tɺ

( ) ( )2 2
,

d d
x t x tɺ

Fig. 2. Predictor-based framework applied to two systems
separated by a pure delay

subscript f is introduced to distinguish the full state vector
xf (t) from the state vector xd(t), xd ⊆ xf , that contains
only the states related to the calculation of the coupling
signals; i.e., the signals that are communicated over the
network to establish the coupling between the remote
systems. Note that when the predictors are introduced
(Fig. 2), xd(t) and its derivative ẋd(t) are communicated
over the network instead of the coupling signals, and the
predictors are used to estimate the non-delayed coupling
signals according to the following dynamic equations (Tan-
don et al., 2013):

ẋ(t) = ẋd(t− td)− λ(x(t− td)− xd(t− td))

y(t) = h(x(t))
(2)

where td denotes the communication delay, and xd(t− td)
and ẋd(t − td) are the delayed state and state derivative
vectors from the remote system that are considered as
the inputs of the predictor. x(t) is the state vector of the
predictor itself. y(t) is the output equation of the predictor,
which yields an estimate of the non-delayed response of the
remote system. λ is the only design parameter introduced
in the predictor. Assuming h(·) is perfectly known, the
goal of the predictor is to drive its states, x(t), as close
as possible to the coupling-related states of the remote
system, xd(t). Note that no knowledge about the system
dynamics is used in the predictor; i.e., neither f(·), nor
g(·) appears in (2).

The stability analysis of this predictor was also addressed
in (Tandon et al., 2013) for constant delays. The conclu-
sion of that analysis is that asymptotic stability of the
predictor is guaranteed for constant delays if and only if
the following relationship holds:

0 ≤ λ <
π

2td
(3)

3. FREQUENCY DOMAIN ANALYSIS

The stability criterion (3) is useful to choose a λ for a given
time delay, td, such that the predictor is stable. However,
it does not provide any insight into the performance of
the predictor. Therefore, this section provides a frequency-
domain analysis for a steady-state performance evaluation
of the predictor.

Consider Fig. 3, where the state tracking error between
the predictor state and remote system state is given by

x̃(t) = xd(t)− x(t) (4)

Ideally, the state tracking error should be zero to com-
pletely eliminate the delay effect. Substituting (2) into the
time derivative of (4), the following results can be derived:
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˙̃x(t) = −ẋ(t) + ẋd(t)

= −ẋd(t− td) + λ(x(t− td)− xd(t− td)) + ẋd(t)

= −ẋd(t− td)− λx̃(t− td) + ẋd(t)

= −λx̃(t− td) +
d

dt
û(t)

(5)
where û(t) is the coupling error over the communication
channel and is defined as:

û(t)
∆
= xd(t)− xd(t− td) (6)

Then, the following transfer function from the input û(t)
to the output x̃(t) can be obtained:

X̃(s)

Û(s)
=

s

s+ λe−tds
(7)

A good choice of the design parameter, λ, should not
only guarantee the predictor’s stability, but also minimize
x̃(t). From a frequency-domain perspective, the gain of
the transfer function (7) should be be less than one at all
frequencies where it is desired to attenuate the coupling
error, û. If |X̃(s)/Û(s)| > 1 at a given frequency, then the
coupling error at that frequency is amplified, which could
lead to a bad predictor performance even if the predictor
is stable.

The Bode plots of (7) for various values of td and λ are
shown in Fig. 4 and 5. All {λ, td} pairs shown satisfy the
stability criterion (3). A number of observations can be
made in these figures regarding the performance charac-
teristics of the predictor. First, Fig. 4 illustrates that the
state tracking performance is better at low frequencies for
larger λ values. However, it is not always the case that
larger λ gives better state tracking. Namely, within the
range of about 90 rad/s to 200 rad/s, small λ values may
be a better choice for this example delay value, since larger
λ values lead to an overshoot above 0dB in the magnitude
plot. Furthermore, at higher frequencies, the predictor is
less effective in terms of attenuating the state tracking
error, since the magnitude remains close to 0dB regardless
of the λ value chosen, i.e., |X̃(s)/Û(s)| ≈ 1. Finally, Fig. 5
shows that it is more difficult for the proposed predictor
to be effective as the delay, td, becomes larger, since the
frequency range corresponding to a magnitude smaller
than 0dB becomes smaller as delay increases.

Thus, (7) establishes the relationship between the steady-
state performance of the predictor, its design parameter, λ,
and the time delay, td. Hence, this analysis is important to
understand some fundamental, frequency-domain perfor-
mance characteristics of the predictor. It is still unknown,
however, how the predictor will perform in transient when
introduced into a system as shown in Fig. 2. This motivates
the case study in the next section.
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4. CASE STUDY

A case study is performed in this section to validate the
analysis above and also gain some insight into the transient
performance of the predictor.

Consider the example system shown in Fig. 6. This exam-
ple simulates a networked motor-shaft-gear system, where
System 1 includes a DC motor, a pair of gears, two shafts
and two bearings. A motor voltage, E, is given to drive the
DC motor, which rotates the motor shaft connected to a
gear pair. The output shaft gives a shaft torque. Bearings
are mounted on both shafts; therefore, viscous dampings
Rv1 and Rv2 are introduced for the motor shaft and the
output shaft, respectively. The compliance of the motor
shaft is neglected, whereas the compliance of the output
shaft is taken into account. System 2 consists of a gear
pair, a shaft, a fly wheel and two bearings. The input is
the shaft torque from System 1, which drives the gear pair.
The gear pair drives the shaft, which is connected to a
fly wheel. There are two bearings, with viscous frictions
Rv and Rv4, at both ends of this shaft. There is viscous
damping, Rv3, along with the gear pair. System 1 needs
shaft speed, ωs, from the remote site and System 2 needs
shaft torque, Ts, from the remote site. The communication
delay between the systems is td = 12 ms. The output of
interest of the entire system is the difference of the angular
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˙̃x(t) = −ẋ(t) + ẋd(t)

= −ẋd(t− td) + λ(x(t− td)− xd(t− td)) + ẋd(t)

= −ẋd(t− td)− λx̃(t− td) + ẋd(t)

= −λx̃(t− td) +
d

dt
û(t)

(5)
where û(t) is the coupling error over the communication
channel and is defined as:

û(t)
∆
= xd(t)− xd(t− td) (6)

Then, the following transfer function from the input û(t)
to the output x̃(t) can be obtained:

X̃(s)

Û(s)
=

s

s+ λe−tds
(7)

A good choice of the design parameter, λ, should not
only guarantee the predictor’s stability, but also minimize
x̃(t). From a frequency-domain perspective, the gain of
the transfer function (7) should be be less than one at all
frequencies where it is desired to attenuate the coupling
error, û. If |X̃(s)/Û(s)| > 1 at a given frequency, then the
coupling error at that frequency is amplified, which could
lead to a bad predictor performance even if the predictor
is stable.

The Bode plots of (7) for various values of td and λ are
shown in Fig. 4 and 5. All {λ, td} pairs shown satisfy the
stability criterion (3). A number of observations can be
made in these figures regarding the performance charac-
teristics of the predictor. First, Fig. 4 illustrates that the
state tracking performance is better at low frequencies for
larger λ values. However, it is not always the case that
larger λ gives better state tracking. Namely, within the
range of about 90 rad/s to 200 rad/s, small λ values may
be a better choice for this example delay value, since larger
λ values lead to an overshoot above 0dB in the magnitude
plot. Furthermore, at higher frequencies, the predictor is
less effective in terms of attenuating the state tracking
error, since the magnitude remains close to 0dB regardless
of the λ value chosen, i.e., |X̃(s)/Û(s)| ≈ 1. Finally, Fig. 5
shows that it is more difficult for the proposed predictor
to be effective as the delay, td, becomes larger, since the
frequency range corresponding to a magnitude smaller
than 0dB becomes smaller as delay increases.

Thus, (7) establishes the relationship between the steady-
state performance of the predictor, its design parameter, λ,
and the time delay, td. Hence, this analysis is important to
understand some fundamental, frequency-domain perfor-
mance characteristics of the predictor. It is still unknown,
however, how the predictor will perform in transient when
introduced into a system as shown in Fig. 2. This motivates
the case study in the next section.
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4. CASE STUDY

A case study is performed in this section to validate the
analysis above and also gain some insight into the transient
performance of the predictor.

Consider the example system shown in Fig. 6. This exam-
ple simulates a networked motor-shaft-gear system, where
System 1 includes a DC motor, a pair of gears, two shafts
and two bearings. A motor voltage, E, is given to drive the
DC motor, which rotates the motor shaft connected to a
gear pair. The output shaft gives a shaft torque. Bearings
are mounted on both shafts; therefore, viscous dampings
Rv1 and Rv2 are introduced for the motor shaft and the
output shaft, respectively. The compliance of the motor
shaft is neglected, whereas the compliance of the output
shaft is taken into account. System 2 consists of a gear
pair, a shaft, a fly wheel and two bearings. The input is
the shaft torque from System 1, which drives the gear pair.
The gear pair drives the shaft, which is connected to a
fly wheel. There are two bearings, with viscous frictions
Rv and Rv4, at both ends of this shaft. There is viscous
damping, Rv3, along with the gear pair. System 1 needs
shaft speed, ωs, from the remote site and System 2 needs
shaft torque, Ts, from the remote site. The communication
delay between the systems is td = 12 ms. The output of
interest of the entire system is the difference of the angular
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displacement of the two ends of the output shaft in System
1, ∆θ. The dynamics of the individual systems are given
as:

System 1:[
ẋ1,d

ẋ2,f

]
=

[
0 500

−0.56 −1.5

] [
x1,d

x2,f

]
+

[
0 −1

0.00074 0

] [
E
ωs

]

y1,d = Ts = 10x1,d

(8)
System 2:

ẋ3,d = −0.13x3,d + 0.28Ts

y2,d = ωs = 20x3,d
(9)

The Bode plots of System 1 and System 2 are shown in
Fig. 7. Both systems act like low-pass filters.

The coupling-related states for System 1 and System 2
are x1,d and x3,d, respectively. With the coupling signal
output equations for System 1 and System 2 known, the
equations for the two predictors are given by:

System 1 Predictor:

ẋ1(t) = ẋ1,d(t− td)− λ(x1(t− td)− x1,d(t− td))
y1(t) = 10x1(t)

(10)

ω (rad/s) 1 10 30 100 400

p λ = 0 8.2 10.5 11.3 8.3 8.2

pn

λ = 15 26.6% 26.6% 27.7% 26.7% 26.6%
λ = 30 7.8% 8.1% 9.0% 7.8% 7.8%
λ = 60 3.3% 3.6% 4.2% 3.3% 3.3%
λ = 120 1.6% 1.7% 2.0% 1.6% 1.6%

Table 1. Performance metrics for different λ
values and excitation frequencies over a sim-
ulation time window of 80s; a smaller metric

value indicates better performance.

System 2 Predictor:

ẋ3(t) = ẋ3,d(t− td)− λ(x3(t− td)− x3,d(t− td))
y2(t) = 20x3(t)

(11)

Note that the same λ is used in this case study in both
predictors only for simplicity. In general, different values
can be used.

To characterize the time-domain performance of the pre-
dictors, the 2-norm of the differences between the simu-
lation results with predictors and the simulation results
for the ideal case (i.e., when there is no communication
delay) is used. To characterize the performance improve-
ment relative to the case when predictors are not used, a
normalized version of the performance metric is also con-
sidered, where normalization is done with respect to the 2-
norm of the simulation results for the delayed case without
predictors. Mathematically, the performance metric p and
its normalized version pn are given as:

p = ||r − ri||2, pn =
||r − ri||2
||rd − ri||2

(12)

where r is the simulation output trajectory vector (in this
case, r is ∆θ) with subscripts i and d standing for the
ideal and delayed cases without predictors, respectively.
Best performance is achieved when p = pn = 0; i.e.,
when the impact of delay is completely attenuated. pn > 1
would mean that the predictors worsen the performance,
and pn < 1 would mean that the predictors improve the
performance compared to the case when predictors are not
used.

The simulation is run for 80s using a sinusoidal voltage
input E = 50sin(ωt)+50 volts and zero initial conditions.
Performance metrics pn and p for various ω and λ values
are summarized in Table 1. Note that all λ values yield
stable predictors according to (3). λ = 0 corresponds to
the case when predictors are not used. The predictors
are effective at all excitation frequencies tested and, in
general, a larger λ value corresponds to better predictor
performance in terms of attenuating the effect of delay
as can be seen by the smaller pn values. Two specific ω
values will be discussed further to aid with the comparison
between the frequency-domain analysis of Section 3 and
the time-domain simulation results.

When ω is 1rad/s, the output of interest, ∆θ, for the
ideal case (no delay), delayed case, and delayed case with
predictors (λ = 15 and λ = 120) is shown in Fig. 8
for the first 9s. With delay introduced into the system,
the output of interest deviates significantly from the ideal
case. When predictors are added into the system, the delay
effect is reduced, with a larger λ value leading to a better
performance.
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The state tracking error for the System 2 Predictor is
shown in Fig. 9 for two λ values. Note that for different λ
values, the coupling errors may be different. Fig. 9 shows
that with the larger λ value, the predictor gives a faster
state tracking response, and the ratio of the magnitude
of state tracking error to the magnitude of coupling error
becomes smaller in steady state, which is consistent with
the frequency domain analysis in Section 3.

The same analysis also showed, however, that at higher
frequencies the predictors would be less effective in terms
of reducing the coupling error. Nevertheless, in this case
study, pn is reduced as effectively even when ω is larger.
Here, the results obtained with ω = 100 rad/s will be
used as an example to explain the reason behind this
observation.

For this particular frequency, according to Fig. 4, using
λ = 15 does not make much difference in the coupling
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Fig. 10. System 2 predictor performance for ω = 100 rad/s

error, whereas λ = 120 yields a steady-state performance
that is even worse than the case without any predictors.
Indeed, the coupling and state tracking errors shown
in Fig. 10 confirm this analysis. In steady state, the
amplitude of the coupling and state tracking errors are
almost the same for λ = 15, and state tracking error is
worse than the coupling error for λ = 120. The reason
why the predictors are still effective in terms of pn is
because of the combination of two facts. The first fact
is that pn captures the transient response, as well. The
transient response does not only include the excitation
frequency itself, but also the lower frequencies, where the
predictors are effective. The second fact is the low-pass-
filter nature of the systems, which places more emphasis on
the lower frequency performance and attenuates the higher
frequency signals. Thus, even though the performance of
the predictors is very limited at higher frequencies, even
amplifying the coupling errors for certain λ values, this
reduced performance does not have a significant impact on
the system response. Fig. 11 shows the output of interest
for ω = 100 rad/s for the first 9s of the simulation to
highlight the transient performance of the predictors.

Fig. 12 shows the coupling error trajectory for ω =
100 rad/s when the predictors are not used. Note that
without the predictors the convergence speed to steady
state is much slower compared to Fig. 10. Fig. 10 also
shows that a higher λ value gives a faster response, even
though it leads to a higher steady-state error. Hence,
depending on the frequency, there may be a trade-off
between faster transient response and lower steady-state
error.

This case study illustrates that even though the frequency-
domain analysis in Section 3 points out a limited steady-
state performance of the predictors at higher frequencies,
the predictors may still be helpful, especially if those
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The state tracking error for the System 2 Predictor is
shown in Fig. 9 for two λ values. Note that for different λ
values, the coupling errors may be different. Fig. 9 shows
that with the larger λ value, the predictor gives a faster
state tracking response, and the ratio of the magnitude
of state tracking error to the magnitude of coupling error
becomes smaller in steady state, which is consistent with
the frequency domain analysis in Section 3.

The same analysis also showed, however, that at higher
frequencies the predictors would be less effective in terms
of reducing the coupling error. Nevertheless, in this case
study, pn is reduced as effectively even when ω is larger.
Here, the results obtained with ω = 100 rad/s will be
used as an example to explain the reason behind this
observation.

For this particular frequency, according to Fig. 4, using
λ = 15 does not make much difference in the coupling
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error, whereas λ = 120 yields a steady-state performance
that is even worse than the case without any predictors.
Indeed, the coupling and state tracking errors shown
in Fig. 10 confirm this analysis. In steady state, the
amplitude of the coupling and state tracking errors are
almost the same for λ = 15, and state tracking error is
worse than the coupling error for λ = 120. The reason
why the predictors are still effective in terms of pn is
because of the combination of two facts. The first fact
is that pn captures the transient response, as well. The
transient response does not only include the excitation
frequency itself, but also the lower frequencies, where the
predictors are effective. The second fact is the low-pass-
filter nature of the systems, which places more emphasis on
the lower frequency performance and attenuates the higher
frequency signals. Thus, even though the performance of
the predictors is very limited at higher frequencies, even
amplifying the coupling errors for certain λ values, this
reduced performance does not have a significant impact on
the system response. Fig. 11 shows the output of interest
for ω = 100 rad/s for the first 9s of the simulation to
highlight the transient performance of the predictors.

Fig. 12 shows the coupling error trajectory for ω =
100 rad/s when the predictors are not used. Note that
without the predictors the convergence speed to steady
state is much slower compared to Fig. 10. Fig. 10 also
shows that a higher λ value gives a faster response, even
though it leads to a higher steady-state error. Hence,
depending on the frequency, there may be a trade-off
between faster transient response and lower steady-state
error.

This case study illustrates that even though the frequency-
domain analysis in Section 3 points out a limited steady-
state performance of the predictors at higher frequencies,
the predictors may still be helpful, especially if those
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higher frequencies are beyond the system’s bandwidth and
the transient response is of interest.

5. CONCLUSION

A frequency-domain performance analysis is provided for a
model-free predictor framework to compensate for commu-
nication delays in networked systems. A networked motor-
gear-shaft system has been used as an example to further
study the time-domain performance of the framework in
simulation. The analysis provides insight into the relation-
ship between the steady-state performance of the predic-
tor, its design parameter, and time-delays, and thus lays
out its fundamental performance characteristics. The case
study confirms this analysis, but also illustrates the time-
domain, transient performance of the predictor. The main
conclusion is that the predictor has significant potential
to attenuate the negative impact of delays, especially if
the systems exhibit a low-pass-filter type behavior that
puts more emphasis on the performance at lower frequen-
cies and thus makes the performance limitations of the
predictor at higher frequencies less consequential. These
results encourage further research to fully develop and
understand this predictor framework. Performance under
stochastic delays is of particular interest. Future work also
needs to focus on closed-loop stability, as the stability of
the predictor does not automatically guarantee closed-loop
stability.
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