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a b s t r a c t

Void strengthening in crystalline materials refers to the increase in yield stress due to the impediment of
dislocation motion by voids. Dislocation dynamics (DD) is a modeling method well suited to capture the
physics, length scales, and time scales associated with void strengthening. However, previous DD simu-
lation of dislocation–void interactions have been unable to accurately account for the strong image forces
acting on the dislocation due to the void’s free surface. In this article, we employ a finite-element-based
DD method to determine the obstacle strength of voids, defined as the critical resolved shear stress for a
dislocation to glide past an array of voids. Our results demonstrate that the attractive image forces
between the dislocation and free surface significantly reduce the obstacle strength of voids. Effects of sur-
face mobility and stress concentrations around the void are also explored and are shown to have minimal
effect on the critical stress. Finally, a new model relating void size and spacing to obstacle strength is
proposed.

Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

1. Introduction

The plastic deformation of crystalline materials is primarily
governed by the evolution of dislocations. Interactions of disloca-
tions with atomic defects and microstructural features are known
to significantly affect dislocation motion, altering the macroscopic
mechanical response. Voids, frequently introduced during process-
ing, additive manufacturing, or irradiation, are one such feature
that has been found experimentally to increase yield strength with
increasing void density [1,2]. The increased yield strength is pri-
marily attributed to the pinning of dislocations at the voids [2].
Consequently, the strength of crystalline material is dependent
on the obstacle strength of the void configuration, defined as the
magnitude of stress necessary for a dislocation to bypass a void
array. Despite the fundamental importance of the above
void-strengthening in determining the material response in porous
crystals, few accurate models exist.

Several studies of the interaction of dislocations and voids have
been carried out by means of molecular dynamics (MD) [3–8].
These studies have provided tremendous insight into bypass mech-
anisms at the atomic scale, such as glide [3], climb [4], and inertial
effects [7]. However, void sizes directly accessible to MD are typi-
cally in the range of 1–6 nm, whereas corresponding void sizes

found in crystalline materials commonly range from tens of
nanometers to microns [9–13]. Furthermore, MD, due to its limita-
tions in the size of the computational domain, can frequently only
be applied to modeling a single void in a periodic array of voids.
Such an idealized arrangement of voids is unlikely to provide a sta-
tistically representative characterization of plasticity in crystals
with porosity. Finally, temporal scales characteristic to MD require
strain rates on the order of 106–109 1/s, well outside of the range
encountered in typical applications.

In contrast with MD, dislocation dynamics (DD) is a more suit-
able choice for studying yield strength and early stages of strain
hardening at larger length and time scales. DD has been shown
capable of capturing the strengthening mechanisms due to interac-
tion of dislocations with other defects [14–16]. However, modeling
of voids by means of DD has been challenging due to the need to
account for the presence of surfaces. Orowan [17] was the first to
explicitly model the interaction of dislocations with other defects,
namely impenetrable inclusions where free surfaces are not appli-
cable. Subsequently, Bacon, Kocks, and Scattergood [18] expanded
Orowan’s model to incorporate dislocation self-interactions.
According to this model, the critical resolved shear stress, sc ,
required for an edge dislocation to bypass a periodic array of
impenetrable inclusions is given by

sc ¼ lb
2pL

ln
D
b

 !
þ D

" #
ð1Þ
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where l is the shear modulus, b the magnitude of the Burgers vec-

tor, D the void diameter, L the void spacing, D ¼ ðD�1 þ L�1Þ�1
, and

D ¼ 0:7. Scattergood and Bacon [19] extended this model further,
replacing impenetrable inclusions with voids. Their model yielded
the same functional form of Eq. (1), albeit with D ¼ 1:52. At present,
the model of Scattergood and Bacon is widely accepted for model-
ing of the obstacle strength of voids. However, Scattergood and
Bacon openly discuss a number of significant simplifications in their
model. First and foremost, the image forces which account for the
interaction between the dislocation and the free surface are only
accounted for at the dislocation-surface intersection point and are
neglected otherwise. Furthermore, the effect of the free surface is
approximated by means of the simplified geometry of a half-
space. In addition, the applied stress field is assumed to be uniform,
ignoring the effect of stress concentrations. Finally, mobility of the
dislocation along the void’s free surface is modified via a surface
energy term without a systematic study of its effect on sc .

Before DD can be reliably applied to study large scale void-
strengthening effects at high void and dislocation densities, it is
important to accurately model the obstacle strength of voids in
idealized geometries, such as a periodic array. Therefore, the focus
of this article is twofold. First, we re-examine the approximations
made by Scattergood and Bacon [19] and determine their effects
on sc . The development of advanced computational tools for com-
puting image forces with arbitrary geometries [20,21] enables us to
improve upon these previous predictions with more accurate treat-
ment of image forces. An understanding of the various approxima-
tions is a critical step towards performing large scale studies that
are both physically accurate and computationally tractable.
Second, using a more accurate treatment of the surface effects,
we present a new model for the obstacle strength of voids.

2. Methodology

2.1. Simulation procedure

Modeling of dislocation dynamics (DD) with surface effects is
performed by coupling a finite element method (FEM) solver
[20,21] to the ParaDiS DD simulator [22] following the methodol-
ogy of van der Giessen and Needleman [23]. A detailed description
of the DD and FEM algorithms can be found in Refs. [22,20], respec-
tively. We briefly discuss the main features specific to modeling
dislocation–void interactions.

The focus of this work is to identify the minimum resolved
shear stress (sc) required for a dislocation to bypass a periodic
array of voids. To this end, we follow the model setup of Scatter-
good and Bacon [19], shown in Fig. 1, where an infinite straight
edge dislocation is placed near a 1D array of voids. A shear stress
(rext

xy ) is applied to drive the dislocation towards the void array. If
an equilibrium configuration exists in which the dislocation
remains attached to the void, rext

xy is increased until the dislocation
breaks away and bypasses the void array. sc is determined when
the value of the rext

xy to bypass the voids is within 1% of the stress
to achieve equilibrium. We assume that a static equilibrium has
been reached when the peak of the bowed-out dislocation line
has not advanced for at least 104 time steps. Simulations with a
stricter criteria requiring no advancement for 105 time steps show
no effect on sc .

Peach–Koehler forces are computed on each dislocation seg-
ment. The forces include contributions from the externally applied

stress (f ext), image stress (f img), and the stress due to all dislocation

segments in the system (f disl). The calculation of f ext in previous DD
simulations with voids have assumed only a uniform applied stress
field [19]. However, under an applied stress, stress concentrations

occur around the void and alter the local stress field. In order to
determine the effect of these stress concentrations, we compare
the results of sc using a uniform applied stress to the results explic-

itly including the stress concentrations. The computation of f disl is
performed in ParaDiS using the non-singular dislocation stress
field [24] with a core radius of 1b.

Image forces are required due to the presence of voids and the
resulting deviation of dislocation stress field from that in an infi-
nite body. Enforcement of traction free boundary conditions on
the surfaces and solving the resulting linear elastic boundary value
problem (BVP) provides the corrective image stress field. The
image stress is then superimposed with the stress field due to
the dislocations in an infinite body [23]. Conservation of the Burg-
ers vector is assured by the introduction of virtual segments
[25,20] extending from the surface-piercing dislocations to the
center of the void [26] (c.f Fig. 1).

In order to avoid the high computational expense of numeri-
cally calculating the image stress field, analytic solutions for the
image stress and resulting image force have been developed for
some simple geometries. For example, a solution for a straight,
semi-infinite dislocation piercing the free surface of a half space
was introduced by Lothe [27]. This solution yields a particularly
simple dislocation equilibrium condition [19]

E cosðhÞ � E0 sinðhÞ ¼ 0 ð2Þ

where E is the strain energy per unit length of a dislocation, h is the
angle between the dislocation line and the free surface as shown in
Fig. 2, and E0 ¼ @E=@h is the orientation derivative of E. In Fig. 2b, we
illustrate how the left hand side of Eq. (2) can be used to approxi-
mate the image forces acting on the dislocation at the surface-
dislocation intersection point. Further details on how the Lothe
equation is employed to approximate the image forces from a void

Fig. 1. Schematic of the simulation model setup. Virtual segments are represented
by the dotted lines connecting the dislocation line to the center of the voids.
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may be found in [19]. We note that when using the Lothe equation,
not only is the spherical void surface approximated by a planar half-
space, but also the image forces only act where the dislocation
intersects the surface. Therefore, the image forces acting on the rest
of the dislocation line are ignored. Here, we compare the Lothe
approximation to the FEM solution for image stresses, where the
latter includes image forces acting on the entire dislocation line.
Simulations combining the Lothe and FEM image forces are also
performed to demonstrate the benefits of this combined method
in resolving the images forces with larger FEM element sizes.

The velocities of the dislocations are computed using a linear
mobility of the form v ¼ B�1f where v is the velocity, f ¼ f extþ
f img þ f disl is the total Peach–Koehler force, and B is the drag coeffi-
cient. When seeking equilibrium configurations, B only affects the
speed at which the dislocation approaches the equilibrium at f ¼ 0.
Therefore, we set B equal to the identity matrix for all simulations
in this article. Since dislocation motion is limited to the glide plane,
climb and cross-slip mechanisms are not considered. Moreover,
due to the fact that motion is restricted to a single glide plane,
the results are independent of crystal structure. Thus, a simple
cubic lattice structure is assumed. The material properties corre-
spond to those of aluminum with shear modulus l ¼ 26:6 GPa,
Poisson’s ratio m ¼ 0:334, and Burgers vector b ¼ 2:862 Å.

Dislocation mobility at the free surface warrants special consid-
erations. In general, lower dislocation mobility is expected at the
free surface, as indicated by MD studies [3,28,29]. In order to
account for the above effect, we follow Scattergood and Bacon
[19] and add an energy barrier to dislocation motion along the sur-
face. The height of this barrier is proportional to the surface energy
(cs) and corresponds to the resistance experienced by the disloca-
tion from creating a step along the surface. In Scattergood and
Bacon, cs was varied between 0 and 3 in units of Gb=4p. In this
work, we aim to identify the upper and lower bounds on the effect
of cs. We first perform simulations with cs ¼ 0, as done in Scatter-
good and Bacon, to model conditions where there is no added bar-
rier to dislocation glide on the surface. We then perform
simulations where the barrier to glide is such that no force can
overcome it (cs ! 1), which is equivalent to pinning the disloca-
tion at the surface intersection point. The latter should provide a
more accurate upper bound than the large, but finite, value
cs ¼ 3Gb=4p used in Scattergood and Bacon.

2.2. Model geometry

A schematic of the model setup is included in Fig. 1. The model
setup consists of three voids equally spaced along the z-axis. Sim-
ulations performed with additional voids show no effect on sc ,

therefore we treat this configuration as representative of an infi-
nite array. The DD simulation domain is a cube with an edge length
twice the center-to-center spacing between voids (C). Periodic
boundary conditions are applied along the z-axis as to represent
an infinite dislocation approaching an infinite array of voids. The
FEM domain is a cube with an edge length of 4C. Simulations
involving larger FEM domains yield no change in the value of sc.
We note that while our FEM simulations do not include effects
from periodic images of the voids, simulations with longer void
arrays suggest these effects are not significant. Still, periodic
images of the dislocation line are considered during the evaluation

of f img and f disl.
Two different void diameters (D) of 50b and 500b are employed

to assess the effects of image stress, surface mobility, and stress
concentrations in Sections 3.2 and 3.3. The ratios of C=D for these
simulations are 2.5 and 20. Additional void sizes and spacings
are included in the final set of simulations designed to determine
a new model for sc in Section 3.4. We list all void configurations
in Table 1.

At the onset of the simulation, an edge dislocation is placed at
x ¼ �D, with a Burgers vector b ¼ ½100�, line direction t ¼ ½001�,
and glide plane normal n ¼ ½010�. The dislocation is initially dis-
cretized into piecewise linear segments with a minimum segment
length of D=10. Segments are adaptively remeshed during the
course of the simulation as to accurately capture the curvature of
the dislocation. The maximum segment length is limited to
maxfD=5;C=20g.

3. Results and discussion

In this section, we present our results in identifying the
strengthening effect of voids as obstacles to dislocation glide. First,

Fig. 2. Illustration of Lothe approximation in which a dislocation line intersecting a void (a) is approximated as a straight, semi-infinite dislocation intersecting a half-space at
the same angle with respect to the surface normal (b).

Table 1
Void diameters (D) and center-to-center spacing (C) used throughout this work.
Harmonic mean defined as D ¼ DL=ðDþ LÞ where L ¼ C � D.

D [b] C [b] C/D D [b]

50 125 2.5 30
50 200 4 37.5
50 400 8 43.75
50 1000 20 47.5

150 375 2.5 90
150 600 4 112.5
150 1200 8 131.25
150 3000 20 142.5
500 1250 2.5 300
500 2000 4 375
500 4000 8 437.5
500 10000 20 475
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we determine the sensitivity of our results to the FEM element size,
illustrating the importance of accurately resolving the image stress
near the surface. We then determine the effect of multiple
approximations in the Scattergood–Bacon model for sc . Finally,
we propose a new model to determine the critical stress for a
dislocation to glide past an array of voids.

3.1. Mesh convergence

When using numerical methods to compute the image stress
field, it has been shown that high resolution is required to capture
the large stress gradients as dislocations approach the surface
[20,30,31,26]. We first examine the convergence in sc with respect
to FEM element size. Our meshes coarsen away from the void sur-
face, resulting in variable element sizes across the simulation
domain. Therefore, we take the element size on the void surface
(h) as our indicator of element size for a given mesh. The coarsest
mesh size is h=D ¼ 0:2. Higher resolution meshes are obtained
through global subdivision in which the size of all elements is
reduced by a factor of 2. All meshes considered here contain quad-
ratic tetrahedral elements.

Mesh convergence studies have been performed for multiple
void configurations in Table 1. However we focus on the configura-
tion of D ¼ 50b, C ¼ 1000b, which has demonstrated the highest
sensitivity with respect to the mesh size. The red squares in
Fig. 3 illustrate the convergence of sc with respect to h using
FEM to compute image forces. We observe that for h=D 6 0:1 each
subsequent mesh subdivision increases sc by less than 2%, indicat-
ing the results are relatively insensitive to the mesh size. In con-
trast, for h=D ¼ 0:2, sc is significantly underestimated, indicative
of strong mesh sensitivity in this range. Given that D is only 50b
in this simulation, these findings suggest that element sizes on
the order of b are required to achieve converged results. With DD
simulation sizes often on the order of 103b to 104b, this presents
a large computational challenge for accurately capturing image
forces.

The sensitivity of sc with respect to mesh size observed in Fig. 3
is due to the inability of the FEM mesh to resolve the large gradi-
ents of the image stress field at the surface. In an attempt to reduce
this sensitivity, we combine the image forces computed from FEM
with the image force determined through the Lothe approximation
at the surface-dislocation intersection point. We plot the mesh
sensitivity for this combined approach represented as the blue

triangles in Fig. 3. A significant reduction in the mesh sensitivity
can be observed as the difference in sc over three mesh subdivi-
sions from h=D ¼ 0:2 to h=D ¼ 0:025 is less than 3%. Furthermore,
the converged value of 14.55 MPa appears to be in excellent agree-
ment with the results of the highest resolution mesh using only
FEM to compute image forces. In all void configurations we exam-
ined, the combined method of FEM and Lothe provided the same
converged value of sc and exhibited lower mesh sensitivity. Thus,
the combined approach achieves higher accuracy in the image
force calculation with lower mesh resolution and reduced compu-
tational expense. We emphasize that this equivalence has only
been confirmed for quasistatic simulations to determine equilib-
rium configurations. The image forces on the surface-intersecting
dislocation node is included twice with this combined method.
The consistency in the resulting sc between the FEM-only and
combined methods suggests that both forces are acting towards
the same equilibrium configuration and the magnitude of the force
may not play an important role. Still, such behavior may not hold
true for dynamic simulations or cases where the force magnitude
determines events such as cross-slip, climb, or junction formation.
In all of the following simulations, h=D ¼ 0:1 and references to the
FEM method of image force calculation refer to the combined
method of FEM with Lothe, unless noted otherwise.

3.2. Image stress and surface mobility

The two primary approximations made in the Scattergood–
Bacon model are the Lothe approximation to represent image
forces and the arbitrary surface energy term to restrict motion of
the dislocation on the surface. In this section, we assess the effects
of these approximations on sc. The applied stress is still assumed to
be uniform, as the effect of stress concentrations is explored later.

The first comparison is between the Lothe approximation and
FEMwith no modification to the surface mobility (cs ¼ 0). The solid
red symbols in Fig. 4 indicate that for all four void configurations
the Lothe equation overestimates sc by approximately 20%. We
note that while no equations or tabulated values are provided by
Scattergood and Bacon [19] for sc when cs ¼ 0, our results show
good qualitative agreement with the results plotted in Ref. [19]
with cs ¼ 0.

Fig. 3. Convergence of sc with respect to FEM element size on the void’s surface (h)
for void configuration D ¼ 50b, C ¼ 1000b. The applied stress is uniform and
dislocation are free to glide along the surface (cs ¼ 0).

Fig. 4. Normalized sc as a function of void size and spacing illustrating the effect of
image force calculation method (Lothe vs. FEM) and surface mobility (unrestricted/
cs ¼ 0 vs. pinned/cs ! 1). The straight lines represent Eq. (1) with the values of the
fitted coefficient D indicated in the legend. Uniform applied stress is used in all
simulations.

J.C. Crone et al. / Acta Materialia 101 (2015) 40–47 43



Comparing the data represented by the empty squares and tri-
angles, we see the effect of image force calculation method with
dislocations pinned at the surface (cs ! 1). In these results, the
discrepancy between the FEM and Lothe methods is more pro-
nounced and varies with void size and spacing. The largest discrep-
ancy exists for D ¼ 50b, C ¼ 125b, where sc using the Lothe
approximation is twice the corresponding value using FEM. This
large disparity in sc can be attributed to the different conditions
required for the dislocation to move along the void surface when
the dislocation is pinned at the surface. These conditions are illus-
trated in Fig. 5 for the void configuration D ¼ 500b, C ¼ 1250b.
Under these circumstances, the dislocation is initially pinned at
x ¼ 0 with applied stress rext

xy ¼ 24 MPa, below sc for both image
force methods. Since the dislocation cannot glide along the surface,
the only way to move along the void periphery is for the disloca-
tion to bow-out until it intersects the surface farther along the
void. The thick red line in Fig. 5 indicates the equilibrium configu-
ration using the Lothe approximation. Here, we observe that rext

xy is
insufficient for the dislocation to reach the tangent condition and
the dislocation remains pinned at x ¼ 0. The thin blue lines labeled
(1) through (3) correspond to snapshots of the dislocation evolu-
tion when FEM image forces are applied under the same external
loading. Line (1) corresponds to the point where the upper end of
the dislocation is tangent to the surface, best illustrated in the
insert to Fig. 5. Despite the small bow-out of the entire dislocation
arm, the attractive image forces have pulled the dislocation
towards the surface. From line (2) we observe the point at which
the peak bow-out matches that from the Lothe simulation. Due
to the attractive image forces pulling the dislocation towards the
surface and along the void periphery, the radius of curvature is lar-
ger in the simulation with FEM image forces. The larger radius of
curvature allows the dislocation to bow-out farther under the

same applied stress. Image forces will then continue to pull the dis-
location into the surface, pushing the dislocation even farther
along the void periphery. As a result, we demonstrate in line (3)
that the equilibrium configuration with FEM image forces has a
significantly larger bow-out. In addition, the distance between
the ends of the dislocation line is longer since the dislocation has
been able to move along the void periphery. Similar to a Frank-
Read source, the larger distance between ends will lower the crit-
ical stress to reach the instability point. This mechanism of disloca-
tion motion on the surface is only captured when computing image
forces on the entire dislocation, whereas the Lothe approximation
only accounts for forces at the dislocation-surface intersection
point.

Comparing the data represented by empty and solid squares in
Fig. 4, we observe the effect of surface mobility with the Lothe
approximation for image forces. Similar to the results of Scatter-
good and Bacon, we note that adding resistance to glide on the sur-
face causes sc to align on a single straight line for all void
configurations. However, one noteworthy discrepancy between
our results and those of Scattergood and Bacon is that our values
of sc nearly fall along the line for Orowan stress (D ¼ 0:7) when
surface glide is restricted. In contrast, Scattergood and Bacon find
that voids become harder obstacles than impenetrable inclusions
with increasing resistance to glide on the surface. Their explana-
tion for this behavior is that the attractive dipole interaction
between the dislocation lines is weaker in the case of voids since
the trailing Orowan loop is not present. Our results, however, sug-
gest that the upper limit of sc for the Lothe approximation is sim-
ilar to that of Orowan looping. In both cases, the mechanism for
dislocation bypass occurs when the dislocation at channel width
L reaches the instability point of being tangent to the surface.
The slight increase in sc for voids, relative to the Orowan stress
could be due to the differences in dipole interactions, as suggested
by Scattergood and Bacon, but the effect appears to be much smal-
ler than originally reported.

Finally, the comparison of the data represented by the empty
and solid triangles in Fig. 4 demonstrates the effect of surface
mobility when full image forces are taken into account by means
of FEM. For small C, the surface mobility has no effect on sc. But,
as C increases, the difference between surface mobilities becomes
larger. Further work is required to determine why surface mobility
only affects sc for large void spacing.

In this section, we find that sc decreases by as much as a factor
of two when image forces are accurately accounted for by FEM. The
agreement between the FEM-only and combined FEM plus Lothe
methods, shown in Section 3.1, suggests that the difference in sc
between Lothe and FEM is not due to errors in the force value
obtained with the Lothe approximation. Instead, it is due to the fact
that image forces on the rest of the dislocation line are ignored. We
also find that the effect of dislocation mobility along the surface is
insignificant for small void spacing but increases with void spacing
when image forces are computed via FEM.

3.3. Stress concentrations

When the external load rext
xy is applied, stress concentrations

form around the voids. In previous studies to determine sc for both
voids[19] and impenetrable obstacles [18], the stress concentra-
tions around the obstacles have not been accounted for. Through
our FEM coupling, the effect of these stress concentrations can be
directly incorporated.

In Fig. 6, we compare the values of sc with and without the
stress concentrations. For simplicity, we only present the results
using FEM image forces with cs ¼ 0. However, the results and
conclusions are consistent across all combinations of image force

Fig. 5. Comparison of dislocation evolution with rext
xy ¼ 24 MPa between Lothe

approximation (red line) and FEM (blue lines) for image forces. Dislocation is
initially pinned at x ¼ 0. Void configuration corresponds to D ¼ 500b, C ¼ 1250b.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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calculation method and surface mobility. The effect of stress con-
centrations is found to be insignificant for larger values of C=D
(D ¼ 47:5 and 475). This result is consistent with the stress field
shown in Fig. 7a, where the effect of the stress concentrations is
negligible throughout most of the domain. For lower values of
C=D, we observe a 6% drop in sc , suggesting that, while there is
an effect of the stress concentrations when voids are close
together, the effect is small. Again, these results are consistent with
the stress contour in Fig. 7b, where the stress concentrations
increase the resolved shear stress by only 5–10% in most of the
simulation domain. While these results suggest that including
the effects due to stress concentrations are not significant in deter-
mining the strength of voids as obstacles to dislocation glide, we
note that stress concentrations have been shown to play an impor-
tant role in controlling dislocation evolution around voids such as
dislocation nucleation [32,33] and cross-slip [26].

3.4. Void strength model

Having determined the effect of image stress, surface mobility,
and stress concentrations on sc , we introduce a new model for the

obstacle strength of voids. Our parameter space of void sizes and
spacings is increased to include all configurations in Table 1. Image
forces are incorporated via the combined FEM with Lothe method
with an FEM element size on the void surface of D/10. This setup
has been shown to be sufficient for mesh convergence in Sec-
tion 3.1. In order to determine the upper and lower bounds on
how surface mobility affects sc , we perform simulations with dis-
locations which are free to glide along the surface (cs ¼ 0) and with
dislocation pinned on the surface (cs ! 1). Stress concentrations
are also included.

The normalized value of sc for each void configuration is
included in Fig. 8 along with Eq. (1) for impenetrable inclusions
(D ¼ 0:7) and voids (D ¼ 1:52). As observed in Section 3.2, our
results reveal that Eq. (1) significantly overestimates sc , especially
when D ¼ 1:52. Furthermore, our results do not fall onto a single
straight line, suggesting that the normalization of sc by lb=L does
not accurately represent the relationship between sc;D, and L. The
model of Bacon, Kocks, and Scattergood [18] developed for impen-
etrable objects (Eq. (1) with D ¼ 0:7) correctly predicts the depen-
dence of the obstacle strength on lb=L since the instability occurs
when the width of the dislocation is equal to L. However, as

Fig. 6. Normalized sc as a function of void size and spacing illustrating the effect of
stress concentrations. Image forces were computed using FEM and dislocations
were free to move along the voids surface.

Fig. 7. Stress contours along the y ¼ 0 plane, showing areas of increased shear stress (rxy) relative to the far field loading (rext
xy ). rxy is the only component of stress responsible

for Peach–Koehler forces on the glide plane.

Fig. 8. Normalized sc as a function of void size and spacing. All simulations use FEM
to compute image forces and include stress concentrations. Surface mobilities are
labeled accordingly. The straight lines correspond to Eq. (1) with the values of the
fitted coefficient D indicated in the legend.
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illustrated in Fig. 5, this instability point occurs when the dislocation
width is greater than L in the case of voids. As shown schematically
in Fig. 1, we define the width of the dislocation arms at the insta-
bility point to be Leff , where the instability point is approximated as
the equilibrium configuration with rext

xy ¼ 0:99sc .
In our simulations, we find that the average value of Leff is

approximately Lþ R where R is the void radius. In Fig. 9, we com-
pare the computed value of Leff with Lþ R and show that
Leff � Lþ R for all void configurations and for both types of surface
mobilities. The only configurations where the difference between
the compute Leff and Lþ R is more than 5% are D ¼ 500b,
C ¼ 1250b and D ¼ 500b, C ¼ 2000b. However, Leff is still within
10% of Lþ R in these configurations. By re-normalizing sc by
lb=ðLþ RÞ in Fig. 10, we show that sc falls on a straight line, with

slope approximately ð2pÞ�1, for all void configurations. Given these
findings, a modified equation for the obstacle strength of voids can
be expressed as

sc ¼ lb
2pðLþ RÞ ln

D
b

 !
ð3Þ

We note that D is still calculated using the value of L. However, we
find the effect of replacing L with Lþ R to be insignificant on the
value of lnðD=bÞ. We also emphasize that no fitted coefficients, such
as the D term in Eq. (1), are employed in this model. Eq. (3) is rep-
resented in Fig. 10 as the solid line and is in excellent agreement
with our simulation results when the dislocations are pinned at
the surface. In simulations with the dislocations free to move along
the surface, we observe that the model diverges from the results
with increasing D. However, Eq. (3) remains within 15% of the com-
puted values for all void configurations and is able to capture the
correct dependence on void size and spacing.

While explicitly validating the bypass strength of void arrays is
beyond current experimental capabilities, a number of MD simula-
tions have been performed which can be used for comparison with
both previous models and our results. Some atomistic simulations
have compared favorably with the trends predicted by Eq. (1)
[5,6,34]. However, in many of these simulations dislocation climb
or cross-slip have been observed, which have been shown to alter
the depinning mechanisms and increase sc [35]. The void bypass
models presented in this article, as well as in Scattergood and
Bacon, explicitly neglect these mechanisms. Therefore, any correla-
tion with MD simulations that includes climb or cross-slip should
be serendipitous rather than an indication of the accuracy of the
model. Other MD results have indicated that Eq. (1) can signifi-
cantly overestimate the strength of voids as obstacles to disloca-
tion motion [3,7,36]. While Bitzek and Gumbsch [7] have shown
that inertial effects are one factor that reduces sc , our results sug-
gest that image forces also contribute to the reduction in sc , com-
pared to Eq. (1). The inclusion of cross-slip, climb, and inertia into
the DD model is needed in order to capture the depinning mecha-
nisms observed in many MD simulations. Inclusion of these phe-
nomena may also explain the strong temperature dependence of
sc observed in MD studies [35,34]. In addition, MD simulations
with larger void diameters are needed for comparisons at length
scales better suited for DD simulations.

4. Conclusions

In this article, we employ a coupled DD-FEM simulator to deter-
mine the strength of voids as obstacles to dislocation glide. Follow-
ing the classical model of Scattergood and Bacon, an infinite
dislocation is driven towards a one-dimensional array of voids as
to quantify the critical bypass stress. Many of the approximations
made in Scattergood and Bacon [19] with regards to the treatment
of the voids’ free surfaces are re-examined with the help of a more
accurate method for computing image forces. The main conclu-
sions of this article are as follows:

1. The Lothe approximation for image forces causes a significant
overestimation of the critical bypass stress, sc . This is due pri-
marily to the fact that the Lothe approximation only includes
the image force acting on the dislocation at the surface. The
FEM solution for image forces includes the interaction with
the entire dislocation line, which pulls the dislocation past the
void. This effect is strongest when dislocations are unable to
glide along the void surface due to high surface energy.

2. The effects of stress concentrations around the void are not sig-
nificant. A small reduction in sc of approximately 6% is observed
at high void densities while no effect is observed at lower void
densities.

3. Employing a combination of FEM solution and Lothe approxi-
mation to compute image forces provides the same accuracy
with coarser FEM element sizes. This provides substantial
reduction in the computational expense of the image force
calculation. However, we emphasize that this combined

Fig. 9. Comparison of length of the dislocation arm at instability point (Leff ) to
(Lþ R) for all void configurations.

Fig. 10. sc , re-normalized by lb=ðLþ RÞ as a function of void size and spacing. All
simulations use FEM to compute image forces and include stress concentrations.
Surface mobilities are labeled accordingly. The circles correspond to Eq. (1) with the
values of the fitted coefficient D indicated in the legend. The solid line corresponds
to the new model presented in Eq. (3).
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method is only proven to be equivalent for quasi-static simula-
tions and may not be true for dynamic simulations.

4. Our simulation results can be systematically characterized by a
new model for sc which eliminates many of the approximations
in the model of Scattergood and Bacon. The new model predicts
a significantly lower critical stress for dislocations to bypass an
array of voids and suggests that voids are weaker obstacles to
dislocation glide than impenetrable inclusions.
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