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Switchgrass, Panicum virgatum L., a perennial, warm-season grass native 

to North America, is a candidate for development as a bioenergy crop. 

Previously, warm-season grasses were considered to be relatively pest free in 

their native habitats. However, recent studies using the hemipteran family 

Aphididae have shown phloem-feeding insects can lead to significant injury in 

switchgrass. The objectives of this research were to: 1) gain physiological, 

biochemical, and anatomical insights into insect-bioenergy switchgrass 

interactions to determine potential insect resistance mechanisms among 

susceptible and resistant switchgrass genotypes; and 2) to generate and 

evaluate diverse segregating populations of switchgrass, both resistant and 

susceptible, to assess for insect herbivory.  

Recently, select aphids including greenbugs, Schizaphis graminum 

(Rondani), and yellow sugarcane aphids, Sipha flava (Forbes), have been 

identified as potential pests of switchgrass. However, limited research has been 

devoted to selecting insect-resistant switchgrasses and understanding the 
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physiological responses of susceptible and resistant switchgrasses to aphid 

feeding. Using a series of photosynthesis studies, differences in photosynthetic 

activity were detected among the switchgrasses evaluated in response to aphid 

feeding. Overall, the lowland ecotype (Kanlow) assimilated carbon dioxide more 

efficiently than the upland ecotype (Summer) and the hybrid KxS when exposed 

to aphid herbivory. These observations suggest the antibiotic population, Kanlow, 

has mechanisms similar to those observed in tolerant plant systems where 

changes in photosynthetic rates occurred in response to aphid herbivory.  

Feeding by greenbugs and yellow sugarcane aphids on plants can elicit a 

number of stress-related responses. Our studies investigated the accumulation of 

reactive oxygen species (ROS) scavenging enzymes and defensive response 

genes in resistant and susceptible switchgrass populations using biochemical 

protocols along with gene expression studies. Genes of interest involving 

greenbug-switchgrass interactions were identified from previous Illumina® Solexa 

data, specifically RNAseq. These data provide valuable insight into the 

physiological, biochemical, and anatomical response of switchgrass when 

challenged by cereal aphids. Furthermore, continued screening of susceptible 

and resistant switchgrass germplasm will help researchers better understand the 

defensive systems operating in segregating switchgrass populations. 
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CHAPTER 1: 

LITERATURE REVIEW 

Switchgrass 

 Switchgrass, Panicum virgatum L., is a perennial, polyploid, warm-season 

grass that is native to the North American tallgrass prairie east of the Rocky 

Mountains (Vogel 2004, Mitchell et al. 2008, 2012). Along with indiangrass, 

Sorghastrum nutans (L.) Nash, and big bluestem, Andropogon gerardii Vitman, 

switchgrass is considered one of the ‘big three’ grasses, which together, makeup 

the largest percentage of the tallgrass prairie (Bouton 2008). Highly adapted to 

the prairie environment, switchgrass can be grown from 20° north latitude to 55° 

north latitude and east of the Rocky Mountains (Moser and Vogel 1995, Vogel 

2004, Bouton 2008). Switchgrass can measure up to three meters in height, with 

many genotypes caespitose in appearance (they grow in dense clusters) 

producing short rhizomes (Vogel 2004, Bouton 2008). Switchgrass is 

characterized as an outcrossing species (Liu et al. 2013). Through time, 

switchgrass has evolved multiple, diverse populations that have led to significant 

variation and morphological diversity (Vogel et al. 2010, Zalapa et al. 2010, Lu et 

al. 2013). In switchgrass, the basic chromosome number is nine, although 

multiple ploidy levels exist with tetraploids (2n = 4x = 36) and octoploids (2n = 8x 

= 72) being the dominant ploidy level (Moser and Vogel 1995, Sanderson et al. 

1996, Bouton 2008). Switchgrass ploidy values range from 2n = 2x = 18 to 2n = 

12x  = 108 (Church 1940, Nielsen 1944). 
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Switchgrass is identified by two diverse ecotypes, lowland and upland, 

which can be identified based on chloroplant markers (Hultquist et al. 1997, 

Young et al. 2012). Characteristically, lowland ecotypes are found to be coarser, 

taller, and have adapted for better growth in lowland areas that may be exposed 

to flooding (Vogel 2004). Upland ecotypes, on the other hand, are typically 

associated with drier environments, and tend to have smaller leaves and lower 

biomass yields, but are more suitable for cattle grazing (Vogel 2004, Bartley et al. 

2013) 

Looking Forward: Switchgrass as a Bioenergy Feedstock 

 Until relatively recently, research has been highly concentrated on the use 

of switchgrass as a rangeland forage crop with efforts mainly centered on 

improving forage value and forage yield (Vogel 2004). However, switchgrass has 

recently been identified as a principal candidate for the expansion of herbaceous 

bioenergy production as outlined by the U.S. Department of Energy (US-DOE) 

(Vogel 1996, Vogel et al. 2002, Sarath et al. 2008). Biomass feedstocks are used 

in ethanol production from starch- and sugar-rich crops, such as maize (Zea 

mays L.). However, negative environmental impacts may result by producing 

ethanol with row crops. Generally, crops such as maize, are grown in input-

intensive agricultural environments that require high inputs of resources, such as 

nitrogen fertilization, which may lower the overall goal of reducing energy and 

carbon dioxide (CO2) efflux within the agricultural system (Jakob et al. 2009). 

Other indirect factors, such as drought and loss of biodiversity may lead to further 

(negative) environmental complications (AGMRC 2015, Conca 2015). Within the 
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past few years, the rivalry between the ethanol and food industry has become a 

significant social issue. In 2000, more than 90% of the United States’ corn supply 

went to feed the human population and livestock around the world, with only 5% 

used for ethanol production.  By 2013, 40% of the U.S. corn supply was used to 

produce ethanol, 45% to feed livestock, with 15% used in food and beverage 

(AGMRC 2015). On average, one bushel of corn can be used to produce 

approximately 11.4 liters (3 gallons) of ethanol (AGMRC 2015, Conca 2015). 

Conca (2015) estimates the U.S. could use over 492 billion liters (130 billion 

gallons) of gasoline in 2015. On the other hand, ethanol can also be produced 

from other plant sources, including the fermentation of sugars from plant cell wall 

carbohydrate polymers, namely cellulose and hemicellulose. Forage crops, such 

as switchgrass, can yield high levels of plant cell walls (Vogel 1996). As a result, 

dedicated bioenergy feedstocks such as switchgrass, miscanthus and sorghum, 

show promise as a future renewable energy solution by establishing a more 

economical and sustainable energy resource based on lower annual input 

requirements and by promoting a positive energy environmental balance (Hill et 

al. 2006, Rooney et al. 2007, Heaton et al. 2008).  

 Switchgrass has become a top candidate for bioenergy production 

because of several desirable characteristics: low water and nutrient 

requirements, suitability for growth on marginal lands, high productivity yields 

across diverse environments, positive environmental benefits, and compatibility 

with modern farming practices (Sanderson et al. 1996, 2004, McLaughlin et al. 

1999). In addition, because of its extensive and well developed root system, 
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switchgrass helps diminish soil erosion and runoff in marginal lands (i.e. 

waterways and terraces; McLaughlin and Walsh 1998). This in turn may help 

diminish the loss of soil nutrients, increase assimilation of soil carbon, and 

reduce grower dependence on agricultural chemicals (McLaughlin et al. 1994, 

Sanderson et al. 1996). With the use of herbaceous energy crops, like 

switchgrass, in agricultural systems, Hohenstein and Wright (1994) estimate a 

near 95% reduction in soil erosion when compared to traditional row crops. Along 

with reductions in soil erosion rates, data collected from across the U.S. suggest 

that soil texture and land quality do not appear to have a significant impact on 

switchgrass yield (Wullschleger et al. 2010).  

 Switchgrass yields can vary significantly between localities and cultivars 

with yields ranging from 10 to 14 Mg ha-1; although yields approaching 40 Mg  

ha-1 have been observed in select localities with increased fertilizer inputs and 

precipitation (Wullschleger et al. 2010). With expanded research, it is expected 

that yields will continue to improve through breeding efforts that may also 

incorporate traits such as cold hardiness and insect resistance. Sustainability of 

bioenergy crops, including switchgrass, will depend not only on the biomass 

energy produced, but also by the energy spent with conventional growing 

practices and through the energy used to convert it to usable energy. 

Observations by Shaporui et al. (2003) have shown an average energy ratio of 

1.34 (i.e., for every joule used to produce ethanol from maize, there is a 34% 

energy gain). Similar studies with switchgrass have shown as much as a 5-fold 
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net energy gain coupled with a 10-fold reduction in greenhouse gas emissions 

(McLaughlin and Walsh 1998, Schmer et al. 2008, Bartley et al. 2013).    

 Looking forward, biomass yields will continue to be a major focus. 

Simultaneously improving nutrient use will allow for increased yields while 

minimizing overall inputs including nitrogen and minerals. With biomass quality 

being essential for the conversion to ethanol, one of the key traits in breeding will 

revolve around maintaining biomass quality, along with other traits such as 

responses to biotic and abiotic stressors (emerging pests, pathogens, and 

climate changes) (Gustafson et al. 2003, Crouch et al. 2009, Grassini et al. 2009, 

Prasifka et al. 2009a, Prasifka et al. 2009b, Johnson et al. 2010, McIsaac et al. 

2010, Kiniry et al. 2011, Bartley et al. 2013). In the short term, switchgrass 

improvement will continue to come from recurrent selection of superior 

germplasms. However, with the addition of new tools and technologies and 

advances in molecular resources for marker-assisted selections, these 

approaches will be better explored and utilized (Bartley et al. 2013).  

Insect Pests of Switchgrass 

 Grasses (family Poaceae) serve as a host for a wide range of insect 

orders. Many foliage-feeding insects belong to the orders Coleoptera, 

Hymenoptera, Lepidoptera, Orthoptera, and Phasmatodea (Tscharntke and 

Greiler 1995). Important insect taxa include the stem borers, including members 

of the orders Coleoptera, Diptera, Hymenoptera, and Lepidoptera, along with the 

phloem-feeders within the orders of Hemiptera and Thysanoptera (Tscharntke 

and Greiler 1995). Arthropod surveys completed in managed Nebraska 
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switchgrass sites have recorded 12 arthropod orders and 84 insect families. 

Insects belonging to the orders Coleoptera, Hymenoptera, and Thysanoptera 

were the most abundant, representing nearly 80% of all arthropods collected 

(Schaeffer et al. 2011). Relatively few studies have been carried out on insects 

and their respective pest status. This is likely due to the fact that warm-season 

grasses, such as switchgrass, appear to be relatively pest free in their native 

habitats which has led to the assumption that few pest management practices 

will be needed (Moser et al. 2004, Parrish and Fike 2005, Prasifka et al. 2009a). 

Until recently, few reports have focused on phloem-feeding insects and their 

association with switchgrass. These include members of the hemipteran families 

Aleyrodidae (whiteflies), Delphacidae (planthoppers), Cicadellidae (leafhoppers) 

and Aphididae (aphids) that are sometimes referred to as the most damaging 

pests worldwide (Hilder et al. 1995). Recent studies in switchgrass, have focused 

primarily on members of the family Aphididae. Koch et al. (2014a) studied four 

aphid species including Sipha flava (Forbes), yellow sugarcane aphid (YSA); 

Schizaphis graminum (Randani), greenbug (GB); Rhopallosiphum padi (L.), bird 

cherry-oat aphid (BCOA); and Diuraphis noxia (Mordvilko), Russian wheat aphid 

(RWA). Overall, screening results indicated that switchgrass did not serve as a 

potential feeding and reproductive host for R. padi and D. noxia on switchgrass 

cultivars Kanlow, Summer, and two experimental lines, KxS (Kanlow male, 

Summer female) and SxK (Summer male, Kanlow female), which were derived 

by crossing Kanlow (K) and Summer (S) plants. However, these four switchgrass 
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cultivars were found to be feeding and reproductive hosts when challenged with 

S. graminum and S. flava (Koch et al. 2014a).  

Greenbug 

 The GB have been a recognized pest of small grains for more than 150 

years (Nuessly and Nagata 2005). Currently, there are approximately 40 

recognized species of Schizaphis worldwide with seven found in North America 

(Blackman and Eastop 1984, Nuessly and Nagata 2005). The first report of the 

GB was documented on wheat and barley in Virginia in the early 1880s (Webster 

and Phillips 1912, Nuessly and Nagata 2005). The first report of GB damage to 

sorghum was in Nebraska during the 1968 growing season (Harvey and 

Hackerott 1969, Nuessly and Nagata 2005). This report was before infestations 

spread throughout much of the grain production areas of North America (Harvey 

and Hackerott 1969, Nuessly and Nagata 2005). Schizaphis graminum are 

parthenogenetic in nature. Nymphs will pass through three instars before 

emerging as an adults in 7-9 days at temperatures between 60-80 °F. Each adult 

GB can produce one to five nymphs per day (Nuessly and Nagata 2005). GBs 

have been observed feeding on more than 70 graminaceous species including 

barley, bluegrass, maize, sorghum, wheat, and wheatgrass (Michela, Jr. 1986, 

Nuessly and Nagata 2005). In some of these host species, enzymatic activity in 

the GB’s saliva can lead to degradation of cell walls and chloroplasts in 

susceptible plants (Al-Mousawi et al. 1983, Nuessly and Nagata 2005). Feeding 

by GBs initially causes yellow or red leaf spots with continued feeding resulting in 

general yellowing and reddening of the leaf along with leaf and root death. In 
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severe cases, GB feeding may result in plant death. Plant attributes such as size, 

yield, and survival can be greatly affected by GB herbivory on susceptible small 

grain cultivars (Nuessly and Nagata 2005). Furthermore, GBs can serve as virus 

vectors for plant viruses that include barley yellow dwarf (Murphy 1959), 

sugarcane mosaic (Ingram and Summers 1938), and maize dwarf mosaic virus 

(Nault and Bradley 1969). Overall, insecticides serve as the front line of defense 

against GBs among small grains (Hays et al. 1999), but the more economical 

long-term solution may be host plant resistance (Nuessly and Nagata 2005).  

Yellow Sugarcane Aphid 

 The YSA, S. flava, is native to North America. It was first described in 

Illinois in 1884 (Forbes 1884, Nuessly 2005), with populations spreading 

throughout much of North America in the years to follow. Sipha flava are 

parthenogenetic. Nymphs pass through four instars before emerging as an adult 

in 8 days on sorghum and 18-22 days on sugarcane (Hentz and Nuessly 2004). 

On average, females produce one to five nymphs per day for approximately 22 

days (Nuessly 2005). Sipha flava can be found on cultivated row crops, including 

maize, rice, sorghum, and sugarcane. YSAs are also pests on members of the 

genera Graminea, including Hordeum, Oryza, Panicum, Sorghum, and Triticum 

(Nuessly 2005). YSA feeding results in the yellowing and reddening of leaves, 

depending on host plant. Prolonged exposure to S. flava herbivory can lead to 

premature senescence of leaves and/or plant death. Yield reductions usually 

result from aphid damage to early plant growth stages which may include 

reduced tillering (Hall 2001). This aphid also serves as a vector of sugarcane 
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mosaic potyvirus (Blackman and Eastop 2000) and barley yellow dwarf virus 

(Garrett et al. 2004). Natural enemies, including 10 species of ladybird beetles 

(Coccinellidae), predacious ants, and young spiders also help reduce YSA 

infestations; however, this may not occur before plant damage has ensued. 

Heavy rainfall and temperatures above 95°F may help reduce YSA populations 

during the summer months (Nuessly 2005). Should natural enemies and other 

pest management tactics fail, insecticides are available that provide effective 

YSA control (Nuessly and Hentz 2002). Accurate timing of insecticide treatments 

is critical to avoid yield or stand loss. Many varieties of sorghum are susceptible 

to YSA feeding (Starkes and Mirkes 1979).  

Plant Resistance 

 According to Smith (2005), plant resistance to arthropods is “the sum of 

the constitutive, genetically inherited qualities that result in a plant of one cultivar 

or species being less damaged than a susceptible plant lacking these qualities.” 

Smith (2005) describes susceptibility as “the inability of a plant to inherit qualities 

that express resistance to arthropods.” Overall, resistance of a plant is measured 

on a relative scale based on the degree of resistance compared to the 

susceptible control plant that is more severely damaged under identical 

experimental conditions. Further, the measurement of resistance should also be 

based on a resistant control with a known, predetermined level of resistance. 

These relative measurements are essential as resistance is “influenced by 

environmental fluctuations occurring over both time and space” (Smith 2005).  
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 The plant resistance umbrella can be divided into three mechanisms of 

resistance: (1) antibiosis, (2) antixenosis, and (3) tolerance. These three 

mechanisms of resistance were initially described by Painter (1951), then more 

precisely redefined by Horber (1980) as functional categories. Antibiosis is 

observed when “the negative effects of a resistant plant affect the biology of an 

arthropod attempting to use that plant as a host” (Smith 2005). The effects of an 

antibiotic plant may range from mild to lethal and is the result of either chemical 

or morphological plant defenses. Lethal, acute effects often affect the larvae and 

eggs, while chronic effects can lead to mortality affecting older larvae and pre-

pupae, which may fail to pupate (Smith 2005). Those (individuals) that survive 

the effects of antibiosis will often see reduced body size and biomass, reduced 

fecundity, and a prolonged developmental period in the immature stages (Smith 

2005). Antixenosis, as described by Painter (1951), denotes “the presence of 

morphological or chemical plant factors that adversely alter arthropod behavior.” 

As a result, the arthropod may seek out an alternate host plant. Some plant 

characteristics that may adversely alter the arthropod’s behavior include 

thickened plant epidermal layers, waxy deposits on the leaves, deterrent 

compounds, or a change in trichome density on the leaf surface. Both antibiosis 

and antixenosis can impose selection pressure on arthropod pests, which could 

result in biotype development.  

Biotypes can be defined as “populations within an arthropod species that 

differ in their ability to utilize a particular trait in a specific plant genotype” (Wilhoit 

1992, Smith 2005). Although there is no agreed upon definition in the scientific 
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literature, there are currently more than 20 GB biotypes recognized, primarily for 

their ability to overcome different sources of plant resistance and their ability to 

utilize different cereal host plants (Nuessly et al. 2008, Bouktila et al. 2012). No 

recognized biotypes have been reported for the YSA (Hoelscher et al. 1997). 

According to Smith (2005), tolerance is defined “by the ability to withstand 

or recover from damage caused by arthropod populations equal to those found 

on susceptible cultivars.” Observations have shown that tolerant plants produce a 

greater amount of biomass than susceptible cultivars under equivalent insect 

pressure (Smith 2005). Furthermore, there are six primary factors associated 

with plants possessing tolerance. These include (1) increased net photosynthetic 

rate, (2) high relative growth rate, (3) increased branching/tillering after apical 

dominance release, (4) pre-existing high levels of carbon found in the root 

system, (5) the ability to transfer stored carbon from the roots to the shoots, and 

(6) increased oxidative enzyme activity (Gawrońska and Kiełkiewicz 1999, 

Strauss and Agrawal 1999, Heng-Moss et al. 2004, Smith 2005, Franzen et al. 

2007). Unlike the other two forms of plant resistance, tolerance has no direct 

impact on the insect’s development. As a result, tolerance imposes minimal, if 

any, selection pressure on the insect allowing the pest to remain avirulent (likely) 

to the plant resistant genes (Smith 2005).  

 A series of no-choice and choice studies documented the categories of 

switchgrass resistance to GBs and YSAs (Koch et al. 2014b). Two no-choice 

experiments were performed to determine antibiotic and tolerant responses and 

to determine relative levels of resistance among three switchgrass populations 
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(K-lowland ecotype, S-upland ecotype, and KxS) when challenged with GB or 

YSA. Koch et al. (2014b) found that the lowland ecotype K possessed resistance 

to both aphid species based on aphid survival, showing high levels of antibiosis. 

Cultivar KxS was observed to possess low-to-moderate levels of antibiosis to 

YSA, while plant loss indices indicated tolerance to be an important category 

when challenged with GB in cultivar S (Koch et al. 2014a). Finally, experimental 

results showed that the cultivar KxS lacked tolerance and antibiotic 

characteristics to GB, whereas, the cultivar S lacked tolerance and antibiotic 

characteristics to YSA (Koch et al. 2014b). Choice studies were used to evaluate 

the preference of GB and YSA on selected switchgrass cultivars. These studies 

documented a lack of antixenosis, with no preference by YSA for any of the 

switchgrasses evaluated (Koch et al. 2014c). On the other hand, at 24 hours 

after GB introduction, a preference for the switchgrass cultivar KxS was observed 

(Koch et al. 2014c). 

Plant Response to Aphid Herbivory 

Plant defenses in response to insect herbivory can be reflected in 

physical, biochemical, molecular, and physiological attributes and may involve 

hundreds of genes (molecular/transcript response) that are triggered by cellular 

disruption caused by the insect’s mouthparts or toxins found in the insect’s saliva 

(Miles 1999, Smith and Boyko 2007). These plant defenses can also be triggered 

by female oviposition or other cues. The specific defensive pathways and 

transcripts induced depend on the specific interaction between a particular insect 

and its host plant. Differential expression of genes between plants, both 
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susceptible (SUS) and resistant (RES), have been shown to include an oxidative 

burst, which serves as an early defense response involving the production of 

reactive oxygen species (ROS) as well as plant signaling and defense, and cell 

maintenance to piercing/sucking insects (Zhang et al. 2004, Park et al. 2005, 

Boyko et al. 2006, Gutsche et al. 2009a, Ramm 2014). Some ROS, such as 

H2O2, initially serve as an early signaling molecule, but if ROS accumulate and 

are not detoxified, they can result in plant injury and potentially cell death. Such 

scenarios have been observed in several plants such as barley, buffalograss, 

soybean, switchgrass, and wheat infested with aphids (Mittler et al. 1999, 

Kawano 2003, Apel and Hirt 2004, Heng-Moss et al. 2004, Kotchoni and 

Gachomo 2006, Franzen et al. 2007, Dowd and Johnson 2009, Gutsche et al. 

2009a, Prasifka et al. 2009a, Gill and Tuteja 2010, Liu et al. 2010, Pierson et al. 

2010a, Prochaska et al. 2015, Donze-Reiner unpublished).  

Several examples of increased levels of oxidative enzymes in response to 

insect feeding have been reported in the literature. These include enzymes such 

as catalase (CAT), peroxidase (POX), lipoxygenase, superoxide dismutase, and 

polyphenol oxidase (Felton et al. 1994, Constabel et al. 2000, Chaman et al. 

2001, Heng-Moss et al. 2004, Prochaska et al. 2015). Several defensive 

strategies, especially those that can distinguish SUS and RES (tolerant) plants 

have been studied.  

Studies to understand plant tolerance have shown that several aspects of 

plant metabolism suggest the need to simultaneously change to overcome the 

negative effects of nutrient removal by piercing/sucking insects (and other 
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arthropods). Additionally, tolerant plants are able to compensate 

photosynthetically by avoiding feedback inhibition that occurs from insect feeding 

on leaves (Mabry and Wayne 1997, Strauss and Agrawal 1999, Franzen et al. 

2007, Gutsche et al. 2009b). It has also been documented that tolerant plants are 

able to withstand greater levels of cellular oxidative stress through the up-

regulation of enzymes (e.g., POX and CAT) that can efficiently reduce the 

concentrations of ROS (Heng-Moss et al. 2004, Garg and Manchanda 2009, 

Gutsche et al. 2009a, Gill and Tuteja 2010, Ramm 2014). Current research has 

shown that some tolerant plants have a higher basal level of detoxifying enzymes 

and proteins (verses SUS plants), thus reducing the plant’s ability to protect itself 

from high ROS accumulations (Vleeshouwers et al. 2000, Ramm et al. 2013). 

Potentially, this may allow a tolerant plant to utilize a greater portion of available 

resources for growth rather than initiating a defensive response.  However, plant 

defense responses can arise from multiple sources (Smith 2005, Kim et al. 

2008), and tolerance can result from various combinations of these mechanisms. 

Modulations in photosynthesis, cellular redox control, and maintaining growth 

appear to be important attributes found within RES (tolerant) plant systems 

(Gawrońska and Kiełkiewicz 1999, Strauss and Agrawal 1999, Heng-Moss et al. 

2004, Smith 2005, Franzen et al. 2007).  

Photosynthetic studies on soybean have found physiological differences 

between aphid-infested and aphid-free plants. These have included 

photosynthetic rate reductions (Macedo et al. 2003) and changes in several 

variables associated with photosynthesis including photosynthetic capacity 
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(Amax), the regeneration of ribulose-1,5-bisphosphate, RuBP (Jmax), the maximum 

rate of rubisco-mediated carboxylation (VCmax), gas exchange rates, and 

photosynthesis curves (Pierson et al. 2010a, 2010b).  

 The Amax
 is the net CO2 assimilation at saturating intercellular CO2 

(Caemmerer and Farquhar 1981, Farquhar and Sharkey 1982). Lower Amax 

values suggest aphid herbivory is negatively impacting photosynthetic 

responses. Jmax, the ability of a plant to regenerate RuBP, is calculated using the 

saturated point of the ACi curve (assimilation rate (A) plotted against intercellular 

CO2 concentation (Ci); Caemmerer and Farquhar 1981, Farquhar and Sharkey 

1982, Wullschleger 1993). Where values are lower in the infested plants 

compared to the control plants, the infested plants may express a decreased 

ability to regenerate RuBP. Pierson et al. (2010a) documented that tolerant 

soybean aphid-infested soybean plants of variety KS4202 had higher Jmax values 

as compared to the SUS infested Asgrow plants. Overall, these results indicated 

an increased ability to regenerate RuBP in the tolerant soybean, perhaps as a 

mechanism to compensate for soybean aphid feeding. The VCmax is computed 

using data points at the lower/linear end of the photosynthesis curve and the 

maximum rate of rubisco-mediated carboxylation (Caemmerer and Farquhar 

1981, Farquhar and Sharkey 1982, Manter and Kerrigan 2004). Lower VCmax 

values may suggest impaired rubisco activity within a plant. No differences were 

observed in control and aphid-infested treatments among VCmax values due to 

soybean aphid herbivory.  

Franzen et al. (2007) reported similar characteristics when looking at 
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physiological responses of RES (Halt and Prairie Red) and SUS (TAM 107) 

wheat to injury by RWA. Observations from this study indicated that RES plants 

subjected to RWA feeding were able to maintain or compensate for aphid injury 

by altering leaf senescence pathways, while SUS plants appeared to have an 

accelerated senescence pattern. Other studies on wheat, suggested that 

antibiosis in plants comes with a cost; reduced photosynthetic capacity for 

defense and photosynthetic compensation in the tolerant line when exposed to 

aphid feeding (Haile et al. 1999).  

Physiological studies by Macedo et al. (2009), using 4 strains of wheat 

and two different aphids, RWA and BCOA, indicated that visible symptoms of 

injury associated with aphid feeding can be highly species specific, and that 

photosynthetic reduction is a common physiological response in wheat to aphid 

herbivory.  

Similar results were also found in the physiological responses of barley to 

RWA (Gutsche et al. 2009b). ACi curves showed RWA feeding negatively 

affected the photosynthetic capacity of both cultivars (RES ‘sidney’ and SUS 

‘otis’), although a more negative impact was found in the SUS genotype. 

Differences observed in carbon assimilation curves between control and infested 

plants showed that RWA herbivory affected the dark reaction, specifically the 

rubisco activity and RuBP regeneration. Overall, these studies indicated that the 

resistance mechanisms found within the RES barley genotype may be connected 

to the plant’s ability to maintain or elevate RuBP and Rubisco activity. 

A number of studies have reported increases among oxidative enzymes 
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such as lipoxygenase, superoxide dismutase, CAT in response to insect feeding 

(Constabel et al. 2000, Chaman et al. 2001, Hiraga et al. 2001, Ramm et al. 

2013). Ni et al. (2001), studied biochemical changes in RES and SUS cereals in 

response to infestation by BCOA and RWA. In this study, BCOA herbivory did 

not elicit any changes of POX activity among the cereals (wheat, barley, oat). 

Previous studies by Riedell and Kieckhefer (1995) concluded BCOA was 

asymptomatic. However, RWA herbivory resulted in increased POX activity in the 

RES Halt wheat and the SUS Morex barley. Overall, RWA herbivory led to a 

nine-fold increase in POX activity on Morex barley and three-fold on Halt wheat 9 

days after infestation (DAI) when compared to uninfested control plants. These 

findings suggest that RWA feeding likely leads to oxidative stress in plants. 

Moderate increases of POX activity were found in the RES Halt when compared 

with SUS Arapahoe wheat. Differential expression of these enzymes may 

contribute to the response found in wheat, barley, and oats to RWA and BCOA 

feeding, suggesting these cereals have different mechanisms of aphid 

resistance. Franzen et al. (2007) documented similar results for POX activity 

between infested and control plants among three cultivars in wheat (RES ‘Halt’ 

and ‘Prairie Red’ and SUS ‘TAM 107’). RWA feeding resulted in the up-regulation 

of POX activity in RES cultivars, but not in SUS plants. Overall, Franzen et al. 

(2007) results compare favorably with the studies performed by Pierson et al. 

(2010a), indicating increased photosynthetic capacity and increased POX activity 

in plants found to be RES, and decreased rates in the more SUS genotypes.  

Ramm et al. (2013) investigated buffalograss-chinch bug interactions in 



 18 

two cultivars of buffalograss, Prestige (tolerant) and ‘378’ (SUS), and found 

changes in POX activity when challenged by herbivores (Heng-Moss et al. 2002, 

2003, 2004). These studies confirmed observations by Heng-Moss et al. (2004) 

and Gulsen et al. (2010) who observed increased levels of POX activity and a 

loss of CAT activity when plants were challenged with chinch bugs. Overall, their 

findings suggested that increased POX levels in the tolerant buffalograss may 

help the plant detoxify ROS, such as H2O2 that accumulate within plants as a 

result of stress.  

To more effectively query global plant responses to aphid feeding, it is 

possible to utilize microarrays and next generation sequencing (NGS) 

technology. Microarrays have been regularly used to study plant responses to 

insect herbivory (Reymond et al. 2000, Voelckel et al. 2004, Park et al. 2005, 

Smith and Boyko 2007, Li et al. 2008, Gutsche et al. 2009a).  

 Studies performed by Couldridge et al. (2007) found transcriptional 

changes as a result of green peach aphid, Myzus persicae (Sulzer), feeding on 

Arabidopisis. These studies reported several defense-related genes to be 

differentially expressed in response to aphid feeding. Cytochrome P450s were 

induced; consistent with a plant defense response to aphid stylet penetration 

activity. A gene coding for an esterase family protein was up-regulated two hours 

post-infestation. Esterases often play a role in detoxification. Significant 

increases in esterase activity have been reported in barley in response to RWA 

herbivory. This was hypothesized by Ni and Quisenberry (2003) to be related to 

toxic and oxidative stress inflicted by the aphid feeding.  
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Gutsche et al. (2009a) reported 909 differentially expressed genes in 

tolerant barley in response to RWA feeding. Of the 909 differentially expressed 

genes, many were assigned to specific metabolic categories, including several 

associated with plant defense and scavengers of ROS. Two POX genes 

(HvPRXA1 and HvPRXA2) were up-regulated in response to RWA feeding on 

tolerant barley plants, indicating that specific POXs could be important for the 

tolerance in barley. These findings by Gutsche et al. (2009a) provided evidence 

that the ability to elevate and sustain levels of ROS-scavenging enzymes, like 

POXs, could play an important role in the tolerant response in barley and 

potentially other plant systems.  

NGS performed (Prochaska et al. 2015) on tolerant (KS4202) and SUS 

(K03-4686) soybeans (Chandran 2011) found significant genotypic differences 

when transcriptomes from aphid uninfested plants (day 0 tolerant vs. day 0 SUS) 

were compared. Select genes have been implicated in plant defense responses 

to abiotic and biotic stresses (Heng-Moss et al. 2004, Gutsche et al. 2009a, 

Pierson et al. 2010a, Studham and MacIntosh 2012, Ramm et al. 2013, 

Prochaska et al. 2015). These results indicate that tolerant/RES plants may 

already be predisposed to tolerate insect feeding. Similar trends with regard to 

constitutive resistance have also been documented in wheat, barely, and 

buffalograss (Delp et al. 2008, Han et al. 2009; Ramm et al. 2013). 

  Overall, observations among a variety of plant systems showcase some 

interesting trends between RES and SUS plants when exposed to phloem-

feeding insects. Physiologically, several studies have shown that resistance 
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mechanisms found within tolerant plants (wheat, barely, soybean) may be 

connected to the ability of these plants to maintain or elevate RuBP and rubisco 

activity when challenged by insect pests. Similarly, studies documenting POX 

and CAT activity have shown similar patterns of increased levels of these 

oxidative enzymes within more RES plants. NGS technology confirmed these 

findings between these two oxidative enzymes along with several other defense 

related transcripts within Arabidopsis, buffalograss, and soybean. Furthermore, 

research has shown constitutive resistance may be in play in RES plants 

(soybean and buffalograss) as several defensive related genes were found to be 

up-regulated, even before the onset of insect herbivory. However, defense 

related genes were not up-regulated until after the onset of insect herbivory in 

SUS plants. Overall, these trends may provide a starting point documenting the 

response system associated with bioenergy feedstock-insect interactions.
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CHAPTER 2: 

PHOTOSYNTHETIC RESPONSES OF SELECT SWITCHGRASS, PANICUM 

VIRGATUM L., CULTIVARS TO GREENBUG, SCHIZAPHIS GRAMINUM 

(RONDANI), HERBIVORY 

Introduction 

 Switchgrass, Panicum virgatum L., is a perennial, polyploid, warm-season 

grass that is native to the tallgrass prairies throughout North America, east of the 

Rocky Mountain region (Vogel 2004, Mitchell et al. 2008, 2012). Based on 

chloroplast markers, switchgrass can be differentiated into lowland and upland 

ecotypes (Hultquist et al. 1997, Young et al. 2012). Generally, lowland ecotypes 

are coarser, taller, and have adapted for better growth in lowland areas that 

maybe exposed to flooding (Vogel 2004). Upland ecotypes are typically 

associated with drier environments, and tend to have smaller leaves and lower 

biomass yields. They are more suitable for cattle grazing (Vogel 2004, Bartley et 

al. 2013).  

Among the possible feedstocks, switchgrass has become a leading 

candidate for bioenergy use because of its low water and nutrient requirements, 

suitability for growth on marginal lands, high yield returns across diverse 

environments, positive environmental benefits, and compatibility with modern 

farming standards (Sanderson et al. 1996, 2004, McLaughlin et al. 1999).  

 Photosynthetic comparisons of upland and lowland switchgrass, under 

abiotic stress, indicated that two lowland ecotypes, Alamo and Kanlow (K), 

maintained superior photosynthetic rates under low nitrogen (N) regimes. 
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However, a lower photosynthetic response was found in low moisture conditions 

for upland ecotypes (Stroup et al. 2003). Overall, this study found lowland 

ecotypes were better able to adjust to environmental stressors, like drought and 

low N, with little change in plant productivity when compared to upland ecotypes.  

 Similar characteristics were observed by Barney et al. (2009) when 

lowland and upland ecotypes were exposed to high soil moisture. Of the four 

cultivars evaluated (lowland switchgrasses: Alamo and K; upland switchgrasses: 

Blackwell and Cave-In-Rock), net photosynthetic rates differed only in K, which 

had nearly a 30% higher rate when compared to the other three cultivars. Net 

photosynthetic rate and photosynthetic water use efficiency were 17% and 34% 

higher in lowland ecotypes over upland ecotypes. Although no other differences 

were found between the ecotypes, results indicated that lowland ecotypes 

typically outperformed upland ecotypes (Barney et al. 2009). Similar results have 

been reported in comparisons of other upland and lowland plants (Gesch and 

Johnson 2010). 

 Changes in photosynthetic rates or compensation under insect infestation 

has been reported in many systems (Ryan et al. 1987, Baldwin and Preston 

1999, Haile et al. 1999, Heng-Moss et al. 2006, Franzen et al. 2007, Gutsche et 

al. 2009a, Pierson et al. 2010a), and appear to be among the first set of plant 

responses impacted, especially to phloem feeding arthropods (Gutsche et al. 

2009a, Haile et al. 1999, Franzen et al. 2007, Pierson et al. 2010a). Additionally, 

resistant (RES) and susceptible (SUS) plants can exhibit a differential modulation 

of photosynthesis in response to feeding by piercing-sucking insects (Miller et al. 



 23 

1994, Haile et al. 1999, Franzen et al. 2007, Smith and Boyko 2007, Gutsche et 

al. 2009a, Pierson et al. 2010a).  

 Recent studies with switchgrass have shown that upland, lowland and a 

hybrid between upland x lowland (KxS) plants can serve as hosts for greenbugs, 

Schizaphis graminum (Rondani) (GB) and the yellow sugarcane aphid, Sipha 

flava (Forbes), (YSA) (Koch et al. 2014a). The lowland cultivar K has resistance 

to both aphid species, showing high levels of antibiosis and antixenosis to GB 

(Koch et al. 2014b, 2014c). Cultivar Summer (S) plants were categorized as 

tolerant when challenged with GB, but lacked resistance to YSA. In contrast, KxS 

plants were found to possess low-to-moderate levels of antibiosis to YSA, but 

lacked tolerance and antibiosis to GB (Koch et al. 2014b). Plant productivity was 

also impacted differentially in these plant x aphid interactions (Koch et al. 2014a). 

 Differences in observed photosynthetic parameters, e.g., photosynthetic 

rates, photosynthetic capacity (Stroup et al. 2003, Barney et al. 2009, Gesch and 

Johnson 2010), and responses to aphid injury reported for different switchgrass 

strains suggest that upland and lowland plants could have unique physiological 

adaptations to aphid herbivory. In this study, potential physiological differences 

were investigated in a variety of switchgrass plants through a series of gas 

exchange studies. Additionally, several photosynthetic variables were evaluated 

to observe possible changes in photosynthetic capacity as a result of GB 

herbivory.  

 

Materials and Methods 
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Plant material. Photosynthetic evaluations were conducted on three 

tetraploid switchgrasses: (1) Kanlow (K), a lowland-tetraploid switchgrass cultivar 

originally derived from plants collected near Wetumka, Oklahoma (Alderson and 

Sharp 1994, Vogel and Mitchell 2008); (2) Summer (S), an upland-tetraploid 

switchgrass cultivar, collected from plants near Nebraska City, Nebraska 

(Alderson and Sharp 1994, Vogel and Mitchell 2008); and (3) KxS, an 

experimental line derived by mating randomly selected Kanlow (male) x Summer 

(female) plants, which, hereafter is referred to as KxS, was developed by Dr. 

Kenneth Vogel (USDA-ARS, Lincoln, NE) (Martinez-Reyna and Vogel 2008, 

Vogel and Mitchell 2008).  

Experimental Studies. Two gas exchange studies were conducted. The 

first examined the differences among three plants randomly selected from three 

different switchgrass populations (K, S, and KxS) to observe basal (aphid-free) 

differences in gas exchange responses among these populations. Additionally, 

three plants from each population that had been previously categorized as SUS 

or RES to GB (Koch et al. 2014a) were examined for differences in 

photosynthetic parameters in an aphid-free state. Both ACi curves (assimilation 

rate (A) versus intercellular CO2 concentration [Ci]) and survey measurements 

were taken. In study 2, three plants from each of the three switchgrass cultivars 

previously identified as RES or SUS to GB (Koch et al. 2014a) were tested (e.g., 

gas exchange, ACi curves) to observe photosynthetic parameters in the absence 

(control; aphid free) and in the presence of aphids. These experiments are 

described in greater detail below.  
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 Plant Growth. Plants were grown in SC-10 Super Cell Single Cell Cone-

tainers (3.8 cm diameter by 21 cm deep; Stuewe & Sons, Inc., Corvallis, OR) 

containing a Fafard Growing Media (Mix No. 3B; Conrad Fafard, Awawam, MA). 

Cone-tainers were maintained under greenhouse conditions at 25 ± 7°C with light 

supplemented by a 400-W metal halide lamps to produce a 16:8 hour (L:D) 

photoperiod. Upon emergence, plants were thinned down to one plant per cone-

tainer. Plants were fertilized twice a month with a soluble (20:10:20 N-P-K) 

fertilizer. For study 2, plants were clonally propagated from ramets. 

 Insect colonies and infestation. GB (biotype I) were obtained from Dr. 

John D. Burd, USDA-ARS in Stillwater, OK. The colony was maintained on a 

constant supply of the SUS sorghum cultivar ‘BCK60’ plants maintained in a 

plant growth chamber at a temperature of 25 ± 2°C and a 16:8 hour (L:D) 

photoperiod. 

 For study 2, switchgrass plants were infested with five apterous, adult 

aphids with a fine paintbrush and caged using a tubular plastic cage (4 cm 

diameter by 46 cm in height) with vents covered in organdy fabric to confine 

aphids to their respective plants. Uninfested (control) plants were maintained 

similarly. Infested and control uninfested plants (caged, with no aphids) were 

maintained in a greenhouse at 25 ± 7°C with light and a 16:8 hour (L:D) 

photoperiod. Aphid numbers were determined daily for 8 days. Visual damage 

ratings were also recorded daily using a 1-5 scale. Overall, damage ratings 

served as a visual evaluation of injury resulting from GB herbivory (Smith et al. 

1993). The damage rating scale used was adopted by Heng-Moss et al. (2002) 
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and refined by Koch et al. (2014a) where a damage rating of 1 = 10% or less of 

the total leaf area damaged, 2 = 11-30% of leaf area damaged, 3 = 31-50% of 

leaf area damaged, 4 = 51-70% of leaf area damaged, and 5 = 71% or more of 

leaf area damaged with the plant approaching death from the result of GB 

herbivory. Eight days following aphid introduction, aphids were removed with a 

fine bristle paintbrush from infested plants and photosynthetic parameters (e.g., 

survey measurements and ACi curves) using the LiCor 6400 photosynthesis 

system were recorded for control and infested plants.  

 

Gas exchange measurements. 

 Gas Exchange Parameters. Plants selected for photosynthetic survey 

measurements and ACi curves were moved outdoors each morning 

(approximately 6:30 am) and allowed to adapt to the new light and temperature 

conditions for a minimum of 90 minutes. Measurements were taken from the 

upper-most fully expanded (collared) leaf from three replications. Survey 

measurements were taken at the 400 µM intercellular CO2 concentration and 

1800 µmol photons m-2s-1 light intensity using the portable LI-6400 

photosynthesis system (Li-Cor Biosciences, Lincoln, NE) with a CO2 injector and 

light source (for making measurements at stable light and CO2 concentrations). 

For studies 1 and 2, survey measurements were performed on three biological 

replications from each treatment combination. Gas exchange rates within each 

treatment were analyzed using mixed model analysis (PROC MIXED, SAS 
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Institute 2011). Where appropriate, means were separated using Fisher’s least 

significant differences (LSD).  

 ACi curves were performed using the LI-6400 to gain a better 

understanding of the basal gas exchange responses among the three 

switchgrass populations and document the effect of GB herbivory on plant gas 

exchange. Rates were measured at 1800 µmol photons m-2s-1 light intensity and 

reference IRGA CO2 concentrations ranging from 100 to 1000 ppm. Automated 

programs of the LI-6400 were used to gather data for each ACi curve.  

 As previously described (Farquhar and Sharkey 1982), stomatal and non-

stomatal components of photosynthesis were calculated. Stomatal limitation can 

be determined by comparing A at a Ci of 400 µL L-1 CO2 to A at the Ci 

corresponding to a Ca (Intracellular CO2) of 400 µL L-1 CO2 (Ryan et al. 1987) 

where Ca is the CO2 concentration outside of the leaf (e.g., CO2 concentrations 

within the leaf chamber). The following equation describes stomatal limitations 

(SL) is as follows:  

SL = A(Ci = 400 µL L-1) – A(Ca = 400 µL L-1) / A(Ci = 400 µL L-1) 

 The ACi curve was used to calculate carboxylation efficiency (CE, the 

slope from the linear portion of the ACi curve) and changes in net CO2 

assimilation at saturating Ci (Amax). Through further analysis of the ACi response 

curve, the maximum carboxylation velocity of rubisco (Vcmax – derived from the 

linear portion of the curve, µmol CO2 m-2s-1) and the maximum potential rate of 

electron transport contributing to ribulose-1,5-biphosphate (RuBP) regeneration 

(Jmax – µmol electrons m-2s-1) were determined. Values were calculated using the 
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estimation utility developed by Sharkey et al. (2007). For each treatment, 

response curves from three biological replicates were measured to calculate 

Amax, Vcmax, and Jmax for each curve.  

 

Results 

Plant damage. 

Significant differences were observed for plant damage between 

treatments within two of the three switchgrass populations. Overall, S (control vs. 

infested) had a mean damage rating of 2.25 ± 0.17 (P=0.0005) and KxS (Control 

vs. Infested) had a mean damage rating of 2.00 ± 0.52 (P=0.0042). However, no 

significant differences were detected for the K infested vs. K aphid-free 

treatments (P=0.1318; control damage: 1.00 ± 0.00; infested damage: 1.33 ± 

0.17). No differences were found among the switchgrass populations (P<0.05); 

however, trends indicated S and KxS may be more damage prone when 

compared to K. 

All three populations were found to surpass 600 cumulative aphid days 

(CADs) 8 days after aphid introduction. K accumulated 627.8 ± 76.4 aphid-days, 

KxS accumulated 687.9 ± 71.6 aphid-days, while S accumulated 971.5 ± 272.1 

aphid-days.  

 

CO2 assimilation rates and ACi Curves.  

 To better understand population-specific differences in assimilation rates, 

three plants from each of the three switchgrass populations and plants that had 
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been identified as either SUS or RES to GB from each population were 

evaluated.  

Significant differences were found for CO2 assimilation rates at the 

population level. Plants from the lowland population (K) had the highest net 

assimilation rates of 16.2 ± 0.7 µmoles CO2 m-2 s-1 at a fixed CO2 level of 400 

µmoles (P=0.0012). This value was ~30 % greater and significantly different than 

those observed for plants from the upland (S) and hybrid KxS populations (Table 

1). ACi curves were also generated to better understand the overall trends of CO2 

assimilation over a range of CO2 levels. Again, plants from the lowland 

population (K) had the highest assimilation rates at each CO2 level, respectively 

(Figure 1).  

To better understand if there were CO2 assimilation rate differences 

between RES and SUS plants from the three populations, plants that had been 

previously identified as either SUS or RES to GB from each population were 

evaluated. No significant differences were found for CO2 assimilation rates at the 

population level, when comparing GB RES and GB SUS plants at a fixed CO2 

level of 400 µmoles (Table 2).  

Plants from the lowland population K (Figure 2) and the hybrid population 

(KxS; Figure 3) showed trends suggesting higher assimilation rates at each CO2 

level, between the RES and SUS plants in an aphid-free state. In both instances, 

RES plants appeared to better assimilate CO2 over their SUS counterparts. No 

changes in CO2 assimilation rates were observed between RES and SUS plants 

from S (Figure 4).  
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When challenged by GB, no significant differences in survey 

measurements by treatment were observed between aphid-infested and aphid-

uninfested treatments from the populations K, KxS and S (data not shown). 

However, a preliminary study documented significant differences in assimilation 

rates between aphid-infested and aphid-control treatments for the population KxS 

when challenged by GB (P<0.0001; SAS Institute 2011).  

GB herbivory decreased net CO2 assimilation nearly 37 % to a value of 

27.6 ± 2.2 µmoles CO2 m-2 s-1 at a fixed CO2 level of 400 µmoles (Table 3). No 

significant interactions were observed between aphid-infested and uninfested 

control plants randomly selected from the populations K and S (Table 3). 

However, CO2 assimilation was enhanced by approximately 26 % in GB-infested 

Ka plants as compared to the uninfested controls. These data suggest that K 

plants could be compensating photosynthetically when challenged by GB. 

Although not statistically significant, a 16 % reduction in CO2 assimilation was 

observed in S infested plants as compared to uninfested S control plants (Table 

3).  

ACi curves were also developed to help better understand the overall 

trends of CO2 assimilation over a range of CO2 levels in GB-infested and 

uninfested control plants. Plants from the lowland population (K) had the highest 

assimilation rates at each CO2 level, respectively, when compared with S and 

KxS (Figure 5). When ACi curves were compared between aphid-infested and 

aphid-free control treatments, a net gain in CO2 assimilation in infested K plants 

was observed (Figure 5). No discernable trends were observed between GB-
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infested and uninfested KxS plants (Figure 6). Finally, no significant differences 

were found in the ACi curves between the S-infested and -uninfested control 

plants, however, GB infestation appeared to increase CO2 assimilation rates 

(Figure 7).  

 

Carboxylation efficiency 

No significant differences were observed for any of the switchgrass 

experiments in Study 1 (basal; P<0.05; SAS Institute 2011). Similar slopes were 

observed between the switchgrass basal ACi curves and between RES-SUS 

treatments within each population (Figures 1-4). These results imply that 

carboxylation efficiency in aphid-infested plants were comparable to that of 

aphid-free plants (within their respective treatments), suggesting that rubisco 

activity was not different between RES and SUS plants. Study 2 experiments 

showed similar trends between aphid infested and aphid-free treatments within 

each population (P<0.05; Figures 5-7). However, there was a significant main 

effect of population (P=0.0327; S: 0.3713 ± 0.07 µmoles CO2 m-2 s-1, P=0.0027; 

KxS: 0.5383 ± 0.10 µmoles CO2 m-2 s-1, P=0.0001; K: 0.7912 ± 0.10 µmoles CO2 

m-2 s-1, P<0.0001). This suggests that carboxylation efficiency is higher in the 

antibiotic population of K (Koch et al. 2014b) with a 2-fold increase over the 

population S.  

 

Jmax 

Significant differences were not detected for Jmax between GB-infested 
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and control plants among the three switchgrass populations, however, trends 

were observed in study 2. Infested K plants showed a 15.6 % increase in Jmax 

when compared to the control (Figure 5) plants of 104.0 ± 12.0 and 90.0 ± 11.8, 

respectively. Jmax values for aphid-infested KxS plants (82.3 ± 14.9; Figure 6) 

were found to be similar to the control plants (87.3 ± 33.8). Finally, Jmax values 

for S infested plants (80.3 ± 19.3; Figure 7) were increased relative to the S 

control plants (50.0 ± 12.1). Although not significant, Jmax values in the infested-

K and -S plants were higher than values in the control plants, which may suggest 

an increased ability, albeit slight, to regenerate RuBP to compensate for aphid 

feeding. However, due to variation within the observations, further investigation is 

needed. For infested KxS plants, lower Jmax values were observed in GB-

infested plants as compared to the uninfested control plants, suggesting that 

aphid-infested KxS plants may have a decreased ability to regenerate RuBP.  

 

Amax 

There were no differences between Amax values of the infested and 

control plants for each population; however, trends were present. There was a 

28% increase in Amax values when comparing the infested K plants (18.7 ± 2.6; 

Figure 5) to control plants (14.6 ± 2.1). Amax values were also found to be 

increased in S infested (14.7 ± 3.0) when compared to the control treatment (9.5 

± 1.7; Figure 7). No differences were observed between the infested and control 

KxS plants.  
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Vcmax 

No differences were found for Vcmax measurements between treatments, 

infested and control plants, among any switchgrass population, however, trends 

were noticed. Infested K and S plants had a small increase in Vcmax when 

compared to the control plants (Figure 5 and 7).  

 

Stomatal limitation 

No significant differences were observed in stomatal limitation between 

switchgrass populations or treatments (Studies 1 and 2; data not shown). 

Discussion 

Overall, basal ACi curves between the three switchgrass populations of K, 

KxS, and S displayed some interesting trends. K and KxS plants had superior net 

CO2 assimilation rates when compared to plants from the cultivar S. These data 

support other studies that have shown that lowland ecotypes (K) can 

photosynthetically outperform upland ecotypes. This study represents the first 

report on photosynthetic responses of KxS to aphid herbivory.  

Differences in carbon dioxide assimilation rates among the three 

populations were not as pronounced, when compared to the population specific 

data, for plants that had been previously selected as RES or SUS to GB 

herbivory (Koch et al. 2014a) and clonally propagated in the greenhouse. It 

remains unclear if cultural practices and differences in environmental conditions 

at the time measurements were taken influenced the results.  

Overall, the ACi curves indicated reduced photosynthetic capacity in S and 
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increased photosynthetic capacity in K. This was a commonality found among all 

studies. Reduced Amax values could negatively impact the overall process of 

photosynthesis; however, Amax values were not significantly different. On the 

other hand, lowered Jmax in GB-infested KxS plants could indicate a small 

decrease to regenerate RuBP as a compensatory mechanism during aphid 

feeding. Vcmax and carboxylation efficiency were similar in all studies for K and 

S. However, KxS plants had lower Vcmax values when challenged by aphid 

feeding. This may indicate that rubisco activity is negatively impacted due to 

aphid herbivory, but variation among observations suggest that further clarifying 

experiments may be needed. No differences were found among Amax and Jmax 

statistics in populations K and S.  

Photosynthetic studies performed on several other plant species have 

found physiological differences between aphid-infested and aphid-free plants. 

These have ranged from reductions in net assimilation rates (Macedo et al. 2003) 

to other compensatory mechanisms, especially in plants with demonstrated 

tolerance to a specific aphid species (Franzen et al. 2007, Gutsche et al. 2009a, 

Pierson et al. 2010a). Collectively, these studies indicate that compensatory 

mechanisms found in tolerant or RES genotypes may be connected to the ability 

to maintain or elevate RuBP and rubisco activity. 

Haile et al. (1999), predicted that plant physiological responses, like that of 

photosynthesis, could contribute to plant tolerance to RWA injury. These studies 

indicated that aphid-injured wheat seedlings had lower light-saturation points, 

which suggest less efficient use of light energy compared with control seedlings. 



 35 

Once aphids were removed, aphid injury was shown to reduce photosynthetic 

rates in all lines, with the antibiotic cultivar showing the lowest photosynthetic 

rate overall. Three days following aphid removal, the tolerant wheat line began to 

recover, with full photosynthetic recovery seven days following aphid removal. 

This same response was not observed in the SUS and antibiotic lines. This study 

indicates that tolerant plants compensated photosynthetically to arthropod injury. 

Haile et al. (1999) hypothesized that antibiosis can come at a cost, with reduced 

photosynthetic capacity for physiological defense. However, our studies indicate 

that GB herbivory does not induce the same fitness costs on antibiotic K in 

switchgrass as suggested by increased by photosynthetic capacity.   

 

Conclusions 

These studies suggest that the antibiotic cultivar K has mechanisms 

similar to those observed in tolerant soybean, wheat and barley plants with 

changes in photosynthetic rates occurring in response to aphid feeding (Franzen 

et al. 2007, Gutsche et al. 2009a, Pierson et al. 2010a). It is possible that in 

switchgrass, antibiosis may not induce the same fitness costs observed in wheat 

(Haile et al. 1999). This could be important in understanding the overall plant 

defense mechanisms of cultivar K. Furthermore, switchgrass S does not appear 

to efficiently alter photosynthetic rates or gas exchange rates in response to GB 

herbivory. Additional studies are needed to determine the degree to which RuBP 

regeneration and rubisco activity are affected by aphid injury in the defense 

response of these switchgrass populations and within their respective genotypes. 
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The relative contributions of the parental population in the defense responses of 

the hybrid also needs to be studied at greater depth. A cultivar derived originally 

from KxS hybrids has recently been released (Vogel et al. 2014).  
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Table 1. Survey measurements of carbon dioxide assimilation for aphid-free 

switchgrass plants including K, KxS, and S using a constant 400 µM intercellular 

CO2 concentration and 1800 µmol photons m-2s-1 light intensity. Values are the 

means ± SE (n = 3). 
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Figure 1. ACi curves of aphid-free switchgrass plants including K, KxS, and S 

using a constant 1800 µmol photons m-2s-1 light intensity over a range of CO2 

levels (100, 200, 300, 400, 600, and 1000 µmoles). Values are the means ± SE 

(n = 3). 
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Table 2. Survey measurements of carbon dioxide assimilation for aphid-free 

switchgrass plants from RES and SUS genotypes of K, KxS, and S using a 

constant 400 µM intercellular CO2 concentration and 1800 µmol photons m-2s-1 

light intensity. Values are the means ± SE (n = 3). 
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Figure 2. ACi curves using RES and SUS genotypes of aphid-free K switchgrass 

using a constant 1800 µmol photons m-2s-1 light intensity over a range of CO2 

levels (100, 200, 300, 400, 600, and 1000 µmoles). Values are the means ± SE 

(n = 3). 
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Figure 3. ACi curves using RES and SUS genotypes of aphid-free KxS 

switchgrass using a constant 1800 µmol photons m-2s-1 light intensity over a 

range of CO2 levels (100, 200, 300, 400, 600, and 1000 µmoles). Values are the 

means ± SE (n = 3). 
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Figure 4. ACi curves using RES and SUS genotypes of aphid-free S switchgrass 

using a constant 1800 µmol photons m-2s-1 light intensity over a range of CO2 

levels (100, 200, 300, 400, 600, and 1000 µmoles). Values are the means ± SE 

(n = 3). 
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Table 3. Survey measurements of carbon dioxide assimilation for aphid-infested 

and aphid-free (control) 8 DAI in switchgrass plants from K, KxS, and S using a 

constant 400 µM intercellular CO2 concentration and 1800 µmol photons m-2s-1 

light intensity. Values are the means ± SE (n = 3). 
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Figure 5. ACi curves for aphid-infested and aphid-free (control) plants of K 8 DAI 

using a constant 1800 µmol photons m-2s-1 light intensity over a range of CO2 

levels (100, 200, 300, 400, 600, and 1000 µmoles).  Values are the means ± SE 

(n = 3). 
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Figure 6. ACi curves from aphid-infested and aphid-free (control) plants of 

switchgrass hybrid KxS 8 DAI using a constant 1800 µmol photons m-2s-1 light 

intensity over a range of CO2 levels (100, 200, 300, 400, 600, and 1000 µmoles).  

Values are the means ± SE (n = 3). 

 

 

 

 

 

 

 

 

 



 46 

 

 

 

 

 

 

 

 

 

 

Figure 7. ACi curves from switchgrass aphid-infested and aphid-free (control) 

plants of S 8 DAI using a constant 1800 µmol photons m-2s-1 light intensity over a 

range of CO2 levels (100, 200, 300, 400, 600, and 1000 µmoles). Values are the 

means ± SE (n = 3). 
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CHAPTER 3: 

BIOCHEMICAL RESPONSES OF SWITCHGRASS, PANICUM VIRGATUM L., 

TO APHID HERBIVORY 

Introduction 

 Switchgrass (Panicum virgatum L) is a promising crop for the biofuel 

industry (Vogel et al. 2014; Vogel et al. 2011). It has several desirable 

characteristics including high biomass yields across a variety of diverse 

environments, positive environmental benefits, and is adapted to environments 

with minimal water and nutrient requirements (Sanderson et al. 1996, 2004, 

McLaughlin et al. 1999).  

However, recent research has shown that switchgrass can be a suitable 

host for diverse array of insect pests including aphids (Dowd and Johnson 2009, 

Prasifka et al. 2009a, Nabity et al. 2011, Dowd et al. 2012, Koch et al. 2014a,  

2014b, 2014c) . Studies by Koch et al. (2014b, 2014c) have shown that 

switchgrass plants have different categories of resistance to two aphid species, 

greenbugs (GB), Schizaphis graminum (Rondani), and yellow sugarcane aphids 

(YSA), Sipha flava (Forbes). Upland tetraploid plants from cultivar Summer (S) 

were tolerant to GB and SUS to YSA. Plants from the lowland cultivar Kanlow (K) 

were usually antibiotic to both aphids, whereas plants derived by crossing 

Kanlow x Summer (KxS) plants were SUS to GB and tolerant to YSA. These 

studies suggest that switchgrass plants have divergent physiological defense 

responses to aphid herbivory.  
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 Oxidative responses of plants to environmental stressors such as insect or 

pathogen attack, have garnered considerable attention. Many studies have 

shown a shift in the oxidative status in plants resulting from stress on the host 

plant (Bi and Felton 1995, Moran et al. 2002, Bruce et al. 2007, Kempema et al. 

2007, Khattab 2007, Holopainen and Gershenzon 2010). Reactive oxygen 

species (ROS), such as hydrogen peroxide (H2O2), appear to be an essential 

component of a plant’s response to stress, with low concentrations of H2O2 

required for triggering a number of changes within cells (Zurbriggen et al. 2010, 

Baxter et al. 2014). However, in higher concentrations, ROS species are highly 

toxic to the plant if not efficiently detoxified by enzymatic and non-enzymatic 

mechanisms (Apel and Hirt 2004, Zurbriggen et al. 2010, Baxter et al. 2014). 

Oxidative enzymes, such as ascorbate peroxidase (APX), catalase (CAT) and 

peroxidase (POX), aid in the detoxification of ROS in plants (Bi and Felton 1995, 

Moran et al. 2002, Heng-Moss et al. 2004, Zhu-Salzman et al. 2004, 2005, 

Khattab 2007, Maffei et al. 2007, Smith and Boyko 2007, Gutsche et al. 2009a, 

Prochaska et al. 2015).  

Numerous studies have provided evidence of increased levels of POX in 

switchgrass and other plants when exposed to insect herbivory (Bi and Felton 

1995, Stout et al. 1997, 1999, Moran 1998, Chaman et al. 2001, Allison and 

Schultz 2004, Heng-Moss et al. 2004, Franzen et al. 2007, Gutsche et al. 2009a, 

Pilon-Smits et al. 2009, Gulsen et al. 2010, Pierson et al. 2010a, Ramm et al. 

2013, Saathoff et al. 2013). Similar patterns have been observed for CAT and 
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APX, in Miscanthus sinensis (cv Giganteus) and buffalograss (Buchloë 

dactyloides (Nuttall) Engelmann) (Heng-Moss et al. 2004, Gulsen et al. 2010). 

Studies by Ramm et al. (2013) found significant differences in transcripts 

for genes encoding two POX and one CAT between the chinch bug-free control 

and chinch bug infested genotypes of buffalograss. Additionally, basal 

expression levels of POX and CAT were found to be up-regulated in the tolerant 

buffalograss, suggesting these oxidative enzymes may be an effective defensive 

strategy in buffalograss against chinch bug herbivory and other biotic stressors.  

APX is another enzyme crucial for detoxifying excess cellular H2O2 

(Ishikawa and Shigeoka 2008, Gill and Tuteja 2010). APX genes were enhanced 

in tobacco and soybean in response to arthropod herbivory, specifically that of 

phloem-feeding insects (Mittler et al. 1999, Prochaska et al. 2015). 

The overall focus of this study was to investigate changes in the relative 

oxidative stress in different cultivars of switchgrass in response to aphid 

herbivory. Investigations were completed using biochemical protocols to observe 

changes in POX, APX, and CAT concentrations when challenged by cereal 

aphids. Additionally, gene expression studies were used to gain a better 

understanding of changes occurring in gene expression before and during the 

onset of YSA. 

 

Materials and Methods 

Plant material. Three different cultivars of switchgrass, K, S, and KxS 

which was derived by crossing K (male) x S (female) plants, (Koch et al. 2014a, 
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2014b, 2014c, Vogel et al. 2014, Prochaska et al. unpublished) were evaluated. 

Plants previously scored as resistant (RES) or susceptible (SUS) to either GB or 

YSA (Koch et al. 2014b, 2014c) were clonally multiplied from ramets (3 clones 

each) in cone-tainers. All plants were maintained in a greenhouse setting at 25 ± 

7°C with light supplemented by a 400-W metal halide lamps to produce a 16:8 

hour (L:D) photoperiod. Plants were fertilized bimonthly with a soluble (20:10:20 

N-P-K) fertilizer. New tillers that emerged were allowed to reach the second leaf 

stage prior to the introduction of aphids.  

Insect colonies. GB (biotype I) and YSA were provided by Dr. John D. 

Burd, USDA-ARS in Stillwater, OK. Colonies of both aphids were established and 

maintained on a constant supply of the susceptible sorghum cultivar ‘BCK60.’ GB 

colonies were housed in a plant growth chamber with a temperature of 25 ± 2°C 

and a 16:8 hour (L:D) photoperiod. YSA colonies were housed in the greenhouse 

with a temperature of 25 ± 7°C and a 16:8 hour (L:D) photoperiod. 

Plants were infested with 10 apterous adult aphids with a fine bristle 

paintbrush and caged using a tubular plastic cage (4 cm diameter by 46 cm in 

height) with vents covered in an organdy fabric to confine aphids to their 

respective plants. Uninfested (control) plants were maintained similarly. The 

experimental design was a completely randomized design with a 3x2x2x2 

factorial (3 cultivars: S, KxS, K; 2 genotypes: RES and SUS; 2 time points: day 0 

and day 10; 2 treatments: aphid-infested and aphid control) and 5 replications 

per treatment combination. 
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Plants were harvested 10 days following aphid introduction. Aphids were 

removed using a paintbrush and aerial portions of the plants flash frozen with 

liquid N2. Samples were ground to a fine powder in liquid N2, then stored at -80 

°C until analyzed. 

Aliquots of ground plant tissue were weighed (~100 mg) into 1.5 mL 

centrifuge tube, 300 µL of buffer (0.1 M sodium phosphate) and 10 µL of 

protease inhibitor cocktail (Sigma P9599) were added to each sample. Samples 

were sonicated twice for 7 sec using a Branson Digital Sonicator (amplitude: 

20%), and centrifuged at 14,000 x g at 4 °C for 10 minutes. A 20 µL aliquot from 

each sample was added to microcentrifuge tubes containing 1 mL of acetone for 

protein determination (see below), and tubes were mixed by inversion and placed 

in a -20°C freezer for 1 hour to precipitate proteins.  

The remaining sample was transferred to a new micro-centrifuge tube and 

centrifuged for an additional 3 minutes using the above settings. The 

homogenate was collected and prepared for POX, APX, and CAT assays. All 

enzymatic activities were measured using a spectrophotometer (BioTek Synergy; 

Winooski, VT).  

Total Protein Content. After 1 hour at -20°C freezer, samples were removed 

and centrifuged at 14,000 x g at 4 °C for 10 minutes. The liquid portion was then 

discarded and the pellet allowed to air dry. The pellet was then dissolved in 40 µL 

of 25 mM NaOH by repeated pipetting. Triplicate 10 µL aliquots were analyzed 

for proteins using the BCA protein assay (Thermo-Fisher) following the 

manufacturer-supplied protocols. Bovine serum albumin was used as a standard. 
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Peroxidase. POX activity was measured using a previously published protocol 

(Heng-Moss et al. 2004, Pierson et al. 2010a) by observing the increase in 

absorbance (470 nm) for 2.5 minutes. Five microliter samples were placed in a 

96 well microtiter plate containing 20 µL of 200 mM HEPES-NaOH buffer (pH 

6.0), 75 µL of 18 mM guaiacol, and 75 µL of distilled water. Enzymatic reactions 

were initiated by adding 25 µL of 3% H2O2 (0.1 mM) to each well. Assays were 

performed at 30°C. Specific POX activity was determined using a molar 

absorptivity of 26.6 x 103 M-1 cm-1 for guaiacol at 460 nm (Heng-Moss et al. 2004, 

Pierson et al. 2010a) and was defined as µmol min*mg-1. 

Ascorbate peroxidase. APX activity was determined as described by 

Murshed et al. (2008) with the following modifications. Triplicate 10 µL sample 

aliquots were placed into a 96 well microtiter plate containing 18 µL of 0.5 mol/L 

sodium phosphate buffer, 5 µL of 200 mM H2O2, 2 µL of ascorbic acid, and 165 

µL of distilled water in each well. Assays were performed at room temperature. 

Changes in absorbance were recorded at 290 nm for 15 min. The best-fit slope 

was determined for each sample and used in calculations and the statistical 

analysis. Control reactions without ascorbate or without plant extracts were run in 

unison for each treatment. One unit of enzyme activity was defined as µmoles 

min-1 mg-1 protein. 

 Catalase. CAT activity was measured through recorded changes in 

absorbance at 240 nm. Triplicate 20 µL aliquots of samples were placed into 

wells of a 96 well microtiter plate containing 16 µL of 0.5 mol/L sodium phosphate 

buffer, 5 µL of 200 mM H2O2, and 159 µL of distilled water to each well. Plates 
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were read at room temperature. Changes in absorbance were recorded for 15 

minutes. The best-fit slope was determined for each sample and used in 

calculations and the statistical analysis. Control reactions without H2O2 or without 

plant extracts were run in unison for each treatment. One unit of enzyme activity 

was defined as µmoles min-1 mg-1 protein. 

H2O2 determination using Amplex Red. H2O2 levels were detected with 

Amplex red using a protocol modified from Estavillo et al. (2011) and Oh et al. 

(2012). Approximately 50 mg of ground plant sample was mixed by repeated 

inversion with 300 µL 10 mM Tris buffer pH 7.5 containing 0.1 M NaCl, and 0.1 

mM EDTA and placed on ice for 5 minutes. Samples were sonicated for 7 sec 

(as described above), and centrifuged for 20 minutes at 14,000 x g at 4°C, and 

the supernatant was collected. Triplicate 50 µL aliquots from each sample were 

placed into individual wells of a 96 well microplate. Next, 50 µL of a solution 

containing 0.01 mM Amplex red and 0.2 units mL-1 horseradish peroxidase in 

Tris buffer were added to each well, and plates were placed in the dark for 30 

min at room temperature. Absorbance was subsequently measured at 560 nm 

using a BioTek Instruments plate reader equipped with Gen5 software. A 

standard curve was constructed using a range from 0 to 20 nmoles H2O2 / µL.  

 Data from Amplex red, total protein, POX, APX, and CAT activities were 

analyzed using SAS Version 9.4 mixed model analysis PROC GLIMMIX 

procedure (SAS Institute 2011, Cary, NC) to identify statistical differences.  

 RNA extraction. Total RNA was extracted from three biological replications 

of tissues collected at Day 0 and Day 10 (aphid infested and non-infested) for 
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only the YSA experiment using TRIzol reagent following the manufacturer 

protocol (Invitrogen, Carlsbad, CA, USA). RNA samples were purified using the 

RNeasy MinElute Cleanup Kit and associated manufacturer protocol (Qiagen, 

Valencia, CA, USA). The integrity of extracted RNA was verified using gel 

electrophoresis.  

 RT-qPCR. RT-qPCR was performed using RNA extracted from 

switchgrass plant samples, using 2.5 µg of total RNA treated with RNase-free 

DNase I (Life Technologies, Rockville, MD). First strand cDNA synthesis was 

completed using the ThermoScript RT-PCR system (Life Technologies) 

according to manufacturer’s protocol. All qPCR was performed on a 7500 fast 

realtime PCR platform (Applied Biosystems) using Bio-Rad SsoAdvanced SYBR 

Green (Bio-Rad Laboratories, California, USA) following manufacturer’s protocol 

which consists of 95°C for 30 sec, then 40 cycles of 95°C for 5 sec and 60°C for 

30 sec. Genes analyzed by RT-qPCR and primers used for analyses are 

provided in Table 1. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was 

included as an endogenous control (FWD: 5'-TCTTCGGTGAGAAGCCGGT-3'; 

REV: 5'-CATAGTCAGCGCCAGCCTC-3'). 

 

Results 

Damage ratings. GB: Significant differences were observed for damage 

between treatments within one of the three switchgrass cultivars: S (control vs. 

Infested: Summer resistant (SRES), P=0.0101, Summer susceptible (SSUS), 

P=0.0010; Figure 1). However, no significant differences in damage were 
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detected between KxS and K plants when comparing infested vs. control plants 

(Figure 1). Overall, Kanlow resistant (KRES) had a mean aphid number of 4.30 ± 

1.04, while Kanlow susceptible (KSUS) had a mean aphid number of 2.71 ± 0.62 

GB. KxS resistant (KxSRES) had 3.44 ± 1.03 aphids, whereas KxS susceptible 

(KxSSUS) had 12.67 ± 5.45 GB. SRES had 4.60 ± 1.48 GB and SSUS 4.50 ± 2.06 

GB. No aphids were placed on control plants. Mean aphid numbers were not 

significantly different between aphid infested and aphid-control, likely because 

aphid numbers were relatively low.  

YSA: Damage ratings in SRES were found to approach significance, when 

comparing control and infested treatments, with significant differences observed 

in SSUS comparisons (SRES: P=0.06, SSUS: P=0.007; Figure 2). No significant 

differences were observed in damage ratings for KxS and K plants. A mean of 

11.56 ± 3.79 (KRES), 30.10 ± 4.45 (KSUS), 8.60 ± 1.90 (KxSRES), 6.1 ± 1.20 

(KxSSUS), 28.50 ± 8.31 (SRES), and 50.30 ± 7.24 aphids (SSUS), respectively were 

observed at the conclusion of this experiment. Mean aphid numbers were not 

significantly different for the aphid-infested and aphid-control comparisons within 

each genotype (RES and SUS). 

Amplex Red. Amplex red was used to determine the concentration of H2O2 

content in samples. GB infested KxSRES plants had significantly lower H2O2 levels 

when compared to infested KxSSUS plants (P=0.0006). No significant differences 

in H2O2 content were observed between infested KRES-KSUS or SRES-SSUS plants. 

Infested SSUS and KxSRES plants had a small increase in the levels of H2O2 

(Figure 3; Supplement Table 1A).  
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For YSA, infested SRES plants had significantly lower levels of H2O2 when 

compared to their respective controls. In infested SSUS plants, H2O2 content was 

significantly greater (Figure 4; Supplement Table 1B). There were no significant 

differences for the KxS plants, although KxSSUS plants had significantly higher 

levels of H2O2 at day 0 (Figure 4; Supplement Table 1B). For KRES, infested 

plants had higher peroxide levels 10 DAI when compared to the uninfested 10 

DAI controls. No differences were observed for the KSUS samples (Figure 4; 

Supplement Table 1B).  

Total Protein. At 10 days after aphid introduction (DAI), there were no 

significant differences in total protein content between aphid-infested and aphid-

free control treatments among the six switchgrass genotypes for either aphid 

species (data not shown). 

Peroxidase activity. No significant differences occurred for SRES or SSUS 

GB infested plants 10 DAI, although there was an increase in POX activity when 

compared to the Day 0 activities (Figure 5), suggestive of a possible 

developmental change occurring within the plant. These (possible) 

developmentally associated increases in POX activities were also noticed for the 

KxS and K plants (Figure 5; Supplement Table 2A). As observed for the S plants, 

no significant infestation effect was evident, although POX activities were 

elevated in the aphid-infested treatments for K and KxS plants relative to their 

respective control plants (Figure 5; Supplement Table 2A).  

Similar developmental trends in POX activity were found in the YSA study. 

Again, trends were apparent among the three switchgrass cultivars. Within SRES, 
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plants having greater levels of POX activity as compared to the SSUS plants 

(Figure 6; Supplement Table 2B). In KxS, there were no apparent differences in 

the KxSRES plants 10 DAI (infested vs. control), whereas POX activity was 

elevated in the infested KxSSUS plants relative to their controls. For K, POX 

activity was higher in the infested KRES over the KSUS plants, although this was 

not statistically significant (Figure 6; Supplement Table 2B). 

Ascorbate peroxidase. All plants had an increase in APX activity 10 DAI 

regardless of the genotype (Figure 7). Within SRES plants, there was no 

difference in APX, although in infested plants, APX activity was moderately 

elevated relative to uninfested controls. For SSUS plants, APX activity was 

significantly reduced 10 DAI as a result of aphid herbivory (P=0.02; Figure 7; 

Supplement Table 3A). APX activity was significantly increased 10 DAI in aphid-

infested KxSRES plants (P=0.009; Figure 7, Supplement Table 3A). APX was 

lower in the infested KxSSUS plants, although not significantly (P=0.4; Figure 7, 

Supplement Table 3A). No significant differences were found in APX activities 10 

DAI in either KRES or KSUS plants. However, APX activity was somewhat elevated 

in GB infested plants relative to their respective controls (Figure 7; Supplement 

Table 3A). 

Observed APX activities were lower in infested SRES and SSUS plants 

although the difference was not significant (P=0.8; Figure 8, Supplement Table 

3B). In infested KxSRES plants, APX activity was elevated, albeit slight, 10 DAI 

when compared to the control (Figure 8; Supplement Table 3B). APX activity was 

depressed in infested KRES plants, but elevated in the infested KSUS plants (Figure 
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8; Supplement Table 3B). Overall, it appears that APX activity may also change 

in response to plant development especially in the KxS and K plants.  

Catalase. No significant differences were observed for CAT activities in 

either the GB or YSA treatments, but there was an increase in CAT activity in all 

plants 10 DAI as compared to the Day 0 (Figure 9 and 10). However, CAT 

activity was elevated in GB-infested SSUS, KxSRES and KRES and KSUS plants 

(Figure 9; Supplement Table 4A). Ten days after YSA introduction, CAT activity 

was elevated primarily in KxSRES and KxSSUS and KSUS plants, but remained 

unchanged for the other comparisons (Figure 10; Supplement Table 4B). 

RT-qPCR analysis. RT-qPCR analysis was only performed for the YSA 

study. A total of ten genes were selected for analysis based on published 

(Studham and MacIntosh 2012, Ramm et al. 2013, Prochaska et al. 2015) and 

unpublished data (Donze-Reiner unpublished). A reference gene, GAPDH, was 

used as a reference across all reactions (Czechowski et al. 2005). The relative 

expression of the ten select genes across the entire data set is shown in tables 

2-4. In SRES plants, three genes, including two encoding for POXs and one 

encoding a pathogenesis related (PR) protein, were significantly up-regulated in 

infested plants 10 DAI when compared to the uninfested controls (Table 2). A 

total of three genes were differentially expressed in comparisons between SSUS 

infested vs. SSUS control (Table 2). One gene was differentially expressed in 

KxSRES infested vs. KxSRES control while no genes were differentially expressed 

in KxSSUS genotypes (Table 3). Six total genes were significantly different in KSUS 

infested vs. KSUS control and two total genes were significantly different between 
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KRES infested vs. KRES control (Table 4). The genes reported here have been 

previously identified as defense related genes and include a POX, a WRKY, and 

a pathogenesis related protein (Studham and MacIntosh 2012, Ramm et al. 

2013, Prochaska et al. 2015).  

Gene expression studies were also performed using RNA extracted from 

day 0 basal switchgrass plants in the YSA experiment. Transcript abundance of 

select genes determined to be differentially expressed were analyzed in the 

basal SUS and basal tolerant switchgrasses (Table 5). One gene was found to 

be differentially expressed between KSUS (day 0 uninfested) vs. KRES (day 0 

uninfested). This gene, which encoded for a Pathogenesis-related protein 

(Pavir.Cb00592), was observed to be up-regulated (~48 fold, P=0.03, PROC 

TTEST; Table 5) in the KRES genotype at day 0. 

Four genes were found to be differentially expressed in SSUS vs. SRES (day 

0) comparisons (PROC TTEST; P<0.05). All four genes were up-regulated in the 

SUS genotype of cultivar S. This included a POX (P=0.01; Pavir.Ba00166), a NB-

ARC domain (LRR) resistance protein (P=0.003; Pavir.J28677), a gene encoding 

for terpene synthesis (P=0.01, Pavir.J11635), and a gene of unknown function 

(P=0.02, Pavir.J10977) (Table 5).  

Finally, KxS exhibited changes in gene expression. Analyses comparing 

day 0 KxSRES and KxSSUS plants identified two differentially expressed POX 

encoding genes. One of the POXs, Pavir.Ba00166, was up-regulated (P=0.006; 

Table 5) in the RES plant by nearly 11 fold. A second POX, Pavir.Ba00168, was 

also up-regulated in the KxSRES plant (P=0.029; Table 5). 
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Discussion 

Significant variation in host response to aphids has been reported in 

switchgrass (Koch et al. 2014a, 2014b, 2014c). These studies facilitated 

identification of plants within several cultivars (S, K, and KxS) which were 

categorized as SUS or RES to aphid herbivory. These specific RES and SUS 

genotypes were evaluated for biochemical responses to aphids. Both GB and 

YSA caused damage to RES and SUS plants, and in general, the SUS 

genotypes within each cultivar experienced greater damage when compared to 

their respective controls. RES genotypes were also damaged but significantly 

less than their SUS counterparts, suggesting differences in their underlying 

physiology. Overall, plants from S were damaged to a greater extent than plants 

with KxS or K genetic backgrounds. These results are consistent with previously 

published research (Koch et al. 2014a, 2014b, 2014c).  

In the short term, the primary impact of phloem feeders, such as aphids, 

involves changes in sucrose transport and redirection of leaf metabolism that can 

lead to an impairment of photosynthesis (Macedo et al. 2003, Franzen et al. 

2007, Gutsche et al. 2009b, Pierson et al. 2010a, Singh et al. 2011). This 

inhibition is common among aphid-infested plants. However, a study of aphid-

SUS and RES barley (Hordeum vulgare L.) (Gutsche et al. 2009b) concluded 

that prolonged inhibition to photosynthesis in SUS plants may result in damage 

by ROS accumulation in the cells (but is not detoxified). On the other hand, RES 
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plants may counteract harmful effects of ROS by up-regulating detoxification 

mechanisms when exposed to aphid herbivory.  

Multiple studies (Apel and Hirt 2004, Kotchoni and Gachomo 2006, 

Pitzschke et al. 2006) have shown ROS to be early signals alerting gene 

expression patterns in cells. However, high concentrations of ROS often lead to 

cellular toxicity and death (Mittler et al. 2004). CAT, POX, and APX are among 

the cellular repertoire of oxidative enzymes that ameliorate the harmful effects of 

ROS, especially in plants with resistance to aphid herbivory (Hildebrand et al. 

1986, Bi and Felton 1995, Jespersen et al. 1997, Mittler et al. 1999, Argandoña 

et al. 2001, Chaman et al. 2001, Hiraga et al. 2001, Heng-Moss et al. 2004, 

Gulsen et al. 2010, Mhamdi et al. 2010, Ramm et al. 2013). 

In our studies, observations revealed increased POX activity in 

switchgrass, especially SRES, when challenged by GB or YSA. This may 

contribute to the overall resistance to aphid herbivory found in switchgrass. 

Differences at day 0 were detected within KxSRES plants (Table 2). This supports 

studies performed by Ramm et al. (2013) and Prochaska et al. (2015), which 

documented increased POX activity in RES plants when compared to known 

SUS plants. Overall, plant POXs have been shown to perform a variety of roles, 

including a fundamental role in the cell wall building process. However, POX 

have also been shown to aid in auxin catabolism, wound healing, the production 

or removal of H2O2, and the defense response against insect and pathogen 

attack (Hiraga et al. 2001, Ni et al. 2001, Kawano 2003, Gutsche et al. 2009a, 

Gill and Tuteja 2010, Ramm et al. 2013, Prochaska et al. 2015). Increased levels 
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of POX have also been associated with defensive responses to phloem feeding 

insects in many plant species (Argandoña et al. 2001, Ni et al. 2001, Park et al. 

2005, Smith and Boyko 2007, Gutsche et al. 2009a, Liu et al. 2010, Pierson et al. 

2010a, Ramm et al. 2013, Prochaska et al. 2015).  

This study found APX activity to be significantly elevated in several 

switchgrass genotypes when infested with GB. However, this response was only 

observed for KxSRES plants when infested with YSA, suggesting there were 

distinct host responses to individual aphids. APX is crucial for detoxifying excess 

cellular H2O2 produced in plants (Ishikawa and Shigeoka 2008, Gill and Tuteja 

2010). Differences in gene expression coding for APX have been found in plant-

pathogen interactions, specifically tobacco and soybean-soybean aphid 

interactions where APX was found to be up-regulated (2-fold) in response to 

aphid herbivory (Mittler et al. 1999, Prochaska et al. 2015). 

 Earlier research had indicated that S was tolerant to GB and SUS to YSA 

(Koch et al. 2014b), whereas KxS was SUS to GB but tolerant to YSA. 

Researchers have also shown there can be a diversity of responses determined 

both by the host and by the aphid (Ryan et al. 1987, Miller et al. 1994, Riedell 

and Kieckhefer 1995, Rafi et al. 1997, Wilhelmina et al. 2000, Ni et al. 2001, 

Heng-Moss et al. 2002, 2004, Zhang et al. 2004, Heng-Moss et al. 2006, 

Franzen et al. 2007, Yuan et al. 2008, Gutsche et al. 2009b, Pierson et al. 2010a, 

2010a, Studham and MacIntosh 2012, Prochaska et al. 2013, 2015, Ramm et al. 

2013). This suggests that variations observed in our study could be partially 

attributable to these factors. 
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CAT levels did not appear to change in response to aphid herbivory. 

However, trends indicated increased CAT activity in the response to GB. This 

response was muted or absent when these plants were challenged with YSA. 

Ramm et al. (2013) observed CAT transcripts to be higher in unchallenged RES 

buffalograss, although it is uncertain if similar mechanisms are present in 

switchgrass. 

Previous research has also found differential gene expression among 

several defense related genes when challenged by phloem-feeding insects 

(when compared to their respective controls). This information may help 

elucidate the underlying defensive mechanisms within a given plant (Bi and 

Felton 1995, Wilhelmina et al. 2000, Torres et al. 2002, Apel and Hirt 2004, 

Heng-Moss et al. 2004, Ralph et al. 2006, Thompson and Goggin 2006, 

Couldridge et al. 2007, Franzen et al. 2007, Browse and Howe 2008, Gutsche et 

al. 2009a, Liu et al. 2010, Pierson et al. 2010a, Suzuki and Mittler 2012, Ramm 

et al. 2013, Prochaska et al. 2015).  

Through transcriptional profiling, Gutsche et al. (2009a) detected nearly 

900 differentially expressed genes in wheat challenged by the Russian wheat 

aphid (RWA), Diuraphis noxia (Mordvilko). Of the differentially expressed genes, 

several were associated with plant defense and ROS scavenging. This included 

two POX genes that were up-regulated when challenged by RWA and may be 

significant to our overall understanding of the tolerant response in barley 

(Gutsche et al. 2009a). Similar responses have been found in other plant-phloem 

feeding insect systems such as soybean, wheat, and buffalograss (Franzen et al. 
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2007, Pierson et al. 2010a, Ramm et al. 2013, Prochaska et al. 2015). The 

previously discussed research demonstrates that POX, APX, and CAT play a 

role in the plant defense mechanism to aphids. 

 From genes found to be significant in next generation sequencing (NGS) 

switchgrass-GB interactions (Donze-Reiner unpublished), we selected genes that 

would potentially expand our knowledge of switchgrass-YSA resistance 

mechanisms. This includes a terpene synthase (TPS) gene found to be 

differentially expressed in switchgrass KSUS when the infested plant is compared 

to it’s respective control (Fold change ~55; Table 4). Additionally, day 0 

comparisons detected increased TPS expression levels in the RES genotype of 

SSUS (Fold change ~5; Table 5). Previous studies have found TPS to play various 

ecological roles in plants including pollinator attraction (Pichersky and 

Gershenzon 2002, Chen et al. 2011), insect predator attraction to herbivores 

(Unsicker et al. 2009, Chen et al. 2011), and chemical/physical barriers to 

oviposition by insects (Paré and Tumlinson 1999, Pichersky and Gershenzon 

2002, Keeling and Bohlmann 2006, Cheng et al. 2007, Heiling et al. 2010, Chen 

et al. 2011, Falara et al. 2011). In some plants, observations have shown that 

plants can emit volatile terpenoids in response to insect herbivory (Miller et al. 

2005, Mumm and Hilker 2006), and can act directly against insect and pathogen 

attack, even while induced volatile emissions function indirectly to attract natural 

enemies of attacking insects (Chen et al. 2011). Similar observations, involving 

TPS in relation to insect herbivory defense activities, have been found in rice 

(Yuan et al. 2008), sorghum (Shuang and Chen, unpublished), tomato (Falara et 
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al. 2011), and maize (Schnee et al. 2002, 2006, Köllner et al. 2009). In addition, 

there is some evidence that the switchgrass K is behaving in this way; however, 

further research is needed to fully understand the role of TPS in K.  

Observations also found a WRKY gene to be differentially expressed in 

both KRES and KSUS. Within the switchgrass KRES, a comparison of infested and 

control treatments documented a nearly 4-fold change in gene expression. 

Similar comparisions have shown a nearly 5-fold change in KSUS (Table 4). In 

general, WRKY genes are involved in plant defense against aphids in wheat, 

Arabidopsis, and soybean (Lapitan et al. 2008, Pandey and Somssich 2009, 

Botha et al. 2010, van Eck et al. 2010, Prochaska et al. 2015) when challenged 

by herbivores.  

 Our study shows a potential role for aminotransferases in switchgrass-

YSA interactions in KSUS with a 15-fold change in gene expression occured as a 

result of YSA herbivory (Table 4). Further evaluations, however, are needed to 

better understand the role of aminotransferases in switchgrass-YSA systems. 

Aminotransferases are enzymes that catalyze the transfer of an amino group. 

Previous work has shown that aminotransferases confer plant resistance to 

pathogens (Eckardt 2004, Taler et al. 2004). In addition, studies by Smith and 

Boyko (2007) found differential gene expression for aminotransferases in 

sorghum (S. bicolor)-GB interactions, suggesting these enzymes may play a role 

in plant resistance to arthropod herbivory. 

 Observations within our study suggest that pathogenesis-related proteins 

(PR) appear to be an important factor in the cascade of defensive strategies 
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occurring in the SRES plant (P=0.03; Table 2). In plants, sources of stress (abiotic 

or biotic) can result in damage. However, damage occurring from these stresses 

can remain limited as a result of the plant’s defensive response where the plant 

reaction may be associated with an integrated set of metabolic cascades that 

may be vital in impeding further stress ingress (van Loon and van Strien 1999). 

As part of these responses, various genes, such as PR, can be induced. PR, as 

coded by the specific host plant, can occur systematically with the development 

of systemic acquired resistance (van Loon and van Strien 1999). PRs have also 

been found to be an important part of the defensive pathway in tomato, rice, and 

Arabidopsis when confronted by insect herbivores or other stressors (Fidantsef et 

al. 1999).  

 In three switchgrass genotypes (SSUS, KRES, and KSUS), observations found 

significant differences between infested and control plants, suggesting that 

nucleotide binding site-LRR proteins may play a role in switchgrass defense 

(Tables 2 and 4). Similar observations were found at day 0 in SSUS (Table 5). In 

plants, several aphid resistance genes were found to encode nucleotide binding 

site-LRR proteins (Crute and Dunn 1980, Chen et al. 1997, Milligan et al. 1998, 

Rossi et al. 1998, van der Biezen and Jones 1998, Nombela et al. 2003, Takken 

et al. 2006, Wroblewski et al. 2007, Prochaska et al. 2015). Overall, these large 

and often abundant proteins aid in the detection of a diverse array of pathogens 

including bacteria, viruses, fungi, insects, and nematodes.  

 This research suggests cysteine-rich secretory proteins (CRSP) may play 

a role in the plant’s defensive response to YSA herbivory with differential gene 
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expression in two switchgrass genotypes, KSUS and SSUS (Tables 2 and 4). CRSP 

have been found in host plant-pathogen and host plant-antifungal activity in 

relation to defense (Blein et al. 2002, Rivas and Thomas 2005, Chisholm et al. 

2006, Parker 2009, Miyakawa et al. 2014).  

Finally, a gene of unknown function (Pavir.J10977) will require further 

study as it appears to be a significant player in the defensive response of 

switchgrass to cereal aphid herbivory (Tables 2 and 4). This gene is differentially 

regulated in KSUS and SSUS, by as much as 42 fold (SSUS) in infested treatments 

when compared to the aphid controls. At day 0, significant differences were 

detected (P = 0.02) and differed by a near 40 fold difference in SSUS.  

 

Conclusions 

This research identified a range of host responses to two different aphid 

species. There was a stronger plant response to GB feeding than to feeding by 

YSA. This was consistent with observed damage ratings. Selection for 

switchgrass resistance to one or both aphids appears feasible as all identified 

RES genotypes outperformed the comparable SUS genotypes. This study also 

indicated substantial variation in host response within the switchgrasses to the 

two aphid species. Overall, this project provides a better understanding of the 

mechanisms contributing to the defensive response to GB and YSA in the 

switchgrass cultivars K, KxS, and S.  
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Table 1. Gene ID, gene description, and gene primers (FWD and REV) used for RT-qPCR in switchgrass plants 

challenged by YSA. 

GeneID Gene Description Gene Primer (FWD) Gene Primer (REV) 

Pavir.Ba00166 Peroxidase 5'-GGCCTTCA 
TGGAGGGTTCTC-3' 

5'-GGTTCACG 
TTGGTGTCGTTG-3' 

Pavir.Ba00167 Peroxidase 5'-CATGACTG 
CTTTGTCCAGGC-3' 

5'-ATGTTGGC 
GATGACGTCGAA-3' 

Pavir.Ba00168 Peroxidase 5'-GGAACAAG 
AACCTCGACCCA-3' 

5'-AGCAGGTT 
GGTGTAGTAGGC-3' 

Pavir.Ca00085 WRKY112 5'-GGTGCCAT 
CTAGCCTAGGAG-3' 

5'-GTGGTGGT 
CTCGAGGATGAT-3' 

Pavir.Cb00592 Pathogenesis- 
related protein 

5'-GTGAAGTC 
GGAGATGGTGGT-3' 

5'-TCTTGATG 
AGGCCGAGGTAG-3' 

Pavir.Ib00618 Aminotransferase 5'-TCGGCTAT 
GGCTGAGTATGC-3' 

5'-CTCCGTCC 
GAGATGAACACC-3' 

Pavir.J10977 Unknown 5'-CTCTCCTC 
CTCGTCTCATCG-3' 

5'-GTGTTGTG 
CCGTATGTTGGT-3' 

Pavir.J11635 Terpene Synthesis 5'-AGAGCACT 
CGACTACCTGGA-3' 

5'-CCCCATCT 
TCTCCAACGTGT-3' 

Pavir.J28677 NB-ARC  
domain (LRR) 

5'-ACAAAGCT 
GGCTCAGATGGT-3' 

5'-CAACAGCA 
GAAACCAGCAAA-3' 

Pavir.J37785 Cysteine-rich  
secretory protein 

5'-GTACGACC 
ACGACAGCAACT-3' 

5'-TAGTACGG 
GCTCTGTCCCTC-3' 

!
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Figure 1. Damage ratings for RES and SUS switchgrass genotypes from (A) 

Summer, (B) KxS, and (C) Kanlow plants when challenged with greenbugs. (*) 

indicates significant differences between infested and control treatments within a 

given genotype (P<0.05). Damage ratings for all controls were scored at 1.0 ± 

0.0. Values are the means ± SE (n = 5). 
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Figure 2. Damage ratings for RES and SUS switchgrass genotypes from (A) 

Summer, (B) KxS, (C) Kanlow plants when challenged with yellow sugarcane 

aphids. (*) indicates significant differences between infested and control 

treatments within a given genotype (P<0.05). Damage ratings for all controls 

were scored at 1.0 ± 0.0. Values are the means ± SE (n = 5). 
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Figure 3. H2O2 content among RES and SUS switchgrass genotypes from (A) 

Summer, (B) KxS, and (C) Kanlow plants when challenged with greenbug. 

Different letters indicate significant differences (P<0.05). Values are the means ± 

SE (n = 5). 
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Figure 4. H2O2 content among RES and SUS switchgrass genotypes from (A) 

Summer, (B) KxS, and (C) Kanlow plants when challenged with yellow 

sugarcane aphid. Different letters indicate significant differences (P<0.05). 

Values are the means ± SE (n = 5). 
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Figure 5. Peroxidase specific activity among RES and SUS switchgrass 

genotypes from (A) Summer, (B) KxS, and (C) Kanlow plants when challenged 

with greenbug. Different letters indicate significant differences (P<0.05). Values 

are the means ± SE (n = 5). 
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Figure 6. Peroxidase specific activity among RES and SUS switchgrass 

genotypes from (A) Summer, (B) KxS, and (C) Kanlow plants when challenged 

with yellow sugarcane aphid. Different letters indicate significant differences 

(P<0.05). Values are the means ± SE (n = 5). 
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Figure 7. Ascorbate peroxidase specific activity among RES and SUS 

switchgrass genotypes from (A) Summer, (B) KxS, and (C) Kanlow plants when 

challenged with greenbug. Different letters indicate significant differences 

(P<0.05). Values are the means ± SE (n = 5). 
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Figure 8. Ascorbate peroxidase specific activity among RES and SUS 

switchgrass genotypes from (A) Summer, (B) KxS, and (C) Kanlow plants when 

challenged with yellow sugarcane aphid. Different letters indicate significant 

differences (P<0.05). Values are the means ± SE (n = 5). 
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Figure 9. Catalase specific activity among RES and SUS switchgrass genotypes 

from (A) Summer, (B) KxS, and (C) Kanlow plants when challenged with 

greenbug. Different letters indicate significant differences (P<0.05). Values are 

the means ± SE (n = 5). 
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Figure 10. Catalase specific activity among RES and SUS switchgrass 

genotypes from (A) Summer, (B) KxS, and (C) Kanlow plants when challenged 

with yellow sugarcane aphid. Different letters indicate significant differences 

(P<0.05). Values are the means ± SE (n = 5). 
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Table 2. Gene description, gene ID, ΔΔCt, gene fold change, and T-Test value for YSA infested and uninfested 

switchgrass plants of Summer 10 DAI. Significant differences in bold (P<0.05). Values are the means ± SE (n = 3). 

Summer 
Resistant Day 10  

Infested vs. Control 
 

Susceptible Day 10  
Infested vs. Control 

ΔΔCt 
Fold 
change T-Test 

 
ΔΔCt 

Fold 
change T-Test 

Peroxidase Pavir.Ba00166 3.11 0.12 0.14  0.16 0.89 0.86 

Peroxidase Pavir.Ba00167 4.72 0.04 0.03  -1.14 2.21 0.43 

Peroxidase Pavir.Ba00168 4.68 0.04 0.002  0.58 0.67 0.63 

WRKY112 Pavir.Ca00085 1.61 0.33 0.20  0.64 0.64 0.49 

Pathogenesis-
related protein Pavir.Cb00592 8.13 0.00 0.03  -1.69 3.22 0.23 

Aminotransferase Pavir.Ib00618 0.06 0.96 0.96  -2.06 4.16 0.26 

Unknown Pavir.J10977 -0.67 1.59 0.68  -5.42 42.70 0.05 

Terpene Synthesis Pavir.J11635 2.10 0.23 0.16  -0.08 1.06 0.77 

NB-ARC 
domain (LRR) Pavir.J28677 1.65 0.32 0.17  -3.48 11.19 0.05 

Cysteine-rich 
secretory protein Pavir.J37785 0.78 0.58 0.57  -6.65 100.62 0.01 

!
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Table 3. Gene description, gene ID, ΔΔCt, gene fold change, and T-Test value for YSA infested and uninfested 

switchgrass plants of KxS 10 DAI. Significant differences in bold (P<0.05). Values are the means ± SE (n = 3). 

KxS 
 

Resistant Day 10  
Infested vs. Control   

Susceptible Day 10 
Infested vs. Control 

ΔΔCt 
Fold 
change T-Test   ΔΔCt 

Fold 
change T-Test 

Peroxidase Pavir.Ba00166 -6.76 108.69 0.00  -2.07 4.18 0.52 

Peroxidase Pavir.Ba00167 2.63 0.16 0.09  0.63 0.65 0.68 

Peroxidase Pavir.Ba00168 -1.99 3.97 0.25  2.75 0.15 0.46 

WRKY112 Pavir.Ca00085 -3.43 10.79 0.06  -3.58 11.96 0.32 

Pathogenesis- 
related protein Pavir.Cb00592 -1.03 2.04 0.32  -2.05 4.13 0.23 

Aminotransferase Pavir.Ib00618 2.50 0.18 0.71  -3.12 8.70 0.07 

Unknown Pavir.J10977 -0.03 1.02 0.99  1.02 0.49 0.35 

Terpene Synthesis Pavir.J11635 -2.42 5.36 0.40  1.06 0.48 0.54 

NB-ARC 
domain (LRR) Pavir.J28677 -3.24 9.47 0.25  -0.85 1.81 0.59 

Cysteine-rich 
secretory protein Pavir.J37785 -1.40 2.63 0.54  0.47 0.72 0.78 
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Table 4. Gene description, gene ID, ΔΔCt, gene fold change, and T-Test value for YSA infested and unifested 

switchgrass plants of Kanlow 10 DAI. Significant differences in bold (P<0.05). Values are the means ± SE (n = 3). 

Kanlow 
 

Resistant Day 10  
Infested vs. Control   

Susceptible Day 10 
Infested vs. Control 

ΔΔCt 
Fold 
change T test   ΔΔCt 

Fold 
change T test 

Peroxidase Pavir.Ba00166 0.10 0.93 0.90  -5.40 42.28 0.22 

Peroxidase Pavir.Ba00167 0.73 0.60 0.68  -0.38 1.30 0.76 

Peroxidase Pavir.Ba00168 1.70 0.31 0.61  -2.43 5.38 0.39 

WRKY112 Pavir.Ca00085 -1.93 3.80 0.02  -2.19 4.57 0.05 

Pathogenesis- 
related protein Pavir.Cb00592 -0.67 1.59 0.52  -4.37 20.67 0.07 

Aminotransferase  Pavir.Ib00618 2.56 0.17 0.40  -3.92 15.16 0.01 

Unknown Pavir.J10977 -2.87 7.33 0.20  -3.09 8.50 0.04 

Terpene Synthesis Pavir.J11635 -1.95 3.87 0.07  -5.77 54.70 0.03 

NB-ARC  
domain (LRR) Pavir.J28677 -5.61 48.74 0.05  -4.53 23.03 0.03 

Cysteine-rich  
secretory protein Pavir.J37785 -2.33 5.04 0.33  -3.06 8.34 0.01 
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Table 5. Gene description, ΔΔCt, gene fold change, and T-Test value for day 0 RES and day 0 SUS switchgrass plants of 

Summer (S), KxS, and Kanlow (K). Significant differences in bold (P<0.05). Values are the means ± SE (n = 3). 

 
Day 0 S Resistant 

vs. Susceptible  
Day 0 KxS Resistant 

vs. Susceptible  
Day 0 K Resistant 

vs. Susceptible 

 Fold change T-Test  Fold change T-Test  Fold change T-Test 

Peroxidase -28.46 0.01  10.86 0.006  -10.87 0.27 

Peroxidase -5.95 0.11  -1.07 0.949  -3.38 0.28 

Peroxidase -2.16 0.49  0.26 0.029  -2.70 0.65 

WRKY112 1.16 0.91  -1.66 0.686  -42.32 0.14 

Pathogenesis- 
related protein -28.82 0.16  4.23 0.345  47.62 0.03 

Aminotransferase -2.94 0.32  16.59 0.239  -1.87 0.62 

Unknown -40.07 0.02  7.83 0.481  1.46 0.71 

Terpene Synthesis -5.39 0.01  -1.28 0.228  2.28 0.73 

NB-ARC 
domain (LRR) -4.27 0.003  7.98 0.398  -1.41 0.70 

Cysteine-rich 
secretory protein -7.07 0.08  0.18 0.243  1.02 0.99 
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Supplement Table 1A. Statistical analysis of H2O2 content comparisons among RES and SUS Summer (S), KxS, and 

Kanlow (K) switchgrasses among greenbug infested comparisons (P<0.05). Three treatments were included: infested 

plants (I), control plants (C), and day 0 (D0) plants. 

A) Greenbugs          
Differences of population*genotype*treatment Least Squares Means 

Pop Gen Trt _Pop _Gen _Trt Est SE DF t Value Pr > |t| 
K R C K R D0 -0.029 0.014 40 -2.02 0.050 
K R C K R I -0.010 0.015 40 -0.66 0.513 
K R D0 K R I 0.019 0.014 40 1.32 0.195 
K S C K S D0 -0.055 0.014 40 -3.86 0.000 
K S C K S I -0.003 0.015 40 -0.16 0.871 
K S D0 K S I 0.053 0.014 40 3.68 0.001 

KxS R C KxS R D0 -0.031 0.014 40 -2.25 0.030 
KxS R C KxS R I -0.045 0.015 40 -2.93 0.006 
KxS R D0 KxS R I -0.014 0.014 40 -1.03 0.309 
KxS S C KxS S D0 0.005 0.015 40 0.34 0.733 
KxS S C KxS S I 0.013 0.015 40 0.83 0.410 
KxS S D0 KxS S I 0.007 0.015 40 0.49 0.628 

S R C S R D0 -0.049 0.015 40 -3.24 0.002 
S R C S R I -0.015 0.015 40 -0.95 0.347 
S R D0 S R I 0.035 0.015 40 2.29 0.028 
S S C S S D0 0.002 0.015 40 0.15 0.883 
S S C S S I -0.006 0.015 40 -0.38 -0.707 
S S D0 S S I -0.008 0.015 40 -0.53 0.601 
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Supplement Table 1B. Statistical analysis of H2O2 content comparisons among RES and SUS Summer (S), KxS, and 

Kanlow (K) switchgrasses among yellow sugarcane aphid infested comparisons. Three treatments were included: infested 

plants (I), control plants (C), and day 0 (D0) plants. 

B) Yellow Sugarcane Aphid 
       Differences of population*genotype*treatment Least Squares Means 

Pop Gen Trt _Pop _Gen _Trt Est SE DF t Value Pr > |t| 
K R C K R D0 -0.017 0.012 41 -1.42 0.164 
K R C K R I -0.028 0.012 41 -2.35 0.024 
K R D0 K R I -0.011 0.012 41 -0.93 0.357 
K S C K S D0 0.016 0.012 41 1.37 0.178 
K S C K S I -0.003 0.012 41 -0.22 0.828 
K S D0 K S I -0.019 0.012 41 -1.59 0.120 

KxS R C KxS R D0 -0.011 0.011 41 -1.08 0.288 
KxS R C KxS R I -0.010 0.012 41 -0.81 0.424 
KxS R D0 KxS R I 0.002 0.011 41 0.17 0.863 
KxS S C KxS S D0 -0.048 0.011 41 -4.30 0.000 
KxS S C KxS S I -0.008 0.012 41 -0.69 0.492 
KxS S D0 KxS S I 0.040 0.011 41 3.56 0.001 

S R C S R D0 0.050 0.011 41 4.67 <.0001 
S R C S R I 0.053 0.012 41 4.42 <.0001 
S R D0 S R I 0.003 0.011 41 0.27 0.790 
S S C S S D0 0.035 0.012 41 2.96 0.005 
S S C S S I -0.036 0.012 41 -3.03 0.004 
S S D0 S S I -0.071 0.012 41 -5.98 <.0001 
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Supplement Table 2A. Statistical analysis of peroxidase specific activity among RES and SUS Summer (S), KxS, and 

Kanlow (K) switchgrasses among greenbug infested comparisons (P<0.05). Three treatments were included: infested 

plants (I), control plants (C), and day 0 (D0) plants. 

A) Greenbugs 
         Differences of population*genotype*treatment Least Squares Means 

Pop Gen Trt _Pop _Gen _Trt Est SE DF t Value Pr > |t| 
K R C K R D0 0.685 0.258 72 2.65 0.010 
K R C K R I 0.115 0.237 72 0.48 0.631 
K R D0 K R I -0.570 0.261 72 -2.18 0.032 
K S C K S D0 0.511 0.250 72 2.04 0.045 
K S C K S I -0.278 0.227 72 -1.22 0.225 
K S D0 K S I -0.789 0.244 72 -3.23 0.002 

KxS R C KxS R D0 1.127 0.301 72 3.74 0.000 
KxS R C KxS R I -0.318 0.237 72 -1.34 0.183 
KxS R D0 KxS R I -1.445 0.294 72 -4.91 <.0001 
KxS S C KxS S D0 0.603 0.296 72 2.04 0.045 
KxS S C KxS S I -0.122 0.262 72 -0.47 0.643 
KxS S D0 KxS S I -0.725 0.292 72 -2.48 0.015 

S R C S R D0 1.481 0.270 72 5.49 <.0001 
S R C S R I 0.308 0.222 72 1.39 0.169 
S R D0 S R I -1.231 0.274 72 -4.49 <.0001 
S S C S S D0 1.970 0.295 72 6.69 <.0001 
S S C S S I 0.378 0.218 72 1.73 0.087 
S S D0 S S I -1.593 0.300 72 -5.31 <.0001 
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Supplement Table 2B. Statistical analysis of peroxidase specific activity among RES and SUS Summer (S), KxS, and 

Kanlow (K) switchgrasses among yellow sugarcane aphid infested comparisons (P<0.05). Three treatments were 

included: infested plants (I), control plants (C), and day 0 (D0) plants. 

 B) Yellow Sugarcane Aphid 
       Differences of population*genotype*treatment Least Squares Means 

Pop Gen Trt _Pop _Gen _Trt Est SE DF t Value Pr > |t| 
K R C K R D0 0.430 0.271 72 1.59 0.117 
K R C K R I -0.314 0.227 72 -1.38 0.172 
K R D0 K R I -0.744 0.258 72 -2.89 0.005 
K S C K S D0 -0.083 0.294 72 -0.28 0.777 
K S C K S I -0.462 0.272 72 -1.70 0.094 
K S D0 K S I -0.378 0.266 72 -1.42 0.159 

KxS R C KxS R D0 0.704 0.249 72 2.83 0.006 
KxS R C KxS R I 0.000 0.206 72 0.00 0.998 
KxS R D0 KxS R I -0.704 0.249 72 -2.83 0.006 
KxS S C KxS S D0 0.393 0.237 72 1.65 0.103 
KxS S C KxS S I -0.339 0.201 72 -1.69 0.096 
KxS S D0 KxS S I -0.731 0.224 72 -3.26 0.002 

S R C S R D0 0.761 0.279 72 2.73 0.008 
S R C S R I 0.140 0.234 72 0.60 0.551 
S R D0 S R I -0.621 0.285 72 -2.17 0.033 
S S C S S D0 0.000 0.339 72 0.00 1.000 
S S C S S I 0.069 0.345 72 0.20 0.842 
S S D0 S S I 0.069 0.345 72 0.20 0.842 
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Supplement Table 3A. Statistical analysis of ascorbate peroxidase specific activity among RES and SUS Summer (S), 

KxS, and Kanlow (K) switchgrasses among greenbug infested comparisons (P<0.05). Three treatments were included: 

infested plants (I), control plants (C), and day 0 (D0) plants. 

A) Greenbugs 
         Differences of population*genotype*treatment Least Squares Means 

Pop Gen Trt _Pop _Gen _Trt Est SE DF t Value Pr > |t| 
K R C K R D0 1.472 0.412 252 3.57 0.000 
K R C K R I -0.328 0.412 252 -0.80 0.426 
K R D0 K R I -1.800 0.412 252 -4.37 <.0001 
K S C K S D0 1.342 0.412 252 3.25 0.001 
K S C K S I -0.287 0.412 252 -0.70 0.486 
K S D0 K S I -1.629 0.412 252 -3.95 0.000 

KxS R C KxS R D0 0.463 0.412 252 1.12 0.263 
KxS R C KxS R I -1.085 0.412 252 -2.63 0.009 
KxS R D0 KxS R I -1.548 0.412 252 -3.76 0.000 
KxS S C KxS S D0 0.744 0.412 252 1.81 0.072 
KxS S C KxS S I 0.339 0.412 252 0.82 0.412 
KxS S D0 KxS S I -0.406 0.412 252 -0.98 0.326 

S R C S R D0 2.365 9.412 252 5.74 <.0001 
S R C S R I -0.376 0.412 252 -0.91 0.363 
S R D0 S R I -2.741 0.412 252 -6.65 <.0001 
S S C S S D0 2.260 0.412 252 5.48 <.0001 
S S C S S I 0.971 0.412 252 2.35 0.019 
S S D0 S S I -1.289 0.412 252 -3.13 0.002 
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Supplement Table 3B. Statistical analysis of ascorbate peroxidase specific activity among RES and SUS Summer (S), 

KxS, and Kanlow (K) switchgrasses among yellow sugarcane aphid infested comparisons (P<0.05). Three treatments 

were included: infested plants (I), control plants (C), and day 0 (D0) plants. 

B) Yellow Sugarcane Aphid 
       Differences of population*genotype*treatment Least Squares Means 

Pop Gen Trt _Pop _Gen _Trt Est SE DF t Value Pr > |t| 
K R C K R D0 1.206 0.545 252 2.21 0.028 
K R C K R I 0.634 0.445 252 1.43 0.155 
K R D0 K R I -0.572 0.598 252 -0.96 0.340 
K S C K S D0 0.733 0.632 252 1.16 0.247 
K S C K S I -0.274 0.478 252 -0.57 0.567 
K S D0 K S I -1.007 0.607 252 -1.66 0.098 

KxS R C KxS R D0 1.840 0.559 252 3.29 0.001 
KxS R C KxS R I -0.169 0.281 252 -0.60 0.548 
KxS R D0 KxS R I -2.009 0.553 252 -3.64 0.000 
KxS S C KxS S D0 1.571 0.625 252 2.51 0.013 
KxS S C KxS S I 0.063 0.373 252 0.17 0.866 
KxS S D0 KxS S I -1.508 0.629 252 -2.40 0.017 

S R C S R D0 0.850 0.679 252 1.25 0.211 
S R C S R I 0.528 0.610 252 0.87 0.387 
S R D0 S R I -0.323 0.746 252 -0.43 0.666 
S S C S S D0 0.432 0.561 252 0.77 0.442 
S S C S S I 0.455 0.565 252 0.81 0.421 
S S D0 S S I 0.023 0.622 252 0.04 0.970 
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Supplement Table 4A. Statistical analysis of catalase specific activity among RES and SUS Summer (S), KxS, and 

Kanlow (K) switchgrasses among greenbug infested comparisons (P<0.05). Three treatments were included: infested 

plants (I), control plants (C), and day 0 (D0) plants. 

A) Greenbugs 
         Differences of population*genotype*treatment Least Squares Means 

Pop Gen Trt _Pop _Gen _Trt Est SE DF t Value Pr > |t| 
K R C K R D0 0.825 1.904 252 0.43 0.665 
K R C K R I 0.128 1.536 252 0.08 0.934 
K R D0 K R I -0.697 1.943 252 -0.36 0.720 
K S C K S D0 -0.788 1.817 252 -0.43 0.665 
K S C K S I -0.970 1.770 252 -0.55 0.584 
K S D0 K S I -0.182 1.376 252 -0.13 0.895 

KxS R C KxS R D0 0.187 1.398 252 0.13 0.894 
KxS R C KxS R I -0.595 1.173 252 -0.51 0.613 
KxS R D0 KxS R I -0.781 1.248 252 -0.63 0.532 
KxS S C KxS S D0 -0.136 1.279 252 -0.11 0.916 
KxS S C KxS S I -0.610 1.161 252 -0.53 0.600 
KxS S D0 KxS S I -0.474 1.112 252 -0.43 0.670 

S R C S R D0 0.859 1.958 252 0.44 0.661 
S R C S R I -0.178 1.448 252 -0.12 0.902 
S R D0 S R I -1.036 1.910 252 -0.54 0.588 
S S C S S D0 -0.533 1.542 252 -0.35 0.730 
S S C S S I 0.051 1.754 252 0.03 0.977 
S S D0 S S I 0.584 1.568 252 0.37 0.710 
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Supplement Table 4B. Statistical analysis of catalase specific activity among RES and SUS Summer (S), KxS, and 

Kanlow (K) switchgrasses among yellow sugarcane aphid infested comparisons (P<0.05). Three treatments were 

included: infested plants (I), control plants (C), and day 0 (D0) plants. 

B) Yellow Sugarcane Aphid 
       Differences of population*genotype*treatment Least Squares Means 

Pop Gen Trt _Pop _Gen _Trt Est SE DF t Value Pr > |t| 
K R C K R D0 0.825 1.904 252 0.43 0.665 
K R C K R I 0.128 1.536 252 0.08 0.934 
K R D0 K R I -0.697 1.943 252 -0.36 0.720 
K S C K S D0 -0.788 1.817 252 -0.43 0.665 
K S C K S I -0.970 1.770 252 -0.55 0.584 
K S D0 K S I -0.182 1.376 252 -0.13 0.895 

KxS R C KxS R D0 0.187 1.398 252 0.13 0.894 
KxS R C KxS R I -0.595 1.173 252 -0.51 0.613 
KxS R D0 KxS R I -0.781 1.248 252 -0.63 0.532 
KxS S C KxS S D0 -0.136 1.279 252 -0.11 0.916 
KxS S C KxS S I -0.610 1.161 252 -0.53 0.600 
KxS S D0 KxS S I -0.474 1.112 252 -0.43 0.670 

S R C S R D0 0.859 1.958 252 0.44 0.661 
S R C S R I -0.178 1.448 252 -0.12 0.902 
S R D0 S R I -1.036 1.910 252 -0.54 0.588 
S S C S S D0 -0.533 1.542 252 -0.35 0.730 
S S C S S I 0.051 1.754 252 0.03 0.977 
S S D0 S S I 0.584 1.568 252 0.37 0.710 



!

!

91 

CHAPTER 4: 

EVALUATION OF SECOND-GENERATION TETRAPLOID SWITCHGRASS, 

PANICUM VIRGATUM L., TO GREENBUG, SCHIZAPHIS GRAMINUM 

(RONDANI), FOR RESISTANCE SELECTION 

!

Introduction 

 Switchgrass, Panicum virgatum L., is a leading candidate for biomass 

energy production in the US (Vogel et al. 2011). When grown on a commercial 

scale, switchgrass will likely become a suitable host to a wide range of insect 

pests (Heng-Moss et al. 2014). Such scenarios have occurred in the past when 

other native grasses with relatively low pest densities have been commercialized 

and grown in large monoculture settings (Heng-Moss et al. 2002, 2003).  

 Switchgrass has been demonstrated to be a suitable host for different 

feeding guilds of insects (Prasifka et al. 2009a, 2009b, Dowd and Johnson 2009, 

Schaeffer et al. 2011, Koch et al. 2014a, 2014b, 2014c). Work with two aphids, 

greenbugs (GB), Schizaphis graminum (Rondani), and the yellow sugarcane 

aphid (YSA), Sipha flava (Forbes), have confirmed that different categories of 

resistance are present in tetraploid switchgrasses (Koch et al. 2014b, 2014c).  

 Among the tetraploid switchgrasses evaluated, cultivar Summer (S), an 

upland forage type plant, was categorized as tolerant to GB and susceptible to 

the YSA. The lowland cultivar Kanlow (K), on the other hand, was categorized as 

having both antibiosis and antixenosis to both aphid species (Koch et al. 2014b, 

2014c) although both susceptible (SUS) and resistant (RES) genotypes were 
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found within both cultivars. Koch et al. (2014b, 2014c) suggested the presence of 

significant underlying genetic diversity for resistance to these aphid species in 

the different switchgrass cultivars.  

 As of late, the use of insect-resistant plants has become a popular and 

effective approach for managing insect pests. This is an attractive pest 

management strategy because it offers reduced insecticide use resulting in a 

reduction in both input costs and environmental hazards. Smith (1999, 2005) has 

documented hundreds of insect-resistant cultivars are grown throughout the U.S., 

and suggests that plant resistance may increase the overall efficiency of insect 

biological control agents by reducing the vigor of insect pests through the 

interactions of insect-resistant plants and natural enemies.  

Breeding or selecting for plant tolerance (Smith 2005) appears to be a 

reasonable approach for minimizing the development of new insect biotypes 

although the genetics underlying the tolerance response in plants has not been 

fully elucidated. Based on a number of studies that have evaluated tolerance to 

aphids and other piercing-sucking insects (especially in grasses), certain themes 

have emerged for both short- and long-term plant responses to herbivory.  

Among these responses are an ability to overcome (1) inhibition to 

photosynthesis, (2) increased cellular reactive oxygen species (ROS) and (3) 

inhibition to growth and development (Mittler et al. 1999, Kawano 2003, Apel and 

Hirt 2004, Heng-Moss et al. 2004, Kotchoni and Gachomo 2006, Franzen et al. 

2007, Dowd and Johnson 2009, Gutsche et al. 2009a, Prasifka et al. 2009a, Gill 

and Tuteja 2010, Liu et al. 2010, Donze-Reiner unpublished, Prochaska 
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unpublished). Research also suggested that tolerant plants may have a higher 

basal level of detoxifying enzymes and proteins compared to SUS plants, thus 

reducing the plant’s ability to protect itself from high ROS accumulations 

(Vleeshouwers et al. 2000, Ramm et al. 2013). Potentially, this may allow a 

tolerant plant to utilize a greater portion of available resources for growth and 

development, rather than needing to mount the defensive response required by 

SUS plants.   

Plant defense responses can arise from multiple sources (Smith 2005, 

Kim et al. 2008). It appears that modulations in photosynthesis, cellular redox 

control, and maintaining growth appear to be important traits found within RES 

(tolerant) plant systems (Gawrońska and Kiełkiewicz 1999, Strauss and Agrawal 

1999, Heng-Moss et al. 2004, Smith 2005, Franzen et al. 2007). The goal of this 

research was to develop switchgrass lines that could be used to probe the 

genetics underlying host responses to aphids using molecular methods. 

 

Materials & Methods 

Plant material. Switchgrass plants from two cultivars, S and K, were 

screened for resistance to GBs and YSAs as described by Koch et al. (2014a). 

Plants were grown to two host developmental stages, the 2nd and 5th leaf stage, 

to test for host suitability.  Five apterous, adult aphids were placed on each plant 

and caged. Plants were evaluated weekly performing a visual damage rating and 

counting total aphid number.   
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 Following screenings, plants from the two cultivars determined to be highly 

SUS (rating of 3.5+) and highly resistant (rating of 2.0 or less) to aphid herbivory 

were transplanted into isolation crossing blocks at the University of Nebraska-

Lincoln ARDC research field site (near Ithaca, NE). Four isolation plots were 

established (1 isolation site per category: susceptible (SUS) and resistant (RES) 

among two cultivars (K and S): Kanlow susceptible (KSUS) (n=7), Kanlow resistant 

(KRES) (n=4), Summer susceptible (SSUS) (n=4), and Summer resistant (SRES) 

(n=3)) with at least a quarter mile (0.40 km) separation between sites to improve 

cross-fertilization within each isolation. Following plant maturity, seeds were 

harvested from individual plants to screen the various half-sib families. 

 Screening of half-sib families. Screenings were performed with seedlings 

obtained from the various half-sib families. In total, 20 seedlings from each half-

sib family were randomly assigned to a control (uninfested) or infested group (10 

each). Infested treatments were challenged with GBs at the 2nd host 

developmental leaf stage using a completely randomized design. All plants were 

enclosed using a tubular plastic cage (4 cm diameter by 46 cm in height) with 

organdy fabric-covered vents to confine aphids to their respective plants. Ten 

apterous, adult aphids were transferred to treatment plants using a fine bristle 

paintbrush, then caged. Experimental replicates were maintained in the 

greenhouse at 25 ± 7°C with a photoperiod of 16:8 hour (L:D). Replicates were 

evaluated weekly for total aphids and visual damage based on a 1-5 rating scale 

(Heng-Moss et al. 2002, Koch et al. 2014a). Experiments were concluded when 
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the 10 plants from at least one of the half-sib families reached a mean damage 

rating of 3.5.    

Statistical analysis. Generalized mixed model analysis (PROC GLIMMIX, 

SAS Institute 2011) was conducted on damage ratings and aphid counts to 

determine any significant differences.  Where appropriate, means were 

separated using Fisher’s least significant differences (LSD) procedure (α = 0.05).  

 

Results 

Half-sib family screening. Damage: Several interesting trends occurred in 

the specific half-sib families analyzed. Within KRES, 4 half-sib families were 

evaluated (Kanlow resistant (KR) and family number; KR-1, KR-2, KR-3, and KR-

4) (Figure 1A). No significant differences were detected between aphid-infested 

and aphid-control plants in half-sib families KR-1 (damage: 1.1 ± 0.1) and KR-2 

(1.4 ± 0.1) when compared to their respective controls (damage: 1.0 ± 0.0; 

P<0.05). However, significant differences were detected in half-sib families KR-3 

(damage: 1.7 ± 0.2) and KR-4 (damage: 2.5 ± 0.0) when compared to their 

respective controls (damage: 1.0 ± 0.0; P=0.0023 and P<0.0001) (Figure 1A). 

Seven half-sib families were evaluated in the genotypes KSUS (Kanlow 

susceptible (KS); KS-1, KS-2, KS-3, KS-4, KS-5, KS-6, and KS-7). Significant 

differences were detected in 6 of the 7 treatments (aphid-infested and aphid-

control) examined (Figure 1B). Again, controls were rated as 1.0 ± 0.0 among all 

half-sib families within the genotype KSUS. Mean damage ratings were observed 

as: 2.3 ± 0.2 (KS-1; P<0.0001), 2.2 ± 0.3 (KS-2; P<0.0001), 1.6 ± 0.2 (KS-3; 
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P=0.005), 2.5 ± 0.3 (KS-5; P<0.0001), 3.1 ± 0.3 (KS-6; P<0.0001), and 2.2 ± 0.2 

(KS-7; P<0.0001). No significant differences were found in the remaining half-sib 

family (KS-4; 1.2 ± 0.1; P<0.05) (Figure 1B).  

Within SRES selections, significant differences were found between 

treatments (aphid-infested and aphid-control) in three of the screened half-sib 

families (Summer resistant (SR); SR-1; damage: 1.6 ± 0.2 (P=0.017), SR-2; 

damage: 2.3 ± 0.2 (P<0.0001), and SR-3; damage: 1.6 ± 0.1 (P=0.013)). All 

controls had a mean damage rating of 1.0 ± 0.0 (Figure 2A).  

Significant differences in damage ratings were also detected in the four 

SSUS half-sib families (Summer susceptible (SS); SS-1; damage: 1.6 ± 0.2 

(P=0.002), SS-2; damage: 2.3 ± 0.2 (P<0.0001), SS-3; damage: 2.7 ± 0.3 

(P<0.0001), and SS-4; damage: 3.0 ± 0.2 (P<0.0001)) when compared to their 

respective controls (1.0 ± 0.0) (Figure 2B). An overall check of randomly selected 

plants from the S base population had a damage rating of 2.0 ± 0.0 which was 

significantly greater (P<0.0001) than those observed in the respective uninfested 

control plants (Figure 2B).   

Overall, aphid infested KRES plants had a mean damage rating of 1.6 ± 0.1, 

whereas KSUS plants had a mean damage rating of 2.1 ± 0.1. Within S, an 

average mean damage rating of 1.8 ± 0.1 was observed for SRES plants, and a 

mean damage rating of 2.2 ± 0.1 in SSUS plants. Overall, these findings (on a 

population level) are in agreement with previous studies performed by Koch et al. 

(2014a). Statistical analysis for damage among half-sib families within a 
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switchgrass genotype (KRES, KSUS, SRES, and SSUS) are shown in Supplement 

Table 1.   

Significant differences were found in cumulative aphid days (CAD) among 

the switchgrass families (KRES, KSUS, SRES, and SSUS) when challenge by GBs 

(compared to their respective controls). KSUS had a mean of 274.2 ± 28.3 CAD 

(KS control: 0.0 ± 0.0 CAD; P<0.0001), while KRES had 191.8 ± 23.0 CAD (KRES 

control: 0.0 ± 0.0 CAD; P<0.0001) when challenged with GBs. SRES had 273.9 ± 

28.8 CAD (SRES control: 0.0 ± 0.0 CAD; P<0.0001) over SSUS, which had 154.4 ± 

17.5 CAD (SSUS control: 0.0 ± 0.0 CAD; P<0.0001) when infested by GBs. 

Statistical differences were also found between half-sib families within a given 

genotype. Statistical analysis for CAD among half-sib families within a 

switchgrass genotype (KRES, KSUS, SRES, and SSUS) is shown in Supplement Table 

2.   

 

Discussion 

Previous research has established that significant variation exists in the 

RES response of lowland (K) and upland (S) switchgrass to aphid herbivory by 

GBs and the YSAs (Koch et al. 2014b, 2014c). These studies demonstrated that 

K expresses high levels of antibiosis which negatively impact the biology or life 

history of an insect (Smith 2005, Dogramaci et al. 2007), with lower CAD and 

damage ratings, relative to other switchgrasses screened. In the current study, 

damage ratings were always greater within S plants (average rating of 2.1) when 
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compared to K plants (average rating of 1.8), which is consistent with earlier 

studies.   

Overall, RES genotypes appear better able to withstand GB feeding 

pressure, as evidenced by the lower damage ratings of the KRES-KSUS half-sibs 

(Figure 1) relative to the SRES-SSUS half-sib families (Figure 2). Visual plant 

damage included chlorosis and tissue necrosis. In some replicates, especially in 

SSUS half-sib plants, GB populations may have waned due to a lack of healthy 

tissue for feeding. These observations may not be evident in our data as CAD 

integrates aphid density over time.  

Screening of half-sib families established two important details: (1) the 

original selection of the parent plants as SUS or RES to GB was validated 

through screening of the half-sib progeny, and (2) freely intermating only plants 

within each category (RES or SUS) and within each cultivar (K or S) resulted in 

half-sib families with a continued inherited SUS or RES response. These data 

suggest molecular (RNA-Seq and/or biochemical analyses) methods can be 

used to probe these half-sib families to ascertain traits that may be associated 

with resistance. However, continued screening and identification of new half-sib 

and full-sib families will be needed to continue genetic refinement of the 

resistance mechanisms acting on phloem-feeding insects within these 

switchgrasses.  

This research provides valuable baseline information needed for the 

continued selection of switchgrass genotypes with resistance to insect pests. 

Knowledge provided by the study furthers our understanding of the 



!

!

99 

compensatory mechanisms resulting from aphid herbivory. Understanding these 

defensive mechanisms at a molecular level will help facilitate the identification of 

genetic markers that can be used to phenotype elite switchgrass germplasms 

and can be used to develop new cultivars with improved resistance to phloem-

feeding insects. 
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Figure 1. Damage ratings among Kanlow switchgrass half-sib families from (A) 

RES and (B) SUS genotypes. (*) indicates significant differences between 

infested and control treatments within a given genotype (P<0.05).  Damage 

ratings for all controls were scored at 1.0 ± 0.0. Values are the means ± SE (n = 

10). 
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Figure 2. Damage ratings among Summer switchgrass half-sib families from (A) 

RES and (B) SUS genotypes. (*) indicates significant differences between 

infested and control treatments within a given genotype (P<0.05).  Damage 

ratings for all controls were scored at 1.0 ± 0.0. Values are the means ± SE (n = 

3). 
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Supplement Table 1. Statistical analysis of damage ratings among Kanlow R, Kanlow S, Summer R, and Summer S half-

sib family comparisons (infested; P<0.05). All controls were scored with a damage rating of 1.0 ± 0.0. Legend: Population 

(Pop), Genotype (Gen), Treatment (TRT), Estimate (Est), Standard error (SE). 

Differences of population*genotype*treatment: Least Squares Means 
Pop Gen Trt _Pop _Gen _Trt EST SE DF t Value Pr > |t| 
K1 R I K2 R I -0.313 0.289 302 -1.08 0.281 
K1 R I K3 R I -0.525 0.280 302 -1.88 0.061 
K1 R I K4 R I -1.375 0.409 302 -3.36 0.001 
K1 R I S Check I -0.875 0.280 302 -3.13 0.002 
K1 S I K2 S I 0.100 0.211 302 0.47 0.636 
K1 S I K3 S I 0.650 0.211 302 3.08 0.002 
K1 S I K4 S I 1.100 0.211 302 5.21 <.0001 
K1 S I K5 S I -0.200 0.211 302 -0.95 0.345 
K1 S I K6 S I -0.875 0.224 302 -3.91 0.000 
K1 S I K7 S I 0.050 0.211 302 0.24 0.813 
K1 S I S Check I 0.250 0.211 302 1.18 0.238 
K2 R I K3 R I -0.213 0.224 302 -0.95 0.344 
K2 R I K4 R I -1.063 0.373 302 -2.85 0.005 
K2 R I S Check I -0.563 0.224 302 -2.51 0.013 
K2 S I K3 S I 0.550 0.211 302 2.60 0.010 
K2 S I K4 S I 1.000 0.211 302 4.73 <.0001 
K2 S I K5 S I -0.300 0.211 302 -1.42 0.157 
K2 S I K6 S I -0.975 0.224 302 -4.35 <.0001 
K2 S I K7 S I -0.050 0.211 302 -0.24 0.813 
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K2 S I S Check I 0.150 0.211 302 0.71 0.478 
K3 R I K4 R I -0.850 0.366 302 -2.32 0.021 
K3 R I S Check I -0.350 0.211 302 -1.66 0.099 
K3 S I K4 S I 0.450 0.211 302 2.13 0.034 
K3 S I K5 S I -0.850 0.211 302 -4.02 <.0001 
K3 S I K6 S I -1.525 0.224 302 -6.81 <.0001 
K3 S I K7 S I -0.600 0.211 302 -2.84 0.005 
K3 S I S Check I -0.400 0.211 302 -1.89 0.059 
K4 R I S Check I 0.500 0.366 302 1.37 0.173 
K4 S I K5 S I -1.300 0.211 302 -6.15 <.0001 
K4 S I K6 S I -1.975 0.224 302 -8.81 <.0001 
K4 S I K7 S I -1.050 0.211 302 -4.97 <.0001 
K4 S I S Check I -0.850 0.211 302 -4.02 <.0001 
K5 S I K6 S I -0.675 0.224 302 -3.01 0.003 
K5 S I K7 S I 0.250 0.211 302 1.18 0.238 
K5 S I S Check I 0.450 0.211 302 2.13 0.034 
K6 S I K7 S I 0.925 0.224 302 4.13 <.0001 
K6 S I S Check I 1.125 0.224 302 5.02 <.0001 
K7 S I S Check I 0.200 0.211 302 0.95 0.345 
S Check I S1 R I 0.417 0.244 302 1.71 0.089 
S Check I S1 S I -1.000 0.280 302 -3.58 0.000 
S Check I S2 R I -0.250 0.224 302 -1.12 0.265 
S Check I S2 S I -0.700 0.211 302 -3.31 0.001 
S Check I S3 R I 0.438 0.224 302 1.95 0.052 
S Check I S3 S I -0.250 0.211 302 -1.18 0.238 
S Check I S4 S I 0.350 0.211 302 1.66 0.099 

S1 R I S2 R I -0.667 0.255 302 -2.61 0.009 
S1 R I S3 R I 0.021 0.255 302 0.08 0.935 
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S1 S I S2 S I 0.300 0.280 302 1.07 0.284 
S1 S I S3 S I 0.750 0.280 302 2.68 0.008 
S1 S I S4 S I 1.350 0.280 302 4.83 <.0001 
S2 R I S3 R I 0.688 0.236 302 2.91 0.004 
S2 S I S3 S I 0.450 0.211 302 2.13 0.034 
S2 S I S4 S I 1.050 0.211 302 4.97 <.0001 
S3 S I S4 S I 0.600 0.211 302 2.84 0.005 
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Supplement Table 2. Statistical analysis of CAD among Kanlow R, Kanlow S, Summer R, and Summer S half-sib family 

comparisons (P<0.05). All controls were observed with a CAD value of 0.0 ± 0.0. Legend: Population (Pop), Genotype 

(Gen), Treatment (TRT), Estimate (Est), Standard error (SE). 

Differences of population*genotype*treatment: Least Squares Means 
Pop Gen Trt _Pop _Gen _Trt EST SE DF t Value Pr > |t| 
K1 R I K2 R I -0.526 0.497 342 -1.06 0.290 
K1 R I K3 R I -0.761 0.497 342 -1.53 0.127 
K1 R I K4 R I -0.713 0.496 342 -1.44 0.152 
K1 R I S Check I -0.636 0.249 342 -2.56 0.011 
K1 S I K2 S I 0.195 0.000 342 Infty <.0001 
K1 S I K3 S I 0.602 0.000 342 Infty <.0001 
K1 S I K4 S I -0.507 0.000 342 Infty <.0001 
K1 S I K5 S I 0.123 0.000 342 Infty <.0001 
K1 S I K6 S I -0.714 0.000 342 Infty <.0001 
K1 S I K7 S I -0.444 0.000 342 Infty <.0001 
K1 S I S Check I 0.060 0.000 342 Infty <.0001 
K2 R I K3 R I -0.235 0.497 342 -0.47 0.637 
K2 R I K4 R I -0.187 0.496 342 -0.38 0.707 
K2 R I S Check I -0.110 0.248 342 -0.44 0.657 
K2 S I K3 S I 0.406 0.000 342 Infty <.0001 
K2 S I K4 S I -0.702 0.000 342 -Infty <.0001 
K2 S I K5 S I -0.072 0.000 342 -Infty <.0001 
K2 S I K6 S I -0.909 0.000 342 -Infty <.0001 
K2 S I K7 S I -0.639 0.000 342 -Infty <.0001 
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K2 S I S Check I -0.135 0.000 342 -Infty <.0001 
K3 R I K4 R I 0.048 0.496 342 0.10 0.923 
K3 R I S Check I 0.124 0.248 342 0.50 0.617 
K3 S I K4 S I -1.109 0.000 342 -Infty <.0001 
K3 S I K5 S I -0.478 0.000 342 -Infty <.0001 
K3 S I K6 S I -1.316 0.000 342 -Infty <.0001 
K3 S I K7 S I -1.045 0.000 342 -Infty <.0001 
K3 S I S Check I -0.541 0.000 342 -Infty <.0001 
K4 R I S Check I 0.076 0.247 342 0.31 0.757 
K4 S I K5 S I 0.630 0.000 342 Infty <.0001 
K4 S I K6 S I -0.207 0.000 342 -Infty <.0001 
K4 S I K7 S I 0.063 0.000 342 Infty <.0001 
K4 S I S Check I 0.568 0.000 342 Infty <.0001 
K5 S I K6 S I -0.838 0.000 342 -Infty <.0001 
K5 S I K7 S I -0.567 0.000 342 -Infty <.0001 
K5 S I S Check I -0.063 0.000 342 -Infty <.0001 
K6 S I K7 S I 0.271 0.000 342 Infty <.0001 
K6 S I S Check I 0.775 0.000 342 Infty <.0001 
K7 S I S Check I 0.504 0.000 342 Infty <.0001 
S Check I S1 R I 0.363 0.248 342 1.46 0.145 
S Check I S1 S I 0.135 0.000 342 Infty <.0001 
S Check I S2 R I -0.302 0.248 342 -1.22 0.223 
S Check I S2 S I -0.030 0.000 342 -Infty <.0001 
S Check I S3 R I -0.484 0.248 342 -1.95 0.052 
S Check I S3 S I 0.609 0.000 342 Infty <.0001 
S Check I S4 S I 0.344 0.000 342 Infty <.0001 

S1 R I S2 R I -0.665 0.496 342 -1.34 0.181 
S1 R I S3 R I -0.847 0.351 342 -2.41 0.016 
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S1 S I S2 S I -0.165 0.000 342 -1.22 <.0001 
S1 S I S3 S I 0.473 0.000 342 Infty <.0001 
S1 S I S4 S I 0.209 0.000 342 Infty <.0001 
S2 R I S3 R I -0.182 0.351 342 -0.52 0.604 
S2 S I S3 S I 0.639 0.000 342 Infty <.0001 
S2 S I S4 S I 0.374 0.000 342 Infty <.0001 
S3 S I S4 S I -0.265 0.000 342 -Infty <.0001 
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