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The Composition and Origins of Genomic Variation
among Individuals of the Soybean Reference
Cultivar Williams 821[W][OA]

William J. Haun, David L. Hyten, Wayne W. Xu, Daniel J. Gerhardt, Thomas J. Albert, Todd Richmond,
Jeffrey A. Jeddeloh, Gaofeng Jia, Nathan M. Springer, Carroll P. Vance, and Robert M. Stupar*

Department of Agronomy and Plant Genetics (W.J.H., C.P.V., R.M.S.), Department of Plant Biology (N.M.S.),
and Microbial and Plant Genomics Institute (N.M.S., R.M.S.), University of Minnesota, Saint Paul, Minnesota
55108; Soybean Genomics and Improvement Laboratory, United States Department of Agriculture-
Agricultural Research Service, Beltsville, Maryland 20705 (D.L.H., G.J.); Minnesota Supercomputing Institute,
University of Minnesota, Minneapolis, Minnesota 55455 (W.W.X.); Roche NimbleGen, Inc., Madison,
Wisconsin 53719 (D.J.G., T.J.A., T.R., J.A.J.); and United States Department of Agriculture-Agricultural
Research Service, Plant Research Unit, Saint Paul, Minnesota 55108 (C.P.V.)

Soybean (Glycine max) is a self-pollinating species that has relatively low nucleotide polymorphism rates compared with other
crop species. Despite the low rate of nucleotide polymorphisms, a wide range of heritable phenotypic variation exists. There is
even evidence for heritable phenotypic variation among individuals within some cultivars. Williams 82, the soybean cultivar
used to produce the reference genome sequence, was derived from backcrossing a Phytophthora root rot resistance locus from
the donor parent Kingwa into the recurrent parent Williams. To explore the genetic basis of intracultivar variation, we
investigated the nucleotide, structural, and gene content variation of different Williams 82 individuals. Williams 82 individuals
exhibited variation in the number and size of introgressed Kingwa loci. In these regions of genomic heterogeneity, the reference
Williams 82 genome sequence consists of a mosaic of Williams and Kingwa haplotypes. Genomic structural variation between
Williams and Kingwa was maintained between the Williams 82 individuals within the regions of heterogeneity. Additionally,
the regions of heterogeneity exhibited gene content differences between Williams 82 individuals. These findings show that
genetic heterogeneity in Williams 82 primarily originated from the differential segregation of polymorphic chromosomal
regions following the backcross and single-seed descent generations of the breeding process. We conclude that soybean
haplotypes can possess a high rate of structural and gene content variation, and the impact of intracultivar genetic
heterogeneity may be significant. This detailed characterization will be useful for interpreting soybean genomic data sets and
highlights important considerations for research communities that are developing or utilizing a reference genome sequence.

Intracultivar genetic heterogeneity refers to the ge-
netic variation present from plant to plant within a
named cultivar or variety. Although the phenomenon
of intracultivar heterogeneity has long been recog-
nized in crop species (Byth and Weber, 1968), it is
oftentimes ignored, as most researchers assume that
elite cultivars are composed of relatively homogenous
genetic pools (Fasoula and Boerma, 2007). However, a
small number of studies have documented the pheno-
typic consequences of intracultivar genetic heteroge-

neity in inbred crop accessions, including studies in
tobacco (Nicotiana tabacum; Gordon and Byth, 1972),
maize (Zea mays; Higgs and Russell, 1968; Tokatlidis,
2000), wheat (Triticum aestivum; Tokatlidis et al., 2004),
and cotton (Gossypium hirsutum; Tokatlidis et al., 2008).

The segregation of parental loci during the breeding
process is one source of intracultivar heterogeneity. For
self-pollinating species, new cultivars are typically
derived from either intermating elite lines or back-
crossing traits into elite lines, followed by several
rounds of single-seed descent via self-mating and sub-
sequent seed increase generations. At the termination
of the single-seed descent generations, any remaining
heterozygous loci will segregate in subsequent gener-
ations. Assuming that the population remains intact,
each plant lineage will eventually fix almost all of the
segregating loci in the homozygous state of either
parent. Therefore, the population will maintain some
degree of plant-to-plant variation due to the heteroge-
neity at these loci.

Genetic heterogeneity may also be generated de
novo by spontaneous mutation (Shaw et al., 2000;
Ossowski et al., 2010), novel recombination events,
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DNA transposition, or epigenetic processes (Rasmusson
and Phillips, 1997). Recent studies in yeast and fungi
have reported striking genomic structural variation,
such as large-scale duplications, deletions, and rear-
rangements, induced de novo in response to drug
treatments or nutrient-stressed conditions (Gresham
et al., 2008; Selmecki et al., 2009). Furthermore, a recent
study has reported striking genomic structural varia-
tion derived de novo in Arabidopsis (Arabidopsis
thaliana) lineages within five or fewer generations
when individuals are grown in stressful conditions
(DeBolt, 2010).

Studies that have investigated the genetic basis of
intracultivar heterogeneity have primarily reported on
the rates of molecular marker polymorphisms within
cultivars and inbred lines of crops such as barley
(Hordeum vulgare), maize, rice (Oryza sativa), sunflower
(Helianthus annuus), and wheat (Zhang et al., 1995;
Olufowote et al., 1997; Gethi et al., 2002; Röder et al.,
2002; Sjakste et al., 2003; Soleimani et al., 2005;
Giarrocco et al., 2007). However, the number and
types of markers applied in these studies limited their
throughput and ability to resolve major features of
structural variation, including large-scale deletions,
duplications, and more complicated genomic rear-
rangements. Consequently, little is known about the
origins and mechanisms of intracultivar heterogeneity.

In soybean (Glycine max), Fasoula and Boerma (2005,
2007) have reported on the impact of intracultivar
variation on several traits, including seed composition,
seed weight, maturity, plant height, and lodging. They
noted that this remnant variation could be used to
select elite individuals from within existing cultivars,
and they recently registered a total of 18 lines directly
selected from within the cvs Benning, Cook, and
Haskell (Fasoula et al., 2007a, 2007b, 2007c).

The recent sequencing of the soybean genome
(Schmutz et al., 2010) has enabled the development
of genomic tools and methodologies that can address
the question of soybean intracultivar heterogeneity in
great detail. Williams 82, the sequenced accession, was
derived from a composite of four individual plants
selected from a Williams 3 Kingwa BC6F3 generation
(Bernard and Cremeens, 1988). This implies that
Williams 82 experienced one generation of single-seed
descent following the six back-cross generations. Re-
sidual heterozygous loci in the BC6F2 generation may
have differentially segregated among the four BC6F3
individuals and in subsequent generations. In theory,
this process would fix genetic heterogeneity into the
Williams 82 population after several rounds of self-
pollination. Furthermore, as seed is propagated and
distributed throughout the scientific community, foun-
der effects from genetic bottleneck events may give rise
to distinctWilliams 82 subpopulations at different loca-
tions, resulting in disparate Williams 82 lines among
researchers.

Detailed genomic comparisons of different Williams
82 individuals should resolve the regions of intracul-
tivar genomic heterogeneity. Further comparisons of

each Williams 82 individual with the Williams and
Kingwa parents would then trace the ancestry of the
heterogeneous regions to either parent; different Wil-
liams 82 individuals would match different parents
within these regions. Additionally, genomic variation
derived de novo after the split of the Williams 82
lineages may also contribute novel heterogeneous loci.
In this case, the genomic comparisons of different
Williams 82 individuals would still resolve the regions
of intracultivar genomic heterogeneity. However, the
ancestry of these loci would not specifically trace back
to either parent. We would expect to observe novel
genomic compositions at such loci.

In this study, we have utilized high-density single
nucleotide polymorphism (SNP) genotyping, compar-
ative genomic hybridization (CGH), and exome rese-
quencing data to obtain an unprecedented resolution
of the genetic heterogeneity that is extant in Williams
82. The SNP genotyping resolved the parental origins
of Williams 82 genetic heterogeneity. Furthermore, the
CGH and exon resequencing analyses from more than
203,000 loci revealed the consequences of this hetero-
geneity in terms of structural and gene content vari-
ants between the Williams 82 individuals. Collectively,
these findings demonstrate that intracultivar genetic
heterogeneity can be pervasive in soybean. Implica-
tions on the interpretation of the Williams 82 reference
genome and the potential of applying similar ap-
proaches to interspecific comparative genomics are
discussed.

RESULTS

Origins of Williams 82 Genomic Heterogeneity

In the course of performing preliminary CGH ex-
periments, we noted several soybean cultivars, includ-
ing Minsoy, Archer, and Williams 82, that showed
evidence of structural genomic variation among dif-
ferent individual plants within each cultivar (data not
shown). We postulated that the regions of structural
variation may have arisen by one of two mechanisms:
(1) differential segregation of the parental genetic
material among individuals during the breeding pro-
cess, or (2) variation generated de novo by mutation
and genome rearrangements, such as large deletions
and DNA transposition. Importantly, these events are
molecularly distinguishable. Variation based on dif-
ferential segregation should be identifiable in the
parental lines, while variation generated de novo
would be expected to be unique to the cultivar and not
preferentially shared with either parent.

To test these hypotheses and dissect the origin of the
Williams 82 genomic heterogeneity, Williams 82 indi-
viduals and parental lines were genotyped using the
Illumina Infinium iSelect SoySNP50 chip consisting of
44,299 informative SNPs specifically designed for soy-
bean (Fig. 1). We isolated DNA from a single Williams
82 plant from two different seed sources and a single
plant each of Williams and Kingwa, the parental lines
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for Williams 82 (Bernard and Cremeens, 1988). The
twoWilliams 82 individuals were respectively derived
from seed stocks held at Iowa State University and the
U.S. Department of Agriculture Soybean Germplasm
Collection in Urbana, Illinois. These individuals were
named Wm82-ISU-01 and Wm82-SGC-01, respec-
tively, for this analysis.
As expected, most of the Williams 82 SNPs match

the Williams genotype, with several introgressions
derived fromKingwa (Fig. 1). Interestingly, the regions
of introgressed Kingwa haplotypes are different for
the two Williams 82 individuals. Approximately 52.8
and 24.9 Mb of Kingwa appear to have been intro-
gressed intoWm82-SGC-01 andWm82-ISU-01, respec-
tively (Fig. 1; Table I).

Small, conserved Kingwa introgressions are evident
in both Wm82-SGC-01 and Wm82-ISU-01 at position
approximately 35 Mb on chromosome 1 and the top
approximately 300 kb on chromosome 9 (Fig. 1; Table
I). The remaining Kingwa introgressions, however, are
polymorphic between these individuals. For example,
three relatively small introgressions are present in one
individual and absent in the other. Wm82-ISU-01
appears to carry an approximately 300-kb introgres-
sion at position approximately 47 Mb on chromosome
14; Wm82-SGC-01 does not (Fig. 1; Table I). Con-
versely, Wm82-SGC-01 appears to carry introgressions
on the top approximately 1.0 Mb and approximately
1.7 Mb of chromosomes 15 and 20, respectively;
Wm82-ISU-01 does not (Fig. 1; Table I).

Figure 1. SNP genotyping reveals the parental ori-
gins of Williams 82 genetic heterogeneity. The Infin-
ium SNP genotypes of the Wm82-SGC-01 and
Wm82-ISU-01 individuals are shown in A and B,
respectively. Blue spots indicate SNP positions that
match the Williams genotype. Red spots indicate
SNP positions that match the Kingwa genotype.
Green spots indicate SNP positions that match nei-
ther Williams nor Kingwa. Gray X indicates SNPs that
were nonpolymorphic between Wm82, Williams,
and Kingwa. Data were jittered along the x axis of
each chromosome to better resolve individual data
points.

Table I. Approximate positions of the Kingwa DNA introgression into Wm82-SGC-01 and Wm82-ISU-01

Regions need to show a minimum of two contiguous Kingwa SNPs to be included in this list.

Chromosome Start Position End Position Approximate Size

kb

Genotype Wm82-SGC-01
Gm01 34,668,255 35,080,457 412
Gm03 2,116,324 29,593,761 27,477
Gm07 16,189,219 38,036,244 21,847
Gm09 1 313,275 313
Gm15 1 1,007,132 1,007
Gm20 1 1,733,347 1,733
Total 52,789

Genotype Wm82-ISU-01
Gm01 34,668,255 35,080,457 412
Gm03 2,056,210 5,356,747 3,301
Gm07 16,615,822 37,107,849 20,492
Gm09 1 313,275 313
Gm14 47,133,164 47,475,993 343
Total 24,861

Genomic Heterogeneity in Soybean Williams 82
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Large, polymorphic Kingwa introgressions are
evident on chromosomes 3 and 7 (for details, see Sup-
plemental Fig. S1). These introgressions span approx-
imately 28 and 22 Mb, respectively, on chromosomes 3
and 7. However, Wm82-SGC-01 and Wm82-ISU-01
exhibit different borders for these introgressions. The
more striking example is on chromosome 3 (Fig. 1;
Supplemental Fig. S1). Wm82-SGC-01 chromosome 3
carries an introgression of the Kingwa haplotype from
positions approximately 2.0 to 29.6 Mb. Wm82-ISU-01
chromosome 3 carries the Kingwa haplotype from
positions approximately 2.0 to 5.4 Mb; the rest of the
chromosome matches the Williams parent. This indi-
cates that Wm82-ISU-01 and Wm82-SGC-01 carry
different haplotypes for approximately 24 Mb of chro-
mosome 3, which is nearly half of the chromosome.

The large Kingwa introgression on chromosome 7
appears to have slightly different recombination points
in Wm82-SGC-01 and Wm82-ISU-01 (Supplemental
Fig. S1). The Wm82-SGC-01 introgression spans from
approximately 16.2 to 38.0 Mb. The Wm82-ISU-01
introgression spans from approximately 16.6 to 37.1
Mb. Consequently, the Wm82-SGC-01 introgression is
approximately 1.5 Mb larger than the Wm82-ISU-01
introgression.

The genomic heterogeneity observed between
Wm82-SGC-01 and Wm82-ISU-01 presented an inter-
esting new question: within the regions of hetero-
geneity, which haplotypes are represented by the
published genome sequence (Schmutz et al., 2010)? To
address this question, we compared the Williams and
Kingwa SNP profiles with the published Williams 82
genome sequence (Fig. 2). The distribution of Williams
and Kingwa SNPs appeared to be interspersed with
one another throughout the regions of heterogeneity,
indicating that these sequences are presumably as-
sembled from a pool of heterogeneous Williams 82
individuals. Figure 2 shows the mixed parentage of
SNPs along regions of chromosomes 3, 7, 14, 15, and
20. The large (approximately 4.8 Mb) Williams-
Kingwa mosaic at the top of chromosome 14 (Fig. 2)
was not identified as an introgressed region in either
Wm82-SGC-01 or Wm82-ISU-01. All other noticeable
mosaics were identified as Kingwa introgressions in
either Wm82-SGC-01 and/or Wm82-ISU-01.

Structure of Intercultivar Variation and Intracultivar

Genomic Heterogeneity in Soybean

The Williams 82 reference sequence was used to
develop a NimbleGen CGH custom microarray. CGH
platforms are useful for comparative studies of soy-
bean genomes, particularly the detection of structural
variation between different genotypes. Structural
variants that are detected between two genomes are
commonly referred to as copy number variants
(CNV) and are thought to arise from differential
duplication, deletion, or insertion of DNA sequences
at a given locus. A subclass of CNV, termed presence/
absence variants (PAV), describe sequences that are

present in one genome but absent in the other
(Springer et al., 2009).

Direct CGH comparisons between Wm82-SGC-01
and Wm82-ISU-01 were conducted to reveal signifi-
cant CNV within regions of known genetic heteroge-
neity and to look for possible structural variants
generated de novo within or outside of heterogeneous
regions. Figure 3 shows the CNV profile of the four
chromosomes with greater than 1 Mb of heteroge-
neous loci. Nearly all of the structural variants ob-
served between these two genotypes occur within
known regions of SNP heterogeneity; Supplemental
Figure S2 shows the alignment between the region of
heterogeneity and the structural variation. Only one
significant CNV, on chromosome 7, was located out-
side of the known regions of heterogeneity (Fig. 3). It is
unclear if this small CNV is associated with a small
pocket of heterogeneity or was derived de novo since
the split of Wm82-SGC-01 and Wm82-ISU-01.

Figure 2. SNP genotyping reveals the parental origins of the Williams
82 reference sequence. The Infinium genotypes of Williams and
Kingwa were compared with the Williams 82 reference sequence to
identify which haplotypes are represented in the reference sequence
within regions of Wm82 heterogeneity. The genotype of the Williams
82 reference sequence is shown for chromosomes 3, 7, 14, 15, and 20.
Blue spots indicate SNP positions that match the Williams genotype.
Red spots indicate SNP positions that match the Kingwa genotype.
Green spots indicate SNP positions that match neither Williams nor
Kingwa. Gray X indicates SNPs that were nonpolymorphic between
Wm82, Williams, and Kingwa. Regions of heterogeneity appear to be
mosaics of Williams and Kingwa sequences in the Williams 82
reference sequence, as evidenced by the interspersion of blue and
red spots throughout the regions of heterogeneity. Data were jittered
along the x axis of each chromosome to better resolve individual data
points.
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We proceeded to compare the genome structures of
Williams and Kingwa to gauge the level of structural
variation between the two parent lines. CGH compar-
isons of theWilliams and Kingwa individuals revealed
a surprisingly high amount of structural variation
throughout the genomes, including instances of sig-
nificant CNV on all 20 chromosomes and several
conspicuous CNV hotspots (Supplemental Fig. 3).
A series of hybridizations were then conducted to

determine the origins of the differential CNVprofiles of
the Wm82 individuals. The Williams genotype was
used as the common reference for hybridizations with
four different Wm82 individuals: Wm82-SGC-01,
Wm82-ISU-01, Wm82-MN-01, and Wm82-PU-01 (for
the last two samples, DNAwas isolated from a single
Williams 82 plant obtained from seed lots at the Uni-
versity of Minnesota and Purdue University, respec-
tively). The results of the chromosome 3 comparisons
are shown in Figure 4. TheWm82-SGC-01, Wm82-ISU-
01, and Wm82-MN-01 individuals all exhibited differ-
ential CNV patterning relative to one another (the
Wm82-PU-01 pattern essentially matched the Wm82-
SGC-01 pattern). Therefore, these three individuals
each exhibit distinct chromosome 3 haplotypes. Impor-
tantly, the vast majority of significant CNV observed
betweenWilliams and theWm82 individuals were also
observed in the Williams-Kingwa comparison (Fig. 4),
indicating that these CNVwere directly inherited from
the Kingwa introgressions and are structurally un-
changed since the original introgression. There were a
few regions inwhich the significant peaks of theWm82
individuals were not called significant in theWilliams-
Kingwa comparison; however, these regions (e.g. the
DownCNV at position approximately 12.5 Mb in the
Wm82-SGC-01 and Wm82-MN-01 comparison with
Williams) typically appeared to have similar structural
variation patterns in theWilliams-Kingwa comparison.
For chromosome3, there is little evidence for significant
CNVoutside of the introgressed regions or novel struc-

tural variation within the introgressed regions that are
not observed in the comparison between Kingwa and
Williams. Thus, the differential CNV patterning of
Wm82-SGC-01,Wm82-ISU-01, andWm82-MN-01 chro-
mosome 3 appears to be caused by different Kingwa
introgressions within these three individuals. The larg-
est of these introgressions appears to be in the Wm82-
MN-01 individual (30 Mb or more).

The Wm82-Williams CGH data for all 20 chromo-
somes are shown in Supplemental Figure S4. CNV
within the known regions of introgression match the
Kingwa-Williams patterns, as was observed on chro-
mosome 3 (see chromosome 7 in Supplemental Fig.
S4). Additionally, there are numerous significant small
CNV throughout the genome that are located outside
of regions of known introgressions. Several of these
small CNV resemble the Kingwa-Williams CNV pat-
terns, indicating that these may be structural variant
introgressions that were not represented on the Infin-
ium platform or were too small to be resolved by the
SNP introgression analyses. However, a small number
of these CNV do not match the Kingwa-Williams CNV
patterns (e.g. the UpCNV peak on the end of chromo-
some 12 in Supplemental Fig. S4). This suggests that
these features may be pockets of de novo structural
variation. Alternatively, these loci may be heteroge-
neous within the Williams and/or Kingwa lines, such
that the loci inherited by the Wm82 individuals are
structurally different from the Williams and Kingwa
individuals used in the CGH analyses.

Evidence for Pervasive Presence/Absence Gene Content
Variation within Soybean Haplotypes

The SNP genotyping analysis resolved the parental
origins of Williams 82 intracultivar heterogeneity. Fur-
thermore, the CGH analysis revealed extensive struc-
tural variation associated with this heterogeneity.
Therefore, the extensive structural variation between

Figure 3. Structural variation within regions of het-
erogeneity betweenWm82-ISU-01 andWm82-SGC-
01. A detailed view of CNV on chromosomes 3, 7,
15, and 20 reveals major structural polymorphism
within known regions of heterogeneity (Fig. 1; Table
I). Each data point represents the log2 ratio of the
hybridization for a given microarray probe. Colored
data points represent probes within significant CNV
segments that exceeded the significance threshold
value. Red data points are CNV located within
known regions of heterogeneity based on SNP geno-
typing. Blue data points are CNV outside of known
regions of heterogeneity. Gray data points indicate
probes that are not located in significant segments.
All significant CNVare located within known regions
of heterogeneity between the genotypes, except for
the left-most feature on chromosome 7.

Genomic Heterogeneity in Soybean Williams 82

Plant Physiol. Vol. 155, 2011 649

http://www.plantphysiol.org/
http://www.plant.org


Williams 82 individuals primarily represents the struc-
tural variation between the Williams and Kingwa
haplotypes, which have been differentially maintained
in the respective Williams 82 individuals. Next, we
utilized a NimbleGen custom soybean exon-capture
microarray to perform exome resequencing of the
Wm82-ISU-01 and Wm82-SGC-01 individuals to mo-
lecularly validate the fine structure of this variation
and investigate any impacts on gene content variation.

We aligned the exome resequencing reads with the
soybean genome sequence version 4.1. The data re-
vealed an abundance of SNPs between Wm82-ISU-01
and Wm82-SGC-01. A total of 52,837,460 reads from
Wm82-ISU-01 and 38,192,508 reads from Wm82-SGC-
01 were uniquely aligned to the reference genome
sequence. A total of 1,838 SNPs were found between
Wm82-ISU-01 and Wm82-SGC-01 (SNPs that were
heterozygous in either genotype are not included in
this list). The newly discovered intracultivar SNPs
were overwhelmingly located in the genomic regions
defined as heterogeneous based on both the CGH and
Infinium SNP analyses (Supplemental Table S1). The
vast majority (approximately 94%) of the SNPs map-
ped to chromosomes 3, 7, 15, and 20. The regional
distributions of these data are in agreement with the
genomic heterogeneity observed between these indi-
viduals based on the Infinium SNP genotyping and
CGH analyses.

We also defined the gene content variation based on
the exome resequencing read counts. Specifically, we
aligned the reads with the Glyma version 5.0 annota-
tion file, which defines the exon space of the predicted
soybean gene models. The vast majority of genes
exhibited similar read counts between Wm82-SGC-01
and Wm82-ISU-01 (Supplemental Table S2). We clas-
sified a gene as a putative PAV if we observed a
minimum of 30 counts among exons in one individual

and zero counts in the other individual. We identified
25 genes that satisfied these stringent criteria (Supple-
mental Tables S1 and S3); only one of these genes does
not reside within a known region of Williams 82
heterogeneity (Table I; Supplemental Table S3). The
PAV genes were primarily located within an approx-
imately 10-Mb region of chromosome 3 (22 of 25 genes;
Supplemental Table S3). The PAV genes were discon-
tinuously located throughout the region, alternating
between present Wm82-ISU-01 and present Wm82-
SGC-01 genes or gene clusters (Fig. 5). This region is
noteworthy for hosting a relative abundance of Leu-
rich repeat genes; approximately 23% (five of 22) of the
present-absent gene models within this region were
defined as Leu-rich repeat genes (Supplemental Table
S3). The exome resequencing data indicate that Wil-
liams and Kingwa likely possess extensive PAV gene
content variation within their chromosome 3 haplo-
types, which is thereby reflected in the gene content
variation of heterogeneous Williams 82 individuals.

DISCUSSION

Origin of Intracultivar Genomic Heterogeneity in

Williams 82

Soybean is thought to possess relatively limited
genetic diversity due to self-fertilization and successive
genetic bottleneck events during the course of domes-
tication (Hyten et al., 2006). However, soybean exhibits
a wide range of phenotypic variation, including vari-
ation observed within established cultivars (Fasoula
and Boerma, 2005, 2007). In this study, we used com-
parative genomics analyses within soybean cv Wil-
liams 82 to show substantial genetic heterogeneity
between individuals that could be traced to variable
Kingwa introgressions. Comparisons of individuals

Figure 4. A detailed view of CNV between Wm82
individuals reveals three distinct structural composi-
tions for chromosome 3 based on differential intro-
gressions from Kingwa. Each data point represents
the log2 ratio of the hybridization for a given micro-
array probe for each genotype versus the Williams
reference. In the top panel, CNV were compared
between Kingwa and Williams as a reference for
differences between the Wm82 parents. Red data
points represent probes within significant CNV seg-
ments that exceeded the significance threshold value.
The other panels display the CNV patterns of Wm82-
ISU-01, Wm82-SGC-01, and Wm82-MN-01 versus
the Williams reference. For all panels, gray data
points indicate probes that are not located in signif-
icant segments. (Wm82-PU-01 exhibited a similar
chromosome 3 structure to Wm82-SGC-01 and thus
is not included here.)
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from different Williams 82 seed stocks revealed ge-
nomic identity among most chromosomes, with small
pockets of variation interspersed. However, certain
regions, most notably chromosome 3, displayed exten-
sive SNP and structural heterogeneity between indi-
viduals.
Williams 82was originally released as a composite of

four resistant lines selected from aWilliams3 Kingwa
BC6F3 generation (BernardandCremeens, 1988).Kingwa
was used as the donor parent to introgressPhytophthora
root rot resistance into the recurrent parent Williams
(Bernard and Cremeens, 1988). Collectively, the SNP
and CGH analyses show that Williams 82 intracultivar
variation is primarily derived from the segregation
and fixation of residual heterozygosity in the BC6F2
generation of Williams 3 Kingwa. Therefore, the pol-
ymorphic regions observed between Williams 82 in-
dividuals may be a consequence of heterogeneity
between and/or within the four lines originally se-
lected at the BC6F3 stage.
A genetic model of how this may have occurred is

shown in Figure 6. One can presume that several small
and perhaps large Kingwa introgressions were main-
tained in the heterozygous state into the BC6 genera-
tion. Thereafter, one generation of single-seed descent
should have fixed approximately one-half of these loci
into the homozygous stage of eitherWilliams or Kingwa
origin. However, any heterozygous loci remaining in
the BC6F2 generation would be subject to segregation
and differential fixation among the four selected BC6F3
lineages.
Most of the heterogeneous loci appear to be small

genomic regions, with the exception of the large blocks
of heterogeneity along chromosomes 3 and the
conspicuous approximately 1-Mb regions on chromo-
somes 7 (differential introgression points; Supplemen-

tal Fig. S1), 15, and 20. Interestingly, the Rps1
k locus,

which confers the Phytophthora root rot resistance, is
located approximately at position 4 Mb on chromo-
some 3 (Gao and Bhattacharyya, 2008). This position is
conserved among the Wm82 individuals, as they carry
the Kingwa version of this locus. However, this region
is adjacent to the strongest region of structural variation
(including profound CNV clusters and gene content
variation) in the Wm82/Wm82 comparisons. During
the series of six back-crosses, the Rps1

k locus was
necessarily recovered in the heterozygous condition in
every generation. Our data indicate that the Rps1

k locus
remained linked to a large (greater than 30 Mb) ge-
nomic region derived from Kingwa, possibly into the
BC6F2 generation. Our data suggest that this large
Kingwa-derived region recombined and segregated
either among the four BC6F3 individuals or in subse-
quent generations prior to homozygous fixationwithin
each line. This region appears to have recombined into
at least three different forms among Williams 82 sam-
ples, asWm82-SGC-01,Wm82-ISU-01, andWm82-MN-
01 allmaintain different forms of this chromosome (Fig.
4). It is unknown how many different forms of chro-
mosome 3 (and 7) might be extant in the various stocks
ofWilliams 82 and its derived cultivars, as this has been
a popular line utilized in breeding programs (Mikel
et al., 2010).

Selection and Intracultivar Heterogeneity

Soybean breeding does not currently utilize a reli-
able haploid induction system (Ravi and Chan, 2010);
therefore, breeding is primarily accomplished by single-
seed descent or back-cross strategies. These breeding
methods impose selection on plants that maintain
variable levels of heterozygosity during the early

Figure 5. Exome resequencing reveals gene content variation between twoWilliams 82 lines. Genomic DNA for Wm82-ISU-01
and Wm82-SGC-01 was captured on a soybean exome microarray and then sequenced via the Illumina IIX system. The relative
frequency of reads matching the soybean Glyma gene models is shown for the two Williams 82 lines; 134 gene models are
shown. Colored triangles indicate gene models that exhibited presence in one line and absence (no captured exon reads) in the
other line. Nearly 90% of the presence-absence gene content variants identified between Wm82-ISU-01 and Wm82-SGC-01
reside within the 10-Mb region of chromosome 3 shown here.
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generations of the breeding cycle. Following the single-
seed descent generations, heterozygous loci may seg-
regate, resulting in genetic heterogeneity within a
released accession (Fig. 6). Heterozygous loci may be
preferentially maintained during the early rounds of
breeder selection, as individuals with higher rates of
heterozygosity may exhibit greater yields or other
advantageous traits due to heterosis (Birchler et al.,
2010). Genetic theory predicts, on average, a halving of
heterozygous loci with every self-pollination follow-
ing a given cross. However, heterozygosity may be
retained at higher rates if loci confer desirable and
selectable phenotypes. In fact, comparative genotyp-
ing of maize recombinant inbred lines has identified
excess residual heterozygosity maintained in the
highly diverse pericentromeric regions (Gore et al.,
2009; McMullen et al., 2009), which have been pre-
sumably maintained due to phenotypic advantages.
Soybean also exhibits heterosis (Palmer et al., 2001;
Burton and Brownie, 2006); thus, early selections dur-
ing the breeding process may preferentially maintain
lines with greater heterozygosity, as these lines would
exhibit phenotypic superiority. Preferential mainte-

nance of heterozygous loci would result in more seg-
regating loci during the seed increase generations,
ultimately leading to greater than expected rates of
intracultivar heterogeneity among individuals.

Selective advantages of heterozygosity can theoreti-
cally increase the likelihood of establishing heteroge-
neity during the breeding process; however, there are
also possible advantages to maintaining the genetic
heterogeneity once the cultivar is established. For ex-
ample, increased genetic diversity within a cultivar
may stabilize a stand against pathogen invasion or
spread (Burdon et al., 2006).

Clearly, the genetic heterogeneity on Williams 82
chromosome 3 was influenced by the heterozygous
selection of the Rps1

k locus during the back-crossing
process. However, it is unclear if the genetic heteroge-
neity observed elsewhere in the genome was influ-
enced by selective advantages of heterozygous loci
during the backcross or single-seed descent genera-
tions. Excluding the chromosome3 introgressions, both
Wm82-SGC-01 andWm82-ISU-01maintained substan-
tial Kingwa introgressions, particularly the large intro-
gression on chromosome 7. The sample size used in this
study is too small to allow for speculation on how
common this type of donor retention is in soybean
breeding. However, it remains an intriguing question
whether introgressed loci are typically retained at
higher than expected rates during traditional soybean
back-cross breeding.

Implications for Soybean Comparative Genomics

The high rates of intracultivar structural variation
observed within the Williams 82 regions of heteroge-
neity are primarily a consequence of structural varia-
tion between the Williams and Kingwa parental lines
(Fig. 4; Supplemental Fig. S4). Presumably, the gene
content variation within these regions is also directly
inherited from these parental lines.

The relatively high levels of structural variation
within regions of Williams 82 heterogeneity appear to
be somewhat representative of the genome-wide struc-
tural variation observed between the Williams and
Kingwa parents (Supplemental Fig. S3). The Williams-
Kingwa CGH comparison indicates that theremay be a
great deal of genomic variation between soybean lines,
more so than is generally assumed. Moreover, this
variation may include substantial differences in gene
structure and gene content, aswas observed in the gene
presence/absence variation analysis of the exome re-
sequencing data in this study.

In addition to the 25 genes we defined as PAV in this
analysis, there were also several genes that were nearly
called PAV. In these cases, one Williams 82 individual
exhibited an abundance of read counts while the other
individual exhibited trace levels of read counts. Seven
such genes, each exhibiting greater than 95% of their
reads from either Wm82-SGC-01 or Wm82-ISU-01, are
observed in Figure 5. The trace read counts could be
explained by technical or biological causes, including

Figure 6. A model for the origin of genomic heterogeneity in two
Williams 82 lines. A, TheWilliams3 Kingwa BC6 generation, in which
contributions from Williams are shown in blue and contributions from
Kingwa are shown in red. In this example, 10 loci are heterozygous; the
Kingwa Rps1

k locus has been selected near the top of chromosome 3. B,
The BC6F2 plant after one generation of selfing. In this example, loci
that fix the Williams type are shown in red triangles, loci that fix the
Kingwa type are shown in red rectangles, and loci that remain
heterozygous are shown in red circles. C, The heterozygous loci from
the BC6F2 have segregated and fixed homozygosity within each indi-
vidual plant after several rounds of selfing. The resulting individuals,
Wm82-SGC-01 and Wm82-ISU-01, fix heterogeneous types for four of
these loci. On chromosome 3, the Rps1

k locus is fixed for the Kingwa
type in both individuals; however, differential recombination below
this locus fixes heterogeneous types for much of the chromosome.
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exon reshuffling, gene truncation, and resequencing
misalignments to the reference genome. Additionally,
our analysis only focused on the gene set defined by the
annotation of the published soybean genome sequence;
there are possibly additional PAV genes that are miss-
ing from the genome sequence, not identified by the
current annotation, or not successfully captured by the
exomemicroarray. Collectively, these data suggest that
the true number of PAVand rearranged genes between
Wm82-SGC-01 andWm82-ISU-01may be substantially
greater than the 25 genes we identified using the
stringent criteria described above.
Gene content differences in the form of PAV have

been extensively documented in maize inbred line
comparisons, and there is speculation that these may
significantly contribute to maize phenotypic variation
(Springer et al., 2009; Beló et al., 2010; Swanson-Wagner
et al., 2010). Likewise, it will be critical to evaluate the
extent and consequences of such structural variation
and presence/absence gene variants in providing phe-
notypic plasticity in soybean lines and breeding pop-
ulations. Although there were no obvious phenotypic
dissimilarities between the Wm82 individuals in this
study, there was an apparent enrichment of Leu-rich
repeat annotations observed within the Wm82 PAV
genes. Comparative sequencing of maize inbred lines
recently identified an abundance of Leu-rich repeat
genes with large-effect SNPs (Lai et al., 2010). No
transcription factors were identified within the Wm82
PAV gene list; it may be of great interest to identify and
investigate the effect of transcription factor PAV be-
tween soybean cultivars.

Implications for the Williams 82 Genome Sequence

The vast majority of the Williams 82 genome ap-
pears to be homogeneous among different Williams 82
individuals and subpopulations. However, a compar-
ison of the Williams and Kingwa SNP genotypes with
the reference soybean genome sequence (Schmutz
et al., 2010) revealed a surprising result: within regions
of genetic heterogeneity, the reference sequences con-
sist of a mosaic of the Williams and Kingwa haplo-
types. We assume that no Williams 82 individual plant
will match the soybean reference genome sequence
throughout these regions of heterogeneity. Therefore,
researchers investigating comparative studies of soy-
bean that include Williams 82 as a reference genotype
must factor in the inherent differences between each
Wm82 individual and the reference genome sequence.
For example, the CGH tiling microarray used in this

study was designed based on the reference genome
sequence. Ideally, one would hope to identify a Wm82
individual that is a perfect match to the soybean ge-
nome sequence; such an individual would be useful as
a common reference in CGH experiments. If this were
the case, the interpretation of UpCNVand DownCNV
would be relatively straightforward: UpCNV peaks
would indicate increased copy number relative to
Williams 82, and DownCNV peaks would indicate an

absent or polymorphic sequence relative to Williams
82. Applying a reference Wm82 individual that is
polymorphic to the CGH microarray is a slightly dif-
ferent matter: the interpretation of UpCNV and
DownCNV will be the same as described above for
chromosomal regions that are not heterogeneous be-
tween the genome sequence and the Wm82 individual
(this, fortunately, is the case for the majority of the
genome sequence). However, within the regions of
known heterogeneity, UpCNV would now have to be
interpreted as either an increased copy number relative
to Williams 82 or sequences that are absent in the
particular Wm82 individual that was used as a refer-
ence for the given experiment. We imagine that similar
considerations will need to be made for a variety of
comparative methodologies and platforms (e.g. inter-
pretations of RNA-Seq data, analysis of the Affymetrix
soybean GeneChip, etc.), including phenotypic charac-
ters in which Williams 82 serves as the experimental
control.

Similar circumstances may apply to the utility of
other plant genome sequences. Several presumably
homogenous accessions were used as the DNA source
for the genome sequences of Arabidopsis (Arabidopsis
Genome Initiative, 2000), rice (International Rice Ge-
nome Sequencing Project, 2005), maize (Schnable et al.,
2009), and other species. To our knowledge, it is not
known if there is persistent genetic heterogeneity
within the respective sequenced accessions, nor is it
known whether a single individual or a pool of het-
erogeneous individuals was used to construct the
sequence assemblies for each species. Nevertheless,
for future genome sequencing projects, it would be
advisable to sequence the genome of a single individ-
ual (perhaps a double haploid individual when pos-
sible). It would also be preferable that seeds or clones
from the reference individual be stored in a repository,
so that they could be used in future experiments and
analyses.

MATERIALS AND METHODS

Plant Material and Nucleic Acid Extraction

Seed for soybean (Glycine max ‘Williams 82’) was obtained from the

laboratories of Dr. James Orf at the University of Minnesota, Dr. Randy

Shoemaker at Iowa State University, Dr. Scott Jackson at Purdue University,

and the U.S. Department of Agriculture Soybean Germplasm Collection in

Urbana, Illinois. Seed for cv Williams and Kingwa was obtained from the U.S.

Department of Agriculture Soybean Germplasm Collection.

Seeds were planted in individual four-inch pots containing a 50:50 mix of

sterilized soil and Metro Mix. Growth chambers contained a mixture of

fluorescent and incandescent light bulbs set to 16 h of light per day. Young

trifoliate leaves from 3-week-old plants were harvested and immediately

frozen in liquid nitrogen. Frozen leaf tissue was ground with a mortar and

pestle with liquid nitrogen. DNAwas extracted from approximately 100 mg of

powderized tissue using the Qiagen Plant DNeasy Mini Kit according to the

manufacturer’s protocol (including an RNase degradation step). DNA was

quantified on a NanoDrop spectrophotometer.

Illumina Infinium Genotyping

The Illumina Infinium iSelect SoySNP50 chip (Q. Song, C.V. Quigley, G. Jia,

P.B. Cregan, and D.L. Hyten, unpublished data) was used to obtain genotyp-
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ing data for four individual plants: Wm82-SGC-01, Wm82-ISU-01, Williams,

and Kingwa. Illumina GenomeStudioV2010.2 software was used to identify

polymorphic SNPs among samples in both the homozygous and heterozy-

gous states; only homozygous calls were used for this analysis. Any ambig-

uous or otherwise uninformative data points were not used in this analysis.

Visual displays showing the distribution of Williams and Kingwa contribu-

tions to the Wm82 lines were generated using Spotfire DecisionSite software.

Comparative Genomic Hybridizations and Analyses

A 696,139-feature oligonucleotide microarray was designed and built by

Roche NimbleGen to perform soybean array comparative genome hybridiza-

tion. Unique probes of varying lengths (maximum 75 bp, minimum 50 bp,

median 55 bp) were designed based on the soybean genome version 4.0

assembly (Schmutz et al., 2010). Probeswere spaced at amedian interval length

of 1,120 bp across the entire anchored genome. This arraymay be ordered from

Roche NimbleGen by requesting the design 091113_Gmax_RS_CGH_HX3.

Total genomic DNA (isolated as described above) was labeled according to

the RocheNimbleGen CGHUser’s Guide (version 5.1). Briefly, 1mg of genomic

DNA was labeled with either Cy3- or Cy5-labeled random nonamers via

incubation with exo-Klenow enzyme and 10 mM deoxyribonucleotide triphos-

phates at 37�C for 2 h in a total volume of 100 mL. Labeling reactions were

stoppedwith the addition of 10mL of 0.5 M EDTAand 11.5mL of 5 MNaCl. DNA

was precipitated with 0.9 volumes of isopropanol, washed with 500 mL of ice-

cold 80% ethanol, and dried in an Eppendorf Vacufuge on low heat for 5 to 10

min. The labeled samples were resuspended in 25 mL of nuclease-free water

and quantified on a NanoDrop spectrophotometer. Thirty-one micrograms

each of the Cy3- and Cy5-labeled samples were combined in a 1.5-mL tube and

dried in a Centri-Vac. Samples were resuspended in 5.6 mL of sample tracking

control and 14.4 mL of hybridization solution supplied by Roche NimbleGen.

Samples were heat denatured at 95�C for 5min, followed by incubation at 42�C
for at least 5 min prior to loading. Samples were hybridized to the arrays for 60

to 72 h at 42�Cwith mixing. Microarrays were washed with Roche NimbleGen

wash buffers and dried by centrifugation. Arrays were scanned with a

GenePix4000B scanner (Axon Instruments) at 5-mm resolution. Automated

image gridding, alignment, and data extraction were performed using Nim-

bleScan software version 2.5.

For each CGH comparison, the segMNT algorithm in the NimbleScan

software (version 2.5) was used to extract the raw data and make segmenta-

tion calls. The parameters of the algorithmwere as follows: minimum segment

difference = 0.1, minimum segment length (number of probes) = 2, acceptance

percentile = 0.99, number of permutations = 10, nonunique probes were

included, and spatial correction and qspline normalization were applied. The

list of resulting segments was then processed to identify significant segments.

A segment was called significant if the log2 ratio mean of the probes within the

segment was above the upper threshold or below the lower threshold for that

given array comparison. The upper threshold for each comparison was

determined to be the log2 ratio value of the 95th percentile of all data points.

The lower threshold for each comparison was determined to be the log2 ratio

value of the 5th percentile of all data points. Visual displays of the CGH data

were generated using Spotfire DecisionSite software.

The comparative genomic hybridization data from this study have been

submitted to the National Center for Biotechnology Information Gene Ex-

pression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession

number GSE25294.

Exome Resequencing and Analyses

Wm82-ISU-01 and Wm82-SGC-01 genomic DNA samples were isolated

using the Qiagen Plant DNeasy system. Illumina Paired End libraries

(Illumina) were constructed for Wm82-ISU-01 and Wm82-SGC-01 using

Illumina’s PE Kit (part no. PE-102-1001). The mean library fragment size

was found to be 328 bp. The details of library preparation and prehybridiza-

tion amplification are provided in Supplemental Materials and Methods S1.

A custommicroarray was built for soybean exome sequence capture based

on the soybean gene annotation (ftp://ftp.jgi-psf.org/pub/JGI_data/phyto-

zome/v4.0/Gmax/annotation/initialRelease/Glyma1.gff2.gz). This array

may be ordered from Roche NimbleGen by requesting design 100310_Gmax_

public_exome_cap_HX3. The details of this microarray design are included in

Supplemental Materials and Methods S1. The library exon sequences were

captured by hybridizing to the microarray for 72 h at 42�C in the presence of 20

mL of plant capture enhancer per subarray. Slide washing and sample library

elution were performed as published previously (Fu et al., 2010). Posthybrid-

ization amplification consisted of 16 cycles of PCR. Following the completion

of the amplification reaction, the samples were purified using a Qiagen Qia-

quick column using the manufacturer’s recommended protocol, and the DNA

was quantified spectrophotometrically using the NanoDrop-1000 and elec-

trophoretically evaluated with an Agilent Bioanalyzer 2100 using a DNA1000

chip. The resulting postcapture enriched sequencing libraries were diluted to

10 nM and used in cluster formation on an Illumina cBot, and paired-end

sequencing was done using Illumina’s Genome Analyzer IIX. Both cluster

formation and 76-bp paired-end sequencing were performed using the

Illumina protocols. The full methodology of library capture, capture array

processing, posthybridization amplification, and sequencing are described in

Supplemental Materials and Methods S1.

Software SOAP2 (Li et al., 2009b) and SOAPsnp (Li et al., 2009a) were used

for SNP discovery between the Wm82-ISU-01 and Wm82-SGC-01 exon reads.

A customized pipeline was developed for this analysis (Severin et al., 2010).

Briefly, a total of 56,010,828 76-base read sequences of Wm82-ISU-01 and

40,599,004 reads of Wm82-SGC-01 from Illumina Solexa sequencing were

aligned to the soybean genome sequence version 4.1 (Gmax.main_genome.

scaffolds assembly; ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v4.1/

Gmax/assembly/sequences/) using SOAP2. The paired alignment was set

to a maximum mismatch of two, and only the unique alignment hits were

selected. After imposing these filters, 52,837,460 reads fromWm82-ISU-01 and

38,192,508 reads from Wm82-SGC-01 were uniquely aligned to the reference

genome sequence. The alignments were screened for SNPs by SOAPsnp

analyses; we only screened for SNPs that were homozygous in both geno-

types. Potential SNPs were selected using a minimum base-call quality of 10,

average quality of 20, and minimum best hits of four. The SNP was not

allowed to be an ambiguous base (e.g. SNP 6¼ “N”).

We used the exome resequencing data to identify gene content variation

between Wm82-ISU-01 and Wm82-SGC-01 based on read counts. The Glyma

version 5.0 annotation file, Glyma1_highConfidence.gff3 (February 8, 2010),

was used for exon annotations. A perl script was designed to count the

number of paired-end reads that mapped to each exon. To identify genes that

are present in one Williams 82 line and absent in the other (present-absent

genes), we first summed the number of reads among exons for each Glyma

gene model. Genes were categorized as “present-absent” if they had a

minimum of 30 reads in one genotype and zero in the other.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. SNP genotyping reveals the fine structure of

differential Kingwa introgression in Wm82-SGC-01 and Wm82-ISU-01

on chromosomes 3 (A) and 7 (B).

Supplemental Figure S2. Structural variation between Wm82-SGC-01 and

Wm82-ISU-01 corresponds to regions of heterogeneity.

Supplemental Figure S3. Genome-wide CGH analysis reveals extensive

copy number variations between the Kingwa and Williams genotypes.

Supplemental Figure S4. Structural variation between different Wm82

individuals and Williams.

Supplemental Table S1. Chromosomal abundance of nucleotide and gene

content variants between Wm82-ISU-01 and Wm82-SGC-01 based on

exome resequencing.

Supplemental Table S2. Resequencing read counts following exome

capture for 43,442 Glyma gene models.

Supplemental Table S3. Presence-absence genes between Wm82-ISU-01

and Wm82-SGC-01 based on exon resequencing counts.

Supplemental Materials and Methods S1. A detailed description of the

exome resequencing methods.
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Supplemental Figure 1.  SNP genotyping reveals the fine structure of differential Kingwa introgression in Wm82-SGC-
01 and Wm82-ISU-01 on chromosomes 3 (A) and 7 (B).  Blue spots indicate SNP positions that match the Williams 
genotype.  Red spots indicate SNP positions that match the Kingwa genotype. Green spots indicate SNP positions that 
match neither Williams nor Kingwa.  Grey “X” indicate SNPs that were non-polymorphic between Wm82, Williams and 
Kingwa.  In (B), the chromosome 7 introgression differences are shown at a large scale.  Data were jittered along the x-
axis of each chromosome to better resolve individual data points.
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Supplemental Figure 2. Structural variation between Wm82-SGC-01 and Wm82-ISU-01 corresponds to regions of 
heterogeneity.  The CGH analyses from Figure 3 were aligned with the SNP genotyping analyses from Figure 1 to 
reveal the relationship between intra-cultivar structural variation and genomic heterogeneity.  Chromosome 3, 7, 15 and 
20 are shown in A-D, respectively.  Black boxes are draw around known regions of heterogeneity.
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Supplemental Figure 3. Genome-wide CGH analysis reveals extensive copy number varations between the Kingwa
and Williams genotypes.  Each data point represents the log2 (Kingwa/Williams) ratio of the hybridization for a given 
microarray probe.  Red data points represent probes within significant CNV segments that exceeded the significance 
threshold value.  Grey data points indicate probes that are not located in significant segments.
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Supplemental Figure 4.  Structural variation between different Wm82 individuals and Williams.   The K/W rows display 
the Kingwa/Williams CGH data.  The ISU/W rows display the Wm82-ISU-01/Williams CGH data.  The remaining rows 
display the Wm82-SGC-01/Williams CGH data, the Wm82-PU-01/Williams CGH data and the Wm82-MN-01/Williams 
CGH data, respectively. Each data point represents the log2 ratio of the hybridization for a given microarray probe for 
each genotype versus the Williams reference.  Colored data points represent probes within significant CNV segments 
that exceeded the significance threshold value.  Grey dashes indicate probes that are not located in significant 
segments.
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Supplemental Methods 

Soybean Exome Resequencing 

Capture Array Design 

Glycine max gene annotation was downloaded from JGI (ftp://ftp.jgi-

psf.org/pub/JGI_data/phytozome/v4.0/Gmax/annotation/initialRelease/Glyma1.gff2.gz). A total 

of 391199 CDS features (76.5 Mbp) were used as the starting point for the design. CDS features 

on scaffolds were ignored for this design. CDS regions smaller than 100 bp were extended 

equally, in both the 5’ and 3’directions, until a minimum size of 100 bp was reached. 

Overlapping CDS regions were then merged into single, non-redundant regions, producing a 

final set of 322,428 target regions, covering 70.95 Mbp. Variable length oligonucleotide probes 

(50-120 nt) were generated for the entire genome at an interval spacing of 5 bp. A frequency 

table of 15-mers was generated for the entire genome, using both strands, and those probes with 

an average 15-mer frequency greater than 100 were considered repetitive and removed from 

consideration. Uniqueness in the genome was assessed using SSAHA (v3.2), using a word-

length of 12, minimum match length of 38 bp, a maximum gap of 5 and a maximum number of 

insertion/deletions of 5. Probes were selected by tiling across the target regions at an average 

probe spacing of 25 bp, restricting selection to only completely unique probes with an average 

15-mer frequency score of 25 or less. The selected probes extend beyond the boundary of the 

initial target region by 35- to 50-bp to ensure adequate sequence coverage on the edges of the 

exons. A total of 223,890 out of the initial 322,428 target regions (69.4%) are covered by the 

design. The final capture probe set covers 40.4 Mbp of genomic sequence, and 35.2 Mbp (49.7%) 

of the final set of CDS target regions. Using an offset of 100 bp from each capture probe, 52.3 

Mbp (73.8%) of the target regions should be covered in a typical experiment. The tiling path was 

put into the NimbleGen 3x720,000 feature format on a 2.1M feature capture array.  This array 

may be ordered from Roche NimbleGen by requesting the design: 

100310_Gmax_public_exome_cap_HX3 

Capture Library Preparation and Pre-Hybridization Amplification 

Illumina Paired End libraries, (Illumina, Inc., San Diego, CA) were constructed using 

Illumina’s PE Kit (Part # PE-102-1001) with the following modifications. The prescribed 

agarose gel excision was performed at 300-250 base pairs to produce libraries with an 



approximate insert size of 300bp.  DNA was purified from the agarose using a Qiagen (Valencia, 

CA), Qiaquick (Part # 28104) column and eluted in 30µl of water. The entire recovery product 

was used as template in the Pre-hybridization library amplification via the Illumina sequencing 

adapters (i.e. LMPCR).  Pre-hybridization LMPCR consisted of one reaction containing 50µl 

Phusion High Fidelity PCR Master Mix (New England BioLabs, Ipswich, MA, Part # F-531L ), 

2µM of primers, Illumina PE 1.0: 5'- AATGATACGGCGACCACCGAGATCTACACTCTT 

TCCCTACACGACGCTCTT CCG ATC* T and 2.0: 5'- 

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCAT TCCTGCTGAACCGCT 

CTTCCGATC* T (asterisk denotes phosphorothioate bond), 30µl DNA, and water up to 100µl. 

PCR cycling conditions were as follows: 98 degrees C for 30 seconds, followed by 8 cycles of 98 

degrees C for 10 seconds, 65 degrees C for 30 seconds, and 72 degrees C for 30 seconds.  The 

last step was an extension at 72 degrees C for 5 minutes.  The reaction was then kept at 4 degrees 

C until further processing. The amplified material was cleaned again with a Qiagen Qiaquick 

column according to the manufacturer’s instructions, except the DNA were eluted in 50µl water.  

The DNA were quantified using the NanoDrop-1000 (Wilmington, DE) and the library was 

evaluated electrophoretically with an Agilent 2100 Bioanalyzer (Santa Clara, CA) using a DNA 

1000 chip [Part # 5067-1504].  The mean library fragment size was found to be 328 bp. 

Capture library and Capture Array Processing 

Prior to array hybridization the following components were added to a 1.5ml tube: 600ng 

of library material, 1.3µl of 100µM Illumina primer PE 1.0 and PE 2.0 at, and 64µl of Roche 

NimbleGen’s (Madison, WI) proprietary Plant Capture Enhancing compound (PCE). Samples 

were dried down by puncturing a hole in the 1.5ml tube cap with a 20 gauge needle and 

processing in an Eppendorf Vacufuge (San Diego, CA) set to 60 degrees C for 20 minutes. To 

each dried sample 15.4µl of water was added and, it was then placed in a heating block at 70 

degrees C for 10 minutes to re-suspend sample. Samples were subjected to vigorous vortex 

mixing for 30 seconds and centrifuged to recollect any dispersed sample. To each sample tube 

25.6µl NimbleGen SC Hybridization Buffer (Part # 05340721001] and 10.24µl NimbleGen 

Hybridization component A (Part # 05340721001] was added, the sample was vortexed for 30 

seconds, centrifuged, and placed in a heating block at 95 degrees C for 10 minutes.  The samples 

were again mixed for 10 seconds, spun down, and placed in a Roche NimbleGen Hybridization 

System at 42 degrees C until ready for hybridization. The capture array (design 

100310_Gmax_public_exome_cap_HX3) is comprised of three identical subarrays of 720,000 



features targeting soybean exons (see Array Design).  Each slide had a NimbleGen HX3 mixer 

affixed according to manufacturer’s instructions, and 16µl of the hybridization mixture (Glycine 

max library, PCE, Illumina primers, SC Hybridization Buffer, and SC Component A) was 

pippetted into each of the three sub-array fields.  The loading and vent holes were covered with 

port seals, and each array-sample was hybridized for 72 hours at 42 degrees C on Hybridization 

Station setting “B”. Slide washing and sample library elution were performed as previously 

published (Fu et al. (2010) Plant J. 62: 898-909).  

Post Hybridization LMPCR 

Post hybridization amplification (e.g. LMPCR via Illumina adapters) consisted of 2 

reactions for each sample using the same enzyme and primer concentrations as the pre-capture 

amplification, but a modified version of the Illumina PE 1.0 and 2.0 primers were employed: 

Forward primer 5’- AATGATACGGCGACCACCGAGA and reverse primer 5’-

CAAGCAGAAGACGGCATACGAG.  Post Hybridization amplification consisted of 16 cycles 

of PCR using the same cycling conditions as in the Pre-hybridization LMPCR (above), however 

the annealing temperature was set to 60 degrees C.  Following the completion of the 

amplification reaction, the samples were purified using a Qiagen Qiaquick column using the 

manufacturer’s recommended protocol, and the DNA was quantified spectrophotometrically 

using the NanoDrop-1000, and electrophoretically evaluated with an Agilent 2100 Bioanalyzer 

using a DNA 1000 chip. The resulting post capture enriched sequencing libraries were diluted to 

10nM and used in cluster formation on an Illumina (San Diego, CA) cBot and paired end 

sequencing was done using Illumina’s Genome Analyzer IIX. Both cluster formation and 76bp 

paired-end sequencing were performed using the Illumina provided protocols. 
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