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ORIGINAL RESEARCH

Genome-Wide Association Analysis Identifi es 
Candidate Genes Associated with Iron Defi ciency 
Chlorosis in Soybean

Sujan Mamidi, Shireen Chikara, R. Jay Goos, David L. Hyten, Deepti Annam, 
Samira Mafi Moghaddam, Rian K. Lee, Perry B. Cregan, and Phillip E. McClean*

Abstract
Iron defi ciency chlorosis (IDC) is a signifi cant yield-limiting 
problem in several major soybean [Glycine max (L.) Merr.] 
production regions in the United States. Soybean plants display 
a variety of symptoms that range from a slight yellowing of the 
leaf to interveinal chlorosis, to stunted growth that reduces yield. 
The objective of this analysis was to employ single nucleotide 
polymorphism (SNP)-based genome-wide association mapping 
to uncover genomic regions associated with IDC tolerance. 
Two populations [2005 (n = 143) and 2006 (n = 141)] were 
evaluated in replicated, multilocation IDC trials. After controlling 
for population structure and individual relatedness, and selecting 
statistical models that minimized false positives, 42 and 88 
loci, with minor allele frequency >10%, were signifi cant in 
2005 and 2006, respectively. The loci accounted for 74.5% 
of the phenotypic variation in IDC in2005 and 93.8% of the 
variation in 2006. Nine loci from seven genomic locations 
were signifi cant in both years. These loci accounted for 43.7% 
of the variation in 2005 and 47.6% in 2006. A number of the 
loci discovered here mapped at or near previously discovered 
IDC quantitative trait loci (QTL). A total of 15 genes known to be 
involved in iron metabolism mapped in the vicinity (<500 kb) of 
signifi cant markers in one or both populations.

THE DEMAND FOR SOYBEAN [Glycine max (L.) Merr.] has
grown consistently in the United States over the last 

decades. Th is has resulted in the expansion of the grow-
ing regions north and west of the traditional region. Th is 
expansion has been into soils that diff er from those on 
which the crop was historically bred. Th e characteristics 
of the soil have led to the appearance of iron defi ciency 
chlorosis (IDC), an important yield-limiting factor for 
soybeans grown on calcareous soil. Calcareous soil, with 
a relatively high percentage of calcium carbonate and 
soluble salts, is commonly present in the north-central 
regions of the United States and extends from eastern 
North Dakota and South Dakota and into central Min-
nesota, central Iowa, and central Nebraska and Kansas 
(Franzen and Richardson, 2000). For many producers in 
these regions, IDC is considered a major yield limiting 
factor. In Iowa and Minnesota alone, IDC can render 
losses exceeding US$10 million due to decreased soybean 
production (Hansen et al., 2004).

Iron defi ciency chlorosis results from the inability 
of some genotypes to effi  ciently mobilize iron into the 
plant when it is growing in high pH calcareous soils. In 
these soils, ferrous iron is not readily oxidized to ferric 
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iron, and, subsequently, iron availability is limited. Under 
such conditions, the concentration of iron in the soil is 
not higher than 100 pmol (Stephan, 2002). Based on its 
response to Fe availability, soybean is considered a Strat-
egy I plant (Marschner et al., 1986). Strategy I plants fi rst 
release H+ ions from the root surface into the soil by the 
proton pumping activity of a H+ adenosine triphosphatase 
(ATPase). Th is lowers the soil pH, which in turn initiates 
the dissociation of Fe(OH)

3
 complexes into ferrous ions. 

Next, Fe3+ is reduced by Fe3+ chelate reductase to the more 
soluble Fe2+. And third, iron transporters move the Fe2+ 
into the root. Strategy I plants also increase root hair for-
mation, thereby increasing the surface area available for 
iron uptake (Schmidt, 1999). Once iron has entered the 
root, it is then moved via membrane transporters into the 
xylem where it most likely chelates with citrate. Th e che-
lated form of iron then moves through the xylem stream 
to growing leaves. Finally, iron is mobilized from the 
leaves, forms a complex with nicotianamine, and is trans-
ported via the phloem to younger leaves and seed.

Excess water is another factor that accentuates IDC 
in calcareous soils during the early stages of soybean 
development. Th is leads to an elevated concentration of 
bicarbonates in the root apoplast that impedes the Fe3+–
chelate reductase activity necessary for the conversion of 
Fe3+ to Fe2+. Bicarbonates also immobilize the movement 
of iron to young leaves once it is absorbed at the root 
level (Barker and Pilbeam, 2007).

From a genetic perspective, IDC is clearly a quantita-
tive trait where multiple genetic factors are involved in 
the expression of the proteins necessary for the uptake of 
iron from the soil and its distribution through the plant. 
Th erefore it was not surprising that studies designed to 
understand the genetic nature of the IDC response in 
soybean identifi ed multiple quantitative trait loci (QTL) 
(Diers et al., 1992; Lin et al., 1997, 2000; Charlson et 
al., 2003, 2005). Th ese original studies used biparental 
populations, and the QTL discovered using one popula-
tion were oft en population specifi c (Diers et al., 1992; 
Charlson et al., 2005). From an applied plant breeding 
perspective this minimizes the eff ectiveness of the bipa-
rental marker approach. At the same time, these studies 
reinforce the observation that IDC is complex trait.

Association mapping (AM) is an alternative to dis-
covering genetic factors using biparental crosses. Asso-
ciation mapping uses the linkage disequilibrium (LD) 
pattern in a large population of unrelated individuals 
(Risch, 2000). As such, it can identify common genetic 
variants that control a common phenotype. Given its 
complex nature, utilizing AM to discover major fac-
tors controlling the IDC response in soybean seems to 
be an appropriate research direction. Indeed, an early 
AM study in soybean using a limited number of simple 
sequence repeat (SSR) markers discovered two markers 
that were reproducibly associated with IDC in two inde-
pendent populations (Wang et al., 2008). Here a genome-
wide discovery eff ort using the universal 1536 soybean 
Golden Gate single nucleotide polymorphism (SNP) set 

(Hyten et al., 2010) with two independent populations 
was undertaken. Multiple genomic regions distributed 
throughout the soybean genome were discovered to be 
associated with the IDC phenotype. A number of genes 
known to be involved in iron metabolism were found to 
be closely linked to these loci. Th e application of regional 
testing trials for AM studies is also considered.

Materials and Methods
Populations, Phenotyping, and Genotyping
Two independent populations, each consisting of a 
unique set of advanced soybean breeding lines, devel-
oped by public and private breeding programs for 0 and 
early I maturity groups for the north central states of the 
United States, were evaluated in 2005 (n = 143) and 2006 
(n = 141). Th e 2005 population was grown at fi ve sites 
near Arthur, Ayr, Chaff ee, Colfax, and Galesburg, ND. 
Th e soil at these sites had a pH varying from 7.8 to 8.1, 
salinity (electrical conductivity) from 0.4 to 0.2 S m–1, 
and CaCO

3
 contents ranged from 2 to 11%. Th irty-fi ve 

seeds were planted in 1.53 m rows on 76.2 cm centers. 
Th e experimental design was a randomized complete 
block design with four replications at each site. Two 
visual observations were made at each location at the 
two to three and fi ve to six trifoliolate stages. Th e second 
independent population was grown in 2006 at Arthur, 
Colfax, Galesburg, and Prosper, ND. Th e soil at these 
sites had pH varying from 8.1 to 8.3, salinity (electri-
cal conductivity) from 0.02 to 0.08 S m–1 and CaCO

3
 

contents ranged from 2 to 8%. Th e experimental design 
and the IDC rating scales were the same as for the year 
2005. Th e visual observations were made at two to three 
trifoliolate and fi ve to six trifoliolate stages and also 2 wk 
later. Only two observations could be made at Prosper 
due to recovery of the plants from chlorosis. Ten stan-
dard varieties, listed in descending order of IDC toler-
ance, were included. Th ese are ‘ISU A11’, ‘Seeds 2000 
2070’, ‘Traill’, ‘Council’, ‘Asgrow 0801’, ‘Peterson PFS 
0202’, ‘Glacier’, ‘Mycogen 5072’, ‘Stine 0480’, and ‘NuTech 
0505’. Iron defi ciency chlorosis was ratedon a 1 to 5 scale 
where 1 indicates no chlorosis and a normal green plant, 
2 is used when there is a slight yellowing of upper leaves 
and the leaf veins and interveinal area do not show a dif-
ferentiation in the color, 3 shows an interveinal chlorosis 
in the upper leaves while no obvious stunning of growth 
or death of tissue (necrosis) could be observed, 4 is used 
when interveinal chlorosis of the upper leaves is observed 
along with some apparent stunning of growth or necro-
sis of tissue, and 5 points severe chlorosis plus stunned 
growth and necrosis in the youngest leaves and growing 
points (Wang et al., 2008). All lines were grown in the 
greenhouse, young leaves were harvested and stored at 
–80°C, and DNA was extracted using the procedure of 
Brady et al. (1998). Each sample was genotyped using the 
Illumina GoldenGate SNP assay with the Universal Soy 
Linkage Panel (USLP) 1.0 (Hyten et al., 2010).
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Statistical Analysis

Imputation
fastPHASE 1.3 (Scheet and Stephens, 2006) was used to 
impute missing data for these two sets of loci using “like-
lihood” based imputation. Th e default settings were used. 
Of the 1265 polymorphic markers, 858 and 868 loci, 
for the 2005 and 2006 populations, respectively, with 
minor allele frequencies (MAFs) >10%, were selected for 
analysis. Of these, 816 markers were common to the two 
populations. Th e polymorphic information content (PIC) 
was estimated separately for each population using the 
PowerMarker soft ware (Liu and Muse, 2005).

Pairwise Linkage Disequilibrium and Linkage 
Disequilibrium Decay
Th e extent of LD was estimated as the squared allele fre-
quency correlation (R2) for each populations using TAS-
SEL v.2.1 (Bradbury et al., 2007). Linkage disequilibrium 
decay graphs were plotted with genetic (cM) or physical 
distance (Mbp) vs. R2 for each marker pair locus located 
on the same chromosome using nonlinear regression as 
described by Remington et al. (2001). Th e expected decay 
of LD was estimated according to the following equation:

E(R2) = [(10 + pd)/(2 + pd)(11 + pd)](1 + {(3 + 

pd)[12 + 12pd + p2d2]}/[n(2 + pd)(11 + pd)])

Th e above equation was described by Pyhajarvi et al. 
(2007) where n denotes the number of sequences, p = 
4N

e
c between adjacent sites, d is the distance between the 

two sites of a pairwise comparison, and c is the recom-
bination rate (Hill and Weir 1988). We fi t this equation 
into a nonlinear regression model using NLIN proce-
dures in SAS v. 9.2 (SAS Institute, 2002). Th e analyses 
were also performed for individual chromosomes in both 
the populations.

Population Structure and Kinship

Estimation of population structure (Q) and kinship rela-
tionships were derived using only loci that had pairwise 
R2 values < 0.5 for all possible combinations. In the 2005 
population, 306 marker loci met this criterion, while in 
2006 population, the number was 303. Population struc-
ture was fi rst characterized using STRUCTURE.2.3 to 
estimate subpopulation membership of each line in these 
two populations individually (Pritchard et al., 2000). Th e 
admixture model with correlated allele frequencies was 
used with a burn-in of 100,000 and 500,000 iterations for 
subpopulations numbers ranging from 1 to 15. Five runs 
for each K value were performed, and the posterior prob-
ability was determined for each run. Th e optimum num-
ber of subpopulations was determined by the Wilcoxon 
two sample t test as described by Rosenberg et al. (2001) by 
comparing the posterior probability for successive adjacent 
subpopulations numbers (K2 vs. K3, K3 vs. K4, and so on) 
using the NPAR1WAY procedure in SAS (SAS Institute, 
2002). Th e smaller K value in a pairwise comparison for 
the fi rst nonsignifi cant Wilcoxson test was chosen as the 

best number of subpopulations. Principal component 
analysis (PCA) was also used to control for population 
structure in the two populations individually. Th e PCA 
was performed using the PRINCOMP procedure in SAS. 
Th e number of principal components (eigenvectors per 
combination of SNP markers) that collectively explained 
25% of the variation was selected for the analysis.

A pairwise kinship coeffi  cient matrix (K-matrix) that 
estimates the probability of recent coancestory between 
genotypes (Loiselle et al., 1995) was determined using 
SPAGeDi 1.2 (Hardy and Vekemans, 2002). Th e appro-
priate formula is:

F
ij
 = (Q

ij
 – Q

m
)/(1 – Q

m
) ≈ r

ij
,

where r
ij
 is the pairwise kinship coeffi  cient, F

ij
 is an 

estimator of the coeffi  cient, Q
ij
 is the probability of the 

identity by state between random loci for genotypes i and 
j, and Q

m
 is the average probability of identity by state 

for loci from random genotypes in the population used 
to draw i and j. Th e F

ij
 was calculated for all pairwise 

combinations in each of the two populations. Negative 
values for the kinship matrix was set to zero as described 
by Yu et al. (2006). PowerMarker soft ware (Liu and 
Muse, 2005) used to estimate a second kinship coeffi  cient 
matrix K* (Zhao et al., 2007) that represents the propor-
tion of shared alleles for all pairwise comparisons in each 
population.

Marker-Trait Association Model Testing

Th e IDC phenotypic data were analyzed as an adjusted 
entry mean using the statistical model:

y
ijk

 = u + g
i
 + l

j
 + r

jk
 + (gl)

if
 + ε

ijk
,

where y
ijk

 was the mean of the two IDC ratings for the 
ith genotype in the kth replication at jth location, u is an 
intercept term, g

i
 was the genetic eff ect of the ith geno-

type, l
j
 is the eff ect of jth location, r

jk
 was the eff ect of kth 

replicate at jth location, (gl)
if
 was the eff ect of genotype × 

environment interaction, and ε
ijk

 was the residual. For the 
adjusted entry means calculation, g

i
 is considered to be a 

fi xed eff ect. Over all locations and replicates, an adjusted 
entry means (M

i
) was calculated for each genotype as M

i
 = 

u′ + g′
i
, where u′ and g′

i
 denote the generalized least square 

estimates of u and g
i
, respectively. Th is model is essentially 

the same as that used by Stitch et al. (2008).
Nine diff erent linear regression models were tested 

for marker-trait association using the MIXED procedure 
in SAS (SAS Institute, 2002) (Table 1). Six mixed-linear 
models (MLMs) considered both fi xed and random 
eff ects while the remaining three general linear mod-
els (GLMs) considered only the fi xed eff ects. In these 
models, y is a vector for phenotypic observations, α is 
the fi xed eff ects related to the SNP marker, β is a vector 
of the fi xed eff ects related to the population structure, 
ν is a vector of the random eff ects related to the relat-
edness among the individuals, and ε is a vector of the 
residual eff ects. X is genotypes of the SNP markers, P is 
the matrix of the principle components, K is the Loiselle 
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kinship matrix, and K* is the shared allele kinship 
matrix developed in PowerMarker (Liu and Muse, 2005). 
Th e variances of the random eff ects were estimated as 
Var(u) = 2KV

g
 and Var(e) = IV

R
, where K is a kinship 

matrix, I is an identity matrix with the off -diagonal 
elements recorded as 0 and diagonal elements is the 
reciprocal of the number of the observations for which 
the phenotypic data were obtained, V

g
 is the genetic vari-

ance, and V
R
 is the residual variance. For each marker, 

the positive false discovery rate (pFDR) was estimated 
using the PROC MULTTEST in SAS to correct for mul-
tiple marker trait association. For each model, all marker 
p-values were ranked from smallest to largest, and the 
mean square deviation (MSD) was calculated as:

MSD = {
  1
n
i =Σ [p

i
 – (i/n)2]}/n,

where i is the rank number, p
i
 is the probability of the 

ith ranked p-value, and n is the number of markers. 
Signifi cant markers were selected only from the model 
determined to have the lowest MSD value for each year. 
A marker was considered to be repeatable if it was signif-
icant based on the pFDR test in each year. Th e multiple 
R2 value for all loci were calculated using stepwise regres-
sion with forward selection using the PROC REG func-
tion in SAS. To detect the epistatic interactions between 
markers we used a general linear model and the p-value 
of interaction was used to test the signifi cance.

Blast Analysis
All Arabidopsis thaliana (L.) Heynh. proteins genes 
demonstrated to be involved in iron metabolism (as sum-
marized in Morrissey and Guerinot, 2009) were used as 
a query in a blastp analysis against the proteins defi ned 
in the 1.01 annotation of the soybean genome (Joint 
Genome Institute, 2010). Our search was limited the top 
20 hits with an E-value cut off  of 10–20.

Results

Phenotypic Analysis for Iron Defi ciency Chlorosis 
Scores for the Two Soybean Populations
Since IDC is an important yield limiting factor in soy-
bean, the populations were evaluated in production fi elds 
where IDC was consistently noted in the past. Th e visual 
IDC scores for the 2005 population ranged from 1.5 to 
3.8 with an average of 2.9, while the scores for the 2006 
population ranged from 1.6 to 3.8 with an average of 2.7. 
Analysis of variance for the IDC scores from the 2005 
and the 2006 populations showed signifi cant genotype 
and location eff ects as well as a signifi cant line × location 
interaction eff ect (Table 2). Th is further substantiates 
that both genetic and environmental factors infl uence 
the IDC response in soybean. Broad-sense heritabil-
ity on an entry mean basis was also deduced from the 
ANOVA. Th e broad-sense heritability values were 0.99 
for 2005 population and 0.97 for 2006 population. Th ese 
values demonstrate the consistency of the IDC rating. 
Th e distribution of IDC scores for the two populations 
(Fig. 1A and 1B) was determined to be normal using the 
Kolmogorov-Smirnov test with p-values of 0.15 and 0.18, 
respectively, for the 2005 and the 2006 populations.

Single Nucleotide Polymorphism Marker Analysis
Single nucleotide polymorphism marker information 
was collected in each population at 1265 informative loci 
with the Universal Soy Linkage SNP Panel 1.0 (Hyten et 
al., 2010) using the IlluminaGoldenGate Assay technol-
ogy. Of the 1265 SNP marker loci, 858 markers in the 
2005 population and 868 markers in the 2006 popula-
tion had a MAF > 10%. Th e Wilcoxon two-sample test 
was not signifi cant (p = 0.3439) for the comparison of 
the major allele frequency in the two populations. Th e 
expected heterozygosity is generally low for SNP mark-
ers because of their biallelic nature and the selfi ng nature 
of G. max. Gene diversity for the 2005 genotypes ranged 
from 0.19 to 0.50 with an average of 0.39 and for the 2006 
genotypes it ranged from 0.19 to 0.50 with an average of 
0.39. Th e markers in both populations were polymorphic 
with PIC values ranging from 0.17 to 0.38 for 2005 popu-
lation and 0.17 to 0.38 for 2006 population.

Linkage Disequilibrium Decay, Population 
Structure, and Kinship Analysis
A nonlinear regression model that estimates the decay 
of LD with distance was developed. Using a pairwise 
analysis for all 858 and 868 SNP loci, respectively, in the 
2005 and 2006 populations, R2 values were regressed 
on the physical distances (Fig. 2). Th e average decay of 
LD in terms of physical distance declined to R2 < 0.1 at 
7.0 Mbp (19.3 cM) and 5.9 Mbp (19.7 cM) in 2005 and 
2006, respectively.

From the R2 data, 306 markers from the 2005 popu-
lation (367,653 SNP marker-pair comparisons) and 303 
markers (376,278 SNP marker-pair comparisons) from 
the 2006 population had R2 < 0.5 among all pairwise 

Table 1. Summary of the statistical models used to test 
for marker-trait associations.

Model Statistical model Information captured in the model

Naïve y = Xα + ε y is related to X, without correction for structure 
   (Q or PCA†) or relatedness (K or K*)

K y = Xα + Kν + ε y is related to X, with correction for K

K* y = Xα + K*ν + ε y is related to X, with correction K*

Q y = Xα + Qβ + ε y is related to X, with correction for Q‡

PCA y = Xα + Pβ + ε y is related to X, with correction for PCA§

Q + K y = Xα + Qβ + Kν + ε y is related to X, with correction for Q‡ and K

Q + K* y = Xα + Qβ + K*ν + ε y is related to X, with correction for Q‡ and K*

PCA + K y = Xα + Pβ + Kν + ε y is related to X, along with correction for PCA§ and K

PCA + K* y = Xα + Pβ + K*ν + ε y is related to X, along with correction for PCA§ and K*
†PCA, principal component analysis.
‡Q is seven and three subpopulations for 2005 and 2006, respectively.
§Principal components (PCs) that explain ~25% variance are four in both the years.
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comparisons. Th ese two marker subsets were then used 
to decipher population structure and kinship. Popula-
tion structure was estimated with the soft ware program, 
STRUCTURE, using the admixture model for the mul-
tilocus genotype data (Pritchard et al., 2000) and the 
subpopulation number selection criteria of Rosenberg 
et al. (2001). Th is analysis determined the 2005 popula-
tion consisted of seven subpopulations, while the 2006 
population comprised three subpopulations. Principal 
component analysis was also implemented to evaluate 
population structure. In 2005, 28% of the variance was 
explained by four principal components, where 11, 6.5, 
5.2, and 4.6% are the variance explained by the fi rst to 
fourth components respectively. In 2006, 29% of the vari-
ance was explained by four principal components where 
10, 7.6, 6.6, and 4.8% are the variance explained by the 
fi rst to fourth components, respectively.

Single Nucleotide Polymorphism and Iron 
Defi ciency Chlorosis Marker–Trait Associations
Because of the signifi cant location, line, and location × 
line interaction eff ects, we used adjusted entry mean IDC 
scores in our statistical model analyses. Independent 
marker-trait associations were conducted for 858 and 868 
markers, respectively, for the 2005 and the 2006 popula-
tions. Th ese numbers of markers represent the ~70% of 

the markers with a MAF > 0.10 in each populations. Th e 
genotypic and IDC data were evaluated using nine diff er-
ent models described in Table 1. Th ese models, described 
in Zhao et al. (2007), are oft en used in plant AM experi-
ments. Model testing was performed to determine which 
had the least infl ation of signifi cant values at the p < 0.05 
level (Table 3). For both years, a model that included 
population structure and kinship factors had the least 
percentage of p-values less than 0.05. Th e ideal model 
would exhibit a uniform distribution when cumulative 

Table 2. Analysis of variance for iron defi ciency 
chlorosis ratings for the two soybean populations 
grown at different locations.

Population

2005 2006

Source of variation df MS† df MS

Location 4 104.39*** 3 133.49***

Line 142 3.76*** 140 3.15***

Location × line 569 0.25*** 420 0.33***

Replication × location 15 2.11 12 2.08

Error 2130 0.19 1680 0.17

***Signifi cant difference p ≤ 0.001.
†MS, mean square,

Figure 1. Phenotypic distribution of iron defi ciency chlorosis (IDC) scores. (A) 2005 and (B) 2006.
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p-values are regressed on observed p-values. To observe 
the degree to which the statistical results for each model 
deviated from the expected distribution, we calculated 
the MSD for each model. Again, models that contained a 
structure component (Q in 2005 and PCA in 2006) and 
the shared allele kinship component had the lowest MSD 
values. Th ese models were chosen to select signifi cant 
SNP marker–trait associations.

Two independent soybean populations containing 
advanced breeding lines from public and private breeding 
programs were evaluated. Lines from 31 programs in 2005 
and 30 programs in 2006 were included in the analysis. 
None of the lines contained the same SNP marker haplo-
type. We considered each population to be an independent 
reciprocal confi rmation population for any signifi cant 
markers discovered in the other population. A total of 42 
loci met the pFDR < 0.1 criteria for the 2005 population. 
Of these, 28 fi t into a stepwise regression with forward 
selection and explained 74.5% of the phenotypic variation. 
For the 2006 population, 88 met the criteria, and 70 of the 
loci explained 93.8% of the phenotypic variation. None of 
the markers was signifi cant using the Bonferroni correc-
tion factor in 2005, while 13 were signifi cant using this 

conservative correction factor in 2006. Th ose 13 accounted 
for 47.6% of the phenotypic variation.

Next, we used each population as a confi rmation 
population for the other population and only selected 
those markers that were signifi cant in both years and 
met the criteria of having a pFDR value < 0.10 in each 
year. Nine SNP markers, distributed over seven genomic 
regions on six chromosomes, met the signifi cance criteria 
(Table 4). None of these nine exhibited epistatic eff ects in 
2005, while several two and three epistatic eff ects were 
detected in 2006. Th ree consecutive markers located 
within a 408 kb (2.4 cM) window on chromosome Gm3 
were signifi cant. Th ese three marker loci were in a high 
degree of LD (R2 > 0.70 in each year). Th e MAF for most 
of the nine loci was >0.3 and for over half of the loci the 
value was >0.4 (Table 5). Th e trend was that the IDC 
means were larger in 2005 than 2006 for both the minor 
and major allele. Th is is also refl ected in the phenotypic 
mean diff erences between the 2 yr. In 2005, the lower 
mean IDC score at any one marker was ~2.7. For this 
population, 40% of the entries had a mean less than this 
value. For the 2006 population, the trend was that the 
lower IDC was ~2.5, and the phenotypic rating of 44% of 

Figure 2. Genome-wide linkage disequilibrium (LD) decay plot for the two populations. Linkage disequilibrium, measured as R2, 
between pairs of polymorphic marker loci is plotted against the physical distance (Mbp). (A) 2005 population. (B) 2006 population.
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the entries was equal to or less than this value. For nearly 
all of the loci, the R2 value within each year was >10%. 
Th e only exception was BARC-010457-00640 located on 
Gm6. Th e multiple R2 value was calculated for these nine 
makers. Only one Gm3 marker locus (BARC-044603-
08734) was selected in each year to be included in the 
analysis. For the 2005 population, the multiple R2 value 
was 43.7%, and for 2006 the value was 47.6%.

Discussion
Local or regional variety testing trials were established by 
public institutions to provide consistent data for a specifi c 
trait(s) of interest in support of both public and private 
plant breeding programs. Since these trials are oft en large 
in scale (>100 entries), they are ideal for adopting AM 
techniques because the collection of lines in those trials 
represents many rounds of recombination. Another major 
advantage of these trials is that they are performed by 
individuals highly trained for specifi c phenotypic evalu-
ations, and therefore the phenotypic data generated on a 
year-to-year basis is oft en consistent. Furthermore, since 
the data are collected over multiple years, any two or more 
distinct populations can serve as a reciprocal confi rmation 
population(s) for signifi cant marker–trait associations in 

any one population. Given that the best designed trials are 
performed at multiple locations that oft en represent the 
environmental diversity for a specifi c agro-ecosystem, it is 
not surprising that environment × genotype interactions 
are oft en observed. Th erefore, it is necessary, as we did 
here, to address this interaction eff ect by incorporating an 
adjusted means analysis step before searching for marker–
trait associations (Stitch et al., 2008).

A major challenge for AM is to ensure any marker–
trait associations are genetically signifi cant and not the 
result of spurious associations due to population struc-
ture and/or relatedness. Regional trials oft en include 
multiple genotypes from multiple breeding programs, 
and as shown for barley (Hordeum vulgare L.), popula-
tions from multiple breeding programs can be structured 
based on the programs (Hamblin et al., 2010). To adjust 
for these potential confounding eff ects, it is now standard 
to evaluate genotypic and phenotypic data using several 
statistical models that account for population structure, 
genetic relatedness, coancestry based on pedigree, or some 
combination of these factors (Zhao et al., 2007; Stitch et 
al., 2008). Here we compared the results from nine dif-
ferent statistical models, because the eff ects of control-
ling complex structure (population structure, principal 

Table 3. Test statistics for the nine models used to discover single nucleotide polymorphism (SNP) and iron 
defi ciency chlorosis (IDC) tolerance marker–trait associations.

2005 2006

Model Percent p-values  < 0.05 MSD† Model Percent p-values  < 0.05 MSD

Q + K* 15.51 0.017 PCA‡ + K* 18.72 0.015
PCA 17.48 0.026 Q 23.39 0035

PCA + K 18.07 0.028 PCA 23.85 0.036
Q 20.86 0.032 Q + K 23.86 0.037

Q + K 22.03 0.034 PCA + K 24.45 0.038
Naïve 42.66 0.075 Naïve 38.59 0.067

K* 43.71 0.076 K 38.75 0.068
PCA + K* 50.59 0.203 K* 76.03 0.276

K 85.42 0.302 Q + K* 73.97 0.281
†MSD, mean square deviation.
‡PCA, principal component analysis.

Table 4. Single nucleotide polymorphism (SNP) marker loci signifi cantly associated with iron defi ciency chlorosis 
(IDC) tolerance in both 2005 and 2006 populations.

BARC SNP marker Chromosome SNP position (bp) Genetic position (cM) Minor allele Major allele

BARC-029969-06762 2 2,454,206 18.801 A C

BARC-044603-08734 3 45,007,967 85.822 T A

BARC-060109-16388 3 45,391,018 86.907 A G

BARC-016535-02085 3 45,416,307 88.225 G A

BARC-010457-00640 6 45,281,692 108.504 T A

BARC-039383-07310 7 7,151,246 39.939 C A

BARC-025897-05144 13 27,145,239 49.424 A G

BARC-055499-13329 13 31,472,325 61.354 G A

BARC-059723-16418 19 40,357,687 56.404 A G
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components, and relative kinship matrices) varies with 
populations, traits, or both (reviewed in Sun et al., 2010) 
Given that most of the lines evaluated in the trial were 
from private programs, we did not have access to pedigree 
information that would have allowed us to include a coan-
cestry factor. To select the appropriate model, the mean 
square deviation is an appropriate measure. Th e principle 
here is that the distribution of cumulative vs. observed 
p-values should approximate a uniform distribution. Th is 
implies that 1% of the marker–trait p-values should be 
less than 0.01, that 5% of the marker–trait should have a 
p-values should be less than 0.05, and so on. If a particu-
lar model fi ts this distribution, then the MSD should be 
small. In our case, in each year the MSD of a model with 
a structure component (PCA or Q) and the same shared 
allele kinship component (K*) was found to be small and 
about 50% smaller than the second best model. Somewhat 
surprisingly, the naïve model that does not consider either 
structure or relatedness had a lower MSD value than sev-
eral models that did consider these factors. Collectively, 
these results imply that model testing is necessary for 
whatever data set is under consideration, and a single 
model does not perform best in multiple years even when 
considering the same phenotype.

Iron metabolism in plants involves multiple genes 
that are associated with the acidifi cation of the soil 
(using A. thaliana nomenclature, AHA2), iron reduction 
(AtFRO2), transport into the root (AtIRT1), sequestration 
of iron in the vacuole (AtIREG2), transport of iron carri-
ers into the xylem (FRD3), distribution of chelated iron 
to the phloem (YSL transporter family), synthesis of the 
nicotianamine chelator (NAS3), carriers of iron into the 
seed (ITP carrier protein family), transport into the seed 
(OPT transporter family), transport into (VIT1) and out 
of (NRAMP3 and NRAMP4) the vacuole, iron binding 
in the vacuole (FER2), and transport into the chloroplast 
(FRO7 and TIC21) (Morrissey and Guerinot, 2009). In 
addition, transcription factors such as FIT regulate the 
expression of genes such as IRT1 (Colangelo and Gueri-
not, 2004). Given the complex nature of iron metabolism 

in plants, we were expecting to observe multiple associa-
tions with our data. When we applied our cutoff  criteria 
of pFDR < 0.10, we detected 42 signifi cant marker–trait 
associations for the 2005 population and 88 marker–trait 
associations for the 2006 population. Given that we 
were using each population as a reciprocal confi rmation 
population of any association, we next checked for those 
markers that met the signifi cance criteria in both years. 
In this case, nine markers distributed over six chromo-
somes were found to be signifi cant in each year. Th ese 
loci accounted for ~45% of the variation in IDC ratings 
in each year. Th e availability of data from multiple years 
of a standard performance trial is an advantage for AM 
because it provides the necessary data and materials 
needed to confi rm marker–trait associations. By using 
reciprocal confi rmation populations, we are confi dent 
that some gene(s) in the vicinity of these markers are 
involved in the iron response of soybean grown on defi -
ciency-inducing soils.

One of the goals of AM is to use the associations as 
points of departure to discover the actual genes involved in 
controlling the phenotype. Th e most extensive experiment 
to date was performed in A. thaliana where 107 traits were 
mapped using genotype data from a high density array 
(Atwell et al., 2010). For several of these associations, the 
peak SNP mapped at or very near the gene known to con-
trol a specifi c phenotype. Given that the density of markers 
in that experiment is much greater than in this experiment, 
we wished to determine if we could also discover any poten-
tial candidate genes. 

Th e average distance between markers in this analysis 
was 976,723 bp. Th at value though includes markers found 
in the sparsely marked repetitive region of the genome. 
If we only consider markers that map in the euchromatic 
region of the genome, that distance is reduced to 525,640 bp. 
Since LD decay at R2 < 0.5, a value where loci are still con-
sidered to be in LD, was ~600 kb in both years, it seemed 
reasonable to consider a search for candidate genes linked 
to signifi cant markers within this interval distance. We 
performed a blastp analysis using A. thaliana proteins genes 

Table 5. Test statistics for single nucleotide polymorphism (SNP) loci signifi cantly associated with iron defi ciency 
chlorosis (IDC) tolerance in the 2005 and 2006 populations.

2005 2006

BARC SNP marker Chromosome –log10(p) pFDR† R2 (%)
Minor allele 
frequency

Minor allele 
mean

Major allele 
mean –log10(p) pFDR R2 (%)

Minor allele 
frequency

Minor allele 
mean

Major allele 
mean

BARC-029969-06762 2 2.707 0.046 11.8 49.0 3.0 2.7 7.531 0.000 24.3 40.4 2.9 2.5

BARC-044603-08734 3 3.661 0.022 14.9 40.6 2.7 3.0 4.898 0.001 15.7 45.4 2.5 2.8

BARC-060109-16388 3 3.321 0.024 16.3 46.2 2.7 3.0 3.781 0.003 13.9 47.5 2.5 2.8

BARC-016535-02085 3 2.886 0.046 15.3 46.9 2.7 3.0 3.781 0.003 13.9 47.5 2.5 2.8

BARC-010457-00640 6 2.185 0.076 0.1 39.9 2.8 2.9 4.018 0.002 2.6 44.7 2.6 2.7

BARC-039383-07310 7 3.114 0.034 17.8 21.7 2.5 3.0 4.548 0.002 13.5 21.3 2.3 2.7

BARC-025897-05144 13 2.309 0.067 15.2 38.5 3.1 2.7 4.008 0.002 15.9 37.6 2.9 2.5

BARC-055499-13329 13 2.420 0.058 9.4 31.5 3.1 2.8 2.602 0.021 13.4 27.0 2.9 2.6

BARC-059723-16418 19 3.415 0.022 15.4 44.8 2.7 3.0 4.124 0.002 10.7 31.2 2.4 2.8
†pFDR, positive false discovery rate.
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demonstrated to be involved in iron metabolism (Morrissey 
and Guerinot, 2009) and queried the 1.01 annotation of the 
soybean genome (Joint Genome Institute, 2010). Th e results 
were limited to the top 20 hits with an E-value cut off  of 
10–20. A total of 161 soybean gene models met these criteria 
with a median E-value of 0. We next considered only those 
genes that mapped within 500 kb of a signifi cant marker. If 
a nonsignifi cant marker was located between the gene and 
the signifi cant marker, that gene was excluded from further 
consideration as a candidate gene. A total of 15 genes met 
this criterion from the two populations.

We fi rst evaluated only those iron metabolism genes 
linked to a marker that was signifi cant in both years. 
Two gene models, Glyma03 g39050 (annotated as NAS3) 
and Glyma19 g32400 (OPT1) (Table 6) were identifi ed. In 
A. thaliana, NAS3 encodes nicotianamine synthase, an 
enzyme that synthesizes nicotianamine, a molecule that 
complexes Fe and carries it via the phloem to younger 
leaves and fl owers. OPT1 is a protein that transports Fe 
into seeds. NAS3 maps within the peak of three consecu-
tive SNPs on Gm3. BARC-060109-16388, the SNP clos-
est to the gene, showed the peak R2 value while the two 
neighboring markers had lower R2 values. Th ese three 
markers exhibited high LD values each year (R2 > 0.7) and 
presumably are signals for the same factor that aff ects IDC 
phenotypic expression. Since the marker linked closest 
to NAS3 had the highest R2 value in each year, it would 
appear NAS3 is an important factor in IDC tolerance. 
NAS3 encodes the enzyme that synthesizes the carrier that 

transports iron out of older leaves and via the phloem to 
younger leaves and fl owers. Importantly, the IDC rating 
is made on these younger leaves. Th erefore, from a physi-
ological perspective NAS3 would appear to be a candidate 
gene. Th is result is also consistent with previous genetic 
research with biparental populations that identifi ed a 
major QTL on Gm3 (Lin et al., 1997, 2000). Finally, the 
gene maps in the QTL interval on Gm3 transferred into 
the soybean line Clark to develop the IDC susceptible line 
Iso Clark (Severin et al., 2010). Although this is compelling 
evidence for the role of NAS3 in IDC tolerance, it does not 
preclude other genes within this region from aff ecting the 
IDC response.

We next evaluated those genes that mapped next 
to a signifi cant marker in either year. Th is would allow 
us to potentially identify candidates that are unique 
to one of the two populations. Four unique candidates 
linked to signifi cant markers (p < 0.05 and pFDR < 0.1) 
were discovered in the 2005 population, while eight 
were observed for the 2006 population. Most of these 
markers had a small eff ect (R2 < 5%). In 2005, the largest 
eff ect (12.7%) was noted for the marker near gene model 
Glyma15 g41620. Th is model is highly similar to IRT1, 
the gene that encodes the protein that transports iron 
into the root. A number of other iron metabolism genes 
were also observed. When all markers linked to genes 
involved in iron metabolism were included in a stepwise 
regression analysis, the R2 value in 2005 was 37% while 
those markers linked in 2006 had a value of 40%.

Table 6. Signifi cant (positive false discovery rate [pFDR] < 0.1) Universal Soy Linkage Panel (USLP) 1.0 markers 
that are the immediate neighbor to a gene known to be involved in iron metabolism. Markers without statistical 
information did not converge.

2005 2006

BARC
marker Chromosome

SNP† position
(bp)

–log10 
(p) pFDR

R2

(%)
–log10 

(p) pFDR
R2

(%)
At‡ 

gene Gm§ gene model
Start of 

model  (bp)

Distance 
from SNP 

(bp) E-value
Percent 
identity

BARC-060109-16388 3 45,391,018 3.32 0.02 16.26 3.78 0.00 13.94 NAS3 Glyma03g39050 45,279,921 111,097 5.00 E × 10–109 62.9

BARC-053261-11776 5 937,302 2.21 0.08 0.72 AHA2 Glyma05g01460 960,820 23,518 0 81.1

BARC-021775-04203 5 41,114,078 0.08 0.53 0.07 2.47 0.03 9.30 BTI2-ITP Glyma05g37300 40,906,083 207,995 1.00 E × 10–95 65.7

BARC-054331-12480 7 8,652,831 1.72 0.09 4.78 BTI2-ITP Glyma07g10870 9,082,076 429,245 2.00 E × 10–45 36.8

BARC-049147-10810 9 35,895,343 0.44 0.38 0.73 2.07 0.05 1.50 YSL7 Glyma09g29410 36,298,317 402,974 0 54.6

BARC-062275-17736 11 38,020,165 0.02 0.56 1.64 2.63 0.02 0.18 FER4 Glyma11g35610 37,245,783 774,382 7.00 E × 10–103 73.2

BARC-017917-02456 13 30,457,599 2.17 0.08 7.83 FRD3 Glyma13g27300 30,477,485 19,886 2.00 E × 10–137 54.7

BARC-043041-08509 15 48,694,193 2.71 0.05 12.66 0.94 0.26 9.24 IRT1 Glyma15g41620 48,764,845 70,652 8.00 E × 10–80 43.5

BARC-030595-06910 16 3,039,691 0.09 0.53 4.55 1.93 0.06 7.72 FRO2 Glyma16g03770 3,142,668 102,977 0 57.7

BARC-011625-00310 16 36,544,010 0.26 0.45 0.47 2.28 0.04 2.79 YSL7 Glyma16g33840 36,609,082 65,072 0 73.4

BARC-043087-08524 17 4,899,023 3.44 0.02 0.25 1.37 0.16 1.35 AHA2 Glyma17g06930 4,977,823 78,800 0 87.7

BARC-012289-01799 18 1,957,710 1.78 0.08 2.07 FER4 Glyma18g02800 1,821,344 136,366 6.00 E × 10–102 75.1

BARC-016867-02359 18 56,429,447 1.26 0.19 2.77 2.11 0.05 6.63 FRO2 Glyma18g47060 56,712,622 283,175 0 52.2

BARC-059723-16418 19 40,357,687 3.42 0.02 15.41 4.12 0.00 10.68 OPT1 Glyma19g32400 40,140,993 216,694 3.00 E × 10–146 47.4

BARC-042281-08231 20 343,106 0.22 0.47 2.33 1.96 0.06 8.58 YSL7 Glyma20g00690 418,225 75,119 0 62.8
†SNP, single nucleotide polymorphism.
‡At, Arabidopsis thaliana (L.) Heynh.
§Gm, Glycine max (L.) Merr.
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Previous research identifi ed IDC QTL on Gm3, Gm5, 
Gm12, Gm14, Gm18, Gm19, and Gm20 (Lin et al., 1997, 
2000). We located these QTL on the 1.01 build of soybean 
(Schmutz et al., 2010) using the location of the refer-
ence SSR and restriction fragment length polymorphism 
(RFLP) sequences that were associated with the QTL. 
Th ose loci were compared to the results presented here. 
Th e best match was the Gm19 QTL designated by SSR 
Satt481. Th is SSR was evaluated for its utility for marker 
assisted selection and was found to be eff ective across loca-
tions to select superior IDC lines within a single breed-
ing population. Th is SSR maps immediately adjacent to 
SNP BARC-059721-16418, a locus that was signifi cant 
in both 2005 (R2 = 15.4%) and 2006 (R2 = 10.7%). It also 
maps near the OPT1 candidate gene that is involved in 
movement of iron into seed. Two QTL were mapped on 
Gm3, but neither of these mapped at the association that 
centers around SNP BARC-060109-16388 at position 
45,391,018 bp. Near-isogenic lines (Clark and Iso Clark) 
were developed that expressed diff erent IDC ratings pri-
marily because of diff erent allelic states of this Gm3 QTL. 
Th is QTL was recently mapped by Severin et al. (2010) to 
a 9.8 Mbp interval (36.3–45.8 Mbp). Th is interval contains 
both the Satt481 SSR and BARC-060109-16388 SNP. It is 
quite possible that this QTL contains multiple genes that 
individually aff ect the IDC phenotype. Although none 
of the other previously identifi ed IDC QTL mapped in 
both populations, several are located near a marker–trait 
association we discovered in 2006. Simple sequence repeat 
Satt211 on Gm5 (Charlson et al., 2003) maps near two sig-
nifi cant SNPs (Supplemental Table S1). All of the markers 
are within 1.2 Mbp of an ITP (iron transporting protein) 
gene. Simple sequence repeat Satt181 maps near a Gm12 
SNP (BARC-030421-06864).

Recently O’Rourke et al. (2009) evaluated the expres-
sion pattern of Clark and Iso Clark lines under iron suf-
fi cient and iron limiting conditions. Although these two 
lines primarily diff er by the allelic state of a QTL on Gm3 
(Severin et al., 2010), many genes were found to be dif-
ferentially expressed in each line between the two iron 
nutrition conditions, but only a small number exceed the 
critical 2x diff erence in expression. Only a small portion 
(7–10%) of the diff erentially expressed genes mapped to 
previously defi ned IDC QTL. Th is result further sup-
ports our discovery that IDC is a complex response and 
poses a major challenge for molecular geneticists as they 
attempt to discern appropriate genetic signals that can 
be used to develop marker tools that will effi  ciently select 
superior IDC tolerant genotypes.

Conclusions
Here we describe the application of phenotypic and 
genotypic information collected from a regional nursery 
to study the genetic architecture of IDC in soybean. Th is 
trial provided two populations that served as reciprocal 
confi rmation populations for the discovery of loci associ-
ated with this important agronomic trait using genome-
wide AM techniques. Aft er correcting for population 

structure and relatedness, multiple loci were discovered 
that collectively accounted for much of the variation in 
the phenotype. Using the extensive knowledge base of 
the biology and genetics of iron metabolism from the 
model organism A. thaliana, we were able to discover 
that a number of genes involved in this physiological 
network were closely linked to markers shown to be sig-
nifi cantly associated with IDC. With these results, this 
ongoing regional IDC trial will continue to provide addi-
tional genetic material to further confi rm and refi ne the 
results we obtained here.
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Supplementary Figure 1: Genome-wide linkage disequilibrium (LD) decay plot for the 

population. Linkage disequilibrium, measured as R2, between pairs of polymorphic marker loci 

(intra-chromosomal comparisons) is plotted against the physical distance (Mbp).  
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