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Spin-dependent two-color Kapitza-Dirac effects

S. McGregor, W. C.-W. Huang, B. A. Shadwick, and H. Batelaan*

Department of Physics and Astronomy, University of Nebraska—Lincoln, 208 Jorgensen Hall, Lincoln, Nebraska 68588-0299, USA
(Received 2 May 2015; published 18 August 2015)

In this paper we present an analysis of the spin behavior of electrons propagating through a laser field.
We present an experimentally realizable scenario in which spin-dependent effects of the interaction between
the laser and the electrons are dominant. The laser interaction strength and incident electron velocity are in the
nonrelativistic domain. This analysis may thus lead to novel methods of creating and characterizing spin-polarized
nonrelativistic femtosecond electron pulses.

DOI: 10.1103/PhysRevA.92.023834 PACS number(s): 37.20.+j, 41.75.Fr, 41.75.Jv, 42.25.Ja

I. INTRODUCTION

The capability to control electrons with laser light has been
demonstrated with the higher light intensities that are provided
by pulsed lasers [1,2]. In some of the first experiments,
continuous electron beams were used. Consequently, most
electrons were not affected by the light. More recently,
pulsed electrons have also been affected by pulsed laser light
[3,4]. As more variations of pulsed electron sources that
are synchronous with pulsed lasers are becoming available
[5,6], proposals have appeared that use such technology to
control electron motion [7,8]. As also table-top relativistic
laser intensities are becoming more and more accessible, it is
timely to consider the weaker interaction of electron spin with
laser light.

Recently, it was predicted that x-ray laser light could be used
to affect the electron spin of a beam of relativistic free electrons
[9,10]. More generally, electron spin control can provide an
additional control to ultrafast electron diffraction [11,12] and
ultrafast electron microscopy [13,14], similar to the nonpulsed
version of spin-polarized low-energy electron microscopy [15]
(SPLEEM). For SPLEEM, GaAs-polarized electron sources
are used. However it is not clear what technology will be used
for polarization control of femtosecond electron beams. In
addition to its technological appeal, spin control may provide
(through the spin-statistics connection) an opportunity to
investigate quantum degeneracy in multielectron pulses [16].
In view of these developments, we investigate the influence of
visible light on the spin of nonrelativistic electrons.

We report on an electron-laser configuration for which
the spin-dependent interaction is small but dominant in the
optical to near-infrared domain. Specifically, a well-collimated
electron beam is intersected at right angles with two coun-
terpropagating laser beams (Fig. 1) with frequencies ω and
2ω (λ = 2πc/ω = 1μm). Circular and linear polarizations
of the two laser beams are considered. Circular polarization
illustrates the spin coupling, whereas linear polarization,
orthogonal to the electron-beam propagation axis suppresses
spin-independent effects. For this configuration the regular
Kapitza-Dirac (KD) effect [17] is absent due to the choice of
widely separated frequencies, whereas the two-color Kapitza-
Dirac effect [18] is absent because the electron velocity is
chosen perpendicular to the laser polarization. The dominant
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interaction that remains is an interaction that scatters the
electron beam by four-momentum recoils and simultaneously
flips the electron spin. We call this the spin-Kapitza-Dirac
(SKD) effect. References [9,10] inspired the idea to use the
orthogonality between the polarization and the electron-beam
propagation axis. In this paper we use optical frequencies in-
stead of x rays, nonrelativistic intensities instead of relativistic
ones, and close to orthogonal angles between the electron
beam and the laser beams instead of angled ones. An extension,
beyond the scope of the present paper, to relativistic intensities
of the SKD in the optical frequency regime, or vice versa a
study of the nonrelativistic limit of Refs. [9,10], appears very
interesting and may reveal other parameters ranges that are
accessible to experiment.

The spin-flip probability for nonrelativistic intensities is
small but detectable with current technology. The spin-flip
probability increases for increasing intensity.

A spin-dependent scattering could be used as an electron
spin analyzer. No readily accessible techniques are available
[19] to analyze the spin polarization of a nonrelativistic
femtosecond electron pulse. Techniques for nonpulsed beams
include Mott scattering [20], optical polarimetry [21], Rb
spin filter [22], and others. The most well-known and widely
used Mott scattering requires currents exceeding 1 pA [23].
This current is usually not available for femtosecond electron
pulses, so steady-state methods do not easily transfer to pulsed
scenarios. Relativistic and polarized pulses of electrons can be
analyzed with Compton polarimetry [24]. However, the spin
analyzing power drops off sharply with the relativistic γ factor.
Femtosecond, nonrelativistic, pulsed, and polarized electron
sources are under development [25–27], and it is expected that
analysis of their polarization will be needed. In general pulsed
polarized electron sources are of interest for the broad area of
spin physics [28].

The question may arise if such an optical control or analysis
of electron spin is possible at all for nonrelativistic electron
motion. After all, Pauli pointed out that electrons cannot be
polarized using ideas based on classical electron trajectories
[29–35] as in a Stern-Gerlach device, even when the spin is
treated quantum mechanically. This may appear to imply that
the result obtained in this paper could be ruled out based
on a general principle. An earlier study based on classical
mechanics for the same physical system as studied in this
paper, indeed revealed no appreciable spin interaction [36],
consistent with Pauli’s idea. However, our current analysis is
fully quantum mechanical, thus circumventing the problem.
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FIG. 1. (Color online) Schematic of the physical system. An
electron pulse is generated from a field emission tip (left top)
that is illuminated with a femtosecond laser [5]. The electron
pulse is collimated (blue beam, lower right) and intersected with
two counterpropagating laser pulses of frequencies ω (red) and
2ω (green). Some electrons receive photon recoils of 4�k while
simultaneously flipping their spin (blue arrows) for appropriate
chosen light polarization (see text for details).

In Sec. II nonrelativistic perturbation theory is used to
calculate the probability of the two-color spin-flip process.
Additionally, processes that can potentially mask the process
of interest, i.e., the regular two-color Kapitza-Dirac effect
and a depolarizing effect, are calculated. It is shown that
the spin-dependent process can be dominant under the right
conditions. In Sec. III a systematic approach that discusses the
order of magnitude of all possible perturbation terms is given.
In Sec. IV a numerical solution to the Schrödinger equation
is given that confirms the analysis of the previous sections. In
Sec. V a relativistic classical simulation is reported that con-
firms that for the studied scenarios all velocities stay well be-
low c and the nonrelativistic quantum approach is reasonable.

II. PERTURBATION THEORY

The nonrelativistic interaction Hamiltonian can be obtained
by minimal substitution and considering the interaction of the
electron dipole with the field [37],

Hint = − q

2m
( �p · �A + �A · �p) + q2A2

2m
− �μ · �B. (1)

Here, q and m are the electron charge and mass, respec-
tively, and the operators are given by �p, the momentum �A,
the vector potential �μ, the electron magnetic moment, and
�B = �∇ × �A, the magnetic field. This Hamiltonian can couple
electron states with defined momentum and spin,

|ψ〉 = |n�kz,�kx,mS〉. (2)

The first entry in the above definition of the state vector of
the electron defines the component of the electron momentum
in the z direction (i.e., aligned with the laser propagation
direction), the second entry sets the initial electron momentum

in the x direction, and the third entry sets the magnetic quantum
number corresponding to the projection of electron spin along
the z axis. The integer n in the first entry is defined in antic-
ipation that photon absorption and emission result in discrete
changes in the electron momentum in terms of multiples of
photon recoils �kz. The Bragg condition leads to energy and
momentum conservation for changes in the z component of
the electron momentum from n�kz to −n�kz, whereas the x

component remains unchanged [17], thus the quantum number
�kx is dropped from the state notation [Eq. (2)].

We investigate matrix elements that couple states as defined
in Eq. (2) by the terms of the Hamiltonian Eq. (1). We will
find that the q2A2

2m
term in the Hamiltonian is responsible in

time-dependent perturbation theory for the regular KD effect
[17], the terms q2A2

2m
and q

m
�p · �A together lead to the two-color

KD effect [18], consistent with the existing literature, whereas
the terms q2A2

2m
and �μ · �B yield the spin-dependent SKD effect

that is the main focus of our current study.
Before starting the explicit calculation, it is useful to

make some more general observations. Only processes which
conserve kinetic energy in the laser field are considered in
a perturbative approach. That this is valid is not obvious
(neither is that the Bragg condition is always satisfied), and
this needs to be justified. Below we report on a relativistic
classical calculation that shows, for our parameters, that the
change in the electron velocity along the direction of the
laser propagation direction is limited to the order of a photon
recoil. Our parameters are carefully chosen to avoid transverse
acceleration, and thus the weak spin-dependent scattering can
become the dominant effect. Details of these choices are
discussed below. The question whether or not an electron can
be accelerated by laser fields has been debated for decades.
Despite the Lawson-Woodward theorem [38], it has been
shown that energy gain by laser interaction is possible for
high-energy electrons interacting with a tightly focused laser
[39] and very recently even approximately for plane waves
[40]. Our parameters do not satisfy the Lawson-Woodward
criteria as the fields are not infinite in extent, the electron
energy is not relativistic, and the ponderomotive potential is
not negligible. The reason that the electron velocity v in the
laser propagation direction changes little is that the electron
and counterpropagating laser pulses are timed such that the
ponderomotive force from both pulses cancels. Our relativistic
simulation does show that the longitudinal velocity can change
significantly (see below).

To prevent a potentially dominant spin-independent scatter-
ing from overwhelming the weaker spin-dependent scattering,
the physical parameters need to satisfy further criteria. At a
laser intensity of I = 1019 W/m2, and a wavelength of λ =
800 nm, an electron in a ponderomotive potential undergoes
acceleration of up to 1022 m/s2. The Larmor radiation rate at
this acceleration gives rise to a photon emission probability
of 10−2 in an interaction time of τ = 10 ps. However, these
photons are emitted in a large solid angle, give an average
recoil in the laser propagation direction that is zero, and thus
do not overwhelm the spin-dependent scattering.

We now continue with the explicit calculation of the
spin-dependent perturbation term. In order to test whether
or not spin-dependent scattering is plausible, perturbation

023834-2
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theory was used to analyze each term in the interaction
Hamiltonian in search of one term which would connect
an initial spin state with a spin-flipped final state. For the

purpose of this investigation we began with the vector potential
corresponding with two circularly polarized laser beams which
are counterpropagating along the z axis,

�A = − A0

2
√

2
exp

(−t2

τ 2

)
[aLei(kz−ωt)(x̂ + iŷ) + a†

L
e−i(kz−ωt)(x̂ − iŷ)]

− A0

2
√

2
exp

(−t2

τ 2

)
[aRe−i2(kz+ωt)(x̂ + iŷ) + a

†
Rei2(kz+ωt)(x̂ − iŷ)]. (3)

The choice of using raising and lowering photon number operators (with [a,a†] = 1) is made to facilitate the selection of
particular processes and is not essential. The calculations performed in this section could have been performed with classical
fields for the same effect. The laser beam propagating in the direction of the positive z axis has frequency ω, and the laser
propagating in the direction of the negative z axis has frequency 2ω. Both laser beams have spin � in the direction of the positive
z axis. The magnetic dipole moment operator may be written in terms of the Pauli spin operator as �μ = −2μB

�
�S where μB is the

Bohr magneton. The q

m
�p · �A, q2A2

2m
, and �μ · �B terms in the interaction Hamiltonian Hint are

q

2m
( �p · �A + �A · �p) = − qA0

2
√

2m
exp

(−t2

τ 2

)
(aLei(kz−ωt) + a†

L
e−i(kz−ωt))px

− qA0

2
√

2m
exp

(−t2

τ 2

)
(aRe−i2(kz+ωt) + a

†
Rei2(kz+ωt))px, (4)

q2A2

2m
= q2A2

0

8m
exp

(−2t2

τ 2

)
[aLa

†
L + aRa

†
R + aLa

†
Re−i(3kz+ωt) + aRa

†
Le−i(3kz+ωt)]

+ q2A2
0

8m
exp

(−2t2

τ 2

)
[a†

LaL + a
†
RaR + a

†
LaRe−i(3kz+ωt) + a

†
RaLe−i(3kz+ωt)], (5)

�μ · �B = μBA0k√
2�

exp

(−t2

τ 2

)
[(aLei(kz−ωt) − 2aRe−i2(kz+ωt))S+ + (a†

Le−i(kz−ωt) − 2a
†
Rei2(kz+ωt))S−], (6)

where S+ = �

2 (σx + iσy) and S− = �

2 (σx − iσy) are the elec-
tron spin raising and lowering operators, respectively. The
presence of the electron spin raising and lowering operators is
a consequence of the choice of polarization. These operators
can be used to connect initial and final states with different
spins and therefore justify the choice of polarization in the
search for spin-flip processes.

The first-order probability amplitude is

Cf i = −i

�

∫ ∞

−∞
dt ′Hf i

int (t ′), (7)

where H
f i
int = 〈f |Hint|i〉 couples the initial |i〉 to the final state

|f 〉. For spin-flip processes it is necessary to consider terms
in the �μ · �B part of the Hamiltonian. These contain the spin
raising and lowering operators which are necessary to connect
initial and final states with different spins in the matrix element.
On examination of the �μ · �B term it is apparent that such a
first-order process must be either single-photon absorption or
single-photon emission because the terms in �μ · �B each contain
only one raising or lowering operator. Single-photon processes
are impossible because they cannot simultaneously conserve
momentum and energy. It is therefore necessary to consider
second-order perturbation theory.

Using second-order perturbation theory, the probability
amplitude Cf i for the transition between the initial (i) and
the final (f ) states is found by summing over the intermediate
state (m) for the second and third terms in the interaction
Hamiltonian [Eqs. (3) and (4)],

Cf i = −1

�2

∑
m

∫ ∞

−∞
dt ′

∫ t ′

−∞
dt ′′Hf m

int (t ′)Hmi
int (t ′′). (8)

The matrix elements Hmi
int and H

f m
int correspond to transi-

tions from the initial state to the intermediate state and from the
intermediate state to the final state, respectively. For example,
let us take |Nω,N2ω,2�k,↑〉 and |Nω + 2,N2ω − 1,−2�k,↓〉
as initial and final states, respectively, where the photon state
|Nω,N2ω〉 is labeled by the photon number for frequency ω,
Nω, and the photon number for frequency 2ω, N2ω. For the
electron state |2�k,↑〉 the momentum label in the x direction
does not change and is dropped [cf. Eq. (2)]. The electron
wave function is a plane wave exp[i(�ke · �x − ωet)] where �ke

and ωe are the wave number and frequency of the electron,
respectively. The −μBA0k√

2�
a
†
Le−i(kz−ωt)S− operator in the �μ · �B

term and the q2A2
0

8m
aRa

†
Le−i(3kz+ωt) in the q2A2

2m
term may be used
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to connect these two states. The matrix elements are given by

Hmi
int (t) = −μBA0k√

2�
exp

(−t2

τ 2

)
〈Nω + 1,N2ω,�k,↓|a†

Le−i(kz−ωt)S−|Nω,N2ω,2�k,↑〉

= −μBA0k
√

N + 1√
2

exp

(−t2

τ 2

)
exp [i(ωmi + ω)t], (9)

H
f m
int (t) = q2A2

0

8m
exp

(−2t2

τ 2

)
〈Nω + 2,N2ω − 1,�k,↓|Ra

†
Le−i(3kz+ωt)|Nω + 1,N2ω,�k,↓〉

= q2A2
0

√
N (N + 2)

8m
exp

(−2t2

τ 2

)
exp[i(ωf m − ω)t], (10)

where N2ω = Nω = N, ωmi = ωm − ωi is the frequency difference between the initial and the intermediate electron states, and
ωf m = ωf − ωm is the frequency difference between the intermediate and the final electron states. The probability amplitude for
this process may therefore be written as

Cf i = μBq2kA3
0N

3/2

8
√

2m�2

∫ ∞

−∞
dt ′

∫ t ′

−∞
dt ′′ exp{i[(ωf m − ω)t ′ + (ωmi + ω)t ′′]}, (11)

where
√

N (N + 1)(N + 2) ≈ N3/2. It is apparent from this example that for the Hamiltonian given above there are only particular
states that lead to a nonzero probability amplitude and identify the possible processes. Processes in which one of the laser pulses
has no net change in photon number or processes in which the net change in photon number is identical for both pulses cannot
simultaneously conserve momentum and energy [9]. Therefore, within the Bragg regime [17], spin flips are allowed for initial
and final electron momentum states with −2�k and 2�k using the �μ · �B and q2A2

2m
terms. All possible amplitudes corresponding

to different intermediate states for processes involving a 4�k momentum change with a spin flip from ↑ to ↓ are added together
to determine the overall amplitude for the SKD process,

Cf i = μBq2kA3
0

8
√

2m�3

∫ ∞

−∞
dt ′

∫ t ′

−∞
dt ′′〈Nω + 2,N2ω − 1,−2�k,↓|aRa

†
Le−i(3kz+ωt)|Nω + 1,N2ω,�k,↓〉 exp(iωf mt ′)

× exp

(
−2t ′2

τ 2

)
〈Nω + 1,N2ω,�k,↓|a†

Le−i(kz−ωt)S−|Nω,N2ω,2�k,↑〉 exp(iωmit
′′) exp

(
−t ′′2

τ 2

)
+ μBq2kA3

0

8
√

2m�3

×
∫ ∞

−∞
dt ′

∫ t ′

−∞
dt ′′〈Nω + 2,N2ω − 1,−2�k,↓|a†

LaRe−i(3kz+ωt)|Nω + 1,N2ω,�k,↓〉 exp(iωf mt ′)

× exp

(
−2t ′2

τ 2

)
〈Nω + 1,N2ω,�k,↓|a†

Le−i(kz−ωt)S−|Nω,N2ω,2�k,↑〉 exp(iωmit
′′) exp

(
−t ′′2

τ 2

)

+ μBq2kA3
0

8
√

2m�3

∫ ∞

−∞
dt ′

∫ t ′

−∞
dt ′′〈Nω + 2,N2ω − 1,−2�k,↓|a†

Le−i(kz−ωt)S−|Nω + 1,N2ω − 1,−�k,↑〉

× exp(iωf mt ′) exp

(
−t ′2

τ 2

)
〈Nω + 1,N2ω − 1,−�k,↑|aRa

†
Le−i(3kz+ωt)|Nω,N2ω,2�k,↑〉 exp(iωmit

′′) exp

(
−2t ′′2

τ 2

)

+ μBq2kA3
0

8
√

2m�3

∫ ∞

−∞
dt ′

∫ t ′

−∞
dt ′′〈Nω + 2,N2ω − 1,−2�k,↓|a†

Le−i(kz−ωt)S−|Nω + 1,N2ω − 1,−�k,↑〉

× exp(iωf mt ′) exp

(
−t ′2

τ 2

)
〈Nω + 1,N2ω − 1,−�k,↑|a†

LaRe−i(3kz+ωt)|Nω,N2ω,2�k,↑〉

× exp(iωmit
′′) exp

(
−2t ′′2

τ 2

)
. (12)

The integrals were calculated numerically using MAPLE, and
the results are shown in column 2 of Table I. Also see Sec. III
for an analytic comparison. Throughout a laser focus width of
d = 100 μm was used. This leads to an approximate photon

number given by N = Iπd2/4�ω. Similar to the integral in
Eq. (12), there are two integrals representative of processes by
which the electron can receive a spin flip from ↑ to ↓ with
no net momentum kick from only one of the lasers that must
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TABLE I. Probabilities. The probabilities of a spin flip which acts as a depolarizer (column 1), a spin flip which is accompanied with a
momentum kick, i.e., the SKD effect (column 2), and the two-color KD effect (column 3) are given for an example of laser intensity, electron
velocity, laser wavelength, and interaction time.

Depolarizer SKD effect Two-color KD effect

Intensity I 1018 W/m2 1018 W/m2 1015 W/m2

Velocity v 107 m/s 107 m/s 107 m/s
Wavelength λ 1064 nm 1064 nm 1064 nm
Interaction Time τ 100 ps 100 ps 100 ps
Probability P 0.00576 0.00128 7.4 × 10−4

Scaling P = αI 2v2λ2τ 2 P = αI 3λ4τ 2 P = αI 3v2λ6τ 2, P = αI 3v2λ6τ 2

α 5.09 × 10−21 9.96 × 10−14 5.12 × 10−7

be summed coherently. Such an event may flip a spin of an
electron that already received a momentum kick and spin flip
and thus undo the effect we are interested in. The results of the
calculations, including the probability P, are shown in column
1 of Table I. The probability is listed as “scaling” to provide
the explicit dependence on the physical parameters, such as
intensity, wavelength, etc.

Given the numbers in Table I, it appears that an interaction in
which an electron spin flip due to laser interaction is possible,
but these are only representative of a relatively small number of
potentially relevant scattering events that may take place in the
physical scenario described above. With only this information
we cannot know that the spin-dependent effect is dominant. It
is therefore necessary to compute the spin-flip probability in a
manner which incorporates all possible interactions described
by the Hamiltonian and conceive of a physical scenario in
which a spin flip is dominant.

III. RELATIVE ORDERS OF MAGNITUDE

In the previous section the focus was on specially selected
perturbative terms that are important to our discussion. Here
a more systematic approach is followed that includes relative
order of magnitude estimations. Ignoring specific choices of
the physical parameters, in first-order perturbation theory three
matrix elements H

j

f i ≡ 〈f |Hj |i〉 are possible [see Eq. (5)]

where the operators are H 1 = q2A2/2m, H 2 = q �p · �A/m,
and H 3 = �μ · �B. At this point we consider, as before, two
counterpropagating laser pulses that are intersected with an
electron pulse, and the frequency of the fields is given by
ω1 and ω2. The probability amplitude [Eq. (6)] is rewritten
as C

j

f i ≡ ‖Hj‖f j

f i(τ ), where the magnitude in decreasing
order will turn out to be given by ‖H 1‖ ≡ q2A2

0/2m, ‖H 2‖ ≡
q �p · �A0/m, and ‖H 3‖ ≡ �μ · �B0/m with B0 = kA0, B0 = kA0.
The value of the amplitude [Eq. (5)] can be approximated (see
the Appendix) by

C
j

f i ≈ ‖Hj‖τ/�. (13)

The amplitude C
j=1
f i is nonzero for ω1 = ω2 with initial-

and final-state choices of −�k and �k. This process is the
well-known KD effect [17], conserves energy and momentum,
and is a two-photon process. The number of photons in a
process can be recognized by inspecting the power of the
field. From Eq. (11) the probability of scattering is given by
(q2A2

0τ/2m�)2 in agreement with previous work [2,17].

Energy and momentum can also be conserved for C
j=1
f i

when ω1 �= ω2. However, when ω1 = 2ω2, for example, the
electron needs to move relativistically at steep angles with
respect to the laser propagation direction. The amplitudes Cj=2

and Cj=3 involve the interaction with one photon, which is
kinematically not allowed.

In second-order perturbation theory, combinations of two
terms of Hj need to be considered. The matrix elements
H

jj ′
f mi ≡ 〈f |Hj |m〉〈m|Hj ′ |i〉 give rise to a probability ampli-

tude C
jj ′
f mi ≡ ‖Hj‖‖Hj ′ ‖gjj ′

f mi(τ ). The value of the amplitude
[using Eq. (9)] can be approximated (see the Appendix) by

C
jj ′
f mi ≡ ‖Hj‖‖Hj ′ ‖ τ

ω�2

�k

mc
. (14)

The term C
j=1,j ′=1
f mi for ω1 = 2ω2 [where ω1 comes from

one direction and ω2 from the other (see Fig. 1)] does not
conserve energy and momentum, unless the initial and final
electron states are identical. It is thus possible that our wanted
spin-dependent kick is followed by this process. However, this
term does not couple spin or momentum and will not dilute
our process of interest.

The second-order term C
j=1,j ′=2
f mi for ω1 = 2ω2 is the regular

two-color KD effect [18]. From Eq. (12) the probability of
scattering is given by (kq3A2

0 �p · �A0τ/2m3ω�c)2 in agreement
with previous work [18]. To suppress this term, �p is chosen
perpendicular to �A0 (the required accuracy of the angle is
discussed in Sec. VI). This also implies that C

j,j ′=2
f mi = 0. The

next term to consider is C
j=1,j ′=3
f mi . That is the term of interest of

this paper (see the derivation in the previous section). The last
second-order perturbative term C

j=3,j ′=3
f mi can only conserve

energy and momentum when the momentum and spin state
are unchanged and thus will not be observable in a scattering
experiment.

Higher-order processes are worth considering as well,
despite the fact that it seems likely that they will be negligible
compared to the spin-dependent process of interest. For
example, third-order perturbation theory might be expected
to result in weaker processes than lower-order perturbative
processes, however, the combination of three strong matrix
elements (i.e., matrix elements computed from the q2A2/2m

term of the Hamiltonian) might provide stronger scattering
than the spin-dependent scattering term of interest here, that
has one strong and one weak matrix element. To consider the
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effects of all higher-order processes a numerical integration of
the Schrödinger equation was performed.

IV. NUMERICAL INTEGRATION OF THE
SCHRÖDINGER EQUATION

The purpose of the numerical simulation is to verify that
the perturbative approach is sufficient, and, for example,
the inclusion of third-order perturbative terms is indeed not
required. We calculate the electron scattering to different
states of momentum and spin by numerically solving the Pauli
equation. The electron state is a plane wave described by

|ψ(t = 0)〉 = |�kz0,�kx,ms〉, (15)

where �kz0 is the initial transverse momentum. The electron
then passes through the two-color light �A(�z,t) = �AR(�z,t) +
�AL(�z,t), which is composed of two light fields coming from

opposite directions,

�AL(�z,t) = 2ALe−(t /z)2
cos (kLz − ωLt)ε̂L,

�AR(�z,t) = 2ARe−(t /z)2
cos (kLz − ωLt)ε̂L,

(16)

The frequencies chosen are again ωL = ω and ωR = 2ω.
The field polarization is described by the unit vector ε̂ on the
x − y plane. In the above perturbative calculation, the light
was chosen to be circularly polarized. Here we chose linearly
polarized light because the contribution from the q �p · �A/m

term needs to be controlled. As in the perturbative calculation,
the light field has no spatial dependence in the x direction, and
the electron momentum changes in photon recoil increments
�ω/c, whereas the |kx〉 state stays unchanged,

|ψ(t)〉 =
∑
n,j

Cn,j (t)eiωnt |�kz0 + �kn,�kx,ms,j 〉, (17)

where ωn = �[k2
x + (kz0 + kn)2]/2m and kn = nk = nω/c.

The electron state [Eq. (17)] has been generalized as compared
to Eq. (2) in the sense that the initial momentum �kz0 is not
limited to multiples of photon recoil. In order to calculate the

amplitudes Cn,s , we solve for the Pauli equation using the
Hamiltonian,

H = H0 + H ′, (18)

which has been decomposed into an unperturbed part,

H0 = p2
x

2m
+ p2

y

2m
, (19)

and a perturbed part,

H ′ = − q

m
Axpx + q2

2m

(
A2

x + A2
y

) − �q

2m
(Bxσx + Byσy),

(20)

where σi are the Pauli matrices. The Pauli equation can now
be written as

d

dt
Cm,i(t) = − i

�

∑
n,j

H ′
2(m−1)+i,2(n−1)+jCn,j (t)eiωmnt , (21)

where ωmn = ωm − ωn and

H ′
2(m−1)+i,2(n−1)+j

= 〈�km,�kx,ms,i |H ′|�kn,�kx,ms,j 〉

= −q�kx

m
〈�km,�kx |Ax |�kn,�kx〉〈ms,i |.ms,j 〉

+ q2

2m
〈�km,�kx |

(
A2

x + A2
y

)|�kn,�kx〉〈ms,i |.ms,j 〉

− �q

2m
(〈�km,�kx |Bx |�kn,�kx〉〈ms,i |σx |ms,j 〉

+ 〈�km,�kx |By |�kn,�kx〉〈ms,i |σy |ms,j 〉). (22)

An example of a numerical result is given in Fig. 3.
The initial electron state was chosen to be �kz = 2�k and
|ms〉 = |↑〉. The initial electron velocity was 107 m/s, and the
laser pulses were polarized in the y direction. The probability
of the spin SKD processes are compared with the perturbation
calculation (Fig. 3) showing agreement between the two
methods. The probability of the spin-dependent depolarizing

FIG. 2. (Color online) Spin-dependent processes. (a) An example is shown of the three-photon process by which the electron receives a
spin flip and a momentum kick by absorbing one 2ω photon and emitting two ω photons. At the first vertex (from left to right) an absorption
and emission of a 2ω photon and a 1ω photon is shown, respectively, indicating the use of the A2 term of the Hamiltonian and no spin flip. The
second vertex shows an emission of a 1ω photon, indicating the use of the μB term of the Hamiltonian, accompanied with a spin flip. (b) An
example is shown of the two-photon process by which the electron receives a spin flip without an overall deflection by emitting and absorbing
photons from the same laser. At the first vertex an emission of a photon is shown, in this case associated with the use of the μB term of the
Hamiltonian. The second process shown represents the absorption of a photon by, for example, the use of the pA term of the Hamiltonian.
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FIG. 3. (Color online) Intensity dependence. The probability of
the SKD process as computed by numerical integration of the
Schrödinger equation (S.E.) and the SKD probability as obtained
with perturbation theory (P.T.) are shown in the figure to be in
agreement. Additionally, the two-color KD (ω-2ω) effect, the regular
KD (ω-ω) effect (for ωL = ωR), and the depolarizer are shown for
comparison. The SKD and two-color KD have a slope of 3, indicating
a three-photon process, whereas the depolarizer and the regular KD
process have a slope of 2.

effect [Fig. 2(b)] is also shown in Fig. 3. The two-color KD
effect and as well as the regular KD effect (for ωL = ωR) are
shown for comparison.

The probability of the SKD process is about 0.01 at
1019 W/m2. The depolarizing process is weaker by about an
order of magnitude (i.e., of the electrons which undergo the
SKD process, only approximately 1 in 103 will return to spin
up).

The probability associated with final momentum states
having pz = n�k0 for n = −7 through 7 are shown in Fig. 4
for spin up and spin down. These values were computed for a
laser intensity of 1018 W/m2.

At this modest intensity the initial state at 2�k is mostly
unaffected. The largest probability diffraction occurs into the
states with −2 and 6�k. The SKD process that satisfies the
Bragg condition is the one with the same electron kinetic
energy (−2�k). At 1018 W/m2 the probability of the spin
flip kick is about 10−6 (cf. Fig. 3). Because the interaction
time is chosen to be in the diffractive regime (for which the
electron kinetic energy in a one-dimensional calculation is not
conserved [17]), symmetric diffraction to 6�k occurs. As usual
asymmetric diffraction occurs in the Bragg regime. The peak
at −6�k is not a sequence of SKD processes as the probability
would have to be about (10−6) [2].

It should be noted that the field [Eq. (16)] is a plane
wave with infinite extension in all spatial directions. Thus the
effect of spatial gradients has not been addressed up to now.
Additionally, both the perturbative and numerical approaches
are nonrelativistic, whereas intensities of 1019 W/m2 might
lead to relativistic velocities of the electron in the laser light.
To assess the effect of spatial gradients and the validity of a
nonrelativistic approach a relativistic classical simulation is
performed.

FIG. 4. (Color online) Momentum distribution of the SKD pro-
cess. The initial state is spin up with pz = 2�k. The probability
of the final electron momentum states having z components of
pz = n�k = nh/λ for n = −7 through 7 are shown for spin up (dark
red) and spin down (light green at −2 and 6 units of h/λ).

V. RELATIVISTIC CLASSICAL SIMULATION

Classical effects that can invalidate the above are as
follows: (i) the electrons reflect from the ponderomotive barrier
presented to the electron by the laser light, (ii) the electrons
reach relativistic factors γ that strongly exceed 1, and (iii)
the electrons are deflected transversely by much more than
the deflection produced by the spin-dependent scattering (i.e.,
four-photon recoils).

Predictions that have been made in the previous sections
were based on nonrelativistic quantum mechanics. This
requires sufficiently low velocity electrons throughout the
interaction with the laser field. Additionally scattering from
the ponderomotive potential will result in broadening of the
diffraction peaks. If the maximum deflection due to pondero-
motive scattering exceeds that of the spin-dependent scatter-
ing, the peak corresponding to the effect of interest will be re-
solved. Finally, if the electron is reflected back from whence it
came, it cannot pass through the laser and arrive at the detector.

The relativistic equations of motion are solved numerically
for a single electron traversing counterpropagating laser
pulses. The electron momentum and position evolve
according to

d �p
dt

= q( �E + �v × �B),
(23)

d�r
dt

= �v,

where �p = γm�v, γ 2 = 1 + p2/m2c2, and the electric and
magnetic fields are evaluated at the location of the electron.
The laser pulses, taken to be described by the lowest-order
paraxial Gaussian mode [41], are polarized in the y direction,
propagate in the z direction, and have a 100-μm spot size at
the focus. The pulse propagating in the positive z direction
has frequency ω0 corresponding to a wavelength of 1 μm with
a peak value of the vector potential given by qA/mc = 0.03
and Iω0 = 1.24 × 1019 W/m2 whereas the pulse propagating
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FIG. 5. (Color online) Shown here is the time dependence of the position of the electron (a) k0x, (b) k0y, (c) k0z; momentum of the electron
(e) px/mc, (f) py/mc, (g) pz/mc, and (d) the relativistic factor γ − 1. Each is shown for different initial positions. See text for details.

in the negative z direction has frequency 2ω0 with a peak value
of the vector potential given by qA/mc = 0.02 and I2ω0 =
2.20 × 1019 W/m2. For both laser pulses, the vector potential
has the Gaussian temporal profile exp[−(z − ct)2/τ 2] with
τ = 10 ps. The laser pulses are initialized such that they reach
the focus at z = 0 at ω0t = 4000. The electron is initially
propagating in the positive x direction with a velocity of
v0 = c/30. The sensitivity of the deflection to initial conditions
can be seen by examining trajectories over a set of initial
conditions (see Fig. 1). Initially, we take y = 0 and (x,z) from
the set of nine pairs [X0 − �x,X0,X0 + �x][−�z,0,�z],
where k0X0 = 4000v0/c, k0�x = 100, and k0�z = π/4. The
value for X0 is chosen such that, in the absence of an interaction
with the laser field, the electron would arrive at the origin at
the same instant that the laser pulses reach focus and have
maximal overlap. The value of �x is chosen to be comparable
the laser spot size, and �z is chosen comparable to the laser
wavelength. All computations are performed in dimensionless
variables using ω0 and k0 = ω0/c to set the temporal and
spatial scales whereas mc is used for the momentum scale.

The top three panels in the left (right) column of Fig. 5
indicate the electron position (momentum) as is propagates
through the laser pulses. Panels (b) and (f) show that when the
electron is present in the laser field it performs an oscillatory
motion, which is due to the laser electric field. Panels (a) and

(e) show that the ponderomotive potential affects the electron
motion in the forward direction but does not reflect from the
barrier [assumption (i)]. Panel (g) shows that the magnetic part
of the Lorentz force causes an oscillatory motion. Panel (d)
shows that the γ factor does not strongly deviate from one at
any time [assumption (ii)]. The variation in the slope of the out-
going electron in panel (c) shows that the transverse velocity
reaches maximum values close to 4�k/m [assumption (iii)].

From this analysis it is possible to deduce what the
limitations are in a demonstration of the spin-dependent effect.
Although the intensity of the lasers is not limited by the
demand of keeping the electron trajectory nonrelativistic it is
limited by deflection. Although the transverse ponderomotive
scattering in this case is sufficiently low an increase in intensity
would lead to increased deflection pushing the broadening of
diffraction peaks to an unacceptable level.

VI. DISCUSSION

It is perhaps curious that a classical calculation using
the Bargmann-Michel-Telegdi equations leads to vanish-
ingly small spin-flip probabilities for the same physical
configuration and parameters as used in the present analysis
[36]. This is especially so, given that the regular Kapitza-Dirac
and two-color Kapitza-Dirac effect can both be analyzed

023834-8



SPIN-DEPENDENT TWO-COLOR KAPITZA-DIRAC EFFECTS PHYSICAL REVIEW A 92, 023834 (2015)

classically and quantum mechanically to give a similar size
effect [17]. We speculate that the current effect is a true
quantum effect as it apparently has a zero classical counterpart.
Pauli provided a proof that the design of a device that
completely analyzes the spin of an electron, such as an electron
Stern-Gerlach device is not possible based on the concept of
classical trajectories [29,30]. However, this principle can be
side stepped by a design motivated by quantum-mechanical
principles. This has been shown for the electron Stern-Gerlach
magnet [35]. The current effect appears to fall into the same
category. An incoming unpolarized electron beam could be
analyzed completely according to its spin state.

It appears there is a window of parameter values where spin-
dependent scattering of laser light with electrons is dominant.
However, in a real experiment spurious effects can be present
and overwhelm the process of interest. Three of such effects
are now discussed. With short pulses the frequency distribution
of one laser beam (centered around ω) could be broadened so
that it has a nonzero value at the peak of the distribution of the
counterpropagating laser beam (centered around 2ω). Since
the regular (ω−ω) KD effect [2] is so much stronger than the
effects considered in this paper, one may wonder if it will
overshadow our effect despite the fact that the two frequencies
are an octave apart. If 10-ps pulses of light with 1064-nm
wavelengths are used, then the difference between the two
frequencies is about 104 times the width of each distribution.
This leads to negligible effect for a Lorentzian (or Gaussian)
spectral distribution of the laser. The regular KD effect is thus
sufficiently reduced by the separation of the frequencies.

In practice, the 2ω laser beam may be generated by up-
conversion and result two co-propagating beams that need to
be separated optically. If this is not performed the regular KD
effect will still be present. Dichroic mirrors and filtering can be
used to provide separation of the two frequencies. Our analysis
indicates that the ratio of the first-order over a second-order
process [Eqs. (11) and (12)] is given by Z = zμ − zq . For
the spin-dependent coupling ‖Hj ′ ‖ ≈ μB and an intensity of
1019 W/m2 this is about 106. To suppress the regular KD effect
by this much an isolation in intensity of 10−6 is thus required.

The strong regular two-color KD effect is suppressed by the
choice that the laser polarization is perpendicular to the elec-
tron velocity because this KD effect has the ‖Hj ′ ‖ ≈ q

m
�p · �A

term in the Hamiltonian. However the polarization angle or
electron-beam direction may be misaligned. The ratio of the
regular two-color KD effect over the spin-dependent KD effect
is q

m
�p · �A/μB, which equals about 105. Since the amplitude

of the regular effect is proportional to cos(θ ), where θ is the
angle between the electron velocity and the laser polarization,
then the angle should be aligned better than 0.01 mrad from
the perpendicular.

The three spurious effects given above can be discriminated
against as they have distinguishing features which can isolate
them from the spin-dependent scattering term of interest.
The spin-dependent effect is not velocity dependent nor
polarization angle dependent in contrast to the two-color KD
effect. It can also be distinguished from the regular KD effect
by the different intensity dependences.

It is important to note that the effect discussed in this paper
differs from the relativistic effect proposed by Ahrens et al.
[9]. In the paper by Ahrens et al. [9] the frequency of the two

laser beams is the same, the laser light has a photon energy
of 3.1 keV, and the 176-keV electrons are incident at an angle
that is far from perpendicular to the lasers.

Given the wavelength dependence of the two- and three-
photon effects it is tempting to consider lowering the frequency
of the lasers to dramatically boost the probability. If the
wavelength is increased the focal width too will increase which
eventually will result in a wavelength-dependent interaction
time. Assuming an interaction time that is proportional to
the wavelength, the two- and three-photon effects become
proportional to λ4 and λ6, respectively. Although the ratio of
the probabilities remains the same in this case the two effects
become more strongly wavelength dependent by an added
factor of λ2 thus increasing the benefit of a longer wavelength.

It is apparent from the numbers presented in Table I that
with the right parameters the probabilities of the two-photon
and three-photon effects are comparable. Since the probability
of a spin flip with no momentum kick due to the two-photon
process is the same for both spin states regardless of input angle
this effect can be thought of as a depolarizer. If a polarized
beam of electrons propagates through a laser field some of
the electrons will not flip, some will flip once, whereas others
will flip more than once. The output electron beam will be
depolarized to some extent which depends on the intensity
of the laser field. This could potentially be a problem. If the
three-photon process is used to create a polarized electron
beam, that beam could be depolarized by the very same set
of counterpropagating lasers before it has a chance to exit the
field. With such an experiment in mind, it is therefore necessary
to set the parameters such that the probability associated with
the two-photon process is small compared to the probability
associated with the three photon process.

VII. CONCLUSION

In this paper we have shown that a dominant spin-dependent
KD effect is possible, given the appropriate laser configuration.
As compared to the interesting recent work of Ahrens et al.
[9,10], the current paper extends spin control of an electron
by light into the nonrelativistic and visible light domain.
This effect could be used as an ultrafast spin-polarized
electron source or to analyze such a source. Applications
include polarization control for ultrafast electron diffraction
and ultrafast electron microscopy as well as more fundamental
physics studies, such as the effect of the Pauli exclusion
principle on the propagation of multielectron pulses [16].
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APPENDIX

In order to calculate the approximations given in Sec. II
direct integration of the probability amplitude was performed.
In the case of the regular KD effect calculation of the integral
shown in Eq. (5) was performed. The matrix element chosen
corresponds to the q2A2

2m
term in the Hamiltonian where �A is

023834-9



MCGREGOR, HUANG, SHADWICK, AND BATELAAN PHYSICAL REVIEW A 92, 023834 (2015)

the vector potential corresponding to two counterpropagating lasers of frequency ω given by

�A = A0

2
exp

(−t2

τ 2

)
(aLei(kz−ωt) + a

†
Le−i(kz−ωt) + aRe−i(kz−ωt) + a

†
Rei(kz+ωt))x̂. (A1)

Taking the operator q2A2
0

2m
a
†
LaR exp(−2t2

τ 2 − i2kz) in the q2A2

2m
term in the Hamiltonian which is descriptive of a −2�k momentum

kick and applying Eq. (5) gives

Cf i = −i

�

∫ ∞

−∞
H

f i
int (t ′)dt ′

= −iq2A2
0

2m�

∫ ∞

−∞
〈N + 1,N − 1,−�k|a†

LaR exp (−i2kz)|N,N,�k〉
(−2t ′2

τ 2

)
dt ′

= −iq2A2
0N

2m�

∫ ∞

−∞
exp

(−2t ′2

τ 2
+ iωf i t

′
)

dt ′. (A2)

Since the initial and final states of the electron satisfy the Bragg condition, the frequency difference between the two is zero
(ωf i = 0),

Cf i = −iq2A2
0N

2m�

∫ ∞

−∞
exp

(−2t ′2

τ 2

)
dt ′ = −

√
π

2

iq2A2
0Nτ

2m�
= −

√
π

2

iq2Iτ

�mcε0ω2
, (A3)

where I is the laser intensity. For the two-color KD effect the integral shown in Eq. (6) was performed. The matrix elements
chosen correspond to the q2A2

2m
and q

m
�p · �A terms in the Hamiltonian where �A is the vector potential corresponding to two

counterpropagating lasers of frequencies ω and 2ω,

�A = A0

2
exp

(−t2

τ 2

)
(aLei(kz−ωt) + a

†
Le−i(kz−ωt) + aRe−i2(kz−ωt) + a

†
Rei2(kz+ωt))x̂. (A4)

Accounting for all possible combinations of operators contained in the q2A2

2m
and q

m
�p · �A terms which give rise to a momentum

kick of −4�k results in the probability amplitude,

Cf i = −q3A3
0N

3/2px

16m2�2

{∫ ∞

−∞
e
i
[(

2�k2

m
+2ω

)
t ′
]
e

2t ′2
τ2

[∫ t ′

−∞
e
i
[(

−2�k2

m
−2ω

)
t ′′

]
e

t ′′2
τ2 dt ′′

]
dt ′

+
∫ ∞

−∞
e
i
[(

2�k2

m
−2ω

)
t ′
]
e

t ′2
τ2

[∫ t ′

−∞
e
i
[(

−2�k2

m
+2ω

)
t ′′

]
e

2t ′′2
τ2 dt ′′

]
dt ′

}

− 2
q3A3

0N
3/2px

16m2�2

{∫ ∞

−∞
e
i
[(

3�k2

2m
−ω

)
t ′
]
e

2t ′2
τ2

[∫ t ′

−∞
e
i
[(

−3�k2

2m
+ω

)
t ′′

]
e

t ′′2
τ2 dt ′′

]
dt ′

+
∫ ∞

−∞
e
i
[(

3�k2

2m
+ω

)
t ′
]
e

t ′2
τ2

[∫ t ′

−∞
e
i
[(

−3�k2

2m
−ω

)
t ′′

]
e

t ′′2
τ2 dt ′′

]
dt ′

}
. (A5)

In order to evaluate these integrals the approximation
∫ t

−∞ e−i
t ′e
− t ′2

τ2 dt ′ ≈ −i



ei
te
− t2

τ2 for 
τ � 1 was used. By applying
this directly to the integral above the probability amplitude is obtained

Cf i ≈ −q3A3
0N

3/2px

16m2�2

{
−i7

√
π

3

τ

ω

�k

mc

}
= i

√
π

3

7q3pxτ

16�m3c2ω3

(
2I

cε0

)3/2

. (A6)
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