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Abstract 
An individual soybean breeder can generate over one hundred thousand new genotypes 
each year. The efficiency of selection in these populations could be improved if these gen-
otypes were effectively screened with one DNA marker that identified an important gene, 
and if laboratory throughput was high and costs were low. Our aim was to develop a rapid 
genotyping procedure for resistance to the soybean cyst nematode. A high-throughput 
genotyping method was developed with fluorogenic probes to distinguish between two 
insertion polymorphisms in alleles of an AFLP marker that is located about 50 kbp from 
the Rhg4 gene candidate. The assay uses the 50 exonuclease activity of Taq polymerase in 
conjunction with fluorogenic probes for each allele. The method can be used for scoring 
the polymorphism in a recombinant inbred line population and for screening parent lines 
in a breeding program. The TaqManTM method of determining genotype was accurate in 
90% of scores in the RIL population compared to 95% accuracy with electrophoresis. 
Among 94 cultivars that are parents in our breeding program allele 2 that is derived from 
the sources of resistance to SCN was common in resistant cultivars (30 of 56) but rare in 
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susceptible cultivars (3 of 38). Therefore, this method can be applied to automated large-
scale genotyping for soybean breeding programs. 
 
Keywords: TaqManTM, genetic mapping, marker-assisted breeding, SCN, Rhg4 
 
Abbreviations: E × F – Essex × Forrest, FAM – 6-carboxyfluorescein, FI – female index, QTL – quan-
titative trait loci, SCN – soybean cyst nematode, TAMRA – 6-carboxy-N,N,N′5N′-tetrachlorofluores-
cein, TET – 6-carboxy- 4,7, 2′,7′-tetrachlorofluorescenin, PE – Perkin-Elmer 
 
Introduction 
 
Soybean cyst nematode (SCN, Heterodera glycines L.) causes annual crop losses in soybean 
(Glycine max (L.) Merr.) estimated at 4% of the total yield worldwide, representing about 
$800 million in losses to US production (Wrather et al. 1995, 1996). Yield loss to SCN is 
limited by an iterative cycle of development of high yielding cultivars incorporating ge-
netic resistance to SCN (Brown 1987; Bernard et al. 1988). Several sources of resistance to 
SCN, including ‘Peking’ and ‘PI437654’ (Myers and Anand 1991; Rao-Arrelli and Anand 
1992), have been used to develop cultivars. SCN resistance is simply inherited, but field 
resistance is oligogenic due to the existence of variation among SCN populations that are 
described as ‘races’ (Riggs and Schmidt 1988). 

One gene, rhg1, provides the major portion of resistance to SCN race 3 across many 
genotypes derived from Peking (Mahlingam and Skorupska 1995; Chang et al. 1997; 
Mathews et al. 1998; Meksem et al. 2001b), PI437654 (Webb et al. 1995; Prabhu et al. 1999), 
‘PI88788’ (Concibido et al. 1997; Bell-Johnson et al. 1998; Cregan et al. 1999a, b, c), 
‘PI209332’ (Concibido et al. 1996), or ‘PI90763’ (Concibido et al 1997). A second gene for 
SCN resistance, Rhg4, provides an equal portion of resistance to SCN race 3 across geno-
types derived from Peking (Mahalingam and Skorupska 1995; Chang et al. 1997; Mathews 
et al. 1998; Meksem et al. 2001b) and PI437654 (Webb et al. 1995; Prabhu et al. 1999) but not 
PI88788, PI209332, or PI90763 (Concibido et al. 1996, 1997). Cytological studies suggest 
PI437654 and Peking derived resistances share mechanisms (pronounced necrosis and cell 
wall appositions) not seen in PI88788 in response to race 3 (Mahalingam and Skorupska 
1996). These differences in mechanism may derive from distinct alleles at Rhg4, rhg1 and/or 
other defense-associated loci. 

The SCN race 3 resistance genes rhg1 and Rhg4 have been surrounded with DNA mark-
ers (Brown, 1987; Weiseman et al. 1992; Mahlingam and Skorupska 1995; Webb et al. 1995; 
Concibido et al. 1996, 1997; Cregan et al. 1999a, b, c; Meksem et al. 1999, 2001b) that allow 
selection of alleles of the two genes in new combinations in many breeding programs. The 
markers described herein, A2D8, is derived from an AFLP band that maps within the in-
terval that appears to contain Rhg4 in RIL populations (Meksem et al. 2001b). The marker 
is also found within BACs that encompass the genetic region and both flanking markers 
(Zobrist et al. 2000) (fig. 1). Markers physically linked to the genes for resistance to SCN 
allow the direct selection of recombination events close to the genes which may be useful 
for the reduction of linkage drag on yield (Mudge et al. 1996; Njiti et al. 1997) and the 
selection of clustered resistance genes (Meksem et al. 1999). While selection with physically 
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linked markers will be inferior to selection with markers derived directly from the Rhg4 
gene sequences, those sequence derived gene markers are not unequivocally established 
(Meksem et al. 2001b). SCN resistance alleles can be efficiently selected with linked molec-
ular markers (Bell-Johnson et al. 1998; Cregan et al. 1999a; Prabhu et al. 1999) at lower cost 
than by phenotype determination in the greenhouse (Rao-Arrelli et al. 1992; Prabhu et al. 
1999). However, the cost of marker selection and limited throughput capability still limit 
the degree to which breeders can afford to use the techniques. 
 

 
 

Figure 1. A genetic and physical map showing the location of an Rhg4 candidate relative 
to DNA markers. The location of the aspartokinase serine dehydrogenase (AK-HSDH) 
and the A2D8 marker are indicated as determined by restriction mapping of BAC DNA 
(not shown). The A2D8 sequences for Essex and Forrest alleles are deposited in GenBank 
(AF286701 and AF286700). The I locus (I) position was estimated by relation to BARC-
SAT_162 (Cregan et al. 1999c). Genetic mapping shows Rhg4 and A2D8 are both within 
the interval shown by the horizontal line and within a large insert clone, 100B10, that 
contains a 140 kb insert (Zobrist et al. 2000). 

 
Each year individual breeders can generate over 100 000 new genotypes and select about 

14 000 at the first visual selection step of recurrent selection. Selection methods based on 
PCR are being used to process this high, seasonal throughput (Prabhu et al. 1999). Gel 
electrophoresis, which is necessary to score many markers, consumes about half the cost 
of the selection method (Gu et al. 1995; Prabhu et al. 1999). The TaqManTM allelic discrimi-
nation assay, PCR-OLA, molecular beacons, padlock probes and well fluorescence have 
been developed to determine genotypes without gel electrophoresis (see Landegren et al. 
1998). The TaqManTM allelic discrimination assay is based on the 5′ nuclease activity of Taq 
polymerase and detection of a fluorescent reporter during or after PCR reactions (Livak et 
al. 1995a, b). Each TaqManTM probe consists of a 25–35 base oligonucleotide complementary 
to one of two alleles with a 3′ quencher dye attached (6-carboxy-N,N,N′5N′-tetrachloroflu-
orescein, TAMRA). The oligomer complimentary to allele 1 is linked covalently to a 5′ re-
porter dye (6-carboxy-4,7,2′,7′-tetrachlorofluorescenin, TET) while allele 2 is linked to a dye 
that fluoresces at a distinct wavelength (6-carboxyfluorescein; FAM). PCR directed by 
flanking oligomers of 18–20 bases causes degradation during the extension phase of the 
oligomer that hybridizes most efficiently to the polymorphic site(s) in the sample. Taq-
ManTM is useful for high-throughput genotyping of important polymorphisms, in man (Shi 
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et al. 1999), soybean (this work) and for the detection of microbes (Shin et al. 1999). It re-
duced the exposure of personnel to ethidium bromide and other hazards. The TaqManTM 
programs eliminate human scoring error and data entry errors as results are returned in 
spreadsheet format (Livak et al. 1995b). Adaptations can make the assay chemistry suitable 
for multiplexing (Nararabadi et al. 1999) and miniaturization (Kalinina et al. 1997) to re-
duce cost and increase throughput. 

In the present study we report a PCR marker for an insertion polymorphism close to 
Rhg4 and the TaqManTM probe we derived. Using this locus we are able to detect, in a high 
throughput format, Peking and PI437654 (SCN resistance) alleles among SCN-resistant al-
leles and distinguish these resistance alleles from the majority of SCN susceptibility alleles 
in susceptible soybean cultivars.  
 
Materials and methods 
 
Plant material 
The mapping population consisted of 100 F5:13 recombinant inbred lines (RIL 1-100) derived 
from a cross between ‘Forrest’ (Hartwig and Epps 1973) and ‘Essex’ (Smith and Camper 
1973). These soybean cultivars contrast for disease resistances (Hartwig and Epps 1973; 
Smith and Camper 1973; Cang et al. 1997), response to water deficit (Cho et al. 1999), yield 
potential (Njiti et al. 1997), and phytoestrogen content (Njiti et al. 1999). The derived re-
combinant inbred line (RIL) population was advanced to the F5:13 generation from never 
less than 300 plants per RIL per generation. The 78 lines shown for gel electrophoresis 
(RIL1–RIL78) and 86 lines used for TaqManTM assays (RIL1–RIL86) were overlapping sub-
sets from the 100 RILs represented in the population. The numbers of RILs shown were 
selected to allow for appropriate controls while fitting a high-throughput slab gel system 
(84 wells) or assay plate (96 wells). Forrest is resistant to the soybean cyst nematode (SCN) 
race 3 and Essex is susceptible to all races of SCN (Hnetkovsky et al. 1996; Chang et al. 
1997; Meksem et al. 1999). SCN resistance in Forrest derives from Peking (Hartwig and 
Epps 1973) and results exclusively from alleles of rhg1 and Rhg4 (Chang et al. 1997; 
Meksem et al. 2001b). 
 
Oligonucleotides 
PCR primers and TaqManTM probes were designed with the primer express program (Per-
kin-Elmer/Applied Biosystems, Foster City, CA) and were custom-synthesized by Perkin-
Elmer (PE). Two TaqManTM probes were designed to encompass the A2D8 (fig. 1) insertion 
polymorphisms (underlined). That A2D8 SCAR was derived from the codominant AFLP 
bands ECCG-MAAC417 (Essex, allele 1, GenBank AF286701) and ECCG-MAAC409 (For-
rest, allele 2, AF286700) that contain a homologue (P = 2e-05) of one component (Tic22; 
AAC64606.1) of the protein import apparatus of the chloroplast inner envelope membrane 
(Meksem et al. 2000b). Allele 1: 5′-TET-TTGCAGATA TTTTAGTTGATTGGCC-TAMRA. 
Allele 2: 5′-6FAM-AGTTGATTGGCTCAAACCATGGCC-TAM RA. Reverse primer: 5′-d-
TTGCGTGTGATCGGTA TTAC-3′. Forward primer: 5′-d-TACCTGAGTTCTCT CAAGTC-
3′ 
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DNA isolation 
Soybean genomic DNA was extracted from a pooled sample of leaves from 5 plants per 
genotype and purified using the Qiagen Plant Easy DNA Extraction Kit (Qiagen, Hilden, 
Germany).  
 
SCN female index (FI) determination 
The number of white female cysts was compared on each genotype to the number of white 
female cysts on a susceptible control to determine the female index (FI) for each population 
(Meksem et al. 1999). The FI was performed on seedlings at the University of Missouri–
Colombia by inoculating the genotypes with 2000 ± 25 eggs from a homogenous isolate of 
H. glycines. The population was ‘race 3’ as determined by the FI on Peking (1.2%), ‘Pickett’ 
(1.8%), PI88788 (3.0%), PI90763 (1.2%) and PI437654 (1.2%). All experiments used five 
single-plant replications per line. The mean number of white female cysts on each geno-
type and the susceptible control were determined and FI was calculated as the ratio of the 
mean number of cysts on each genotype to the mean number of cysts on the susceptible 
check. 
 
TaqManTM genotyping assay 
TaqManTM reactions were performed essentially as the PE TaqManTM PCR Reagent Kit pro-
tocol describes except the PCR reaction was performed in 384 well plates to reduce assay 
volume and cost. Briefly, each reaction contained 10 ng of the extracted DNA, 0.025 
units/μl of AmpliTaq Gold (PE), 400 nM of the forward and reverse primers (Research 
Genetics, Huntsville, AL), 50 nM of FAM fluorescent probe, and 150 nM of TET fluorescent 
probe (PE) in 1 × universal master mix (PE). The above ratio of primers and probes was 
optimized using a series of primer/probe combinations to reach a maximal signal and the 
balance of the two probes by reading in an ABI 7200 sequence detector. The TaqManTM 
universal PCR master mix is a premix of all the components, except primer and probes, 
necessary to perform a 5′ nuclease assay. The final optimized conditions represented a two-
step PCR protocol, with two holds followed by cycling, on a 384-well thermal cycler 
(GeneAmp PCR System 9700, PE). The two holds were 50°C for 2 min and 95°C for 10 min. 
The 35 cycles were at 95°C for 15 s, 60°C for 1 min. After amplification the plates were 
cooled to room temperature and samples were transferred from a 384-well plate to a 96-
well MicroAmpTM optical tray and fluorescence was detected on an ABI PrismTM 7200 Se-
quence Detector (PE). 

The results were analyzed by allelic discrimination of the sequence detection software 
(PE). Two grouping methods were used to attempt to accurately separate heterogeneous 
lines from homogeneous lines at each allele. In grouping method 1 (TaqManTM 1) a strin-
gent cut-off for FAM (>7) was used for allele 1 compared to heterogeneous scores. This 
served to reduce the number called as potentially heterogeneous to about the percentage 
expected from the breeding method used for RIL development (6%). Fluorophore ratios 
were as follows; no amplification (FAM and TET both less than 6 units); allele 1 homozy-
gous (FAM less than 7, TET greater than 7); allele 2 homozygous (FAM greater than 10, 
TET less than 5); and heterogeneous for allele 1 and allele 2 (FAM greater than 7, TET 5–
8). For TaqManTM selection grouping method 2 ratios were; no amplification (FAM and TET 
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both less than 6 units); allele 1 homozygous (FAM less than 5, TET greater than 7); allele 2 
homozygous (FAM greater than 10, TET less than 5); and heterogeneous for allele 1 and 
allele 2 (FAM greater than 5, TET 5–9). The FAM and TET signals were stable in the dark 
for 2 days after PCR. 
 
Gel electrophoresis markers 
PCR reactions were performed with DNA from the recombinant inbred lines. The 114 and 
120 bp PCR products were generated using the forward and reverse primers (above). The 
final optimized conditions were 94°C for 10 min, then 35 cycles of 94°C for 25 s, 56°C for 
30 s and 72°C for 60 s. After the PCR reactions were completed, the plates were cooled to 
room temperature and the PCR products separated by electrophoresis on a 4% w/v agarose 
gel. 
 
Results 
 
Direct screening of A2D8 alleles with TaqManTM probes 
Genomic DNA samples were analyzed according to the TaqManTM PCR protocol (fig. 2) 
(Livak et al. 1995a, b). Using the raw fluorescence signals of the reporter dyes FAM and 
TET from the ‘dye component’ field of the sequence detection software, two grouping 
methods were performed. Each method detected four distinct populations (fig. 2). The four 
populations could be assigned according to the FAM:TET ratio based on where the heter-
ogeneous class cut-off was placed. 
 

 
 

Figure 2. Detection of the A2D8 marker polymorphism by TaqManTM Allelic discrimina-
tion of soybean genotypes with manual selection of genotypes. A total of 86 individuals 
from an F5 derived population of recombinant inbred lines from the cross of Essex × For-
rest that segregate for resistance to SCN are shown. Panel A. The fluorescent signals 
viewed under the ‘dye component’ field of the sequence detection software and the A2D8 
genotypes were manually selected based on the ratio of FAM and TET signals. Allele 1 
homozygous, Forrest type; FAM<< TET. Allele 2 homozygous, Essex type; TET<< FAM. 
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Alleles 1 and 2 heterogeneous, Essex and Forrest type; TET less than 2-fold greater or 
lesser than FAM. Two selections were used; in the first (TaqManTM assay1) the group of 
genotypes FAM 6–8 and TET 8–9 were considered susceptible, while in the second (Taq-
ManTM assay 2) they were considered heterogeneous. Panel B. The Excel spreadsheet that 
contains scores (allele designations) for the samples as they were arranged in the 96-well 
plate. There was no DNA in wells E12, F12, and G12 (negative controls). There was Essex 
DNA in wells A1, C12, and D12. There was Forrest DNA in wells B2, A12, and B12. The 
RIL DNA was in well A3 to H11 in order by row from RIL1-RIL86 except samples E1 
(RIL3) and E6 (RIL 43) that did not amplify. The RILs resistant to SCN had an index of 
parasitism FI <10% of the susceptible check resistant lines. 

 
For the TaqManTM selection two grouping methods were arbitrarily selected to attempt 

to accurately separate heterogeneous lines from homogeneous lines at each allele. For 
grouping method 1 (TaqManTM 1) a stringent cut-off was used to reduce the number called 
as potentially heterogeneous. Fluorophore ratios were as follows: no amplification (FAM 
and TET both less than 6 units); allele 1 homozygous (FAM<7, TET >7); allele 2 homozy-
gous (FAM >10, TET <5); and heterogeneous for allele 1 and allele 2 (FAM >7, TET 5–8). 
For TaqManTM selection grouping method 2 (TaqManTM 2), a lower stringency cut-off value 
was used to increase the number classified as potentially heterogeneous. Ratios were: no 
amplification (FAM and TET both less than 6 units); allele 1 homozygous (FAM <5, TET 
>7); allele 2 homozygous (FAM>10, TET <5); and heterogeneous for allele 1 and allele 2 
(FAM >5, TET 5–9). 

Based on the FI of the ExF RIL population, the 86 selected individuals were classified 
into 3 classes: 15 resistant, 60 susceptible and 11 segregating lines. TaqManTM analysis of 86 
individuals from the RILs by method 1 (high stringency) shows a strong agreement be-
tween allele 1 and susceptibility to SCN (56 from the 60 susceptible lines were allele 1 type). 
However, there was lesser agreement between allele 2 and resistance to SCN (only 15 lines 
from the 23 lines showing the presence of allele 2 were resistant by phenotype) due to the 
segregation of rhg1, the second gene necessary for resistance to SCN in Forrest (Meksem 
et al. 2001b). Of the 11 lines known to be heterogeneous for the resistance to SCN pheno-
type, five should segregate at Rhg4. TaqManTM method 1 identified one among the five 
classified as heterogenous (the 5 include 4 misclassified lines, see below). TaqManTM 
method 2 identified all five among the 11 classified as heterogenous, but the 11 include 6 
misclassified lines. 
 
Genotyping by PCR and gel electrophoresis 
To validate the specificity of TaqManTM genotyping samples of each of the RILs classified 
by the TaqManTM method (fig. 2) were rescored by PCR and gel electrophoresis (fig. 3). The 
classifications produced by the two methods agreed with TaqManTM assay 1 most closely 
but with eight exceptions. The mis-scores were as follows (annotated as RIL number; FI 
phenotype; allele with TaqManTM grouping method 2; allele with TaqManTM grouping 
method 1; allele by gel marker score): 4;S;H;H;S, 21;R;H;H;R, 32;R;H;H;R, 44;S;S;S;H, 
51;S;S;S;H, 59;R;H;H;R, 63;S;S;S;R, and 78;R;H;H;R. 
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Figure 3. Detection of the A2D8 marker polymorphism by PCR amplification and gel elec-
trophoresis of soybean genotypes. Seventy-eight individuals from an F5 derived popula-
tion of recombinant inbred lines from the cross of Essex × Forrest that segregate for 
resistance to SCN are shown. Panel A. Lane 1, 42 Essex; Lanes 2 and 41 Forrest; Lanes 3–
40, RILS 1–38. Panel B. Lane 42 Essex; Lane 41 Forrest; Lanes 1–40 RILS 39–78. Asterisks 
indicate disagreements with the TaqManTM assay 1. 

 
The majority of disagreements resulted from resistant lines that were scored as hetero-

geneous by TaqManTM but not gel electrophoresis or phenotype (4 of 8) and phenotypically 
susceptible lines that were scored incorrectly by gel electrophoresis (3 of 8). One genotype 
(RIL84) was mis-scored relative to phenotype (84SRRR) by all the allele genotyping meth-
ods and may represent a recombination event between A2D8 and Rhg4. 
 
Allele distribution in soybean germplasm 
Genotypes at A2D8 were determined from the genomic DNA of 94 cultivars that repre-
sented the parents of populations in the SIUC soybean breeding program from 1997 to 1999 
(table 1). There were 38 cultivars susceptible to SCN and 56 cultivars resistant to SCN race 
3. Allele 2 (R) was found in 32 of 94 cultivars tested. There were very few susceptible gen-
otypes with allele 2 (3 of 32) and the majority of genotypes with allele 2 (29 of 32) were 
resistant to SCN. In contrast, allele 1 (S) was found in 62 cultivars but frequently in both 
resistant cultivars (27 of 56) and susceptible cultivars (35 of 38). 
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Table 1. Cultivars, plant introductions (PI), breeding lines and germplasm releases that were 
parents in the SCN molecular breeding program at SIUC from 1997 to 1999 separated by their 
soybean cyst nematode resistance phenotype and allele at A2D8. 
 Resistant Susceptible 

Allele 2 Forrest, Hartwig, Fayette, 
Pharaoh, Picket, Accomac, 
Bedford, Delsoy4710, Peking, 
PI88788, PI209332, PI90763, 
PI437654, LS92-1088, LS92-4173, 
LS94-3207, LS95-0259, LS95-0709, 
LS95-1454, LS96-1631, LS90-1920, 
LS94-3545, S92-1679, S92-2711A, 
S94-2086, LN94-10527, A5560, 
K1390, K1425 

MD93-5298, Pace, Holladay 

Allele 1 Manokin, Mustang, Dwight, 
Pana, Ina, PI 398680, IA2036, 
IA3005, LS92-3660, LS93-0292, 
LS93-0375, LS94-2435, LS96-0735, 
LS96-3813, LS96-5009, 
LN92-10725, GX93-1573, 
SS94-7546, SS94-4337, S95-1908, 
A4138, A95-483010, M92-1645, 
M92-1708, M90-184111, K1423, 
K1424 

Essex, Bragg, Dunfield, Hill, CNS, 
Lee, Noir1, Ogden, Calhoun, 
Chesapeake, Choska, Stressland, 
Macon, Misuzudaiza, 
Nakasennari, PI 520733, 
PI567445B, PI567583C, PI567650B, 
PI 567374, PI 567650B, IA3010, 
IA1006, TN96-58, N96-180, 
LN93-11632, LN93-11945, 
LN95-5417, A94-674017, 
A94-774021, A96-494018, C1963, 
HC93-2690, HS93-4118, K1410 

 
Discussion 
 
Direct screening of A2D8 alleles with TaqManTM probes 
The divergent 10 bp and 18 bp insertions in the alleles of the AFLP band represented by 
A2D8 provide a suitable substrate for many assays of polymorphism. Here we report the 
development of a robust, high-throughput genotyping method based on the TaqManTM as-
say. Despite reducing reaction volumes to 15 μl instead of the recommended 50 μl, the raw 
fluorescence signals of the reporter dyes FAM and TET from the ‘dye component’ field of 
the sequence detection software allowed four distinct populations to be detected (fig. 2). 
The method may be further reduced in volume to reduce costs (Kalinina et al. 1997). The 
method has been shown to be effective with impure DNA preparations extracted by high 
throughput methods (Gu et al. 1995; Bell-Johnson et al. 1998; Prabhu et al. 1999). Therefore, 
the method is suitable for marker assisted breeding. 

The genoytpe and phenotype were in close agreement among the 86 genomic DNA 
samples analyzed with the TaqManTM PCR protocol. The lesser agreement between allele 2 
and resistance to SCN (15 of 23) was shown to be due to the segregation of rhg1, by scoring 
of the BARC-Satt 309 marker (Meksem et al. 1999). The bias toward a higher frequency of 
allele 1 is caused by sampling error (Chang et al. 1997). The accuracy of genotyping was 
high by the TaqManTM assay and was better than one pass gel electrophoresis (Prabhu et 
al. 1999). Even compared to a highly optimized gel electrophoresis assay reported here the 
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assays were not significantly different in accuracy for detecting the genotypes within the 
F5 derived RILs in a single-pass assay. Exactly 78 of the 86 tested with both TaqManTM and 
gel electrophoresis agreed. There were 5 errors with TaqManTM (94% accurate) and 3 errors 
with gel electrophoresis (96% accurate) judged by replicated genotyping (not shown) and 
the phenotype. Low frequencies of error are important to the accurate selection of re-
sistance (Cregan et al. 1999a; Prabhu et al. 1999) and in the generation of accurate genetic 
maps (Cregan et al. 1999b). 

The ability to distinguish heterozygotes and their derived heterogeneous lines is im-
portant to early generation selection (before the F5) in soybean breeding programs when 
within population variability is high (Brown 1987; Bernard et al. 1988). The lower-strin-
gency assay 2 was most effective for identifying most of the heterogeneous lines in this 
population. However, the cutoff values of FAM and TET for the efficient identification of 
heterogeneous lines (or heterozygous F2 lines) is likely to vary across assays and should 
be set arbitrarily according to expectations of the number of lines that are expected to con-
tain both alleles. The assay has subsequently proven robust for analyzing 2 000 lines de-
rived from specific cultivar crosses over 3 days. A single researcher can process 768 sample 
per day (8 × 96 samples) since the reading time of the machine is 15 min for one 96 well 
plate and the thermal cycler stage takes 2 h. 
 
Allele distribution in soybean germplasm 
Table 1 shows that with genomic DNA from 94 cultivars the standard TaqManTM allelic 
discrimination assays and PCR assays (not shown) provided allele scores that were in good 
agreement with the cultivar phenotypes (Bernard et al. 1988; Concibido et al. 1997). The 
prevalence of allele 1 was in good agreement with allele frequencies for markers that are 
closely linked to Rhg4 (Mahalingan and Skorupska 1995; Mathews et al. 1998; Cregan et al. 
1999c). Those resistant cultivars sharing allele 1 with the susceptible lines may not require 
the presence of Rhg4 for resistance to SCN or have derived their resistance to SCN at the 
Rhg4 locus from alleles derived from cultivars other than Forrest. In addition, some soy-
bean breeders may have been effective in separating even the most closely linked marker 
from resistance genes using phenotypic selection. However, this is probably infrequent 
since selection to generate the resistance allele 2 in susceptible cultivars has not occurred 
frequently. Only three cultivars with allele 2 were susceptible. 

Automated, high-throughput, rapid genotyping of DNA polymorphisms is highly de-
sirable for selection among the millions of genotypes generated annually by plant breeding 
programs (Prabhu et al. 1999). Currently, selection of resistance to SCN is conducted in the 
greenhouse or field by counting cyst number on soybean roots (rao-Arrelli and Anand 
1988; Chang et al. 1997). This approach is time-consuming and labor-intensive and requires 
either significant greenhouse space or large field plots and a stable source of pathogen 
populations. Marker assisted selection for resistance to SCN has been possible for several 
years (Webb et al. 1995). PCR followed by gel electrophoresis is the most common method 
for genotyping polymorphism in soybean (Bell-Johnson et al. 1998; Mathews et al. 1998; 
Cregan et al. 1999a; Prabhu et al. 1999). While this approach requires no greenhouse space 
it is still time-consuming and labor-intensive and requires a small laboratory. The proce-
dures involved in gel electrophoresis are moderately hazardous and difficult to automate. 
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Gel electrophoresis requires highly skilled staff to spend half their time involved in gel 
electrophoresis and data entry. In contrast TaqManTM allelic discrimination allows auto-
mated high sample throughput with fewer chemical hazards. The method simplifies the 
assay by eliminating the need for gel electrophoresis, visual assessment of bands and man-
ual data input and therefore allows accurate detection of polymorphism (Shi et al. 1999). 
The method can be carried out in a closed tube to reduce the risk of contamination (Lirak 
et al. 1995b). Fluorescence signals can be detected within minutes of reactions being per-
formed and reaction sizes can be reduced to 15 μl without compromising the signal ratios. 

The cost of TaqManTM compared to a gel assay are almost the same, about $1.5 per data 
point. Reduction in the costs of primer labeling will reduce the assay cost for genotyping 
to half of a similarly multiplexed gel-based marker assay. The A2D8 marker is currently 
being adapted to allow miniaturization of the assay to nanolitre scale (Kalinina et al. 1997; 
Landegren et al. 1998) and modifications for multiplexing (Nasarabadi et al. 1999) to facil-
itate ultra-high-throughput, low-cost assays. 
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