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DISCOVERY AND DESCRIPTION OF THE ‘‘DAVTIANI ’’ MORPHOTYPE FOR

TELADORSAGIA BOREOARCTICUS (TRICHOSTRONGYLOIDEA: OSTERTAGIINAE)

ABOMASAL PARASITES IN MUSKOXEN, OVIBOS MOSCHATUS, AND CARIBOU,

RANGIFER TARANDUS, FROM THE NORTH AMERICAN ARCTIC: IMPLICATIONS FOR

PARASITE FAUNAL DIVERSITY

Eric P. Hoberg, Arthur Abrams, Patricia A. Pilitt, and Susan J. Kutz*
United States National Parasite Collection and Animal Parasitic Disease Laboratory, United States Department of Agriculture, Agricultural
Research Service, BARC East, Building 1180, 10300 Baltimore Avenue, Beltsville, Maryland 20705. e-mail: eric.hoberg@ars.usda.gov

ABSTRACT: Collections to explore helminth diversity among free-ranging ungulates in the North American Arctic revealed the
occurrence of a third male, or ‘‘davtiani,’’ morphotype for Teladorsagia boreoarcticus. Designated as T. boreoarcticus forma (f.) minor
B, the males occurred with T. boreoarcticus f. major and T. borearcticus f. minor A in endemic populations of muskoxen (Ovibos
moschatus wardi) and barrenground caribou (Rangifer tarandus groenlandicus) on Victoria Island, Nunavut, Canada, and in muskoxen
and Peary caribou (Rangifer tarandus pearyi) on Banks Island, Northwest Territories, Canada. These specimens differ from conspecific
morphotypes in the structure of the genital cone and Sjöberg’s organ. Relative to T. boreoarcticus f. minor A, specimens of T.
boreoarcticus f. minor B are consistently smaller, and mean dimensions for the bursa and spicules do not overlap. The robust spicules
are similar in form, particularly in the relative length of the dorsal and ventral processes, but mean total length is substantially less in
specimens of T. boreoarcticus f. minor B. Differences that distinguish the minor morphotypes of T. boreoarcticus parallel those
demonstrated for the T. trifurcata and T. davtiani morphotypes in association with T. circumcincta sensu stricto. New host and
geographic records include the 3 morphotypes of T. boreoarcticus in muskoxen and Peary caribou from Banks Island and in
barrenground caribou from Victoria Island. Recognition of the ubiquitous nature of cryptic species emphasizes the need to effectively
develop and use our collections-based resources and museum archives to build a robust understanding of the biosphere. Field
inventory should include provisions for integrative approaches that preserve specimens suitable for comparative morphology, multi-
faceted molecular investigations, and population genetics.

Teladorsagia circumcincta (Stadelman, 1894) and T. boreoarcti-

cus Hoberg, Monsen, Kutz and Blouin, 1999 have been shown to

represent a potentially diverse complex of cryptic polymorphic

species distributed, and probably partitioned, among domestic

and free-ranging ungulates across the Holarctic (Hoberg et al.,

1999; Leignel et al., 2002; Grillo et al., 2007). In the restricted

sense, T. circumcincta/T. trifurcata (Ransom, 1907)/T. davtiani

Andreeva and Satubaldin, 1954 (in the taxonomic notation used to

designate nominal polymorphic forms representing a single species

in Ostertagiinae) is a characteristic polymorphic species of small

domestic ruminants, particularly sheep, Ovis aries L. (e.g., Dróz_dz_,
1995). Some populations of nematodes restricted to goats, Capra

hircus L., represent another putative species within T. circumcincta

that has not yet been fully characterized, further supporting the

concept for a diverse assemblage (Gasnier et al., 1997; Leignel et al.,

2002). Subsequent to putative origins in Eurasia, T. circumcincta

has been translocated and disseminated globally coincidental

initially with expansion of agriculture and later European

exploration after the 1500s (e.g., Hoberg, 1997; Hoberg et al.,

2001). Thus, T. circumcincta has been widely introduced and is an

important element of mosaic nematode faunas (containing both

introduced and endemic species) occurring among ungulates

(Hoberg et al., 1999, 2001, 2008a; Hoberg, 2010).

Diversity and species limits within the T. circumcincta complex

have yet to be adequately, or completely, delineated either in

domestic or in free-ranging hosts. New geographically extensive

surveys in conjunction with integrated approaches linking

morphology and molecular systematics are thus required (Gasnier

et al., 1997; Hoberg et al., 1999; Leignel et al., 2002; Grillo et al.,

2007). Clear definitions of nematode diversity are increasingly

important in the context of ecotones at the borderlands of both

managed and wild ecosystems. As part of baselines, they are

essential in understanding patterns and history for faunal

structure, including the potential exchange of parasites among

domestic and free-ranging host species in zones of contact

(Hoberg et al., 1999; Cerutti et al., 2010). Furthermore,

translocations involving multiple species and subspecies of free

ranging hosts (and their parasites) will serve to influence patterns

of faunal diversity and the distribution and relationships for

parasite populations in newly developed zones of sympatry.

Recognition of species limits within the cryptic complex have

additional ramifications, because biology, life history, develop-

ment, population structure, host associations, and responses

to environmental change may vary according to the history,

evolution, and biogeography for different assemblages of para-

sites (Suarez and Cabaret, 1991; Hoberg et al., 1999, 2008a;

Hoberg, 2010).

Teladorsagia boreoarcticus was described as a dimorphic species

(with 2 discrete male morphotypes) in ungulates from the

continental region of the central Canadian Arctic [muskoxen,

Ovibos moschatus moschatus (Zimmermann), and barrenground

caribou, Rangifer tarandus groenlandicus (Borowski)] and low

Arctic Islands (O. m. wardi Lyddecker) (Hoberg et al., 1999). The

original description characterized males of the major morphotype

(T. boreoarcticus forma [f.] major), including the name bearing

holotype, and a minor morphotype (T. boreoarcticus f. minor)

representing a T. trifurcata-like form based on molecular and

morphological criteria. Male nematodes corresponding to a T.

davtiani-like form were not initially recognized. Hoberg et al.

(1999) suggested that T. boreoarcticus either differed from T.

circumcincta (with a major and 2 minor male morphotypes) or

that the putative third male morphotype should eventually be

discovered (Dróz_dz_, 1995). As a basis for comparison, the
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morphology and identity of the respective minor morphotypes for

T. circumcincta were resolved in studies by Becklund and Walker

(1971).

Subsequent to the description of the major and minor morpho-

types of T. boreoarcticus, specimens of the third putative male (or

‘‘davtiani’’ morphotype) were found among collections from Ekalluk

River, Victoria Island, Nunavut, Canada, in endemic O. m. wardi

(field collection C-66). These specimens had been included among

the original vouchers (reported as U.S. National Parasite Collection

[USNPC] 87902.05) for T. boreoarcticus f. minor, and they were not

in the paratype series; meristic and structural data from these

specimens had not been included in the description of the species

(among the 59 paratype specimens of the ‘‘trifurcata’’ morph

measured and represented in table V in original). Thus, the original

description of T. boreoarcticus f. minor (or the ‘‘trifurcata’’ morph)

does not constitute a composite of the 2 discrete minor morphotypes.

Furthermore, a subsequent re-examination of the specimens that

were sequenced from this host (under USNPC 87902.04; table IV in

original), revealed 2 to have been incorrectly identified; these

specimens were found to represent the ‘‘davtiani’’ morphotype.

Specimens representing the ‘‘davtiani’’ morphotype were later

collected along with the primary major and minor morphotypes of

T. boreoarcticus, from Banks Island, Northwest Territories (NWT),

in an endemic muskox population (O. m. wardi). Barrenground

caribou on Victoria Island and Peary caribou, Rangifer tarandus

pearyi Allen, on Banks Island, in sympatry with muskoxen, also were

infected with nematodes representing the 3 male morphotypes of T.

boreoarcticus (data not shown).

The ‘‘davtiani’’ morphotype remains unknown in endemic

mainland populations of O. m. moschatus or in R. t. groenlandicus

(Hoberg et al., 1999). On the mainland near Aklavik, NWT,

however, specimens attributable to the third morphotype were

discovered in an introduced and expanding population of O. m.

wardi. This latter population of muskoxen has a complex history,

being derived by sequential translocations from eastern Greenland

to Nunivak Island, Alaska (in 1935, via Fairbanks, Alaska), and

later (1960s–1970s) from Nunivak Island to Barter Island and the

Arctic coastal plain north of the Brooks Range in Alaska

(Reynolds, 1998). Subsequent and continuing expansion to the

east has resulted in establishment of this population in the Yukon

and NWT, Canada, where eventual contact with O. m. moschatus is

predicted at the Mackenzie River ecotone (Hoberg et al., 2002).

Such a history of translocation for hosts, and those associated with

introductions of reindeer (Rangifer tarandus tarandus (L.)) from

varying sources in eastern Siberia and the western Palearctic (e.g.,

Rausch, 2002), may have driven the development of a high-latitude

mosaic fauna at some localities in North America (Hoberg et al.,

1999; Hoberg, 2010). The structure and history of assemblage for

such mosaics emphasizes the continued need to define species limits

within Teladorsagia and other pathogenic nematodes among free

ranging, semi-domestic, and domestic bovids and cervids.

The discovery of these series of specimens does not alter the

original description of T. boreoarcticus but now provides the basis

for a comprehensive description of the third male morphotype for

this species. In the current study, we designate the ‘‘trifurcata’’

morphotype as T. boreoarcticus f. minor A, and we describe the

‘‘davtiani’’ morphotype for T. boreoarcticus f. minor B. Formal

description of the latter is limited to specimens representing

endemic populations from the low Arctic Islands that can

unequivocally be referred to T. boreoarcticus. These specimens

are compared with those in other free-ranging and domestic

ungulates from North America. New information is presented

regarding the geographic distribution of T. boreoarcticus, and we

explore the continuing complexities of ostertagiine taxonomy that

emerge from the occurrence of polymorphic species.

MATERIALS AND METHODS

Specimens examined

Nematodes representing populations of T. boreoarcticus f. minor B in
muskoxen and caribou were studied from localities in the central
Canadian Arctic (Table I). Additional specimens held in the Canadian
Museum of Nature (CMNP 179-419), including 3 T. boreoarcticus f. minor
B and 3 T. boreoarcticus f. minor A in O. moschatus wardi from Ellesmere
Island, Nunavut, Canada, also were examined (Webster and Rowell, 1980;
Hoberg et al., 1999).

Other specimens, designated here as T. cf. boreoarcticus f. minor B that
could not be unequivocally identified in the absence of minimal DNA
sequence data (Hoberg et al., 1999), were examined from O. m. wardi (near
Aklavik, NWT, Canada, ca. 68u13900N, 135u0900W, January 2000 by
S.J.K. and J. Nagy) and Dall’s sheep, Ovis dalli dalli (Dry Creek, Alaska
Range, Alaska, ca. 53u589240N, 119u129300W, June 1972 by C. A. Nielsen;
Table I). Minor morphotype specimens of Teladorsagia, most similar to T.
circumcincta/T. davtiani sensu stricto, were examined from Oreamnos
americana (Mt. Hammell, Alberta, Canada, 53u589240N, 119u129300W,
September 1961 by G. R. Kerr). Specimens of the minor morphotype, T.
circumcincta/T. davtiani sensu stricto, in domestic sheep from North
America and Scotland also were examined for comparative purposes
(Table I). Taxonomy for ungulate hosts follows Grubb (2005).

Microscopy

Nematodes were prepared as temporary whole mounts cleared in phenol-
alcohol (80 parts melted phenol crystals and 20 parts absolute ethanol) and
examined with interference contrast microscopy. The synlophe was
examined in whole mounts with particular attention given to the pattern
of ridge systems in the cervical zone and their extent posteriad, consistent
with prior studies among the ostertagiines (Lichtenfels et al., 1988; Hoberg
et al., 1999, 2010). Patterns for the synlophe in the cervical region are
defined according to Lichtenfels et al. (1988); Type 1a lateral is defined as a
strongly tapering pattern with multiple pairs of ridges converging and
terminating on the single lateral-most ridge in the cervical region; Type B
ventral is defined by a single continuous ridge in the ventral field in the
cervical zone. Transverse sections were hand cut with a cataract knife and
mounted in glycerin jelly for 5 specimens each from Victoria Island and
Banks Island. Sections were used to count the number of ridges at the
midbody and as a basis for comparison with data for the major and minor
morphotypes of T. boreoarcticus. The disposition of the papillae and rays of
the bursa are described according to Chabaud et al. (1970) and Durette-
Desset (1983). The structure of the Sjöberg’s organ in the dorsal aspect of
the genital cone is described according to Dróz_dz_ (1965).

RESULTS

Field collections to explore helminth diversity among free-

ranging ungulates in the North American Arctic revealed the

occurrence of a third male, or ‘‘davtiani,’’ morphotype for

Teladorsagia boreoarcticus. These males occurred with T.

boreoarcticus f. major and T. borearcticus f. minor A in endemic

populations of muskoxen and barrenground caribou on Victoria

Island, Nunavut, Canada, and in muskoxen and Peary caribou on

Banks Island, NWT. On Victoria Island, T. boreoarcticus f. minor

B constituted 4 to 15% of the total Teladorsagia populations in

individual muskoxen and 4 to 41% in individual barrenground

caribou during December; overall prevalence was 43% in 28

muskoxen and 25% in 12 caribou. On Banks Island, this

morphotype constituted 4 to 100% (November) and 4 to 50%
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(March–May) of Teladorsagia populations in individual musk-

oxen and 15 to 33% in Peary caribou (February); overall

prevalence was 60% in 130 and 83% in 18 muskoxen, respectively,

and 66% of 3 Peary caribou.

Morphologically similar nematodes also were found in an

introduced mainland population of O. m. wardi from the NWT

and Yukon Territory, Canada. Teladorsagia boreoarcticus f.

minor B is described based on specimens in muskoxen and

caribou from Nunavut.

DESCRIPTION

Teladorsagia boreoarcticus f. minor B
(Figs. 1–6)

General description: Trichostrongyloidea, uncoiled, small nematodes.
Cuticle with well developed synlophe, lacking gradient, with perpendicular
orientation; maximum number of ridges 37–44 attained in first quarter

posterior to esophageal–intestinal junction (EIJ) to level of midbody.
Cervical papillae (CP), prominent, triangular, thorn-like, situated
posterior to sub-ventral gland orifices (SVGO) and excretory pore
(EXP) near mid-length of esophagus. Cuticular ornamentation at EXP
lacking. Esophagus with prominent valve at EIJ.

Synlophe: Synlophe bilaterally symmetrical, with ridges extending from
base of cephalic expansion to near caudal extremity. Ridges acutely
pointed, with perpendicular orientation and absence of gradient as viewed
in transverse section. Anterior to EIJ, cervical pattern, laterally, Type 1b,
strongly tapering; ventrally, Type B, parallel. Continuous sub-ventral and
sub-lateral ridges present in cervical region. Overall, 1–3 pairs of ridges
terminate along lateral-most ridge in cervical region, tapering pattern
extends posterior to the EIJ. In specimens from Victoria Island, 34–40
ridges at level of EIJ, 38–44 at first quarter, 37–42 at midbody, 32–43 at
third quarter, 6–13 near prebursal papillae (PBP); ridges are retained in
lateral and ventral fields, terminate dorsally and ventrally anterior to PBP.
In specimens from Banks Island, 32 ridges at EIJ, 30 at first quarter, 25–29
at midbody, 31–32 at third quarter, 10 near PBP.

Male: Small nematodes with prominent copulatory bursa. Total length
(n 5 105) 7,765–11,360 (9,329 ± 736); maximum width attained at

TABLE I. Specimens examined of the minor morphotypes Teladorsagia boreoarcticus forma minor B, T. cf. boreoarcticus forma minor B, and T.
circumcincta/T. davtiani sensu stricto with a summary of accession numbers, host species, and general geographic localities for collection.

USNPC* Identity Host Locality Specimens

87902.04{ .T. boreoarcticus f. minor B .Ovibos moschatus wardi .Victoria Is. 1

104766 .T. boreoarcticus f. minor B .O. m. wardi .Victoria Is. 7

91553 .T. boreoarcticus f. minor B .O. m. wardi .Victoria Is. 8

91558 .T. boreoarcticus f. minor B .O. m. wardi .Victoria Is. 12

92072.03 .T. boreoarcticus f. minor B .O. m. wardi .Banks Is. 24

92075.03 .T. boreoarcticus f. minor B .O. m. wardi .Banks Is. 17

95981 .T. boreoarcticus f. minor B .O. m. wardi .Banks Is. 10

96034 .T. boreoarcticus f. minor B .O. m. wardi .Banks Is. 10

96047 .T. boreoarcticus f. minor B .O. m. wardi .Banks Is. 9

96122 .T. boreoarcticus f. minor B .O. m. wardi .Banks Is. 11

96325 .T. boreoarcticus f. minor B .O. m. wardi .Banks Is. 7

96405 .T. boreoarcticus f. minor B .O. m. wardi .Banks Is. 12

98657 .T. boreoarcticus f. minor B .R. tarandus pearyi .Banks Is. 1

98662 .T. boreoarcticus f. minor B .R. t. pearyi .Banks Is. 12

91613 .T. boreoarcticus f. minor B .R. t. groenlandicus .Victoria Is. 2

91620 .T. boreoarcticus f. minor B .R. t. groenlandicus .Victoria Is. 4

91623 .T. boreoarcticus f. minor B .R. t. groenlandicus .Victoria Is. 1

98157 .T. cf. boreoarcticus f. minor B .O. m. wardi .Aklavik, NWT 7

98163 .T. cf. boreoarcticus f. minor B .O. m. wardi .Aklavik 9

58736 .T. cf. boreoarcticus f. minor B .Oreamnos americanus .Alberta 1

58738 .T. cf. boreoarcticus f. minor B .O. americanus .Alberta 5

58741 .T. cf. boreoarcticus f. minor B .O. americanus .Alberta 13

58744 .T. cf. boreoarcticus f. minor B .O. americanus .Alberta 2

75415 .T. cf. boreoarcticus f. minor B .Ovis dalli dalli .Alaska 3

102955 .T. cf. boreoarcticus f. minor B .O. d. dalli .Alaska 5

102956 .T. cf. boreoarcticus f. minor B .O. d. dalli .Alaska 10

102957 .T. cf. boreoarcticus f. minor B .O. d. dalli .Alaska 1

102958 .T. cf. boreoarcticus f. minor B .O. d. dalli .Alaska 4

103052 .T. cf. boreoarcticus f. minor B .O. d. dalli .Alaska 2

42888 .T. circumcincta/davtiani .Ovis aries .Maryland 5

55961 .T. circumcincta/davtiani .O. aries .Scotland 8

57130 .T. circumcincta/davtiani .O. aries .England 1

57277 .T. circumcincta/davtiani .O. aries .Maryland 5

57296 .T. circumcincta/davtiani .O. aries .West Virginia 10

57505 .T. circumcincta/davtiani .O. aries .Oregon 1

57557 .T. circumcincta/davtiani .O. aries .Georgia 2

Is. 5 Island.
* Collection numbers from U.S. National Parasite Collection.
{ Single male specimen originally identified as T. boreoarcticus forma minor A (see Hoberg et al. [1999]). This specimen had been included in the original comparisons of

DNA sequences for T. boreoarcticus.
Addendum Added in Proof: Specimens of T. boreoarcticus f. minor B examined and measured from Victoria Island in Ovibos moschatus wardi also included the following:
USNPC 91560 (4 specimens); 91563 (6); 91567 (2); 91569 (2); 91580 (11); 91583 (8).

HOBERG ET AL.—T. BOREOARCTICUS MORPHOLOGY 357



pre-bursal papillae. Cephalic vesicle (n 5 32) 88–123 (106 ± 9) long.
Esophagus (n 5 104) 605–850 (716 ± 48) long; 6.8–9.1% of total body
length. Esophageal valve (n 5 101) 68–108 (88 ± 8) long, 30–75 (48 ± 8) in
maximum width. SVGO (n 5 101) 232–328 (274 ± 21), nerve ring (n 5 10)
282–325 (303 ± 12), EXP (n 5 105) 295–412 (357 ± 21), CP (n 5 104)
312–440 (386 ± 24) from cephalic extremity. Copulatory bursa
symmetrical, strongly bilobed with prominent dorsal lobe; lateral bursal
rays disposed in 2-2-1 pattern; length of bursa from pre-bursal papillae,
(n 5 105) 242–400 (314 ± 41). Pattern and orientation of supporting rays
as in T. boreoarcticus f. major and T. boreoarcticus f. minor A. Genital
cone prominent, complex, with well developed, cuticularized telamon
surrounding cloaca. Papillae ‘‘0’’ disposed on ventral aspect of genital
cone, enveloped by prominent bilobed ventral membrane anterior to
cloacal aperture. Rays ‘‘7’’ terminate in paired papilliform protuberances
extending through concavity on postero-ventral margin of robust
Sjöberg’s organ; in ventro-dorsal view, Sjöberg’s organ broader than
long, rectangular. Dorsal ray (n 5 68) 68–125 (92 ± 13) long; primary
bifurcation 48–63% (55 ± 3) from anterior; dorsal lobe disposed ventrally
to externo-dorsal or Rays 8. Spicules alate, broad, robust, trifurcate,
straight in lateral view, equal in length; right spicule (n 5 107) 171–255
(215 ± 20) with trifurcation 59–66% (62 ± 1.4) from anterior; left spicule
(n 5 106) 172–258 (219 ± 21) with trifurcation at 60–65% (62 ± 1.3).
Main shaft of each spicule terminates in massive hyaline foot. Dorsal,
ventral processes near equal in length, extending from one third to slightly
less than 50% of length of spicule tip from trifurcation. Ventral process
narrow, acutely pointed. Dorsal process, broad, triangular at base, with
narrow acute point. Gubernaculum (n 5 85) 66–108 (87 ± 10) in length,
narrow, irregular in dorso-ventral view, with sinuous distal tip in lateral
view.

Female: Previously characterized in original description of T. boreoarc-
ticus by Hoberg et al. (1999).

Taxonomic summary

Host: Muskoxen, Ovibos moschatus wardi Lyddecker. Also in Rangifer
tarandus pearyi Allen and R. tarandus groenlandicus (Borowski).

Locality: In muskoxen at Ekalluk River, adjacent to Wellington Bay
and the hamlet of Iqaluktuutiaq (formerly Cambridge Bay), Victoria
Island, Nunavut, Canada, ca. 69u229N, 106u129W on 18 March 1996 and
December 1998 by S.J.K. Other localities: In muskoxen near Sachs
Harbor, Banks Island, Nunavut, Canada, ca. 71u599080N, 125u149530W,
during November 1999 by J. Nagy and B. Elkin. In barrenground caribou
at Victoria Island during December 1998 by S.J.K. and in Peary caribou at
Banks Island during February 2003 by S.J.K. and J. Nagy.

Specimens: USNPC 87902.04, 2 males from Victoria Island in O. m.
wardi (tails as vouchers for molecular sequencing, originally reported in
Hoberg et al., 1999). USNPC 91558, and 91553 from Victoria Island in O.
m. wardi. USNPC 104766 (originally voucher specimens under USNPC
87902.05) from Victoria Island in O. m. wardi as reported in Hoberg et al.
(1999). USNPC 92072.03, 92075.03, 95981, 96304, 96047, 96122, 96325,
and 96405 from Banks Island in O. m. wardi. USNPC 98657 and 98662
from Banks Island in R. t. pearyi. USNPC 91613, 91620, and 91623 from
Victoria Island in R. t. groenlandicus.

Remarks

Nematodes in O. m. wardi, R. t. pearyi, and R. t. groenlandicus from
Victoria Island and Banks Island are referred to T. boreoarcticus based on
the structure of the synlophe and general configuration of the copulatory
bursa including the lateral rays (2-2-1 pattern), dorsal ray or papillae 9/10,

r

FIGURE 1. Teladorsagia boreoarcticus forma minor B showing pattern
for the synlophe in lateral and ventral fields in the cervical zone anterior to
the base of the esophagus, based on USNPC 96405; bar 5 100 mm. Note
strongly tapering Type 1b system laterally and parallel Type B ventral
system ventrally. Cervical papillae (CP) adjacent to lateralmost ridge and
excretory pore (EXP) on ventralmost ridge; orifices of the sub-ventral
esophageal glands (SVGO) are situated anterior to the EXP and CP;
orientation is indicated by L 5 lateral, D 5 dorsal, and V 5 ventral.
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FIGURES 2–6. Teladorsagia boreoarcticus forma minor B showing structure of genital cone and spicules for voucher specimens in muskoxen from
Victoria Island and Banks Island. All bars 5 50 mm. (2) Genital cone and dorsal lobe (USNPC 104766 =4), right lateral view, with medial view of left
spicule tip and lateral view of gubernaculum. Note prominent membrane on antero-ventral aspect of genital cone. (3) Genital cone, ventral view
(USNPC 104766 =1), showing position of Sjöberg’s organ relative to dorsal lobe and externo-dorsal Rays-8. (4) Genital cone, dorsal view (USNPC
104766 =1). (5) Spicules, right, in dorsal (d) (USNPC 96122 =3) and ventral (v) (USNPC 96122 =1) views. (6) Gubernaculum in dorsal (d) and ventral
(v) view from 3 specimens (left to right, USNPC 96122 =1 104766 =1, 96122 =3).
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and well developed dorsal lobe (Hoberg et al., 1999). Meristic data from
these populations and other structural characters addressed below serve to
distinguish T. boreoarcticus f. minor B from T. boreoarcticus f. major and
T. boreoarcticus f. minor A (Tables II, III; Hoberg et al., 1999).

Morphotypes of T. boreoarcticus are consistently distinguished from
those attributed to T. circumcincta sensu stricto based on the numbers of
ridges at the midbody of adult male and female worms, and other more
subtle characters of the spicules and genital cone in males and the vulva in
females (Hoberg et al., 1999). Specimens of T. boreoarcticus f. minor B are
structurally distinct from conspecifics T. boreoarcticus f. major and T.
boreoarcticus f. minor A and are consistently larger and distinct relative to
those nematodes attributed to T. circumcincta/T. davtiani sensu stricto
(Tables II, III).

New sequence data from the mitochondrial ND4 gene were not
generated for the current study because attempts to extract and amplify
DNA from suitable specimens from Victoria and Banks Island were not
successful. Re-determination of the identity for 2 specimens sequenced
during the original study (USNPC 87902.04), however, indicates that the 3
morphotypes of T. boreoarcticus, based minimally on nematodes from
Victoria Island and the adjacent mainland, represent a single species
(Hoberg et al., 1999).

The synlophe in T. boreoarcticus is consistent among the 3 male
morphotypes and females with respect to the strongly tapering cervical
pattern (Type 1 A) and numbers of ridges at the midbody (Fig. 1; Hoberg
et al., 1999). Males of T. boreoarcticus f. minor B or the ‘‘davtiani’’
morphotype from Victoria Island were characterized by 37–42 ridges at
the midbody. This is similar to the range of 39–46 midbody ridges
(maximum of 47 in the anterior fourth of the body) based on specimens of
the major and minor A morphotypes in the original description of T.
boreoarcticus (Hoberg et al., 1999). In addition, this is consistent with the
42–44 ridges (maximum 45) observed in the major (USNPC 96403) and
minor A or ‘‘trifurcata’’ (USNPC 95937, 96403) morphotypes attributed
to T. boreoarcticus from Banks Island during the current study.

In contrast, ridge counts for some specimens of T. boreoarcticus f. minor
B in muskoxen from Banks Island (e.g., within lots USNPC 92075.03 and
96405) were substantially less (32 ridges at EIJ, 30 at first quarter, 25–29 at
midbody, 31–32 at third quarter) and were most similar to values

established for T. circumcincta sensu stricto in previous studies (Hoberg et
al., 1999). Prior evaluations of the synlophe among ostertagiines have not
demonstrated substantial variation in ridge counts among conspecifics
(either between males and females or among polymorphic males), and
definable limits seem to characterize respective species across many genera
(Hoberg et al., 1999, 2009b, 2010). Thus, ridge counts demonstrated for
some specimens of T. boreoarcticus f. minor B on Banks Island may
represent a departure from prior observations about variation among
congeners and conspecifics in the Ostertagiinae. These specimens,
however, do not differ meristically or in other structural details from
populations examined on Victoria Island in both muskoxen and barren-
ground caribou (Tables II, III).

Population genetic evaluations of the nematodes from Banks Island and
other localities have yet to be conducted and may serve to reveal more
information about the identity of parasites. Current evidence suggests that
the population of T. boreoarcticus on Banks Island, including the 3
morphotypes that have been studied, represents a single species (consistent
with parasites in endemic hosts on Victoria Island and the mainland). In
addition, the 2 minor morphotypes, represented by very small nematodes
in muskoxen from Ellesmere Island (CMNP 1979-419), now seem
referable to T. boreoarcticus (Webster and Rowell, 1980; Hoberg et al.,
1999), although at the lower end of the range for measurements for most
characters. In the absence of molecular based comparisons, however, the
possibility of unrecognized cryptic diversity cannot be immediately
discounted.

Aside from the synlophe, specimens of T. boreoarcticus f. minor B from
Victoria and Banks Island are morphologically consistent. These
specimens differ from conspecific morphotypes in the structure of the
genital cone and Sjöberg’s organ (Hoberg et al., 1999). Relative to T.
boreoarcticus f. minor A, specimens of T. boreoarcticus f. minor B are
consistently smaller, and mean dimensions for the bursa and spicules do
not overlap (Table II) (Hoberg et al., 1999). The robust spicules are
similar in form, particularly in the relative length of the dorsal and ventral
processes, but mean total length is substantially less in specimens of T.
boreoarcticus f. minor B. Generally the differences that distinguish the
minor morphotypes of T. boreoarcticus parallel those demonstrated for
the T. trifurcata and T. davtiani morphotypes in association with T.

TABLE II. Morphometric comparisons for specimens of Teladorsagia boreoarcticus forma minor B in muskoxen (Ovibos moschatus wardi) and Peary
caribou (Rangifer tarandus pearyi) from the central Canadian Arctic.

Character

O. m. wardi,

Banks Island

O. m. wardi,

Victoria Island

R. t. pearyi,

Banks Island

R. t. groenlandicus,

Victoria Island

No. examined 100 60 13 7

Body length (98)* 7,765–10,950

(9,159 ± 645)

(58) 7,975–11,625

(9,501 ± 1,013)

(13) 8,500–10,325

(9,483 ± 529)

(7) 9,385–10,550

(10,071 ± 482)

Cephalic capsule (31) 88–123 (106 ± 9) (7) 80–125 (97 ± 17) (5) 82–105 (98 ± 9) (5) 98–125 (110 ± 11)

Esophagus length (97) 605–815 (710 ± 44) (58) 585–850 (723 ± 60) (13) 620–770 (710 ± 43) (7) 710–830 (773 ± 41)

Esophagus % of body length (96) 6.8–9 (7.8 ± 0.5) (58) 6.6–9.1 (7.7 ± 0.5) (13) 6.5–8.8 (7.5 ± 0.6) (7) 7.3–8 (7.7 ± 0.3)

Esophageal–intestinal valve length (94) 68–105 (87 ± 7) (55) 70–108 (89 ± 8) (9) 68–92 (83 ± 8) (7) 80–100 (94 ± 7)

Esophageal–intestinal valve width (94) 30–66 (47 ± 6) (54) 28–75 (49 ± 10) (9) 45–58 (51 ± 4) (7) 50–75 (59 ± 9)

Subventral esophageal gland orifices{ (94) 232–328 (273 ± 20) (56) 228–322 (278 ± 26) (13) 252–310 (277 ± 18) (7) 280–302 (293 ± 10)

Nerve ring{ (7) 282–316 (298 ± 10) (27) 254–350 (311 ± 25) (2) 300–305 (2) 305–312

Excretory pore{ (98) 295–412 (357 ± 21) (58) 298–406 (354 ± 27) (13) 325–362 (346 ± 12) (7) 346–395 (367 ± 16)

Cervical papillae{ (97) 312–440 (386 ± 24) (58) 320–442 (383 ± 31) (13) 352–392 (373 ± 12) (7) 370–420 (393 ± 16)

Spicule length, left (99) 172–258 (218 ± 20) (60) 180–270 (223 ± 26) (13) 192–238 (215 ± 13) (7) 208–265 (232 ± 18)

Spicule, left, % trifurcation{ (99) 60–65 (62 ± 1.3) (60) 59–66 (62 ± 1.3) (13) 61–65 (62 ± 1.3) (7) 59–64 (61 ± 1.7)

Spicule length, right (100) 171–255 (214 ± 20) (60) 178–268 (220 ± 25) (13) 190–232 (210 ± 12) (7) 212–258 (227 ± 18)

Spicule, right, % trifurcation{ (100) 59–66 (62 ± 1.5) (60) 59–66 (62 ± 1.4) (13) 61–64 (62 ± 0.9) (7) 60–63 (62 ± 1)

Dorsal ray (67) 68–125 (91 ± 13) (34) 70–150 (95 ± 19) (5) 84–105 (91 ± 9) (3) 100–115 (105 ± 9)

Dorsal ray, % bifurcation} (66) 48–63 (55 ± 3) (33) 48–66 (56 ± 4) (5) 45–56 (53 ± 4) (3) 54–60 (57 ± 3)

Gubernaculum (84) 66–108 (87 ± 10) (48) 75–115 (90 ± 10) (11) 72–95 (81 ± 6) (3) 75–100 (89 ± 13)

Bursa length|| (98) 242–400 (310 ± 38) (60) 238–415 (323 ± 50) (13) 285–360 (316 ± 22) (7) 300–375 (335 ± 29)

* Sample size (n) for specimens examined and measurements of individual structural characters.
{ Measured from anterior extremity.
{ Percentage from anterior to trifurcation of spicule tip.
} Percentage from anterior to bifurcation of dorsal ray.
|| Bursa length determined from prebursal papillae.
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circumcincta sensu stricto (e.g., Becklund and Walker, 1971). In specimens
of T. boreoarcticus f. minor B, the ‘‘7’’ papillae are narrowly spaced
distally and protrude from the postero-ventral margin of the Sjöberg’s
organ.

Specimens in O. m. wardi from the mainland near Aklavik, NWT, were
excluded in the current description as their origin is uncertain. These
specimens are morphologically similar to those from both Banks Island
and Victoria Island (Tables II, III), but they were from introduced hosts
with an independent history. Muskoxen at Aklavik were translocated onto
the Arctic Coastal Plain from East Greenland (via Fairbanks and then
Nunivak Island, Alaska; Reynolds, 1998). Although Teladorsagia is
known in Greenland muskoxen, the specific identity of these nematodes
remains undetermined, because specimens necessary for morphological
and molecular characterization have not been available. Furthermore,
domestic sheep and caribou (or reindeer) may be involved in transmission
of these parasites across the geographic range in Greenland (Rose et al.,
1984; Korsholm and Olesen, 1993), suggesting the potential for a history
of natural expansion in the Quaternary and secondary translocation, and
introductions with both domestic and free-ranging ungulates that may
extend to Viking occupation.

Considering the ‘‘davtiani’’ morphotype, meristic data for specimens
from Aklavik and those from the core endemic range for T. boreoarcticus
overlap extensively (Tables II, III); data for other morphotypes in
introduced muskoxen from Alaska and Canada exhibit a similar range
in variation comparable with T. boreoarcticus (Hoberg et al., 1999).
Species limits within the complex remain to be completely characterized
based on an integrative approach for comparative morphology and
molecular sequencing (Hoberg et al., 1999).

Other specimens designated here as T. cf. boreoarcticus f. minor B in
Dall’s sheep are consistently large (Table III), revealing a trend identified
for both major and ‘‘trifurcata’’ morphotypes in the original studies of
Teladorsagia spp. in northern ungulates (Hoberg et al., 1999). For
example, mean values for spicule length among the morphotypes of
Teladorsagia sp. in Dall’s sheep substantially exceed those representing T.
boreoarcticus. Specific identity of Teladorsagia sp. in O. dalli remains to be

explored based on molecular data, although it has been suggested that
nematodes in these wild sheep represent another undescribed cryptic
species (Hoberg et al., 1999).

Alternatively, specimens in O. americana seem similar to T. circum-
cincta/T. davtiani (Table III) and both the major and the minor B
morphotypes, and they are consistently smaller, based on all characters
considered in the current study, relative to nematodes in other free-ranging
hosts (Hoberg et al., 1999). In contrast, meristic data for the minor A
morphotype in mountain goats in the original study are consistent with of
T. boreoarcticus (Hoberg et al., 1999). This observation points to the
difficulty in separating these species in the absence of molecular data.

Although Becklund (1962) and Becklund and Walker (1971) examined
numerous specimens attributed at that time to T. davtiani in domestic
sheep and free-ranging ungulates (78 specimens in 7 host species), they did
not specify the origins of particular lots of worms relative to hosts or
geographic site of collection. The range for spicule length was reported as
156–238 mm (mean 5 196). Conclusions from these studies suggested that
T. davtiani (and other morphotypes later recognized) was among those
species with extensive host and geographic distribution and a considerable
level of morphological variation. Hoberg et al. (1999) and Leignel et al.
(2002) have demonstrated that Teladorsagia is a species complex. Thus,
the apparent geographically widespread distribution, broad host associ-
ations, and substantial morphological variation are consistent with the
occurrence of multiple cryptic species, for which a clear definition for
species limits and the extent of diversity have remained elusive.

DISCUSSION

Defining species limits

Specimens of T. boreoarcticus and its morphotypes are

distinguished structurally from those attributed to T. circumcincta

sensu stricto based on the numbers of ridges at the midbody and

other more subtle characters of adult males and females, although

TABLE III. Morphometric comparisons for male specimens of representing Teladorsagia. Included are (1) Teladorsagia cf. boreoarcticus forma minor B
in free-ranging ungulates from North America (specimens in Ovibos moschatus wardi and Ovis dalli dalli), (2) specimens similar to the minor morphotype
T. circumcincta/T. davtiani sensu stricto (in Oreamnos americana), and (3) the minor morphotype T. circumcincta/T. davtiani sensu stricto in domestic
sheep from North America and Europe.

Character

O. m. wardi

Aklavik, NWT

O. d. dalli Dry

Creek, Alaska

O. americanus

Alberta, Canada

O. aries North

America/Scotland

No. examined{ 16 25 21 33

Body length (16)* 10,200–11,490

(10,800 ± 372)

(21) 8,150–13,075

(11,039 ± 1,407)

(18) 5,825–10,200

(7,844 ± 980)

5,640–9,400

(8,170 ± 894)

Cephalic capsule — (2) 100–118 (5) 75–108 (87 ± 17) (1) 84

Esophagus length (16) 745–885 (806 ± 42) (23) 700–840 (761 ± 37) (20) 550–670 (606 ± 37) (20) 535–608 (563 ± 21)

Esophagus % of body length (16) 6.6–8.2 (7.5 ± 0.4) (21) 6–8.8 (7 ± 0.8) (17) 6.2–9.2 (7.6 ± 0.7) (14) 6.1–10.5 (7 ± 1.1)

Esophageal–intestinal valve length (16) 82–110 (96 ± 8) (23) 85–120 (95 ± 8) (19) 65–92 (77 ± 7) (22) 48–70 (62 ± 6)

Esophageal–intestinal valve width (16) 50–65 (58 ± 4) (23) 40–60 (51 ± 6) (19) 45–58 (50 ± 3) (22) 28–50 (40 ± 5)

Subventral esophageal gland orifices{ (15) 284–335 (309 ± 14) (23) 275–345 (307 ± 17) (19) 205–264 (232 ± 15) (22) 180–242 (217 ± 17)

Nerve ring{ — (1) 315 (17) 238–300 (263 ± 20) (5) 238–288 (263 ± 20)

Excretory pore{ (16) 370–425 (394 ± 18) (23) 340–432 (393 ± 25) (20) 250–360 (305 ± 28) (20) 278–362 (325 ± 20)

Cervical papillae{ (16) 398–468 (428 ± 21) (23) 368–468 (429 ± 26) (21) 278–405 (332 ± 30) (25) 305–402 (354 ± 23)

Spicule length, left (16) 218–252 (238 ± 9) (25) 248–320 (278 ± 19) (18) 178–225 (202 ± 14) (29) 158–222 (195 ± 13)

Spicule, left, % trifurcation{ (16) 57–63 (60 ± 1.5) (25) 59–66 (61 ± 1.7) (18) 60–65 (62 ± 1) (26) 58–65 (61 ± 1.4)

Spicule length, right (16) 215–250 (234 ± 10) (25) 248–315 (274 ± 19) (18) 178–222 (199 ± 14) (29) 156–225 (193 ± 14)

Spicule, right, % trifurcation{ (16) 57–66 (61 ± 2.0) (25) 58–66 (61 ± 1.7) (18) 61–64 (62 ± 1) (26) 58–64 (61 ± 1.6)

Dorsal ray (11) 92–118 (106 ± 8) (16) 115–140 (126 ± 6) (3) 75–94 (86 ± 10) (13) 55–84 (72 ± 9)

Dorsal ray, % bifurcation} (11) 49–60 (55 ± 4) (16) 48–63 (53 ± 4) (3) 53–59 (55 ± 3) (13) 50–63 (55 ± 4)

Gubernaculum (12) 85–100 (92 ± 4) (16) 95–122 (108 ± 9) (12) 65–88 (77 ± 7) (12) 75–92 (82 ± 5)

Bursa length|| (16) 325–395 (361 ± 19) (24) 300–415 (376 ± 28) (16) 225–295 (267 ± 20) (26) 168–285 (249 ± 24)

* Sample size (n) for specimens examined and measurements of individual structural characters.
{ Measured from anterior extremity.
{ Percentage from anterior to trifurcation of spicule tip.
} Percentage from anterior to bifurcation of dorsal ray.
|| Bursa length determined from prebursal papillae.
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limits for the former species remain incompletely defined. Limited

data from mitochondrial DNA (mtDNA) sequences further

establishes reciprocal monophyly for these species (Hoberg et

al., 1999). In the decade since the description of T. boreoarcticus,

however, the status of nematode populations among an array of

free-ranging bovids (wild sheep and mountain goats), pronghorn,

and cervids, e.g., woodland caribou (Rangifer tarandus caribou

[Gmelin]) and barrenground caribou, in North America has

remained unresolved; this observation further applies to global

populations of Teladorsagia in both domestic and free-ranging

ungulates (e.g., Leignel et al., 2002; Grillo et al., 2007). Current

evidence is consistent with a putative assemblage of cryptic species

(e.g., Pérez-Ponce de Leon and Nadler, 2010). Exploration of this

hypothesis has been hindered by the logistic difficulty in acquiring

the necessary specimens that will support comprehensive phylo-

geographic comparisons to reveal genetic structure, patterns of

diversity and host–geographic associations across the broader

range occupied by this assemblage.

Nomenclatural challenges and polymorphism

There is no consistent nomenclature that is currently applied to

polymorphic ostertagiines. Polymorphism among males of certain

genera of the Ostertagiinae has been recognized and documented

since the 1970s (Daskalov, 1974; Dróz_dz_, 1974, 1995). Among the

nominal taxa now recognized in the subfamily, polymorphism is

characteristic in males among 5 of 15 genera (Hoberg and

Abrams, 2008; Hoberg et al., 2009a). Before recognition of this

phenomenon, there had been a considerable proliferation of both

generic and species names to account for the broad morphological

diversity observed among the ostertagiines. Historically, the

occurrence of polymorphism complicated the generic level

taxonomy for the subfamily, because the major and minor

morphotypes characteristic of some species had been partitioned

among multiple genera (Andreeva, 1956; Gibbons and Khalil,

1982); or respective morphotypes were listed as valid species

(Durette-Desset, 1989).

The problem was addressed by Dróz_dz_ (1995) and Hoberg et al.

(1999) but not resolved. Among nominal species and those

recognized over the past century, taxonomic construction had

been proposed where the major morphotype is listed first,

followed by 1, or rarely 2, minor morphotypes, e.g., T.

circumcincta/T. trifurcata/T. davtiani. Such a construction clearly

represents the relationships between, or among, the major and

minor morphotypes, but it does not address the problems that

emerge from issues of taxonomic priority when species names are

necessarily reduced to synonymy (Hoberg et al., 1999). For T.

circumcincta, this species name has priority and would remain the

name-bearing type for the genus. In other cases, however, it

would be 1, or another, of the minor morphotypes, because of

date of publication that would assume priority (Hoberg et al.,

2001), a situation that would not preserve taxonomy, promote

stability, or provide a clear distinction of the relationships among

the major (generally most commonly occurring) and minor

(generally rare) morphotypes (Hoberg et al., 1999).

Consequences of this confused taxonomy are manifested in how

records are reported, with morphotypes still being regarded as

discrete species. For example, even within single papers,

taxonomic use has not been consistent with respect to the

application of various names to either morphotypes or putative

cryptic species within T. circumcincta (Leignel et al., 2002). This

problem is a generality across the 5 genera where polymorphism

has been recognized, and it is not simply limited to Teladorsagia

spp. Furthermore, some reports of survey and inventory for

nematode faunas in free-ranging ungulates failed to recognize the

phenomenon, leading to erroneous and potentially implausible

records for host and parasite associations (discussed in Santı́n-

Durán et al., 2004).

Clarifying some records

A recent report of T. circumcincta sensu stricto in the Dolphin-

Union (DU) caribou herd from the central Canadian Arctic is a

misidentification (Hughes et al., 2009). In that paper, the host and

geographic distributions of T. boreoarcticus were incorrectly

characterized, with the implication by these authors that this

ostertagiine had originally only been identified on and was limited

to Victoria Island. To the contrary, it had already been

documented as a widely distributed abomasal parasite (in

reference to morphological and molecular criteria) at a minimum

in mainland populations of O. m. moschatus and R. t.

groenlandicus (Hoberg et al., 1999, 2001) and is now definitively

known to occur in the DU herd based on the present study.

Furthermore, Hughes et al. (2009) provided no basis other than

assertion that the parasites in question were consistent with T.

circumcincta/T. trifurcata sensu stricto. That the population of

Teladorsagia sp. found in the DU herd was dimorphic is

consistent, however, with the original observations for T.

boreoarcticus f. major/T. boreoarcticus f. minor A on the

mainland, and subsequent surveys that have failed to demonstrate

a third male morphotype except in the Arctic islands (Hoberg et

al., 1999; E.P.H. and S.J.K., unpubl. obs.). Definitive confirma-

tion of identity for the DU specimens can be based on our current

observations of T. boreoarcticus in this herd and the understand-

ing that these animals move freely across Coronation Gulf and

the Dolphin and Union Strait from Victoria Island to the

mainland (Gunn et al., 1997). Direct comparisons, however, may

not be possible because no morphological criteria were presented

(Hughes et al., 2009), nor were specimens from their study

retained as vouchers in a museum repository (see Hoberg, Pilitt,

and Galbreath, 2009).

Some outcomes of incorrect identification are apparent: (1)

erroneous interpretations about evolutionary history and host

associations (Brooks and Hoberg, 2006) and (2) conflation of life-

history information that is misleading in the context of multiple

species and highly variable environmental settings (Irvine et al.,

2000). Although the extent across the Holarctic of this assemb-

lage in free-ranging hosts remains unresolved, current evidence

suggests that T. circumcincta sensu stricto, T. boreoarcticus, and

a putative array of cryptic species have been on divergent

evolutionary trajectories for a considerable period (Hoberg et al.,

1999; Leignel et al., 2002). Implications for faunal assemblage and

mosaic structure in the context of natural expansion events and

anthropogenic translocations are apparent and directly relate to

how species are distributed in space and time, and how parasites

may respond to perturbation, including climate change (Hoberg

et al., 2008a; Hoberg, 2010). Furthermore, life-history patterns for

ostertagiines in Arctic environments seem to be in contrast to the

standard wisdom obtained for related species in domestic hosts

and under intense management (Irvine et al., 2000; Hoberg et al.,
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2008b). For example, and pertinent here, are observations that

indicate species of ostertagiines in free-ranging ungulates in the

Arctic have considerably longer life spans, different environmen-

tal tolerances, and developmental thresholds relative to those such

as T. circumcincta circulating in domestic sheep (Hoberg et al.,

1999). Consequently, species diversity and correct identification

have implications for understanding and predicting the range of

potential responses to rapidly accelerating climate change in

northern environments (Kutz et al., 2004, 2009; Hoberg et al.,

2008b; Davidson et al., 2011).

The geographic and host range for T. boreoarcticus can be

further clarified. Specimens reported in Peary caribou on Banks

Island and barrenground caribou on Victoria Island represent

new records for T. boreoarcticus and its 3 morphotypes.

Specimens of T. boreoarcticus f. minor B have not been

demonstrated on the mainland of the Canadian Arctic except in

introduced and expanding populations of O. m. wardi at Aklavik,

NWT (E.P.H. and S.J.K., unpubl. obs.). At mainland sites and in

endemic host populations of caribou and muskoxen, T. bor-

eoarcticus continues to be represented by 2 male morphotypes and

previously T. boreoarcticus f. major/T. boreoarcticus f. minor A

was reported definitively in O. m. moschatus, and R .t. groenlan-

dicus (Hoberg et al., 1999).

In contrast, nematodes referred to T. cf. boreoarcticus,

including the major and 2 minor morphotypes, are known in R.

t. caribou and O. dalli at subarctic to Arctic latitudes (Hoberg et

al., 1999; E.P.H. and S.J.K., unpubl. obs.). In addition, T. cf.

boreoarcticus has been reported in introduced populations of O. m

wardi and R. t. tarandus from Alaska and the central Canadian

Arctic (Hoberg et al., 1999). Specimens in O. americanus at

subarctic to boreal latitudes, however, seem morphologicaly

divergent from T. boreoarcticus and superficially are most similar

to T. circumcincta and its morphotypes. Conspecificity across this

assemblage remains to be determined based on new comparisons

of sequences from mtDNA (Hoberg et al., 1999). Our under-

standing of distribution may reflect the limitations for current

sampling of host populations, the rare occurrence of the parasite

at low prevalence and intensity, or other factors that may serve to

determine the geographic range of the 3 male morphotypes.

Elsewhere, we have discussed the challenges posed by a paucity

of voucher and other representative specimens held in museum

collections (Hoberg, Pilitt, and Galbreath, 2009). Archival

collections represent the self correcting records of diversity and

are the essential baselines and foundation for understanding

patterns of distribution and structure for faunal assemblages.

Resolution of the complex history for Teladorsagia (and a wide

array of parasites in either vertebrate or invertebrate hosts) can

emerge from continued field-based collections tied to the

development of archival resources for specimens and informatics.

Furthermore, such a field inventory should include provisions for

integrative approaches that preserve specimens suitable for both

comparative morphology and multi-faceted molecular investiga-

tions and population genetics. We have always argued for the

maximum use of any host specimens that are collected, a situation

heightened by environmental perturbation and the increasing

difficulty of conducting inventories of common, threatened, or

endangered species (Brooks and Hoberg, 2000). Concurrently,

recognition of the ubiquitous nature of cryptic species among

nematodes and other helminths emphasizes the need to effectively

develop and use our collections-based resources to build a robust

understanding of the biosphere (Pérez-Ponce de Leon and Nadler,

2010).
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