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Weak solutions and blow-up for wave equations
of p-Laplacian type with supercritical sources

Pei Pei,1,a) Mohammad A. Rammaha,2,b) and Daniel Toundykov2,c)
1Department of Mathematics, Earlham College, Richmond, Indiana 47374-4095, USA
2Department of Mathematics, University of Nebraska-Lincoln, Lincoln,
Nebraska 68588-0130, USA

(Received 31 January 2015; accepted 21 July 2015; published online 11 August 2015)

This paper investigates a quasilinear wave equation with Kelvin-Voigt damping,
ut t − ∆pu − ∆ut = f (u), in a bounded domainΩ ⊂ R3 and subject to Dirichlét bound-
ary conditions. The operator ∆p, 2 < p < 3, denotes the classical p-Laplacian. The
nonlinear term f (u) is a source feedback that is allowed to have a supercritical
exponent, in the sense that the associated Nemytskii operator is not locally Lipschitz
from W 1,p

0 (Ω) into L2(Ω). Under suitable assumptions on the parameters, we prove
existence of local weak solutions, which can be extended globally provided the damp-
ing term dominates the source in an appropriate sense. Moreover, a blow-up result is
proved for solutions with negative initial total energy. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4927688]

I. INTRODUCTION

A. The model

The study of quasilinear wave equations with the p-Laplacian operator originates from the
nonlinear Voigt model for the longitudinal vibrations of a rod made from a viscoelastic material. In
particular, it can be shown that the so-called Ludwick materials obey such equations under the effect
of an external forcing (e.g., see Refs. 37 and 42). This paper addresses the existence of local and
global solutions to the following quasilinear problem:




ut t − ∆pu − ∆ut = f (u) in Ω × (0,T),
(u(0), ut(0)) = (u0, u1) ∈ W 1,p

0 (Ω) × L2(Ω), 2 < p < 3,
u = 0 on Γ × (0, T),

(1.1)

where Ω ⊂ R3 is a bounded open domain with a C2-boundary Γ. The p-Laplacian for p ≥ 2 is
defined by

∆pu = div(|∇u|p−2∇u) .
This operator can be extended to a monotone operator between the space W 1,p

0 (Ω) and its dual as
follows:




−∆p : W 1,p
0 (Ω) → W−1,p′(Ω),



−∆pu, φ

�
p
=


Ω

|∇u|p−2∇u · ∇φdx, 2 ≤ p < ∞,
(1.2)

where ⟨·, ·⟩p denotes the duality pairing between W−1,p′(Ω) and W 1,p
0 (Ω), 1

p
+ 1

p′ = 1.
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B. Literature overview and new contributions

The semilinear case with the classical Laplace operator (when p = 2) was studied by Webb,41

but only under the influence of a conservative (“restoring”) source f (u) that is globally Lipschitz
continuous from H1

0(Ω) into L2(Ω). In addition, the case p = 2 with a supercritical (as defined
below) source has been recently treated in Ref. 35, and later in Ref. 33 where the authors pro-
vide a complete analysis of that problem including local and global well-posedness, uniqueness,
continuous dependence on the initial data, and decay of energy.

Other related works include

• Biazutti10 investigated global existence and asymptotic behavior of weak solutions to the
abstract Cauchy problem (with a solution-independent forcing),

ut t − ∆pu − ∆ut + |ut |ρ sgn(ut) = f (t, x). (1.3)

• In Ref. 16, Gao and Ma studied the global existence and asymptotic behavior of solutions to
such equations under fractional-Laplacian Kelvin-Voigt damping,

ut t − ∆pu + (−∆)αut + g(u) = f (t, x), (1.4)

where α ∈ (0,1]. The source-feedback map g is subject to the growth condition

|g(x,u)| ≤ a|u|σ−1 + b,

for 1 < σ < pn
n−p . The first existence theorem in Ref. 16 deals with the case σ < p which is

subcritical in our formulation below. And the supercritical scenario was only addressed under
a smallness assumption on the initial data Ref. 16, (2.6) and (2.7) p. 3.
• Ma and Soriano in Ref. 28 considered the equation

ut t − ∆nu − ∆ut + g(u) = f (t, x),
where g(u) is a dissipative source term, g(s)s ≥ 0 with the growth bound of the form e|s |n/(n−1)

withΩ ⊂ Rn, n ≥ 2.

Remark 1.1. The authors of Refs. 10 and 16 cited the above considered wave equations with the
pseudo-Laplacian operator ∆pu =


j

∂
∂x j

(| ∂u
∂x j

|p−2 ∂u
∂x j

) which is slightly different from (1.2).

In this paper, we prove well-posedness results for a more general range of nonlinear sources.
We focus on the more interesting situation of dimension n = 3 and exponent 2 < p < 3. For p = 2,
the principal part becomes linear, whereas for p ≥ 3, the topology of W 1,p

0 (Ω) permits consideration
of source terms with arbitrary large exponent, in accordance with the classical Sobolev embedding
results in 3D. The source f (u) considered in (1.1) need not be dissipative and is allowed to be of a
supercritical order. The “criticality” classification is chosen with respect to the associated Sobolev
embeddings. In particular, we assume that f ∈ C1(R) with the following polynomial growth rate at
infinity:

| f (s)| ≤ c|s|r for all |s| ≥ 1.

We follow the terminology introduced in Refs. 12 and 13:

• In view of the 3D embedding W 1,p
0 (Ω) ↩→ L

3p
3−p (Ω), with 2 ≤ p < 3, the source, if regarded as

a Nemytski operator f : W 1,p
0 (Ω) → L2(Ω), is locally Lipschitz for the values 1 ≤ r ≤ 3p

2(3−p) .
When the exponent r satisfies 1 ≤ r < 3p

2(3−p) , we call the source subcritical, and critical if

r = 3p
2(3−p) .

• If the exponent r satisfies
3p

2(3 − p) < r ≤ 4p − 3
3 − p

,

the source will be called supercritical, and in this case f is no longer locally Lipschitz contin-
uous from W 1,p

0 (Ω) into L2(Ω). However, for this range of exponents, the associated potential
energy functional
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1
p
∥∇u∥pp −


Ω

F(u(t))dx

is well-defined on the finite energy space (u,ut) ∈ W 1,p
0 (Ω) × L2(Ω); here, F denotes a primi-

tive of f .
• When 4p−3

3−p < r < 3p
3−p , the source is referred to by a somewhat lengthy, but now frequently

used term, super-supercritical. In this scenario, the potential energy may not be defined in
the finite energy space and the problem itself is no longer well-posed within the framework of
potential well theory (see Refs. 4, 26, 30, 39, and 40).

Remark 1.2. It is worth noting here that when the damping term −∆ut is absent, a source term
of the form |u|r−1u, with r > rp for some rp > 1 dependent on p, should drive the solution of (1.1) to
a blow-up in finite time. In such a scenario, by appealing to a variety of methods (going back to the
works of Glassey,18 Levine,25 and others), one can show that a large class of solutions to the problem
develop a singularity with respect to the natural energy topology in finite time. On the other hand,
if the source f (u) is removed from the equation, then it should possess global solutions (cf. Refs. 2,
5, 7, and 22). However, when both damping and source are present, the analysis of their interaction
and their influence on the global behavior of solutions becomes more difficult and has served as a
motivation for this study (see also other related results8,17,26,31,34,35 and the references therein).

Results on existence of solutions to the above problem have a non-trivial history. For second-
order problems, the quasi-nonlinearity of the p-Laplacian makes the system non-monotonic, which
prevents a direct application of nonlinear semigroup techniques. So the process of Galerkin approx-
imation will be invoked similarly to Refs. 10, 16, and 28. We adapt the strategy in Refs. 11, 14,
19–21, 28, 33, and 35 and show that (1.1) has local weak solutions even in the presence of supercrit-
ical sources. The details of the proof, however, are non-trivial when it comes to identifying the weak
limits associated to the p-Laplacian nonlinearities.

Despite this solution strategy being used previously (for more restrictive sources)
in this context, we believe that this is the first manuscript supplying comprehensive
details of such an existence argument. Our detailed approach also highlights the
crucial difficulty that would arise if the Kelvin-Voigt damping was replaced with an
m-Laplacian term ∆mut, m > 2. In that case, the simultaneous identification proce-
dure for the two weak limits, one for the p-Laplacian of u and the other for the
m-Laplacian of ut (even if m = p) cannot be carried out by the same methods. It
had been assumed in some previous works, e.g., Ref. 9 (which attempts to rely
on Refs. 29 and 10 that deal with a single p-Laplace operator in the equation),
that the Galerkin approach might trivially extend to the m-p model. That is not
the case and rigorous analysis of well-posedness for p-Laplacian/m-Laplacian (with
m, p > 2) second-order equation is presently missing from the literature, remaining
a challenging open problem.

In addition to the existence theorem with supercritical sources, the concluding result of this
article also verifies that solutions blow up in finite time provided the initial total energy is negative
and the source “dominates” the damping term in an appropriate sense.

C. Strategies and technical difficulties

Here, we outline the paper highlighting some of the technical steps in the arguments.
Section I D summarizes the standing assumptions on the nonlinear source term f and presents

the main results of the paper. In addition, the auxiliary result of Lemma 1.1 is nontrivial and plays
an important role in the proof of the energy inequality (see Section II E) and in the verification of the
existence result for more general sources (see Sections IV).

Sections II–IV focus on proving the existence of the local solutions. The strategy used to verify
the solvability of (1.1) can be summarized as follows:
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Step 1: For a source that corresponds to a globally Lipschitz Nemytski operator from W 1,p
0 (Ω)

into L2(Ω), we can construct a local solution by using Galerkin approximations. The
particular Galerkin approximations used here are similar to those in Refs. 10, 16, and 28,
but this manuscript supplies additional crucial details which cannot be omitted.

Step 2: Extend the existence result in Step 1 to confirm local existence of solutions in the case of
sources that are locally Lipschitz from W 1,p

0 (Ω) into L2(Ω) by using a standard truncation
argument (e.g., see Refs. 15 and 23). It is essential to demonstrate that the local existence
time T does not depend on the (local) Lipschitz constant of f , regarded as a map from a
bounded subset of W 1,p

0 (Ω) into L2(Ω), but rather depends on the corresponding constant
of the source f as a mapping from a subset of W 1,p

0 (Ω) into L6/5(Ω) (again, the exponents
are for 3D setting).

Step 3: Construct approximations of the original source that obey the requirements of Step 2 by
using smooth cut-off functions introduced in Ref. 32. Finally, pass to the limit in the weak
variational form for Galerkin approximations to conclude the existence of a local weak
solution to the original problem. An important ingredient in this argument is the energy
inequality

E(t) +
 t

0
∥∇ut(s)∥2

2 ds ≤ E(0),
where E(t) denotes the total energy of the system

E(t) B 1
2
∥ut(t)∥2

2 +
1
p
∥∇u(t)∥pp −


Ω

F(u(t))dx,

and F(u) =  u

0 f (s)ds.

Section V proves global existence of solutions as claimed in Theorem 1.4 for the case when
the exponent of the damping dominates that of the source. Here, the energy inequality also plays a
crucial role as well as the fact that

 t

0


Ω

f (u(τ))ut(τ)dxdτ =

Ω

F(u(t))dx −

Ω

F(u(0))dx, which is
non-trivial due to the lack of regularity.

Finally, Theorem 1.6 presented in Section VI verifies that solutions blow up in finite time
provided the initial total energy is negative and the exponent of the source dominates that of the
damping term. Due to the lack of regularity, we have to separately verify the product rule for deriv-
atives (Proposition A.1 in the Appendix) in general functional spaces which is one of the technical
challenges addressed in Section VI.

D. Preliminaries and main results

We begin by introducing some basic notation that will be used in the subsequent discussion.
Define the usual Lebesgue norms and the L2-inner-product

∥u∥r = ∥u∥Lr (Ω) and (u, v)Ω = (u, v)L2(Ω).

The duality pairing between the space W 1,p
0 (Ω) and its dual W−1,p′(Ω) will be denoted using the

form ⟨·, ·⟩p. According to Poincaré’s inequality, the standard norm ∥u∥
W

1,p
0 (Ω) is equivalent to the

norm ∥∇u∥p on W 1,p
0 (Ω). Henceforth, we put

∥u∥
W

1,p
0 (Ω) = ∥∇u∥p.

The following Sobolev embedding theorem in 3D will be invoked frequently:

W 1,p
0 (Ω) ↩→ L

3p
3−p (Ω), for 2 < p < 3. (1.5)

Throughout the paper, we assume the validity of the following assumption.

Assumption 1.1. Assume that

• the exponent of the p-Laplacian belongs to the range 2 < p < 3,
• the source feedback function f ∈ C1(R) satisfies for |s| ≥ 1
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| f (s)| ≤ c0|s|r , | f ′(s)| ≤ c1|s|r−1

for some constants c0, c1 > 0 where

1 ≤ r <
5p

2(3 − p) , (1.6)

• the initial data reside in the following function spaces: u0 ∈ W 1,p
0 (Ω) and u1 ∈ L2(Ω).

The assumption on source term is very general and f need not be locally Lipschitz continuous
form W 1,p

0 (Ω) into L2(Ω). However, one can still take advantage of the following lemma:

Lemma 1.1. Under Assumption 1.1, then for all sufficiently small ϵ, δ ∈ (0,1/2) satisfying
(1.8) and (1.17) below, respectively, we have

• f : W 1−ϵ,p(Ω) → L
6
5 (Ω) is locally Lipschitz continuous.

• f : W 1,p
0 (Ω) → L

6
5 (1+δ)(Ω) is locally Lipschitz continuous.

Proof. Let us identify ϵ > 0 such that for a given R > 0 and all u, v ∈ W 1−ϵ,p(Ω) with
∥u∥W 1−ϵ,p(Ω), ∥v∥W 1−ϵ,p(Ω) ≤ R, the following inequality holds:

∥ f (u) − f (v)∥6/5 ≤ CR∥u − v∥W 1−ϵ,p(Ω), (1.7)

where the constant CR > 0 is independent of u and v .
First note that by the restriction on r in (1.6), we can choose ϵ ∈ (0, 1

2 ) such that

0 < ϵ <

5p
2(3−p) − r

p
3−p r

=
5
2r
− 3 − p

p
. (1.8)

This inequality readily implies

1 ≤ r <
5p

2(pϵ + 3 − p) . (1.9)

It follows from the mean value theorem and Assumption 1.1 that

∥ f (u) − f (v)∥6/5
6/5 =


Ω

| f (u) − f (v)| 6
5 dx =


Ω

�
f ′(ξu, v)(u − v)�

6
5 dx

≤ C

Ω

|u − v | 6
5

�|u| 6
5 (r−1) + |v | 6

5 (r−1) + 1
�
dx. (1.10)

Having the embedding W 1−ϵ,p(Ω) ↩→ L
3p

pϵ+3−p (Ω) in mind (for instance, see Ref. 1), we employ
Hölder’s inequality in (1.10) with the conjugate exponents: α = 3p

6
5 (pϵ+3−p) and α′ = 3p

3p− 6
5 (pϵ+3−p) to

obtain

∥ f (u) − f (v)∥6/5
6/5 ≤ C ∥u − v∥ 6

5
3p

pϵ+3−p

(
∥u∥ 6

5 (r−1)
6
5 (r−1)α′ + ∥v∥ 6

5 (r−1)
6
5 (r−1)α′ + C1

)
, (1.11)

where C1 > 0 depends on Ω. It is easy to check that 3p
6
5 (pϵ+3−p) > 1 for all p ∈ [2,3) and all

ϵ ∈ [0,1/2]. According to inequality (1.9),

6
5
(r − 1)α′ = 3p · 6

5 (r − 1)
3p − 6

5 (pϵ + 3 − p)

<
6
5

(
5p

2(pϵ + 3 − p) − 1
)

3p
3p − 6

5 (pϵ + 3 − p) =
3p

pϵ + 3 − p
. (1.12)

Therefore, for any R > 0, and for all u, v ∈ W 1−ϵ,p(Ω) with ∥u∥W 1−ϵ,p(Ω), ∥v∥W 1−ϵ,p(Ω) ≤ R,

inequality (1.11) and the embedding W 1−ϵ,p(Ω) ↩→ L
3p

3−(1−ϵ)p (Ω) imply
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∥ f (u) − f (v)∥6/5
6/5 ≤ C ∥u − v∥ 6

5
W 1−ϵ,p(Ω)

(
∥u∥ 6

5 (r−1)
W 1−ϵ,p(Ω) + ∥v∥ 6

5 (r−1)
W 1−ϵ,p(Ω) + C1

)
≤ C(2R

6
5 (r−1) + C1) ∥u − v∥

6
5
W 1−ϵ,p(Ω) , (1.13)

which proves (1.7).
We now address the second bullet in the statement of the lemma. To this end, we will find δ > 0

such that for any R > 0, and for all u, v ∈ W 1,p
0 (Ω) with ∥u∥

W
1,p
0 (Ω), ∥v∥W 1,p

0 (Ω) ≤ R, the source f

satisfies

∥ f (u) − f (v)∥6(1+δ)/5 ≤ CR∥u − v∥W 1,p
0 (Ω), (1.14)

where CR > 0 is independent of u and v .
From the mean value theorem and Assumption 1.1, we conclude that

∥ f (u) − f (v)∥6(1+δ)/5
6(1+δ)/5 =


Ω

| f (u) − f (v)| 6
5 (1+δ)dx ≤


Ω

�
f ′(ξu, v)(u − v)�

6
5 (1+δ)dx

≤ C

Ω

|u − v | 6
5 (1+δ)�|u| 6

5 (1+δ)(r−1) + |v | 6
5 (1+δ)(r−1) + 1

�
dx. (1.15)

Invoke the embedding W 1,p
0 (Ω) ↩→ L

3p
3−p (Ω) and Hölder’s inequality with exponents α

=
3p

6
5 (1+δ)(pϵ+3−p) and α′ = 3p

3p− 6
5 (1+δ)(pϵ+3−p) to derive

∥ f (u) − f (v)∥6(1+δ)/5
6(1+δ)/5

≤ C ∥u − v∥ 6
5 (1+δ)

3p
[pϵ+3−p]

(
∥u∥ 6

5 (1+δ)(r−1)
6
5 (1+δ)(r−1)α′ + ∥v∥ 6

5 (1+δ)(r−1)
6
5 (1+δ)(r−1)α′ + C1

)
, (1.16)

where C1 > 0 depends only on the domainΩ.
Inequality (1.9) (with 0 < ϵ < 1/2 being the same as in (1.8)) implies that there exists some

δ ∈ (0,1/2) such that

0 <
6
5
(1 + δ)(r − 1)α′ < 3p

3 − p
. (1.17)

Therefore, for any R > 0 and for all u, v ∈ W 1,p
0 (Ω) with ∥u∥

W
1,p
0 (Ω), ∥v∥W 1,p

0 (Ω) ≤ R, the Sobolev

embedding W 1,p
0 (Ω) ↩→ L

3p
3−p (Ω) along with (1.17) imply

∥ f (u) − f (v)∥6(1+δ)/5
6(1+δ)/5 ≤ C ∥u − v∥ 6

5 (1+δ)
W

1,p
0 (Ω)

(
∥u∥ 6

5 (1+δ)(r−1)
W

1,p
0 (Ω) + ∥v∥ 6

5 (1+δ)(r−1)
W

1,p
0 (Ω) + C1

)
≤ C

�
2R

6
5 (1+δ)(r−1) + C1

� ∥u − v∥ 6
5 (1+δ)
W

1,p
0 (Ω) , (1.18)

which completes the proof of Lemma 1.1. �

In order to state our main results, we begin with a precise definition of a weak solution to (1.1).

Definition 1.2. A function u is said to be a weak solution of (1.1) on [0,T] if u ∈ Cw([0,T],
W 1,p

0 (Ω)), ut ∈ Cw([0,T],L2(Ω)) ∩ L2(0,T,W 1,2
0 (Ω)), (u(0),ut(0)) = (u0,u1) ∈ W 1,p

0 (Ω) × L2(Ω), and
u verifies the identity

(u′(t), φ)Ω − (u′(0), φ)Ω +
 t

0


Ω

|∇u(t)|p−2∇u(t) · ∇φdxdτ

+

 t

0


Ω

∇ut(t) · ∇φdxdτ =
 t

0


Ω

f (u(t))φdxdτ, (1.19)

for all test functions φ ∈ W 1,p
0 (Ω), and for almost everywhere t ∈ [0,T].

The first result establishes the existence of a weak solution of (1.1).
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Theorem 1.3 (Local solutions). Under the validity of Assumption 1.1, problem (1.1) has a
local weak solution u defined on [0,T] (in the sense of Definition 1.2) for some T > 0 which de-
pends only on the norms ∥u(0)∥

W
1,p
0 (Ω), ∥ut(0)∥2 and p. In addition, u satisfies the following energy

inequality:

E(t) +
 t

0
∥∇ut(s)∥2

2 ds ≤ E(0), (1.20)

for all t ∈ [0,T], where E(t) denotes the total energy of the system

E(t) B 1
2
∥ut(t)∥2

2 +
1
p
∥∇u(t)∥pp −


Ω

F(u(t))dx, (1.21)

and F(u) =  u

0 f (s)ds. Moreover, for all t ∈ [0,T] the following identity holds: t

0


Ω

f (u(τ))ut(τ)dxdτ =

Ω

F(u(t))dx −

Ω

F(u(0))dx. (1.22)

Remark 1.3. Note that no claims of uniqueness are made here.

The next theorem states that the weak solution described by Theorem 1.3 can be extended
globally to the time interval [0,∞) provided the source exponent is at most p/2.

Theorem 1.4 (Global solutions). In addition to Assumption 1.1, assume that r ≤ p
2 . Then, the

weak solution u furnished by Theorem 1.3 is a global solution and the existence time T can be taken
arbitrarily large.

In order to state our blow-up result, we need to impose additional assumptions on the source
term.

Assumption 1.5. Assume that the source map is given by

f (s) = (r + 1)|s|r−1s, where r ≥ 1.

In particular, f (s) = d
ds

F(s), where F(s) = |s|r+1, and s f (s) = (r + 1)F(s), for all s ∈ R.

Theorem 1.6 (Blow up in finite time). In addition to Assumptions 1.1 and 1.5, suppose that
r > p − 1 and the initial total energy is negative, E(0) < 0. Then, any weak solution u to (1.1)
provided by Theorem 1.3 blows up in some finite time. More precisely, lim supt→T− E(t) = ∞ for
some T < ∞, where E(t) is the positive energy given by

E(t) = 1
2
∥ut(t)∥2

2 +
1
p
∥∇u(t)∥pp .

II. LOCAL SOLUTIONS FOR GLOBALLY LIPSCHITZ SOURCES

The first step towards a proof Theorem 1.3 is Proposition 2.1 which deals with the case of
globally Lipschitz sources.

Proposition 2.1. In addition to Assumption 1.1, assume that f : W 1,p
0 (Ω) → L2(Ω) is globally

Lipschitz with a Lipschitz constant L > 0. Then, system (1.1) has a local weak solution u defined on
time-interval [0,T], for some T > 0 which depends on the norms of the initial data ∥u(0)∥

W
1,p
0 (Ω),

∥ut(0)∥2. In addition, u satisfies energy inequality (1.20) and identity (1.22).

Remark 2.1. Due to lack of regularity, energy inequality (1.20) is not a trivial corollary of the
existence result and will be proved in Section II E.

The proof of Proposition 2.1 will be carried out in five steps outlined in Subsections II A–II E.
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A. Approximate solutions

Our strategy here is to use suitable Galerkin approximations. Consider A = −∆ as an un-
bounded operator on L2(Ω) with the domain D(A) = W 1,2

0 (Ω) ∩W 2,2(Ω) (which relies on the fact
that Ω is bounded of class C2). It is well known that A is positive, self-adjoint, and A−1 is compact.
Moreover, A has an infinite sequence of positive eigenvalues (λ j)∞j=1 and a corresponding sequence
of eigenfunctions (w j)∞j=1 that forms an orthonormal basis for L2(Ω). Namely, if u ∈ L2(Ω), then
u =

∞
j=1 u jw j, with u j =

�
u, w j

�
Ω

and the convergence in the L2(Ω)-sense; the norm of u is given by

∥u∥2
2 =

∞
j=1

�
u j

�2.
Thus, Au =

∞
j=1 λ ju jw j and its domain can be equivalently characterized as

D(A) =


u =
∞
j=1

u jw j ∈ L2(Ω), ∥Au∥2
2 =

∞
j=1

λ2
j |u j |2 < ∞


.

This domain is itself a Hilbert space with the inner product

(u, v)D(A) =
∞
j=1

λ2
ju jv j and ∥u∥D(A) = ∥Au∥2, (2.1)

where u =
∞

j=1 u jw j and v =
∞

j=1 v jw j. Furthermore, the sequence (w j)∞j=1 forms an orthogonal

basis for D(A). Hence, for initial data (u0,u1) ∈ W 1,p
0 (Ω) × L2(Ω), we can find sequences of scalars�

u0
N, j; j = 1,2, . . . ,N

�∞
N=1 and (u1

j)∞j=1 such that

lim
N→∞

N
j=1

u0
N, jw j = u0, in W 1,p

0 (Ω), (2.2)

∞
j=1

u1
jw j = u1, in L2(Ω). (2.3)

Let VN denote the linear span of (w1, . . . , wN), and PN be the orthogonal projection from L2(Ω)
to VN . Let uN(t) = N

j=1 uN, j(t)w j be the approximate solution of (1.1) in VN , i.e., uN satisfies the
following system of ordinary differential equations:

�
u′′N(t), w j

�
Ω
+

�|∇uN(t)|p−2∇uN(t),∇w j

�
Ω

+
�
∇u′N(t),∇w j

�
Ω
=

�
PN( f (uN(t))), w j

�
Ω
, (2.4)

uN, j(0) = u0
N, j, u′N, j(0) = u1

j; for j = 1, . . . ,N. (2.5)

It is clear that (2.4) and (2.5) are an initial value problem for a second order 2N × 2N system of
ordinary differential equations with continuous nonlinearities in the unknown functions uN, j and
their time derivatives. Therefore, it follows from the Cauchy-Peano Theorem that for every N ≥ 1,
(2.4) and (2.5) have a solution uN, j ∈ C2[0,TN], j = 1, . . . N , for some TN > 0.

Remark 2.2. The projection PN can be discarded in (2.4) since
�
PN( f (uN(t))), w j

�
Ω
=

�
f (uN(t)), w j

�
Ω
, j = 1, . . . ,N.

However, we will keep PN in (2.4) to handle a technical step in obtaining estimate (2.13) below.

B. A priori estimates

Next we show that the existence time TN for system (2.4) can be replaced by some T > 0
independent of N ∈ N.

Proposition 2.2. Assume 2 < p < 3 and f : W 1,p
0 (Ω) → L2(Ω) is globally Lipschitz continuous

with a Lipschitz constant L > 0. Then, there exists a constant T > 0, independent of N ∈ N, such
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that the sequence of approximate solutions (uN)N to (2.4) and (2.5) satisfies the following:




(uN)N is a bounded sequence in L∞(0,T ; W 1,p
0 (Ω)),

(u′N)N is a bounded sequence in L∞
�
0,T ; L2(Ω)� ,

(u′N)N is a bounded sequence in L2(0,T,W 1,2
0 (Ω)),

(u′′N)N is a bounded sequence in L2(0,T ; W−1,p′(Ω)).
(2.6)

Proof. For any fixed N ∈ N, multiply (2.4) by u′N, j(t) and sum over j = 1, . . . ,N to obtain

1
2

d
dt

�
u′N(t)

�2
2 +

1
p

d
dt

∥∇uN(t)∥pp +
�
∇u′N(t)

�2
2 =


Ω

f (uN(t))u′N(t)dx. (2.7)

Replace t by τ in (2.7) and integrate over τ ∈ [0, t] to arrive at

1
2

�
u′N(t)

�2
2 +

1
p
∥∇uN(t)∥pp +

 t

0

�
∇u′N(τ)

�2
2 dτ

=
1
2

�
u′N(0)

�2
2 +

1
p
∥∇uN(0)∥pp +

 t

0


Ω

f (uN(τ))u′N(τ)dxdτ

≤ C
(
∥u0∥W 1,p

0 (Ω), ∥u1∥2

)
+

 t

0


Ω

f (uN(τ))u′N(τ)dxdτ. (2.8)

By using Hölder’s inequality and the fact that the map f : W 1,p
0 (Ω) → L2(Ω) is globally Lipschitz

continuous, the last term on right-hand side of (2.8) can be estimated as follows:
�����


Ω

f (uN(τ))u′N(τ)dx
�����
≤

Ω

� | f (uN(τ)) − f (0)| + | f (0)| � �
u′N

�
dx

≤
�∥ f (uN(τ)) − f (0)∥2 + ∥ f (0)∥2

��
u′N(τ)

�
2

≤
�
L∥∇uN(τ)∥p + c1

��
u′N(τ)

�
2, (2.9)

where c1 = ∥ f (0)∥2. By Poincaré’s and Young’s inequalities, we have
�����


Ω

f (uN(τ))u′N(τ)dx
�����
≤

≤ L
(

1
2λ

∥∇uN(τ)∥2
p +

λ

2
�
∇u′N(τ)

�2
2

)
+

(
1

2λ
c2

1 +
λ

2
�
∇u′N(τ)

�2
2

)
≤ C(L, λ, f (0))( ∥∇uN(τ)∥2

p + 1
)
+
λ

2
(L + 1) �

∇u′N(τ)
�2

2 , (2.10)

where (2.9) hold for all λ > 0. Let λ = 1
L+1 and yN(t) = 1

2
�
u′N(t)

�2
2 +

1
p
∥∇uN(t)∥pp, then (2.8) and

(2.10) imply that

yN(t) + 1
2

 t

0

�
∇u′N(τ)

�2
2 dτ ≤ C0 + C

 t

0
(yN(τ)) 2

p dτ, (2.11)

where C0 = C
�∥u0∥W 1,p

0 (Ω), ∥u1∥2,L, f (0)� > 0 and C > 0 is some constant dependent on p, L, and

f (0). In particular, yN satisfies the inequality

yN(t) ≤ C0 + C
 t

0
(yN(τ)) 2

p dτ. (2.12)

By a standard comparison theorem (see, for instance, Ref. 24), inequality (2.12) yields

yN(t) ≤ z(t), where z(t) =

C

1− 2
p

0 + C
(
1 − 2

p

)
t
 1

1− 2
p

is the solution of the Volterra integral equation

z(t) = C0 + C
 t

0
(z(τ)) 2

p dτ.
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Let us note that since 2 < p < 3, then z(t) is defined for all t. Therefore, we can select T > 0 such
that yN(t) ≤ z(t) ≤ CT < ∞ for all t ∈ [0,T], where CT is independent of N . Hence, for all N ≥ 1,
the bound yN(t) ≤ CT holds on [0,T], establishing the first two claims in (2.6). The third claim
follows immediately from (2.11).

Finally, to prove the last statement in (2.6) let

S =
 N

j=1

α jw j : α j ∈ R, N ∈ N

.

Since S is dense in W 1,p
0 (Ω), then for any φ ∈ W 1,p

0 (Ω) there exists a sequence (φ j)∞j=1 ⊂ S such that

lim
j→∞

φ j = φ in W 1,p
0 (Ω). Apply identity (2.4) with w j = φ j and take the limit j → ∞ to obtain

|
u′′N(t), φ
�
p
| = �
−

�|∇uN |p−2∇uN ,∇φ
�
Ω
−

�
∇u′N ,∇φ

�
Ω
+

�
PN( f (uN)), φ�

Ω

�

≤ ∥∇uN ∥p−1
p ∥∇φ∥p +

�
∇u′N

�
2∥∇φ∥2 + ∥ f (uN)∥2∥φ∥2

≤ C(∥∇uN ∥p−1
p +

�
∇u′N

�
2 + ∥ f (uN)∥2)∥φ∥W 1,p

0 (Ω)

≤ C(∥∇uN ∥p−1
p +

�
∇u′N

�
2 + ∥ f (uN) − f (0)∥2 + ∥ f (0)∥2)∥φ∥W 1,p

0 (Ω)

≤ C(∥∇uN ∥p−1
p +

�
∇u′N

�
2 + L∥∇uN ∥p + ∥ f (0)∥2)∥φ∥W 1,p

0 (Ω), (2.13)

where we have appealed to the assumption that f : W 1,p
0 (Ω) → L2(Ω) is Lipschitz. Hence,�

u′′N(t)
�
W−1,p′(Ω) ≤ C(∥∇uN(t)∥p−1

p +
�
∇u′N(t)

�
2 + L∥∇uN(t)∥p + ∥ f (0)∥2), for all t ∈ [0,T]. There-

fore, by using the first three claims in (2.6) it follows that
�
u′′N

�
W−1,p′(Ω) ∈ L2(0,T) with the norm

bound independent of N . This step completes the proof. �

The following corollary is an immediate consequence from Proposition 2.2 and standard
compactness results (see, for instance, Refs. 36 and 38).

Corollary 2.3. Assume the sequence of approximate solutions (uN)N satisfies (2.6). Then, there
exist a function u and a subsequence of (uN)N (again reindexed by N), such that

uN → u weakl y∗ in L∞(0,T ; W 1,p
0 (Ω)), (2.14)

u′N → u′ weakl y∗ in L∞(0,T ; L2(Ω)), (2.15)

uN → u strongl y in L∞(0,T ; W 1−ϵ,p(Ω), (2.16)

u′N → u′ strongl y in L2(0,T ; L2(Ω)), (2.17)

u′N → u′ weakl y in L2(0,T ; W 1,2
0 (Ω)), (2.18)

where ϵ > 0 is as defined in Lemma 1.1.

C. Passage to the limit

By integrating (2.4) over t ∈ [0,T], we obtain

(u′N(t), w j)Ω − (u′N(0), w j)Ω +
 t

0


Ω

(|∇uN |p−2∇uN · ∇w j

)
dxdτ

+

 t

0


Ω

∇u′N · ∇w jdxdτ =
 t

0


Ω

f (uN)w jdxdτ. (2.19)

In order to pass to the limit in (2.19), we shall need several auxiliary results. The following lemma
addresses the last term in (2.19).
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Lemma 2.4. If sequence (uN)N satisfies (2.6) and f : W 1,p
0 (Ω) → L2(Ω) is globally Lipschitz

with the Lipschitz constant L > 0, then there exists a subsequence (uN)N (re-indexed again by N)
which satisfies

f (uN) → f (u) weakl y∗ in L∞(0,T ; L2(Ω)). (2.20)

Proof. Since f : W 1,p
0 (Ω) → L2(Ω) is globally Lipschitz continuous and (uN)N is bounded in

L∞(0,T ; W 1,p
0 (Ω)), then for all t ∈ [0,T]

∥ f (uN(t))∥2 = ∥ f (uN(t)) − f (0) + f (0)∥2 ≤ ∥ f (uN(t)) − f (0)∥2 + ∥ f (0)∥2

≤ L∥uN(t)∥W 1,p
0 (Ω) + | f (0)∥Ω| 1

2 ≤ LCT + | f (0)∥Ω| 1
2 < ∞. (2.21)

Thus, ( f (uN))N is a bounded sequence in L∞(0,T ; L2(Ω)) and thus, there exists ξ ∈ L∞(0,T ; L2(Ω))
such that, for a suitable subsequence

f (uN) → ξ weakly∗ in L∞(0,T ; L2(Ω)).
However, (2.16) implies that there is a subsequence (still denoted as (uN)N) such that uN → u

almost everywhere inΩ × [0,T]. Consequently, by the continuity of f , one has

f (uN) → f (u) point-wise a.e. on Ω × [0,T].
A standard analysis result implies

f (uN) → f (u) weakly in L2(Ω × [0,T]).
Hence, ξ = f (u) almost everywhere inΩ × [0,T], completing the proof of Lemma 2.4. �

Remark 2.3. Lemma 2.4 implies that

lim
N→∞

 t

0


Ω

f (uN)w jdxdτ =
 t

0


Ω

f (u)w jdxdτ, for all j ∈ N.

The next result addresses the passage to the limit in the term containing the p-Laplacian.
Indeed, identifying the weak limit of the sequence (∆puN)N with ∆pu is a key step in the proof.

Lemma 2.5. Let X = Lp(0,T ; W 1,p
0 (Ω)). If (uN)N and u satisfy (2.14)-(2.18), then

∆puN → ∆pu weakl y in X∗, (2.22)

where X∗ = Lp′(0,T ; W−1,p′(Ω)) is the dual of X.

Proof. Since 1
p
+ 1

p′ = 1, we note that t

0


Ω

�
∇uN |p−2∇uN

�p′dxds =
 t

0
∥∇uN ∥pp ≤ CT , for all t ∈ [0,T]. (2.23)

Thus, (|∇uN |p−2∇uN)N is a bounded sequence in
�
Lp′(0,T ; Lp′(Ω))�3 and so, there exists a (re-

indexed) subsequence such that

|∇uN |p−2∇uN → ψ weakly in
�
Lp′(0,T ; Lp′(Ω))�3

, (2.24)

for some ψ ∈
�
Lp′(0,T ; Lp′(Ω))�3.

Let φ ∈ X and ⟨·, ·⟩(X∗,X ) be the duality pairing between X ∗ and X , then from (2.24), we have, as
N → ∞,

⟨−∆puN , φ⟩(X∗,X ) =
 T

0


Ω

|∇uN |p−2∇uN · ∇φdxds →
 T

0


Ω

ψ · ∇φdxds.

Thus, (−∆puN)N converges weakly* in X ∗. By a standard theorem (see Ref. 43, Theorem 7 p.124
for instance), X ∗ is sequentially weakly complete. Hence, there is η ∈ X ∗ such that

− ∆puN → η weakly in X ∗. (2.25)
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In order to show that η coincides with −∆pu in X ∗ we will use the fact that the operator
−∆p : X → X ∗ is maximal monotone (see Ref. 35, for example). It follows from (2.14), (2.25), and
[Ref. 6, Lemma 1.3 (p. 49) ] that η = −∆pu in X ∗, provided we demonstrate the inequality

lim sup
N→∞

⟨−∆puN − η, uN − u⟩(X∗,X ) ≤ 0. (2.26)

In order to establish (2.26), we first note that

⟨−∆puN − η,uN − u⟩(X∗,X )
= ⟨−∆puN ,uN⟩(X∗,X ) − ⟨−∆puN ,u⟩(X∗,X ) − ⟨η,uN − u⟩(X∗,X ).

(2.27)

Now recall (2.14), which implies that uN → u weakly in X . Hence,

lim
N→∞

⟨η,uN − u⟩(X∗,X ) = 0. (2.28)

We also note that (2.25) yields

lim
N→∞

⟨−∆puN ,u⟩(X∗,X ) = ⟨η,u⟩(X∗,X ). (2.29)

Now taking lim supN→∞ on both sides of (2.27), we obtain

lim sup
N→∞

⟨−∆puN − η, uN − u⟩(X∗,X )

= lim sup
N→∞

⟨−∆puN , uN⟩(X∗,X ) − ⟨η,u⟩(X∗,X ).
(2.30)

Thus, (2.26) will follow if we prove

lim sup
N→∞

⟨−∆puN , uN⟩(X∗,X ) = lim sup
N→∞

 T

0


Ω

|∇uN |p−2∇uN(τ) · ∇uN(τ)dxdt

≤ ⟨η,u⟩(X∗,X ).
(2.31)

We will demonstrate (2.31) in the following two steps.
Step 1. We claim that for almost everywhere t ∈ [0,T] and for an appropriate subsequence of

(uN)N we have

lim sup
N→∞

 t

0


Ω

|∇uN |p−2∇uN(τ) · ∇uN(τ)dxdτ

≤ −(u′(t),u(t))Ω + (u′(0),u(0))Ω +
 t

0
∥u′(τ)∥2

2 dτ

−1
2
(∥∇u(t)∥2

2 − ∥∇u(0)∥2
2) +

 t

0


Ω

f (u(τ))u(τ)dxdτ. (2.32)

In order to verify (2.32) fix N ∈ N. Then, multiply (2.4) by uN, j(t) and sum over j = 1, . . . ,N , to
arrive at

(u′′N(t),uN(t))Ω + (|∇uN |p−2∇uN(t),∇uN(t))Ω + (∇u′N(t),∇uN(t))Ω
= ( f (uN(t)),uN(t))Ω. (2.33)

Relabel t by τ and integrate identity (2.33) over τ ∈ [0, t] to obtain t

0


Ω

|∇uN |p−2∇uN(τ) · ∇uN(τ)dxdτ

= −(u′N(t),uN(t))Ω + (u′N(0),uN(0))Ω +
 t

0

�
u′N(τ)

�2
2 dτ

−1
2
(∥∇uN(t)∥2

2 − ∥∇uN(0)∥2
2) +

 t

0


Ω

f (uN(τ))uN(τ)dxdτ. (2.34)

Next, we handle each term in (2.34) as follows.
The term (u′N(t), uN(t))Ω. From (2.16), we know that there exists a subsequence of (uN)N , still
denoted by (uN)N , such that ∥uN − u∥2 → 0 in L2(0,T). Hence, on a subsequence, uN(t) → u(t)
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strongly in L2(Ω) for almost everywhere t ∈ [0,T]. Likewise, it follows from (2.17) that there exists
a subsequence of (u′N)N , re-indexed by N , such that u′N(t) → u′(t) strongly in L2(Ω) for almost
everywhere t ∈ [0,T]. Then, from (2.6), (2.16), and (2.17) we conclude that

lim
N→∞

(u′N(t),uN(t))Ω = (u′(t),u(t))Ω for a.e. t ∈ [0,T]. (2.35)

The term (u′N(0), uN(0))Ω. From (2.2) and (2.3), we know that uN(0) → u(0) strongly and u′N(0) →
u′(0) strongly in L2(Ω). Therefore,

lim
N→∞

(u′N(0),uN(0))Ω = (u′(0),u(0))Ω. (2.36)

The term
 t

0
�
u′N(τ)

�2
2 dτ. It follows immediately from (2.17) that

lim
N→∞

 t

0

�
u′N(t)

�2
2 dτ =

 t

0
∥u′(t)∥2

2 dτ for all t ∈ [0,T]. (2.37)

The term − ∥∇uN(t)∥2
2. Invoke Proposition A.2 in the Appendix, and results (2.14), (2.16). Conclude

that there exists a subsequence of (uN)N , still denoted as (uN)N , such that uN(t) → u(t) weakly in
H1

0(Ω) for almost everywhere t ∈ [0,T]. By the weak lower semicontinuity of the Lp norms, we
conclude that for almost everywhere t ∈ [0,T],

lim sup
N→∞

− ∥∇uN(t)∥2
2 = − lim inf

N→∞
∥∇uN(t)∥2

2 ≤ − ∥∇u(t)∥2
2 . (2.38)

The term ∥∇uN(0)∥2
2. An immediate consequence of (2.2) is that

lim
N→∞

∥∇uN(0)∥2
2 = ∥∇u(0)∥2

2 . (2.39)

The term
 t

0

Ω f(uN(τ))uN(τ)dxdτ. From (2.20) and (2.16), we conclude that

lim
N→∞

 t

0


Ω

f (uN(τ))uN(τ)dxdτ =
 t

0


Ω

f (u(τ))u(τ)dxdτ. (2.40)

Finally, take lim sup as N → ∞ on both the sides of (2.34) and combine (2.35)-(2.40). Then,
(2.32) follows.

Step 2. Here, we show that
 t

0 ⟨η, u(τ)⟩pdτ is equal to the right-hand side of (2.32) for almost
everywhere t ∈ [0,T], t

0
⟨η,u(τ)⟩pdτ = −(u′(t),u(t))Ω + (u′(0),u(0))Ω +

 t

0
∥u′(τ)∥2

2 dτ

− 1
2
(∥∇u′(t)∥2

2 − ∥∇u(0)∥2
2) +

 t

0
( f (u(τ)),u(τ))Ωdτ. (2.41)

In order to establish (2.41), fix j ∈ N, multiply (2.4) by an arbitrary function θ ∈ C1[0,T], and
integrate it from 0 to t to obtain

(u′N(t), θ(t)w j)Ω − (u′N(0), θ(0)w j)Ω −
 t

0
(u′N(τ), θ ′(τ)w j)Ωdτ

+

 t

0
⟨−∆puN , θ(τ)w j⟩pdτ +

 t

0
(∇u′N(τ), θ(τ)∇w j)Ωdτ

=

 t

0
( f (uN(τ)), θ(τ)∇w j)Ωdτ. (2.42)

We now pass to the limit in (2.42) term by term.

• It has already been shown that u′N(t) → u′(t) strongly in L2(Ω) for almost everywhere t ∈
[0,T], and u′N(0) → u′(0) strongly in L2(Ω). Consequently,

lim
N→∞

(u′N(t), θ(t)w j)Ω = (u′(t), θ(t)w j)Ω for a.e. t ∈ [0,T], (2.43)

lim
N→∞

(u′N(0), θ(0)w j)Ω = (u′(0), θ(0)w j)Ω. (2.44)
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• It follows directly from (2.17) and (2.18) that

lim
N→∞

 t

0
(u′N(τ), θ ′(τ)w j)Ωdτ =

 t

0
(u′(τ), θ ′(τ)w j)Ωdτ for all t ∈ [0,T], (2.45)

lim
N→∞

 t

0
(∇u′N(τ), θ(τ)∇w j)Ωdτ =

 t

0
(∇u′(τ), θ(τ)∇w j)Ωdτ. (2.46)

• From (2.25) and (2.20), we obtain

lim
N→∞

 t

0
⟨−∆puN , θ(τ)w j⟩pdτ =

 t

0
⟨η,θ(τ)w j⟩pdτ, (2.47)

lim
N→∞

 t

0
( f (uN(τ)), θ(τ)w j)Ωdτ =

 t

0
( f (u(τ)), θ(τ)w j)Ωdτ. (2.48)

Take the limit as N → ∞ on both sides of (2.42) and combine (2.43)–(2.48), to derive t

0
⟨η,θ(τ)w j⟩pdτ = −(u′(t), θ(t)w j)Ω + (u′(0), θ(0)w j)Ω

+

 t

0
(u′(τ), θ ′(τ)w j)Ωdτ −

 t

0
(∇u′(τ), θ(τ)∇w j)Ωdτ

+

 t

0
( f (u(τ)), θ(τ)w j)Ωdτ for all j ∈ N, a.e. t ∈ [0,T]. (2.49)

Since (2.49) holds for each j ∈ N, we may replace θ(τ)w j by uN(τ) to get t

0
⟨η,uN(τ)⟩pdτ = −(u′(t),uN(t))Ω + (u′(0),uN(0))Ω

+

 t

0
(u′(τ),u′N(τ))Ωdτ −

 t

0
(∇u′(τ),∇uN(τ))Ωdτ

+

 t

0
( f (u(τ)),uN(τ))Ωdτ for a.e. t ∈ [0,T]. (2.50)

Let us note here that (2.14) implies that ∇uN → ∇u weakly in L2(0,T ; L2(Ω)). Whence,

lim
N→∞

 t

0
(∇u′(τ),∇uN(τ))Ωdτ =

 t

0
(∇u′(τ),∇u(τ))Ωdτ

=
1
2
(∥∇u(t)∥2

2 − ∥∇u(0)∥2
2), for all t ∈ [0,T]. (2.51)

By recalling the already established properties of (a subsequence of) (uN)N : (2.2), (2.14), (2.16),
(2.17), and (2.51), we can pass to the limit in (2.50) to verify (2.41).

Now, it follows from (2.32), (2.41) and Ref. 6, Lemma 1.3 (p. 49) that

η = −∆pu in Lp′(0, t; W−1,p′(Ω))
for almost everywhere t ∈ [0,T], which completes the proof of Lemma 2.5. �

1. Verification that the limit is a weak solution

Here, we show that u satisfies equality (1.19) in Definition 1.2 of weak solutions. More pre-
cisely, for almost everywhere t ∈ [0,T] and for all φ ∈ W 1,p

0 (Ω), u must satisfy

(u′(t), φ)Ω − (u′(0), φ)Ω = −
 t

0

�|∇u|p−2∇u,∇φ
�
Ω

dτ

−
 t

0
(∇ut,∇φ)Ωdτ +

 t

0
( f (u(τ)), φ)Ωdτ.

(2.52)
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From the fact that η = −∆pu (provided in Lemma 2.5), we know that taking θ(t) = 1 in (2.49) gives

(u′(t), w j)Ω − (u′(0), w j)Ω +
 t

0
⟨−∆pu, w j⟩pdτ +

 t

0
(∇u′(τ),∇w j)Ωdτ

=

 t

0
( f (u(τ)), w j)Ωdτ for all j ∈ N, and for a.e. t ∈ [0,T].

(2.53)

Since S =
� N

j=1 α jw j : α j ∈ R,N ∈ N
	

is dense in W 1,p
0 (Ω), then for any φ ∈ W 1,p

0 (Ω) there ex-

ists a sequence (φn)∞n=1 ⊂ S such that lim
n→∞

φn = φ in W 1,p
0 (Ω). Thus, by replacing w j by φn in (2.53),

we have

(u′(t), φn)Ω − (u′(0), φn)Ω +
 t

0
⟨−∆pu, φn⟩pdτ +

 t

0
(∇u′(τ),∇φn)Ωdτ

=

 t

0
( f (u(τ)), φn)Ωdτ.

(2.54)

Take the limit as n → ∞ on both sides of (2.54) to verify that (2.52) holds for arbitrary φ ∈ W 1,p
0 (Ω)

and almost everywhere t ∈ [0,T].

D. Additional regularity in time

At this point, recall that the constructed weak solution u of (1.1) satisfies u ∈ L∞(0,T ; W 1,p
0 (Ω)),

ut ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; W 1,2
0 (Ω)), and u satisfies equality (1.19). We still need to check

that u ∈ Cw([0,T],W 1,p
0 (Ω)), and ut ∈ Cw([0,T],L2(Ω)). In order to do so, the following lemma

addressing the regularity of u′′will be needed.

Lemma 2.6. Assume that u ∈ L∞(0,T ; W 1,p
0 (Ω)), u′ ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; W 1,2

0 (Ω)), and
u satisfies (1.19). Then,

∆pu ∈ L∞(0,T ; W−1,p′(Ω)), ∆u′ ∈ L2(0,T ; W−1,p′(Ω))
and

u′′ ∈ L2(0,T ; W−1,p′(Ω)),
where W−1,p′(Ω) is the dual space of W 1,p

0 (Ω).
Proof. Let ⟨·, ·⟩ denote the duality pairing between W−1,p′(Ω) and W 1,p

0 (Ω) or the duality pair-
ing between W−1,2(Ω) and W 1,2

0 (Ω). Now, the fact that ∆pu ∈ L∞(0,T ; W−1,p′(Ω)) is trivial, since
u ∈ L∞(0,T ; W 1,p

0 (Ω)) and
�⟨∆pu(t), φ⟩� = ��|∇u|p−2∇u,∇φ

�
Ω

�
≤ C∥u(t)∥p−1

W
1,p
0 (Ω)∥φ∥W 1,p

0 (Ω)

≤ CT ∥φ∥W 1,p
0 (Ω), for every φ ∈ W 1,p

0 (Ω) and all t ∈ [0,T]. (2.55)

Similarly, because ∇u′ ∈ L2(0,T ; L2(Ω)), one can show that

|⟨∆u′(t), φ⟩| = |(∇u′(t),∇φ(t))Ω| ≤ ∥∇u′∥2∥∇φ∥2 ≤ C∥∇u′∥2∥φ∥W 1,p
0 (Ω), (2.56)

for every φ ∈ W 1,p
0 (Ω) and all t ∈ [0,T].

It follows from (2.52) and (2.21) that for every φ ∈ W 1,p
0 (Ω),

|⟨u′′(t), φ⟩| =
�����

d
dt
⟨u′(t), φ⟩

�����
=

�����
d
dt
(u′(t), φ)Ω

�����
≤

��|∇u|p−2∇u,∇φ
�
Ω

�
+ |(∇u′,∇φ)Ω| + |( f (u), φ)Ω| (2.57)

≤ C∥u∥
W

1,p
0 (Ω)∥φ∥W 1,p

0 (Ω) + C∥u′∥
W 1,2

0 (Ω)∥φ∥W 1,p
0 (Ω) + (LCT + ∥ f (0)∥2)∥φ∥2.

Estimates (2.55) and (2.56) imply u′′ ∈ L2(0,T ; W−1,p′(Ω)). �
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Thus, so far, we have proven

u ∈ L∞(0,T ; W 1,p
0 (Ω)), ut ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; W 1,2

0 (Ω)),
In addition, u verifies equality (1.19) and satisfies the conclusion of Lemma 2.6. It now follows from
standard results Ref. 27, Lemmas 8.1 and 8.2, pp. 275–276 (after possibly a modification on a set of
measure zero) that

u ∈ Cw([0,T],W 1,p
0 (Ω)) and ut ∈ Cw([0,T],L2(Ω)) (2.58)

as required by Definition 1.2.

E. Proof of the energy inequality

We show here that any weak solution u to (1.1) described by Proposition 2.1 satisfies energy
inequality (1.20) and equality (1.22).

Proof. Multiply (2.4) by u′N, j(t), sum over j = 1,2, . . . ,N , and integrate on [0, t], t

0


Ω

u′′N(τ)u′N(τ)dxdτ +
 t

0


Ω

|∇uN |p−2∇uN · ∇u′N(τ)dxdτ

+

 t

0

�
∇u′N(τ)

�2
2 dτ =

 t

0


Ω

f (uN(τ))u′N(τ)dxdτ. (2.59)

Since uN is regular, then

d
dt

(
1
2

�
u′N(τ)

�2
2

)
=


Ω

u′′N(τ)u′N(t)dx, (2.60)

d
dt

(
1
p
∥∇uN(τ)∥pp

)
=


Ω

|∇uN |p−2∇uN · ∇u′N(t)dx, (2.61)

d
dt


Ω

F(uN(t))dx =

Ω

f (uN(t))u′N(t)dx. (2.62)

Define

EN(t) = 1
2

�
u′N(τ)

�2
2 +

1
p
∥∇uN(τ)∥pp −


Ω

F(uN(t))dx,

then it follows from (2.59)–(2.62) that

EN(t) +
 t

0

�
∇u′N(τ)

�2
2 dτ = EN(0). (2.63)

Next, we pass to the limit in (2.63). First, by mean value theorem, we have
�����


Ω

F(uN(t)) − F(u(t))dx
�����
≤

Ω

| f (ξ)| |uN(t) − u(t)| dx

≤

Ω

c(|uN(t)|r + |u(t)|r + 1) |uN(t) − u(t)| dx, (2.64)

where r is as defined in (1.6), and ξ = λuN(t) + (1 − λ)u(t) for some λ ∈ (0,1). All the terms on
the right-hand side of (2.63) can be estimated in the same manner. In particular, we can find 1 < δ,
δ′ < 3p

3−p with 1
δ
+ 1

δ′ = 1 such that
Ω

|uN(t) − u(t)| |uN |rdx ≤ ∥uN(t) − u(t)∥δ ∥uN(t)∥rrδ′ . (2.65)

Specifically, we can pick δ = 3p(1−ϵ)
3−p and δ′ = 3p(1−ϵ)

4p−3−3pϵ for some small enough ϵ > 0; indeed, for

any 0 < ϵ < 2(4p−3)
p
− 5 ≤ 1, we have δ′ < 6

5 and rδ′ < 6
5 ·

5p
2(3−p) =

3p
3−p .

Since (uN)N is bounded in L∞(0,T ; W 1,p
0 (Ω)) and the (3D) embedding : W 1,p

0 (Ω) ↩→ Ls(Ω)
is compact for all 1 ≤ s < 3p

3−p , then for a subsequence, still denoted as (uN)N , we have uN → u
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strongly in L∞(0,T ; Lδ(Ω)). In addition, (uN)N is bounded in L∞(0,T ; Lrδ′(Ω)). Therefore, it fol-
lows from (2.65) that

Ω

|uN(t) − u(t)| |uN |rdx ≤ ∥uN(t) − u(t)∥δ ∥uN(t)∥rrδ′ → 0, (2.66)

as N → ∞, for almost everywhere t ∈ [0,T]. Similarly, one can prove that
Ω

( |uN(t) − u(t)| |u|r + |uN(t) − u(t)| )dx → 0, (2.67)

as N → ∞, for almost everywhere t ∈ [0,T].
Combine (2.64)–(2.67) to conclude

lim
N→∞


Ω

F(uN(t))dx =

Ω

F(u(t))dx. (2.68)

Also, since uN(0) → u(0) strongly in W 1,p
0 (Ω), we have

lim
N→∞


Ω

F(uN(0))dx =

Ω

F(u(0))dx. (2.69)

Next, recall (2.14), (2.18), (2.63), (2.68), and appeal to the weak lower semicontinuity of the Lq

norms. Then, one has for almost everywhere t ∈ [0,T],

E(t) +
 t

0
∥∇u′(τ)∥2

2 dτ ≤ lim inf
N→∞

�
EN(t) +

 t

0

�
∇u′N(τ)

�2
2 dτ

�
= lim inf

N→∞
EN(0). (2.70)

Since (uN(0),uN(0)′) → (u(0),u′(0)) strongly in W 1,p
0 (Ω) × L2(Ω) then with the help of (2.69) we

have

lim
N→∞

EN(0) = E(0). (2.71)

Therefore, energy inequality (1.20) follows.
Now let us prove another version of energy inequality which will be needed in Section III,

E(t) +
 t

0
∥∇ut(τ)∥2

2 dτ ≤ E(0) +
 t

0


Ω

f (u(τ))ut(τ)dxdτ (2.72)

for all t ∈ [0,T], where E(t) = 1
2 ∥ut(t)∥2

2 +
1
p
∥∇u(t)∥pp. To verify (2.72), we need to show equality

(1.22): for almost everywhere t ∈ [0,T]
Ω

F(u(t))dx −

Ω

F(u(0))dx =
 t

0


Ω

f (u(τ))ut(τ)dxdτ. (2.73)

It follows from (2.62),(2.68), and (2.69) that
Ω

F(u(t))dx −

Ω

F(u(0))dx = lim
N→∞

(
Ω

F(uN(t))dx −

Ω

F(uN(0))dx
)

= lim
N→∞

 t

0


Ω

f (uN(τ))u′N(τ)dxdτ.

Therefore, (2.73) holds provided we show that

lim
N→∞

 t

0


Ω

f (uN(τ))u′N(τ)dxdτ =
 t

0


Ω

f (u(τ))u′(τ)dxdτ, a.e. t ∈ [0,T]. (2.74)

From Lemma 1.1, we know that f : W 1,p
0 (Ω) → L

6
5 (1+δ)(Ω) is locally Lipschitz continuous, and also

f : W 1−ϵ,p(Ω) → L
6
5 (Ω) is locally Lipschitz continuous. Then, by Hölder’s inequality, we have

�����

 t

0


Ω

(
f (uN(τ))u′N(τ) − f (u(τ))u′(τ))dxdτ

�����

≤
 t

0


Ω

�
f (uN)(u′N − u′)� dxdτ +

 t

0


Ω

| f (uN) − f (u)| |u′(τ)| dxdτ
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≤
 t

0
∥ f (uN)∥ 6(1+δ)

5

�
u′N − u′

�
6(1+δ)
1+6δ

dτ +
 t

0
∥ f (uN) − f (u)∥ 6

5
∥u′(τ)∥6dτ

≤ Cf

(  t

0
(∥uN ∥W 1,p

0 (Ω) + 1)�u′N − u′
�

6(1+δ)
1+6δ

dτ +
 t

0
∥uN − u∥W 1−ϵ,p(Ω)∥u′(τ)∥6dτ

)
≤ Cf ,T

((∥uN ∥L∞(0,T ;W 1,p
0 (Ω)) + 1)�u′N − u′

�
L2(0,T ;Lθ(Ω))

+ ∥uN − u∥L∞(0,T ;W 1−ϵ,p(Ω))∥u′(τ)∥L2(0,T ;L6(Ω))
)
, (2.75)

where θ = 6(1+δ)
1+6δ < 6. Since u′ ∈ L2(0,T ; W 1,2(Ω)), then the Sobolev embedding W 1,2(Ω) ↩→ L6(Ω)

gives u′ ∈ L2(0,T ; L6(Ω)). So, by (2.16) we conclude that

lim
N→∞

∥uN − u∥L∞(0,T ;W 1−ϵ,p(Ω))∥u′(τ)∥L2(0,T ;L6(Ω)) = 0. (2.76)

Since the embedding W 1,2
0 (Ω) ↩→ Lθ(Ω) is compact and (u′′N)N is bounded in the space L2(0,T ;

W−1,p′(Ω)), then by Aubin’s compactness theorem, there exists a subsequence of (u′N)N , still de-
noted as (u′N)N , such that u′N → u′ strongly in L2(0,T ; Lθ(Ω)). It follows from (2.6) that

lim
N→∞

�∥uN ∥L∞(0,T ;W 1,p
0 (Ω)) + 1

��
u′N − u′

�
L2(0,T ;Lθ(Ω)) = 0. (2.77)

Combine (2.75), (2.76), and (2.77) to get (2.74). The proof of Proposition 2.1 is now complete. �

III. LOCAL SOLUTION FOR LOCALLY LIPSCHITZ SOURCES

In this subsection, we relax the conditions on the source term and allow f to be locally
Lipschitz from W 1,p

0 (Ω) into L2(Ω).
Proposition 3.1. In addition to Assumption 1.1, assume that f : W 1,p

0 (Ω) → L2(Ω) is locally
Lipschitz. Then, system (1.1) has a local weak solution u, in the sense of Definition 1.2, on [0,T0]
for some T0 > 0 dependent on initial data u0,u1, f (0), and the appropriate local Lipschitz constant
of the mapping f : W 1,p

0 (Ω) → L
6
5 (Ω). Moreover, u satisfies energy inequality (1.20) and equality

(1.22).

Remark 3.1. By assumption, the mapping f : W 1,p
0 (Ω) → L

6
5 (Ω) is a fortiori locally Lipschitz.

However, it is essential to note here that the local existence time T in Proposition 3.1 does not
depend on the local Lipschitz constant of f as a map from W 1,p

0 (Ω) to L2(Ω).
Proof. We use a standard truncation of the sources (for instance, Refs. 14 and 15). Let E(t) =

1
2 ∥ut(t)∥2

2 +
1
p
∥∇u(t)∥pp denote the positive energy and put

fK(u) =



f (u), if ∥∇u∥p ≤ K,

f
(

Ku
∥∇u∥p

)
, if ∥∇u∥p > K,

where K is a positive constant such that K2 > 4E(0).
With the truncation of the source above, we consider the following “(K)” problem:

(K)



ut t − ∆pu − ∆ut = fK(u) in Ω × (0,T),�
u(0),ut(0)� ∈ W 1,p

0 (Ω) × L2(Ω),
u = 0, on Γ × (0,T).

(3.1)

We note here that for each such K , the operators fK : W 1,p
0 (Ω) → L2(Ω) are globally Lipschitz

continuous (see Ref. 15). Therefore, by Proposition 2.1, the (K) problem has a local weak solu-
tion uK defined on [0,T] where T depends on u0, u1, and fK . Since fK is also globally Lipschitz
continuous from W 1,p

0 (Ω) → L
6
5 (Ω), there exists a constant L f (K) > 0 such that

∥ fK(u) − fK(v)∥ 6
5
≤ L f (K)∥∇(u − v)∥p, for all u, v ∈ W 1,p

0 (Ω).
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In what follows, we shall for brevity denote uK(t) by u(t). According to Proposition 2.1, uK satisfies
the following energy inequality:

E(t) +
 t

0
∥∇ut(τ)∥2

2 dτ ≤ E(0) +
 t

0


Ω

fK(u(τ))ut(τ)dxdτ. (3.2)

We now estimate the terms on the right-hand side of (3.2) with the help of Hölder’s and Young’s
inequalities, 

Ω

fK(u(τ))ut(τ)dx ≤ Cϵ

� ∥ fK(u(τ)) − fK(0)∥2
6
5
+ ∥ fK(0)∥2

6
5

�
+ ϵ ∥ut(τ)∥2

6

≤ Cϵ

�
L f (K)�2 ∥∇u(τ)∥2

p + Cf + ϵ ∥ut(τ)∥2
6 , (3.3)

where Cf = Cϵ ∥ fK(0)∥2
6
5
. Thus,


Ω

fK(u(τ))ut(τ)dx ≤ CKE(τ) 2
p + Cf + ϵC ∥∇ut(τ)∥2

2 , (3.4)

where CK = Cϵ

�
L f (K)�2. It follows from (3.2), (3.4), and the fact 2

p
≤ 1 that

E(t) +
 t

0
∥∇ut(τ)∥2

2 dτ

≤ E(0) + CK

 t

0
E(τ)dτ + CK, fT0 + ϵC

 t

0
∥∇ut(τ)∥2

2 dτ, (3.5)

for all 0 ≤ t ≤ T0, where T0 > 0 will be chosen below and CK, f = CK + Cf . By choosing ϵ > 0
sufficiently small, we obtain

E(t) + cϵ

 t

0
∥∇ut(τ)∥2

2 dτ ≤ E(0) + CK, fT0 + CK

 t

0
E(τ)dτ, (3.6)

for all 0 ≤ t ≤ T0. Gronwall’s inequality gives

E(t) ≤ (E(0) + CK, fT0)eCK t, for all t ∈ [0,T0]. (3.7)

Now we recall that K2 > 4E(0) and choose

T0 = min
 K2 − 4E(0)

4CK, f
,T,

1
CK

ln 2

. (3.8)

We then have

E(t) ≤ (E(0) + CK, fT0)eCK t ≤ K2

4
eCK t ≤ K2

2
, for all t ∈ [0,T0]. (3.9)

Therefore, the definition of E(t), (3.9), and the condition 2 < p < 3 imply that ∥∇u(t)∥p ≤ K ,
t ∈ [0,T0]. Thus, fK(u(t)) = f (u(t)) on the interval [0,T0], and so the considered solution of (K)
problem (3.1) is, in fact, a solution u of original problem (1.1) on [0,T0]. The fact that u satisfies
energy inequality (1.20) and equality (1.22) follows trivially from Proposition 2.1, completing the
proof. �

IV. LOCAL SOLUTION FOR MORE GENERAL SOURCES

Now, we further relax the conditions on the source. Specifically, we will allow for f ∈ C1(R)
with the following growth restrictions:

| f (s)| ≤ c0|s|r , | f ′(s)| ≤ c1|s|r−1, for |s| ≥ 1,

for some constants c0, c1 > 0. Throughout this section, the exponent of the source satisfies

1 ≤ r <
5p

2(3 − p) .
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Before completing the proof of Theorem 1.3, additional preparation will be needed. Recall
Lemma 1.1 which established, under Assumption 1.1, that f : W 1−ϵ,p(Ω) → L

6
5 (Ω) is locally Lips-

chitz for some ϵ > 0. However, since f is not in general locally Lipschitz from W 1,p
0 (Ω) into L2(Ω),

we shall construct Lipschitz approximations of f . Consider a sequence of smooth cut-off functions
ηn, as introduced in Ref. 32. More precisely, we choose a sequence ηn ∈ C∞0 (R) that satisfies

0 ≤ ηn ≤ 1,
�
η ′n(u)

�
≤ C

n
, and




ηn(u) = 1, |u| ≤ n,
ηn(u) = 0, |u| > 2n,

(4.1)

for some constant C (independent of n). Define

fn(u) B f (u)ηn(u). (4.2)

Lemma 4.1. Under Assumption 1.1, for each n ∈ N, the function fn has the following prop-
erties:

• fn : W 1,p
0 (Ω) → L2(Ω) is globally Lipschitz continuous with Lipschitz constant possibly depen-

dent on n.
• fn : W 1−ϵ,p(Ω) → L

6
5 (Ω) is locally Lipschitz continuous. Furthermore, on any bounded set the

local Lipschitz constant does not depend n. Here, the parameter ϵ is as defined in Lemma 1.1.

Proof. The proof is very similar to Ref. 35, Lemma 2.3, and thus it is omitted. �

A. Approximate solutions and passage to the limit

In order to prove the existence statement in Theorem 1.3, we approximate the original problem
(1.1) by using the cut-off functions ηn introduced in (4.1). In particular, consider the nth problem
given by




un
t t − ∆pun − ∆un

t = fn(un) in Ω × (0,T),�
un(0),un

t (0)
�
= (un,0,un,1) ∈ W 1,p

0 (Ω) × L2(Ω),
un = 0, on Γ × (0,T),

(4.3)

where fn = f ηn as defined in (4.2), and (un,0,un,1) → (u0,u1) in W 1,p
0 (Ω) × L2(Ω), as n → ∞, with

En(0) ≤ E(0) + 1 for all n ∈ N. Recall that En(0) = 1
2

�
un,1

�2
2 +

1
p

�
∇un,0

�p

p
, and E(0) = 1

2 ∥u1∥2
2 +

1
p
∥∇u0∥pp.

We would like to apply Proposition 3.1 to nth problem (4.3). In order to do so, we recall the
second statement in Lemma 4.1 which guarantees that on any bounded set the local Lipschitz con-
stants of fn : W 1,p

0 (Ω) → L
6
5 (Ω) are independent of n. Hence, by the proof of Proposition 3.1, the

local existence time depends on the choice K2 > 4En(0). Moreover, by choosing K2 > 4(E(0) + 1)
in the proof of Proposition 3.1, we have one K that properly bounds the norms of the initial data for
each n ∈ N. Therefore, it follows from Proposition 3.1 that for each n ∈ N, nth problem (4.3) has
a local weak solution un on [0,T] for some T > 0 (independent of n), and un satisfies the energy
inequality

En(t) +
 t

0

�
∇un

t (τ)
�2

2 dτ ≤ En(0) +
 t

0


Ω

fn(un(τ))un
t (τ)dxdτ (4.4)

for all t ∈ [0,T]. By the same analysis used to obtain (3.6) and (3.7), we conclude that there exists
CT > 0 independent of n such that

En(t) +
 t

0

�
∇un

t (τ)
�2

2 dτ ≤ CT for all t ∈ [0,T]. (4.5)

Now, by employing standard compactness theorem (see, for instance, Ref. 38), there exist function
u and subsequence of (un)n, which we still denote by (un)n, such that
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(un)n is a bounded sequence in L∞
(
0,T ; W 1,p

0 (Ω)) , (4.6)

(un
t )n is a bounded sequence in L∞

�
0,T ; L2(Ω)� , (4.7)

(un
t )n is a bounded sequence in L2

(
0,T ; W 1,2

0 (Ω)) . (4.8)

Moreover, for each n ∈ N, the function un satisfies

(un
t (t), φ)Ω − (un

t (0), φ)Ω +
 t

0


Ω

(|∇un|p−2∇un · ∇φ
)
dxdτ

+

 t

0


Ω

∇un
t · ∇φdxdτ =

 t

0


Ω

f (un)φdxdτ, (4.9)

for all φ ∈ W 1,p
0 (Ω). We know that

�⟨un
t t(t), φ⟩

�
=

� d
dt
⟨un

t (t), φ⟩
�
=

� d
dt
(un

t (t), φ)Ω
�

≤
�(|∇un|p−2∇un,∇φ)Ω�

+
�(∇un

t ,∇φ)Ω
�
+

�( f (un), φ)Ω�

≤ ∥∇un∥p∥∇φ∥p +
�
∇un

t

�
2∥∇φ∥2 + ∥ f (un)∥ 6

5
∥φ∥6 (4.10)

≤ (∥∇un∥p + c
�
∇un

t

�
2)∥∇φ∥p + (∥ f (un) − f (0)∥ 6

5
+ ∥ f (0)∥ 6

5
)∥φ∥6

≤ (∥∇un∥p + c
�
∇un

t

�
2)∥∇φ∥p + (Cf ∥un∥

W
1,p
0 (Ω) + ∥ f (0)∥ 6

5
)∥φ∥6,

wherein we have invoked the second statement of Lemma 4.1 for the last inequality. Since
Lemma 4.1 assures us that the local Lipschitz constant of fn : W 1,p

0 (Ω) → L
6
5 (Ω) is independent of

n (only on the norm of un which is, in turn, uniformly bounded in n), we conclude that

(un
t t)n is a bounded sequence in L2

(
0,T ; W−1,p′

0 (Ω)) . (4.11)

From Corollary 2.3, we know

un → u weakly∗ in L∞(0,T ; W 1,p
0 (Ω)), (4.12)

un
t → ut weakly∗ in L∞(0,T ; L2(Ω)), (4.13)

un → u strongly in L∞(0,T ; W 1−ϵ,p(Ω), (4.14)
un
t → ut strongly in L2(0,T ; L2(Ω)), (4.15)

un
t → ut weakly in L2(0,T ; W 1,2

0 (Ω)), (4.16)

where ϵ is as defined as in (1.8).
In order to pass to the limit in (4.9) and show that u actually solves (1.1), we need the following

lemma.

Lemma 4.2. If (uN)N and u satisfy (4.14), then fN(uN) → f (u) weakly in Y ∗, where Y =
L6(0,T,W 1−ϵ,p(Ω)) and Y ∗ is its dual space, and where ϵ > 0 is sufficiently small as defined in
Lemma 1.1.

Proof. We first pick a proper ϵ > 0. Recall that Lemma 1.1 requires ϵ to obey 0 < ϵ < 5
2r −

3−p
p

. Here, we choose

0 < ϵ < min
 5

2r
− 3 − p

p
,

3p − 6
2p


. (4.17)

This choice of ϵ implies that 6 < 3p
3−(1−ϵ)p . It follows from the embedding W 1−ϵ,p(Ω) ↩→ L

3p
3−(1−ϵ)p (Ω)

that

∥φ∥6 ≤ C∥φ∥W 1−ϵ,p(Ω), for all φ ∈ W 1−ϵ,p(Ω). (4.18)

By Hölder’s inequality and by (4.18), we have
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�����

 t

0


Ω

�
fN(uN(τ)) − f (u(τ))�φdxdτ

�����
≤
 t

0
∥ fN(uN(τ)) − f (u(τ))∥ 6

5
∥φ∥6dτ

≤ C
 T

0
∥ fN(uN(τ)) − fN(u(τ))∥ 6

5
∥φ∥W 1−ϵ,p(Ω)dτ                                                                                                            

I

+C
 T

0
∥ fN(u(τ)) − f (u(τ))∥ 6

5
∥φ∥W 1−ϵ,p(Ω)dτ                                                                                                    

I I

, (4.19)

for all φ ∈ Y and all t ∈ [0,T].
By the second part of the statement of Lemma 4.1 and by convergence result (4.14), we have

I ≤ CR

 T

0
∥uN − u∥W 1−ϵ,p(Ω)∥φ∥W 1−ϵ,p(Ω)dτ

≤ CR∥uN − u∥L∞(0,T ,W 1−ϵ,p(Ω))∥φ∥L6(0,T ,W 1−ϵ,p(Ω))
→ 0, as N → ∞. (4.20)

From Hölder’s inequality, we obtain

I I ≤ C
 T

0
∥ fN(u(τ)) − f (u(τ))∥ 6

5
6
5

dτ
 5

6 ∥φ∥L6(0,T ,W 1−ϵ,p(Ω))

= C∥ fN(u(τ)) − f (u(τ))∥
L

6
5 (Ω×[0,T ])

∥φ∥L6(0,T ,W 1−ϵ,p(Ω)). (4.21)

Since ηN → 1 from below as N → ∞, then | fN(u) − f (u)| → 0 almost everywhere on Ω × [0,T].
In addition, by (4.17) we have 6r

5 < 3p
3−(1−ϵ)p (see (1.9) in the proof of Lemma 1.1). Hence, it follows

from the regularity u ∈ L∞(0,T ; W 1−ϵ,p(Ω)) and the 3D embedding: W 1−ϵ,p(Ω) ↩→ L
3p

3−(1−ϵ)p (Ω) that

| fN(u) − f (u)| 6
5 ≤ 2| f (u)| 6

5 ≤ C(|u| 6r
5 + 1) ∈ L1(Ω × [0,T]).

Now Lebesgue dominated convergence theorem gives us T

0
∥ fN(u(τ)) − f (u(τ))∥6/5

6/5 dτ → 0 as N → ∞. (4.22)

Finally, combine (4.19)–(4.22) to complete the proof of Lemma 4.2. �

Now using the same argument as in Sections II C–II E, the proof of Theorem 1.3 can be easily
completed.

V. GLOBAL EXISTENCE

This section is devoted to the existence of global solutions, as stated in Theorem 1.4. Here, we
appeal to a standard continuation procedure in order to conclude that either the weak solution u is
global or there exists 0 < T < ∞ such that

lim sup
t→T−

E(t) = ∞, (5.1)

where E(t) is the positive energy defined by

E(t) B 1
2
∥ut(t)∥2

2 +
1
p
∥∇u(t)∥pp . (5.2)

We note here that in view of the 3D embedding W 1,p
0 (Ω) ↩→ L

3p
3−p (Ω) and r + 1 < 5p

2(3−p) + 1 < 3p
3−p ,

the energy E(t) is well defined for all t ∈ [0,T].
We aim at proving that (5.1) cannot happen under the assumption of Theorem 1.4.

Proposition 5.1. Let u be a weak solution of (1.1) on [0,T] as furnished by Theorem 1.3. Then,
we have the following.
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• If r ≤ p/2, then for all t ∈ [0,T], u satisfies

E(t) +
 t

0
∥∇ut(τ)∥2

2 dτ ≤ C(T,E(0)), (5.3)

where T > 0 is being arbitrary.
• If r > p/2, then the bound in (5.3) holds for 0 ≤ t < T ′, for some T ′ > 0 dependent on E(0)

and T.

Proof. First, revisit energy inequality (2.72),

E(t) +
 t

0
∥∇ut(τ)∥2

2 dτ ≤ E(0) +
 t

0


Ω

f (u(τ))ut(τ)dxdτ. (5.4)

Now we proceed to estimate the last term on the right-hand side of (5.4). Recall the assumption
| f (s)| ≤ c0|s|r for |s| ≥ 1 and define Qt B Ω × (0, t),

Q′t B {(x, τ) ∈ Qt : |u(x, τ)| ≤ 1}, Q′′t B {(x, τ) ∈ Qt : |u(x, τ)| > 1}.
By Young’s inequality

�  t

0


Ω

f (u(τ)) ut(τ)dxdτ
�
≤

Q′t

| f (u(τ))ut(τ)| dxdτ +

Q′′t

| f (u(τ))ut(τ)| dxdτ

≤ C

Q′t

|ut(τ)| dxdτ + C

Q′′t

|u(τ)|r |ut(τ)| dxdτ

≤ C
 t

0
E(τ)dτ + C |QT | + C

 t

0


Ω

|u(τ)|r |ut(τ)| dxdτ, (5.5)

for all t ∈ [0,T], where |QT | denotes the lebesgue measure of QT . Thus, it follows from (5.4) and
(5.5) that

E(t) +
 t

0
∥∇ut(τ)∥2

2 dτ ≤ E(0) + C |QT | + C
 t

0
E(τ)dτ

+C
 t

0


Ω

|ut(τ)| |u(τ)|rdxdτ, (5.6)

for t ∈ [0,T]. By Hölder’s inequality along with Sobolev embedding result (1.5) (with 6r
5 < 3p

3−p ),
we obtain  t

0


Ω

|u(τ)|r |ut(τ)| dxdτ ≤
 t

0
∥ut(τ)∥6 ∥u(τ)∥r6r

5
dτ (5.7)

≤ C1

 t

0
∥∇ut(τ)∥2 ∥∇u(τ)∥rp dτ. (5.8)

Again by Young’s inequality, we have t

0


Ω

|u(τ)|r |ut(τ)| dxdτ ≤ ϵ
 t

0
∥∇ut(τ)∥2

2 dτ + Cϵ

 t

0
∥∇u(τ)∥2r

p dτ. (5.9)

Case 1. If r ≤ p/2, then t

0


Ω

|u(τ)|r |ut(τ)| dxdτ ≤ ϵ
 t

0
∥∇ut(τ)∥2

2 dτ + Cϵ,T

 t

0
∥∇u(τ)∥pp dτ + Cϵ,T

≤ ϵ
 t

0
∥∇ut(τ)∥2

2 dτ + Cϵ,T

 t

0
E(τ)dτ + Cϵ,T . (5.10)

It now follows from (5.6) and (5.10) that for t ∈ [0,T],
E(t) +

 t

0
∥∇ut(τ)∥2

2 dτ ≤ E(0) + C |QT | + C
 t

0
E(τ)dτ

+C · ϵ
 t

0
∥∇ut(τ)∥2

2 dτ + Cϵ,T

 t

0
E(τ)dτ + Cϵ,T . (5.11)
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Choose 0 < ϵ < 1
2C , then (5.11) gives us

E(t) + 1
2

 t

0
∥∇ut(τ)∥2

2 dτ ≤ C2 + C0

 t

0
E(τ)dτ, (5.12)

where C2 = E(0) + C |QT | + Cϵ,T and C0 = C + Cϵ,T . By Gronwall’s inequality,

E(t) + 1
2

 t

0
∥∇ut(τ)∥2

2 dτ ≤ C2eC0T , (5.13)

for t ∈ [0,T]. Hence, (5.3) follows.

Case 2. If r > p/2 appeal to (5.9) and obtain t

0


Ω

|u(τ)|r |ut(τ)| dxdτ ≤ ϵ
 t

0
∥∇ut(τ)∥2

2 dτ + Cϵ

 t

0
∥∇u(τ)∥2r

p dτ

≤ ϵ
 t

0
∥∇ut(τ)∥2

2 dτ + Cϵ

 t

0
E(τ) 2r

p dτ. (5.14)

Thanks to (5.6) and (5.14), we have

E(t) +
 t

0
∥∇ut(τ)∥2

2 dτ ≤ E(0) + C |QT | + C
 t

0
E(τ)dτ

+Cϵ
 t

0
∥∇ut(τ)∥2

2 dτ + Cϵ

 t

0
E(τ) 2r

p dτ. (5.15)

Choose 0 < ϵ < 1
2C , then (5.15) gives

E(t) + 1
2

 t

0
∥∇ut(τ)∥2

2 dτ ≤ C3 + C4

 t

0
(E(τ) + E(τ) 2r

p )dτ, (5.16)

where C3 = E(0) + C |QT | and C4 = C + Cϵ. Now, put

Y (t) = 1 + E(t),
and since 2r

p
> 1, then (5.16) implies

Y (t) + 1
2

 t

0
∥∇ut(τ)∥2

2 dτ ≤ C3 + 2C4

 t

0
Y (τ) 2r

p dτ. (5.17)

In particular,

Y (t) ≤ C3 + 2C4

 t

0
Y (τ)σdτ for t ∈ [0,T0], (5.18)

where σ = 2r
p
> 1. By using a standard comparison theorem (see Ref. 24, for instance), then (5.18)

guarantees that E(t) ≤ Y (t) ≤ z(t), where z(t) = [C1−σ
3 − 2C4(σ − 1)t]− 1

σ−1 is the solution of the
Volterra integral equation

z(t) = C3 + 2C4

 t

0
z(s)σds.

Since σ > 1, then clearly z(t) blows up at the finite time T1 =
C1−σ

3
2C4(σ−1) , i.e., z(t) → ∞, as t → T−1 .

Note that T1 depends only on the initial energy E(0) and the original existence time T . Nonethe-
less, whenever 0 < T ′ < min{T,T1/2}, we have E(t) ≤ Y (t) ≤ z(t) ≤ C(T ′,E(0)) for all t ∈ [0,T ′].
Hence, the proof of the proposition is complete. �

VI. BLOW-UP OF SOLUTIONS

In this section, we provide the proof of Theorem 1.6. Throughout the proof, we shall adopt
Assumptions 1.1 and 1.5 with r > p − 1. We define the lifespan T of the solution to be the supre-
mum of all T∗ > 0 such that u is a solution to (1.1) in the sense of Definition 1.2 on [0,T∗], as
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furnished by Theorem 1.3. Our goal is to show that T is necessarily finite and obtain an upper bound
for T .

As in Refs. 3 and 12, for t ∈ [0,T], we introduce

G(t) =
 t

0
∥∇ut(τ)∥2

2 dτ − E(0), N(t) = ∥u(t)∥2
2, S(t) =


Ω

F(u(t))dx,

where the “total energy” is

E(t) = 1
2
∥u′(t)∥2

2 +
1
p
∥∇u(t)∥pp −


Ω

F(u(t))dx.

Claim 1: G is absolutely continuous, increasing, and positive function on [0,T]. It follows from
the regularity of ut ∈ L2(0,T ; W 1,2

0 (Ω)) in Definition 1.2 that G is absolutely continuous on [0,T]
and G′(t) = ∥∇ut(t)∥2

2 ≥ 0 on almost everywhere on [0,T]. Since G(0) = −E(0) > 0, then the claim
follows.

Claim 2: We show that

0 < −E(0) ≤ G(t) ≤ −E(t) ≤ S(t) ≤ c1 ∥u(t)∥r+1
r+1 , t ∈ [0,T]. (6.1)

Indeed, by energy inequality (1.20) and the definition of G(t), we have E(t) + G(t) ≤ 0 which
proves the first three inequalities in (6.1). Also, it follows from the definition of total energy E(t)
and S(t) that E(t) + S(t) = 1

2 ∥u′(t)∥2
2 +

1
p
∥∇u(t)∥pp ≥ 0. Hence, the third inequality in (6.1) is true.

The last inequality follows directly from Assumption 1.5.
In order to show our blow-up result, we introduce a parameter a and function Y (t) such that

0 < a < min


p − 2
r + 1

,
p − 2
2p


, (6.2)

Y (t) B G(t)1−a + ϵN ′(t), (6.3)

where ϵ > 0. It is clear that 0 < a < 1/2 and later in the proof we will further restrict the condition
on ϵ . Our aim is to show that there exists Γ > 0 and ξ > 0 such that

Y ′(t) ≥ Γ 
G(t) + ∥∇u(t)∥pp + ∥u′(t)∥2

2


≥ ξ(Y (t)) 1

1−a . (6.4)

Step 1. Here, we demonstrate that

Y ′(t) = (1 − a)G(t)−aG′(t) + ϵN ′′(t), (6.5)

where

N ′′(t) = 2 ∥u′(t)∥2
2 − 2 ∥∇u(t)∥pp − 2(∇ut(t),∇u(t))Ω + 2(r + 1)


Ω

F(u(t))dx. (6.6)

The regularity of u implies that

N ′(t) = 2(u(t),u′(t))Ω. (6.7)

In addition, by recalling (1.19), we obtain

⟨u′′(t), φ⟩p = d
dt
⟨u′(t), φ⟩p = d

dt
(u′(t), φ)Ω

= −(|∇u(t)|p−2∇u(t),∇φ)Ω − (∇ut(t),∇φ)Ω + ( f (u(t)), φ)Ω, (6.8)

for all φ ∈ W 1,p
0 (Ω) and almost everywhere on [0,T]. It follows now from Proposition A.1 that

1
2

d
dt

N ′(t) = d
dt
(u′(t),u(t))Ω = ∥u′(t)∥2

2 + ⟨u′′(t),u(t)⟩p. (6.9)

The regularity of u allows us to replace φ in (6.8) with u(t), and so, by using (6.9) and the property
s f (s) = (r + 1)F(s) asserted in Assumption 1.5, we obtain (6.6). Therefore, we have proven (6.5),
i.e.,

Y ′(t) = (1 − a)G(t)−aG′(t) + 2ϵ ∥u′(t)∥2
2

− 2ϵ ∥∇u(t)∥pp − 2ϵ(∇ut(t),∇u(t))Ω + 2ϵ(r + 1)S(t). (6.10)
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Step 2. Let us verify the first inequality in (6.4). Recalling (6.1) that

G(t) ≤ −E(t) = S(t) − 1
2
∥u′(t)∥2

2 −
1
p
∥∇u(t)∥pp ,

we have

S(t) ≥ G(t) + 1
2
∥u′(t)∥2

2 +
1
p
∥∇u(t)∥pp > 0. (6.11)

By combining (6.11) with (6.10), we obtain

Y ′(t) ≥ (1 − a)G(t)−aG′(t) + ϵ(r + 3) ∥u′(t)∥2
2 + 2ϵ(r + 1)G(t)

+ 2ϵ
(

r + 1
p
− 1

)
∥∇u(t)∥pp − 2ϵ(∇ut(t),∇u(t))Ω.

(6.12)

Now estimate the last term on the right-hand side of (6.12) with the help of Hölder’s and Young’s
inequalities,

(∇ut(t),∇u(t))Ω ≤ ∥∇ut(t)∥2∥∇u(t)∥2 ≤
1

2λ
∥∇ut(t)∥2

2 +
λ

2
∥∇u(t)∥2

2 . (6.13)

Let λ = KG(t)−a. Now, (6.13) and the fact that G′(t) = ∥∇ut(t)∥2
2 imply

2ϵ(∇ut(t),∇u(t))Ω ≤ ϵKG(t)−aG′(t) + ϵK−1G(t)a ∥∇u(t)∥2
2 . (6.14)

Use inequality (6.1), Assumption 1.5, and embedding result (1.5) to arrive at

G(t) ≤ S(t) ≤ c1 ∥u(t)∥r+1
r+1 ≤ C ∥∇u(t)∥r+1

p . (6.15)

Now Hölder’s inequality and (6.15) give

G(t)a ∥∇u(t)∥2
2 ≤ C ∥∇u(t)∥a(r+1)

p ∥∇u(t)∥2
p = C(∥∇u(t)∥pp)

a(r+1)+2
p . (6.16)

From condition (6.2) that 0 < a ≤ p−2
r+1 we know a(r+1)+2

p
≤ 1. Next, since

zν ≤ z + 1 ≤
�
1 +

1
α

�(z + α), for all 0 ≤ z, 0 < ν ≤ 1, 0 < α, (6.17)

then replacing z with ∥∇u(t)∥pp and ν with a(r+1)+2
p

in (6.17) gives

C(∥∇u(t)∥pp)
a(r+1)+2

p ≤ d(∥∇u(t)∥pp + G(0)) ≤ d(∥∇u(t)∥pp + G(t)), (6.18)

where d = C(1 + 1/G(0)); we have also used the fact that G is increasing and positive function on
[0,T]. Therefore, by combining (6.12), (6.14), and (6.18), one has

Y ′(t) ≥(1 − a − ϵK)G(t)−aG′(t) + ϵ(r + 3) ∥u′(t)∥2
2 + ϵ

(
2(r + 1) − d

K

)
G(t)

+ ϵ

(
2
(

r + 1
p
− 1

)
− d

K

)
∥∇u(t)∥pp .

(6.19)

Since r > p − 1, then by choosing a large enough K , and a small enough ϵ , we have

1 − a − ϵK > 0, 2(r + 1) − d
K
> 0, and 2

(
r + 1

p
− 1

)
− d

K
> 0.

Therefore, we can define

Γ = min

ϵ(r + 3), ϵ

(
2(r + 1) − d

K

)
, ϵ

(
2
(

r + 1
p
− 1

)
− d

K

)
> 0

to conclude

Y ′(t) ≥ Γ (∥u′(t)∥2
2 + G(t) + ∥∇u(t)∥pp

)
≥ 0, for all t ∈ [0,T] (6.20)

completing the first inequality in (6.4).
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Step 3. Here, we further adjust the value of ϵ to guarantee that

Y (t) > 1
2

G(0)1−a > 0 for all t ∈ [0,T]. (6.21)

We have two cases to consider. If N ′(0) ≥ 0, then no further adjustment is necessary. However, if
N ′(0) < 0, then we impose an additional condition 0 < ϵ ≤ −G(0)1−a

2N ′(0) . Thus, inequality (6.21) holds
for any value of N ′(0).
Step 4. We will now verify the second inequality in (6.4) and hence prove

Y ′(t) ≥ ξY (t) 1
1−a , for all t ∈ [0,T]. (6.22)

Case a. If N ′(t) ≤ 0 for some t ∈ [0,T], then for such values of t we have

Y (t) 1
1−a =

�
G(t)1−a + ϵN ′(t)� 1

1−a ≤ G(t), (6.23)

and in this case, (6.20) and (6.23) yield

Y ′(t) > ΓG(t) ≥ ΓY (t) 1
1−a . (6.24)

Hence, (6.22) holds for all t ∈ [0,T] such that N ′(t) ≤ 0.

Case b. If N ′(t) > 0 for some t ∈ [0,T], we need to do more work to show that (6.22) still holds.
Since 0 < a < 1/2, we have

Y (t) 1
1−a ≤ 2

1
1−a


G(t) + ϵ 1

1−a (N ′(t)) 1
1−a


. (6.25)

It follows from (6.7) and Young’s inequality with 1
µ
+ 1

θ
= 1 that

(N ′(t)) 1
1−a ≤ 2

1
1−a ∥u(t)∥ 1

1−a
2 ∥u′(t)∥ 1

1−a
2 ≤ C1

(
∥u(t)∥

µ
1−a
2 + ∥u′(t)∥ θ

1−a
2

)
. (6.26)

By taking θ = 2(1 − a) > 1 (because 0 < a < 1/2 ), µ = 2(1−a)
1−2a , and by appealing to the embedding

in (1.5), we have

(N ′(t)) 1
1−a ≤ C1

(
∥∇u(t)∥ 2

1−2a
p + ∥u′(t)∥2

2

)
= C1

�(∥∇u(t)∥pp)
2

p(1−2a) + ∥u′(t)∥2
2

�
. (6.27)

From the assumption on a in (6.2), we know 0 < a < p−2
2p which implies 0 < 2

p(1−2a) ≤ 1. Hence,
replacing z with ∥∇u(t)∥pp and ν with 2

p(1−2a) in (6.17) gives

C1(∥∇u(t)∥pp)
2

p(1−2a) ≤ d(∥∇u(t)∥pp + G(0)) ≤ d(∥∇u(t)∥pp + G(t)), (6.28)

where d = C1
�
1 + 1

G(0)
�
. Combine (6.25), (6.27), and (6.28) to conclude

Y (t) 1
1−a ≤ 2

1
1−a


G(t) + ϵ 1

1−a
(
d ∥∇u(t)∥pp + dG(t) + C1 ∥u′(t)∥2

2

)

≤ C2

(
G(t) + ∥∇u(t)∥pp + ∥u′(t)∥2

2

)
, (6.29)

where C2 = 2
1

1−a

(
1 + dϵ

1
1−a + C1ϵ

1
1−a

)
> 0. Let ξ = Γ

C2
. Then, our desired inequality (6.22) follows

from (6.20) and (6.29) for all values of t ∈ [0,T] such that N ′(t) > 0.
Combining the above cases a and b we conclude for all t ∈ [0,T] that

Y ′(t) ≥ ξYη(t), for ξ > 0, and 1 < η =
1

1 − a
< 2. (6.30)

Hence, by a simple calculation, it follows from (6.30) and (6.21) that T is necessarily finite and

T <
Y (0) −a1−a

ξ
<

1
2

−a
1−a G(0)−a

ξ
< ∞. (6.31)

This completes the proof of Theorem 1.6.
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APPENDIX: WEAK CONVERGENCE IN H1
0 (Ω) ALMOST EVERYWHERE ON [0, T ]

The following auxiliary results were invoked in the proof of the main theorem. We could not
find exactly matching statements in the literature, but these helpful technical propositions can be
easily verified either directly, or, by following the proofs of the indicated existing theorems.

Proposition A.1 (Similar to the proof of Ref. 35, Proposition 3.2). Let H be a Hilbert space and
X be a Banach space with its dual X∗ such that X ⊂ H ⊂ X ∗ where the injections are continuous
and each space is dense in the following one. Assume that f ∈ L2(0,T,H), g ∈ L2(0,T,X), f ′ ∈
L2(0,T,X ∗), and g′ ∈ L2(0,T,H). Then, ψ(t) = ( f (t), g(t))H coincides with an absolutely continuous
function almost everywhere on [0,T] and

d
dt
( f (t), g(t))H = ⟨ f ′(t), g(t)⟩ + ( f (t), g′(t))H , a.e. [0,T], (A1)

where ⟨·, ·⟩ is the duality pairing between X∗ and X.

Proposition A.2. Let H be a Hilbert space and X a Banach space with its dual X∗ such that
X ⊂ H ⊂ X ∗ where the injections are continuous and each space is dense in the following one.
Suppose X∗ is separable and (uN)N is a bounded sequence in L1(0,T ; X) satisfying

uN → u weakl y in L1(0,T ; X), (A2)

uN → u strongl y in L1(0,T ; H), (A3)

as N → ∞. Then, there exists a subsequence of (uN)N (again reindexed by N) such that

uN(t) → u(t) weakl y in X a.e. [0,T] as N → ∞. (A4)

Proof. Let ⟨·, ·⟩ denote the standard duality pairing between X ∗ and X while (·, ·) will stand
for the inner product in H . It follows from the Cauchy-Schwarz inequality and (A3) that for every
σ ∈ H  T

0
|(σ,uN(t) − u(t))| dt ≤

 T

0
∥σ∥H∥uN(t) − u(t)∥Hdt

≤ ∥σ∥H∥uN − u∥L1(0,T ;H ) → 0, as N → ∞. (A5)

That is, for every σ ∈ H ,

(σ,uN(t) − u(t)) → 0 in L1[0,T]. (A6)

Next, we show that the convergence in (A6) also holds for any φ ∈ X ∗, i.e.,

⟨φ,uN(t) − u(t)⟩ → 0 in L1[0,T], for every φ ∈ X ∗. (A7)

Since H is dense in X ∗, then for a given ϵ > 0, there exists σ ∈ H such that

∥φ − σ∥X∗ < ϵ. (A8)

It follows from (A5) that, for the fixed ϵ > 0 as given above, there is N0 ∈ N such that T

0
|(σ,uN(t) − u(t))| dt < ϵ, for all N ≥ N0. (A9)

By (A8) and (A9), we conclude for any fixed ϵ > 0, there exists N0 ∈ N such that
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 T

0
|⟨φ,uN(t) − u(t)⟩| dt

≤
 T

0
∥φ − σ∥X∗∥uN(t) − u(t)∥Xdt +

 T

0
|(σ,uN(t) − u(t))| dt

≤ ϵ
 T

0
(∥uN(t)∥X + ∥u(t)∥X) dt + ϵ ≤ Cϵ, for all N ≥ N0. (A10)

Hence, (A7) follows.
Since X ∗ is separable, there is a countable set {φm} which is dense in X ∗. We now apply (A7) to

the sequence {φm} as follows. Denote uN(t) − u(t) by UN(t). For φ1, we have

⟨φ1,UN(t)⟩ → 0 in L1[0,T].
Then, there exists a (reindexed) subsequence (UN,1)N of (UN)N such that

⟨φ1,UN,1(t)⟩ → 0 a.e. t ∈ [0,T].
Similarly, we have

⟨φ2,UN,1(t)⟩ → 0 in L1[0,T].
Then, there exists a subsequence (UN,2)N of (UN,1)N such that

⟨φ2,UN,2(t)⟩ → 0 a.e. t ∈ [0,T].
Continuing in this manner we obtain, for any integer j ≥ 1, a subsequence (UN, j+1)N of (UN, j)N
such that

⟨φ j+1,UN, j+1(t)⟩ → 0 a.e. t ∈ [0,T], as N → ∞. (A11)

Since {φm} is dense for X ∗, then by a density argument, the following convergence holds for all
φ ∈ X ∗:

⟨φ,UN,N(t)⟩ → 0 a.e. t ∈ [0,T]. (A12)

That is, there exist a subsequence (reindexed again by N) of the original sequence (uN)N such that

uN(t) → u(t) weakly in X a.e. [0,T], as N → ∞, (A13)

which completes the proof. �
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