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Tomographic imaging of nonsymmetric
multicomponent tailored supersonic flows
from structured gas nozzles
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We report experimental results on the production and characterization of asymmetric and composite supersonic
gas flows, created by merging independently controllable flows from multiple nozzles. We demonstrate that the
spatial profiles are adjustable over a large range of parameters, including gas density, density gradient, and atomic
composition. The profiles were precisely characterized using three-dimensional tomography. The creation and
measurement of complex gas flows is relevant to numerous applications, ranging from laser-produced plasmas to
rocket thrusters. © 2015 Optical Society of America

OCIS codes: (120.3180) Interferometry; (110.6955) Tomographic imaging; (280.5395) Plasma diagnostics.

http://dx.doi.org/10.1364/AO.54.003491

1. INTRODUCTION

Gas jets are widely used in many areas of modern science and
industry, ranging from aircraft propulsion systems [1] to micro-
jet arrays [2], and span a range of sizes. They are employed in
conventional radio-frequency accelerators for nuclear spectros-
copy measurements, in pulsed x-ray machines to create hot
plasma pinch, and in the investigation of inertial confinement
fusion [3]. There has been extensive use of gas jets in studies of
laser–plasma interactions, such as generation of high harmonics
[4], THz [5], extreme ultraviolet radiation [6], x-rays [7], and
ion beams [8]. Underdense plasma targets based on gas jets
have been used for laser pulse compression [9], laser frequency
upshift [10], and smoothing of the laser beam intensity fluc-
tuation [11]. The rapidly expanding field of laser wakefield
acceleration relies on the use of supersonic gas jets in order
to drive wakes and produce energetic electron beams using
high-intensity laser pulses [12,13]. There is now an increasing
trend to replace the standard Laval nozzle with complex jets to
precisely tailor the density profile so that the process of electron
injection can be localized, leading to better control of electron
acceleration [14,15]. Gas jets are also used in laser-driven high-
energy x-ray sources based on inverse Compton scattering
[16–19].

For the purpose of designing targets for experiments, as well
as engineering gas flows for applications, precise measurement
of the absolute density and density profile is a critical require-
ment. The techniques of interferometry, Schlieren imaging,

and shadowgraphy provide the integrated (along the propaga-
tion axis) refractive index, and its first and second derivatives
[20], respectively. In the case of a cylindrically symmetric jet,
integrated information along one axis is sufficient to recon-
struct the 3D density profile using inversion techniques such
as the Abel transform [21–26]. However, when flows are not
cylindrically symmetric, reconstruction of the gas flow pattern
requires the use of more complex tomographic methods. In
general, multiple measurements of the flow along different axes
are combined, and the 3D density map is extracted using math-
ematical procedures such as filtered backprojection [27] or
algebraic reconstruction techniques (ART) [28]. Often, some
modifications of general ART are used, such as averaging
ART (AVART) [29] or simultaneous iterative reconstruction
technique (SIRT) [30,31]. Tomographic measurements are
also needed for superposed or colliding flows, or when the ini-
tially symmetric gas flow is perturbed by inserting wires [32] or
other obstacles [33], or by machining with a high-intensity laser
pulse [34,35]. Such perturbed and tailored density profiles are
currently of great interest. For instance, they have been shown
to allow controlled electron injection in laser-produced plasma
wakes [36–40] and have led to significant recent advances in
this important emerging area.

In this paper, we perform tomographic measurements and
use SIRT to reconstruct the 3D density map of an asymmetric
gas target in a vacuum. The target was created by two expand-
ing jets, which merged into a composite flow above the nozzle
orifice. We studied the interaction of the gas flows and
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investigated the degree of control that is possible for the gas
profile in the region where the flows overlap. These tailored
gas density profiles permit independent control over density-
dependent processes, such as electron injection and acceleration
in laser-wakefield electron accelerators [17,41]. More generally,
this technique is applicable whenever precise characterization of
complex 3D flows is required.

2. EXPERIMENTAL SETUP AND METHODS

In order to perform tomographic measurements of the gas pro-
file from the jet, we implemented a Mach–Zehnder interferom-
eter, as shown in Fig. 1. The illumination source was 532 nm
light from a frequency-doubled Nd:YAG laser (SAGA PRO
230/10 SHG, 5.2 ns pulse duration, 10 Hz repetition rate).
Two slit nozzles (also referred to as a double-jet) with
0.5 mm × 2 mm and 2 mm × 1 mm openings and separated

by a 0.5 mm gap, formed the gas target. The double-jet was
placed in one arm of the interferometer. The entire assembly
is housed in a vacuum chamber at a base pressure of 50 mTorr.
The gas jet density is proportional to the phase shift introduced
in the fringe pattern produced by the interference of the two
beams and is recorded using a 12-bit CCD camera. The dou-
ble-jet was mounted on a rotation stage and interferograms
were recorded for two angles between the gas target and the
laser beam (0° and 90°). In the subsequent section, we will
demonstrate that the use of two angles is sufficient to recon-
struct the profile for this particular jet on account of the axis
of symmetry associated with it. Pure nitrogen is used for these
measurements because it has a large refractive index, and, as a
result, a significant phase shift is produced.

We extracted the phase shift from the interferograms in four
steps. Figure 2(a) gives an example of a raw interferogram. First,
we transformed it to the frequency domain by means of a 2D
Fourier transform [the result is shown in Fig. 2(b)]. We then
applied a spatial filter, which limited the 2D spectrum to a
rectangular box [shown as the white rectangular overlay in
Fig. 2(b)]. The size of the rectangular filter determines the
resolution of the measurement. A larger box leads to finer
resolution, but limiting the size of this region permits mitiga-
tion of distortions in the original interferogram caused by im-
perfections in the beam. Next, we performed an inverse Fourier
transform to the filtered 2D spectrum, which resulted in a
phase shift with discontinuities [Fig. 2(c)]. Finally, we applied
a 1D unwrapping algorithm (to each column of the phase
shift) to obtain a continuous phase-shift map [Fig. 2(d)].
We also compared the results obtained using our unwrapping
algorithm with the 2D Goldstein unwrapping [42] and found
that both algorithms gave the same results, proving that our
reconstruction is robust.

The phase shift φ of a laser pulse with wavelength λ, as it
propagates through a medium with a spatially dependent
refractive index n�x�, is given by

Fig. 1. Experimental setup. Double-nozzle target is installed on a
rotation stage in one arm of a Mach–Zehnder interferometer. First
and second Laval nozzles of the gas target have 2 mm × 0.5 mm
and 1 mm × 2 mm rectangular openings, respectively.

Fig. 2. Interferometry algorithm. (a) Raw interferogram. (b) 2D Fourier spectrum of the raw interferogram (white box shows applied spatial
filter). (c) Phase shift with discontinuities. (d) Continuous phase shift. Double jet operated at 150 and 300 PSI backing pressures for the first and
second jets, respectively.
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φ � 2π

λ

Z
L

0

�n�x� − 1�dx;

where the integration is performed along the axis of propaga-
tion with length L. It is clear from the above that the use of
doubled light from the laser improves sensitivity by a factor
of two compared to the fundamental wavelength at 1064 nm.

The 2D density maps were reconstructed from the phase
shift maps using SIRT algorithm. This was done at different
heights from the nozzle opening. By combining these 2D maps
for different heights, the full 3D density profile was obtained.
The algorithm worked in the following way. The phase-shift
ray sum (a phase shift, accumulated by light as it propagates
along the ray path) can be expressed as

φnm �
X
ij

�
2π

λ
�nij − n0�

�
wijnm �

X
ij

f ijwijnm;

where the n index specifies angle (thus, for two interferograms
made from two different angles, n � 1; 2), m index specifies a
ray sum within this set (thus, if the interferograms were made
with 100 pixels resolution, m � 1…100), i and j indexes re-
present the 2D spatial grid, f ij is the perturbation function,
and wijnm is the area of the �i; j� spatial cell, covered by
�n; m� ray. The goal of the algorithm was to find the pertur-
bation function f ij, which would result in the measured ray
sums. The algorithm started from an “initial guess” (simply
f ij � 0) and iterated according to the following strategy:

f �q�1�
ij � f �q�

ij � α

2
664
X
nm
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ij
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nm
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�
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;

where q stands for the iteration number and α is an aggressive-
ness factor (the algorithm is stable for 0 < α ≤ 2). The itera-
tion process continued until the difference between measured
ray sums and simulated ones φnm −

P
ijwijnmf

�q�
ij was deter-

mined to be small enough (less than 1% of the maximum phase
shift). To mitigate well-known salt-and-pepper noise, we ap-
plied spatial filtering to the intermediate results. Usually, the
algorithm made 50–100 iterations to reach the desired accuracy

level. After the spatially dependent index nij of refraction was
obtained, we calculated local density using

d ij �
2

3

�
nij − 1
A

�
;

where A is molar refractivity of the gas [43].

3. RESULTS AND DISCUSSION

Tomographic measurements were then performed for the
structured jet composed of two slit nozzles (with 0.5 mm ×
2 mm and 2 mm × 1 mm openings), separated by 0.5 mm.
The gas profile for this target was composed of the overlapped
flows from both nozzles. To determine how the flows interact,
we measured the gas profiles from each nozzle separately and
then compared the result with the combined profile. The 2D
density maps for these three cases (first nozzle only, second noz-
zle only, and both nozzles) are shown in Fig. 3; corresponding
density profiles (along the X axis) are shown in Fig. 4. By com-
paring the black solid curve (both nozzles) and the black dashed
curve (a sum of density profiles from individual nozzles) in
Fig. 4, it is apparent that the superposition principle applies

Fig. 3. 2D density maps of the double-jet at 1 mm height above the nozzles orifices, reconstructed with tomography. First and second jets
operated at 150 and 300 PSI backing pressures, respectively. (a) First jet only. (b) Second jet only. (c) Both jets. White boxes show nozzle openings.

Fig. 4. Longitudinal density profiles of the double-jet at 1 mm
height above the nozzles orifices, reconstructed with tomography.
First and second jets operated at 150 and 300 PSI backing pressures,
respectively. Red curve: first jet only. Blue curve: second jet only. Black
solid curve: both jets. Black dashed curve: a sum of first jet only and
second jet only density profiles.
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to this case, and the combined density from the two jets is the
sum of the individual densities.

The density profiles of the double-nozzle gas target at differ-
ent heights above the nozzle orifices are shown in Fig. 5. The

flows from the two nozzles do not significantly overlap close to
the nozzle orifices, as can be seen from the density profile at
0.2 mm height. As the height goes up, the overlap becomes
more pronounced, and, at 1.25 mm height and above, there
is no clear separation of the flows. This feature of the dou-
ble-nozzle gas target design is of particular interest for dual-
stage laser wakefield acceleration schemes [44]. It provides a
simple way to vary the separation of two independently con-
trolled gas flows by appropriate choice of the height at which
a laser pulse interacts with the gas target. In addition, it also
controls the gradients of the down-ramp and up-ramp between
the regions (bigger separation results in sharper ramps), which
is also of interest for controlled electron injection on the down-
ramp in laser wakefield accelerators [45].

The suitability of the dual-nozzle gas jet design for applica-
tions (such as laser wakefield accelerators) depends also on
whether it is possible to independently control different stages
(flow patterns from each orifice). In order to test the degree of
this independence, we scanned the backing pressure of the
second nozzle, while holding the backing pressure of the first
nozzle constant. As one can see from Figs. 6(a) and 6(b) (cor-
responding to 0.2 mm height above the nozzle orifices), the
density of the plateau region in the second stage changes lin-
early with the second nozzle backing pressure. At the same

Fig. 5. Longitudinal density profiles of the double jet at different
heights above the nozzles orifices, reconstructed with tomography.
First and second jets operated at 150 and 300 PSI backing pressures,
respectively.

Fig. 6. (a) Longitudinal density profiles of the double jet at 0.2 mm height above the nozzles orifices, reconstructed with tomography. First jet
operated at 200 PSI backing pressures. Second jet operated at different backing pressures. (b) Densities of the first stage (from the first nozzle) and the
second stage (plateau, the second nozzle) as a function of the second nozzle backing pressure, 0.2 mm height above the nozzle orifices. (c) and (d) are
the same but at 0.75 mm height above the nozzle orifices.
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time, the density of the first stage also changes, but the change
is quite small. Thus, the stages can be controlled independently
because the gas flows at this height almost do not overlap (see
Fig. 5). Figures 6(c) and 6(d) show the situation when the
height is increased to 0.75 mm above the nozzle orifices, which
corresponds to significant overlap of the flows. As a result,
the densities of both stages change linearly with the second
nozzle backing pressure, which means that, in this particular
case, the stages cannot be controlled independently.

4. SIMULATIONS

To test the robustness of our results, we simulated the 2D den-
sity distribution similar to what is produced by the double-jet
[see Fig. 7(a)]. We then simulated phase shift profiles for 24
observation angles (0° to 345° with 15° step) and fed these data
to the algorithm. The reconstructed 2D density distribution is
shown in Fig. 7(b) and matches perfectly the simulated one,
which proves the correctness of the implementation. We then
tested the algorithm with not 24, but only two phase-shift pro-
files (at 0° and 90°). The reconstructed 2D density distribution

is shown in Fig. 7(c). It slightly differs from the simulated one,
which is not surprising. However, we are mainly interested in
longitudinal density profile of the double-jet, since that is the
profile a laser pulse “sees” while interacting with the gas target.
The comparison of these longitudinal profiles (along X direc-
tion at Y � 0 mm) is shown in Fig. 7(d). As can be seen, the
reconstruction based on only two observation angles is close
enough to the simulated density profile. This is due to the
axis symmetry of the gas target. This simulation shows the val-
idity of using two orthogonal projections for tomographic
reconstruction of the gas profile of the double-jet.

5. CONCLUSIONS

We have presented a detailed study of the gas-flow character-
istics from a nonsymmetric, double-nozzle gas target using the
tomographic technique. We used interferograms from two
perpendicular directions and SIRT algorithm to reconstruct
3D density maps of the target. Our study reveals the character-
istics of the flow from such composite targets and its depend-
ence on geometrical parameters. The results of this work can be

Fig. 7. Tomography reconstruction of a simulated 2D gas density distribution. (a) Simulated distribution. (b) Reconstructed distribution, based
on 24 observation angles (0° to 345° with 15° step). (c) Reconstructed distribution, based on two observation angles (0° and 90°). (d) Comparison of
simulated and reconstructed longitudinal density profiles (along X direction at Y � 0 mm).
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used in the design of future laser wakefield accelerators with the
goal of producing electron beams with low energy spread and
tunable in energy. This can be achieved by localizing the region
where electrons are injected and independently controlling the
final energy in a flat-top acceleration stage. The general tomog-
raphy technique can be applied in any area of science or indus-
try where precise 3D measurements of asymmetrical gas jet
profiles are required. Future work will extend this technique
to the characterization of more complex targets using multiple
projections.
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