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Hypotheses about psychological processes are most frequently dedicated to 

individual mean differences, but individual differences in variability are likely to be 

important as well. The mixed-effects location-scale model estimates individual 

differences in both mean level and variability in a single model, and represents an 

important advance in testing variability-related hypotheses. However, the mixed-effects 

location-scale model remains relatively novel to empirical scientists as statistical software 

is often handicapped by more complex models and a paucity of methodological studies 

exist examining the statistical properties of this model. 

This dissertation investigates the mixed-effects location-scale model through the 

development of open-source software for its estimation and through simulation and 

empirical studies. First, the theoretical framework for the mixed-effects location-scale 

model is presented followed by a description of the Metropolis-Hastings algorithm 

developed to estimate this model. Then, two simulation studies are presented evaluating 

the power to detect and predict individual differences in variability as well as identify the 

consequences of model misspecification. Finally, results of an empirical analysis 

examining individual differences in mean level and variability of unstructured 

movements from a sample of older adults with and without probable mild Alzheimer’s 

disease is presented. 



Results of the power investigation simulation study indicated that the power to 

detect the scale-model random intercept variance and the effect of an individual-level 

predictor of residual variability increased with greater numbers of individuals and 

occasions, and that failing to detect the scale-model random intercept variance essentially 

precluded the detection of systematically varying fixed effects for an individual-level 

predictor of residual heterogeneity. Results of the misspecification simulation study 

indicated that misspecifying the location model and/or scale model for the residual 

variance had consequences only for fixed and random effects on the same side of the 

model. Finally, results of the empirical data analysis indicated individuals with probable 

mild Alzheimer’s disease averaged less movement compared to healthy individuals, but 

did not differ in the variability of their unstructured movements.  

In sum, this dissertation provides information useful to empirical scientists as they 

progress from study design through analysis, interpretation, and reporting for publication. 
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CHAPTER 1: INTRODUCTION AND THEORETICAL FRAMEWORK 

Hypotheses about psychological processes are frequently constructed to detect 

differences in the mean level of an outcome between groups or individuals (Hoffman, 

2007). In this context, differential variability (i.e., heterogeneity) between groups with 

cross-sectional data, or between individuals with repeated-measures data has been viewed 

traditionally as a statistical nuisance that should be corrected, not as an interesting 

phenomenon for study; this is especially true for applications using the general linear 

model (e.g., regression or analysis of variance). Over the past two decades, this view has 

begun to change, especially with increased use of linear mixed-effects models and an 

increased ability to estimate more complex versions of these models. Empirical scientists 

are recognizing that important questions can be answered by examining differential 

variability alongside the traditional evaluation of mean responses. 

To illustrate why hypotheses pertaining to differential variability are important, 

consider physical activity, which has been shown consistently to benefit cognitive 

performance and to decrease the risk of dementia (Ahlskog, Geda, Graff-Radford, & 

Petersen, 2011). Because most research hypotheses pertain to mean levels of physical 

activity, important information is absent regarding the day-to-day (or hour-to-hour) 

variability in physical activity. For example, older adults with Alzheimer’s disease (AD) 

tend to report walking or completing household chores as their primary source of 

physical activity, and they tend to be sedentary when not engaged in these activities 

(Watts, Vidoni, Loskutove, Johnson, & Burns, 2013). Sedentary behavior creates a floor 

effect in the measurement of physical activity that necessarily decreases variability across 

occasions within the same individual. This decrease in variability could potentially bias 
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inferences from analyses that model mean levels of physical activity. Therefore, 

identifying factors, such as depression symptoms, that explain changes in the variability 

of physical activity would allow researchers to implement specific interventions to reduce 

variability (e.g., reducing depression symptoms), after which subsequent behavioral 

interventions could be used to produce more consistent (i.e., less variable) increases in 

physical activity to achieve potential health benefits. 

Evaluating hypotheses about mean levels alongside hypotheses regarding 

differential variability in nested (or multi-level) data, such as when repeated occasions 

are nested within individuals, requires a mixed-effects (or multi-level) location-scale 

model. This model extends the traditional linear model to allow the explicit prediction of 

variability between and within individuals and allows additional random effects that 

represent individual differences in variability. However, the model is relatively novel in 

practice and preliminary methodological work to investigate its properties must be 

conducted before empirical scientists can use this method confidently in their research. 

Therefore, this dissertation will address several important methodological questions 

pertaining to the use of the mixed-effects location-scale model for conditionally normally 

distributed outcomes. It will also report the results of an empirical analysis showing the 

flexibility of this model to evaluate individual differences in both mean levels and 

variability. 

This chapter contains the theoretical framework of the mixed-effects location-

scale model and begins with a description of the single-level linear model, its 

assumptions, and a discussion of differential (or heterogeneous) variability alongside 

common statistical methods used by empirical scientists to correct heterogeneity. This is 
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followed by a description of the linear mixed-effects model with details of how this 

model has been used traditionally to account for and predict heterogeneity. Finally, the 

mixed-effects location-scale model is introduced with background of how the model has 

been used in practice.  

Following the theoretical framework of the mixed-effects location-scale model, 

chapter 2 presents a complete example describing model-building approaches beginning 

with the single-level linear model and working through the mixed-effects location-scale 

model. Chapter 3 then provides details regarding Bayesian theory and the Markov chain 

Monte Carlo estimator used to estimate the mixed-effects location-scale models in this 

dissertation. This discussion is followed by two methodological studies, presented in 

chapter 4, which evaluate the power to detect and predict the scale-model random 

intercept variance as well as the consequences of misspecifying the location and/or scale 

model. Finally, in chapter 5, an empirical data analysis using the mixed-effects location-

scale model is presented to compare individual differences in movement variability 

between individuals with and without probable Alzheimer’s disease.  

The Single-Level Linear Model 

 The single-level linear model (often termed regression or analysis of variance) is 

used to study the relationship between one continuous outcome and one or more predictor 

variables that are either continuously- or categorically-valued, assumed to be measured 

without error. Specifically, the model regresses the outcome onto a linear combination of 

predictor variables using ordinary least squares (OLS) to determine the extent to which 

the predictors minimize residual variance (Pedhazur, 1997), as shown in (1.1).  

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖,1 + 𝛽2𝑋𝑖,2 + ⋯+ 𝛽𝑝−1𝑋𝑖,𝑝−1 + 𝑒𝑖 (1.1) 
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Here, 𝑌𝑖 is the continuous outcome for individual 𝑖. 𝛽0 represents the fixed intercept 

parameter (where the adjective fixed implies an effect applies equally to every individual 

in the sample) and is the average model-predicted outcome when all predictor values for 

individual 𝑖, 𝑋𝑖,1 to 𝑋𝑖,𝑝−1, equal zero. Note that the subscript of the last predictor, 𝑝 – 1, 

results in the total number of coefficients including the fixed intercept, to be 𝑝 – 1 + 1 = 

𝑝, which is used to maintain consistency with the matrix formulation of the model 

described below. Finally, 𝛽1 to 𝛽𝑝−1 represent the fixed effect for a given predictor.  

For a predictor 𝑋𝑖,𝑘 measured on a continuous scale, the fixed effect is interpreted 

as the increase in 𝑌𝑖 per one-unit increase in 𝑋𝑖,𝑘. Note that 𝑘 is a generic index used to 

indicate a specific predictor, where 𝑘 = 1 to 𝑝 – 1. For a different predictor 𝑋𝑖,𝑘′ 

measured on a categorical scale using reference coding (i.e., dummy coding; 𝑋𝑖,𝑘′ = 0 for 

a reference group and 𝑋𝑖,𝑘′ = 1 for some other group), the fixed effect represents the 

average difference in 𝑌𝑖 between groups or between design conditions. Finally, 𝑒𝑖 

represents the residual value (aka, error) for individual 𝑖 calculated as the difference 

between the observed outcome and model-predicted outcome resulting from the linear 

combination of the other terms in the right-hand side of (1.1). 

The model in (1.1) is termed single-level because there are no additional 

dependencies (i.e., correlations) induced by the sampling design and, consequently, there 

is only one error term (i.e., the residual) for each individual 𝑖. Further, all predictors are 

modeled as fixed effects. As a final note, the name of model (1.1) will later be appended 

to note that it is the location model, as the linear combination of effects produces the 

model-based estimate of the mean of the conditional distribution of the data implied by 

(1.1). 
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The matrix form of the single-level linear model is shown in (1.2). 

 𝑌𝑖 = 𝐗𝑖𝜝 + 𝑒𝑖 (1.2) 

Note that the notation used in (1.2) is specific to individual 𝑖, and although not typical to 

traditional references for linear models (e.g., Pedhazur, 1997), this notation was used 

purposefully to map directly onto the linear mixed-effects model framework discussed 

below. Here, 𝑌𝑖 is a 1 x 1 scalar representing the outcome for individual 𝑖, 𝐗𝑖 is a 1 x 𝑝 

row vector of observed predictor variable values 𝑝 for individual 𝑖, 𝜝 is a 𝑝 x 1 column 

vector of fixed effects for each predictor 𝑝, and 𝑒𝑖 is a 1 x 1 scalar representing the 

residual value for individual 𝑖. Note that the first element of 𝐗𝑖 is typically set to 1 to 

represent the value that multiplies the intercept parameter in the first element of 𝜝, and 

that matrix 𝜝 has no subscript 𝑖 because its fixed effects apply equally to all individuals. 

Assumptions of the single-level linear model. The primary statistical 

assumptions of the single-level linear model are that the expected outcome, 𝑌𝑖, 

conditional on the predictors in 𝐗𝑖, is a linear function of one or more predictors, 

 𝐸(𝑌𝑖|𝐗𝑖) = 𝐸(𝐗𝑖𝜝) = 𝐗𝑖𝜝. When estimated values of 𝜝 are used (i.e., 𝜝̂), the function 

is often referred to as 𝐗𝑖𝜝̂ = 𝑌̂𝑖. This assumption directly involves the mean for the 

conditional distribution of 𝑌𝑖, more commonly known as the location model (aka, 

structural model or model for the means), which includes the observed predictor variables 

𝐗𝑖 and fixed effects 𝜝 (e.g., intercept, slopes). More generally, the location model 

describes how average effects across individuals are used to obtain the estimated model-

predicted outcome, 𝑌̂𝑖 = 𝐗𝑖𝜝̂. The remaining statistical assumptions directly involve the 

residual values, 𝑒𝑖, more commonly known as the scale model (aka, stochastic model or 

model for the variances), which assume that the residual values follow a normal 
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distribution with a mean of 0 and constant, homoscedastic variance, 𝑒𝑖 ~ 𝑁(0, 𝜎𝑒
2), where 

𝜎𝑒
2 is the variance of the residual values. As the notation will change slightly for the 

location-scale models to come, here note that 𝜎𝑒
2 is constant across all individuals 𝑖 (i.e., 

there is no subscript 𝑖). 

When all assumptions are satisfied, the single-level linear model produces the 

most efficient (and consistent) best linear unbiased estimates (BLUE) of the fixed 

effects, 𝜝̂ = (𝐗𝑇𝐗)−𝟏𝐗𝑇𝐘, where 𝐗 and 𝐘 are taken across all 𝑛 individuals and are of 

size 𝑛 x 𝑝 and 𝑛 x 1, respectively. Here, best implies the lowest squared error, efficient 

implies the estimated fixed effects are the most accurate (i.e., have the smallest variance), 

consistent implies the estimated fixed effects approach their true population values as 

sample size increases toward infinity, and unbiased implies the estimated fixed effects, 

averaged over repeated samples using the same sample size, represent the true population 

fixed effects (Pedhazur, 1997; Williams, Grajales, & Kurkiewicz, 2013). 

Linearity. The assumption of linearity implies that a straight line sufficiently 

represents the relationship in the sampled population. Linearity implies 𝑌𝑖 is a linear 

function of fixed effects 𝜝, not a linear function of predictor variables 𝐗𝑖 (i.e., predictor 

variables can nonlinear, e.g., 𝑋𝑖
2), and also implies that the fixed effects are additive 

(Berry & Feldman, 1985). In the presence of non-linearity, fixed effect standard errors 

are biased and statistical power is reduced to the extent of the non-linearity, whereas the 

fixed effects themselves remain unbiased (Williams, Grajales, & Kurkiewicz, 2013). 

Independence. The assumption of independence of residuals implies that there is 

no correlation between residual values. That is, the residual value for one individual is 

assumed uncorrelated with the residual value from any other individual. In the presence 
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of non-independence, the fixed effects remain consistent and unbiased, but their standard 

errors are downwardly biased, increasing the probability of Type I errors (Blair, Higgins, 

Topping, & Mortimer, 1983). 

Non-independence often results from a sampling design that has an underlying 

nested structure of clustered groups or repeated measures (e.g., students in the same 

school or occasions within the same individual, respectively). If a nested structure is 

inherent in the data, then the single-level linear model can be extended to a mixed-effects 

linear model that accounts for non-independence using random effects. This model is 

described in detail below. If nested structures are not inherent, non-independence due to 

unknown reasons can be evaluated graphically by plotting residuals in some 

chronological order (e.g., date) or spatial structure (e.g., Euclidean distance) or evaluated 

statistically using the Durbin-Watson bounds test (Durbin & Watson, 1950, 1951). 

Normality. The assumption that residuals are marginally normally distributed is 

required when testing the statistical significance of fixed effects in a linear model 

(Pedhazur, 1997). In the presence of non-normal residuals, fixed effect standard errors 

can become biased; however, the fixed effect estimates remain consistent and unbiased. 

Note that the assumption of normality does not apply to the marginal distribution of 

either the outcome 𝑌𝑖 or any of the predictors (marginally or jointly) 𝐗𝑖. However, by the 

assumption that residual values are marginally normally distributed, the conditional 

distribution of 𝑌𝑖 is assumed to be normally distributed, 𝑓(𝑌𝑖|𝑋𝑖) ~ 𝑁(𝐗𝑖𝜝, 𝜎𝑒
2). The 

marginal distribution of residuals can be evaluated subjectively using a histogram and/or 

normal probability plot (e.g., Q-Q plot) or evaluated objectively using statistical tests 

such as the Kolmogorov–Smirnov test (Kolmogorov, 1933; Smirnov, 1948). 
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Figure 1.1. Homoscedastic variances (a) and heteroscedastic variances (b) 

Homoscedasticity. The assumption of homoscedasticity of residuals implies that 

residual values have a constant variance, 𝜎𝑒
2, across all individuals (or, individuals’ 

values of 𝐗𝑖; see Figure 1.1a). Note that when predictor variables are categorical, this 

assumption is similar to the homogeneity of variance assumption from an analysis of 
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variance model. A violation of homoscedasticity is termed heteroscedasticity (or 

heterogeneity of variance), where residual variance increases or decreases with increases 

in predictor values 𝐗𝑖 (see Figure 1.1b). In the presence of heteroscedasticity, fixed 

effects 𝜝 remain consistent and unbiased, but because predictor values with larger 

residual values provide less information, standard errors become upwardly or 

downwardly biased depending on the value of 𝐗𝑖 (Allison, 1999; Hayes & Cai, 2007). 

Detecting heteroscedasticity in the single-level linear model. Heteroscedasticity 

can be detected subjectively using visual inspection or objectively using statistical tests. 

Heterogeneity is observed visually by inspecting a scatterplot of the model-predicted 

outcome or observed predictor values against the residual values (similar to Figures 1.1a 

and 1b). Often, however, heterogeneity may not be as pronounced as in Figure 1.1b, so an 

objective statistical test may be required. Although several tests are available, the 

Breusch-Pagan test and White’s general test are used most commonly (Greene, 2002).  

The Breusch-Pagan test (Breusch & Pagan, 1979) is a Lagrange multiplier (or 

score) test that calculates whether the residual variance estimated from the single-level 

linear model assuming homoscedasticity can be predicted by a log-linear combination of 

predictors as shown in (1.3). 

 log(𝜎𝑖
2) = 𝛼0 + 𝐳𝑖𝛂 (1.3) 

Here, 𝜎𝑖
2 is the (log of the) estimated residual variance for individual 𝑖. 𝐳𝑖 is the scale-

model equivalent of the location-model design/predictor matrix, 𝐗𝑖, and is an 𝑛 x 𝑔 

matrix of 𝑔 predictor variables for individual 𝑖. 𝛂 is the scale-model equivalent to the 

column vector of linear model coefficients, 𝜝, and is a 𝑔 x 1 column vector of fixed 
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effect coefficients, and 𝛼0 is the intercept parameter representing the (log of the) residual 

variance when 𝐳𝑖 = 0.  

Two important characteristics of (1.3) are worth noting. First, the fact that 𝜎𝑖
2 is 

based on a log-linear combination of predictor effects in 𝐳𝑖𝛂 is simply a convenient 

mathematical transformation that, once exponentiated, ensures the predicted residual 

variance remains greater than zero (Harvey, 1976). Second, the scale-model predictor 

variables in 𝐳𝑖 are chosen explicitly by the empirical scientist and can include any, all, or 

none of the variables included in 𝐗𝑖 from the location model. The test statistic for the 

Breusch-Pagan test is calculated by comparing the model in (1.3) to the null model that 

assumes homoscedasticity (i.e., 𝛂 = 0). In large samples, this difference is distributed as 

a chi-square with degrees of freedom equal to the number of evaluated scale-model 

predictors, 𝐳𝑖. A statistically significant test statistic indicates heterogeneous residual 

variance as 𝛂 ≠ 0.  

White’s general test (White, 1980) is considered a special case of the Breusch-

Pagan test and is used when the empirical scientist has no specific hypothesis about the 

structure of residuals. The test also uses the model shown in (1.3), but with primary 

difference that 𝐳𝑖𝛂 is forced to include the log-linear combination of all possible 

predictors, their squares, and interactions. The test statistic and degrees of freedom are 

calculated exactly the same as the Breusch-Pagan test.  

Although effective at identifying overall heterogeneity, both the Breusch-Pagan 

test and White’s general test have significant shortcomings. First, because both tests are 

based on model comparisons, they fail to provide the unique effect for each scale-model 

predictor; thus, it may be difficult to determine which predictor in 𝐳𝑖 is most important in 
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creating residual heteroscedasticity (although one could presumably program the 

Breusch-Pagan test manually in any statistics package using the heterogeneous variance 

model described below). Second, nonsignificant test results indicate the absence of linear 

heterogeneity, but do not explicitly rule out the potential for heterogeneity that is truly 

nonlinear. Third, both the Breusch-Pagan test and White’s general test have been shown 

to produce Type I errors in the presence of residual non-normality (Koenker, 1981). In 

addition, in small samples, White’s general test may have low statistical power as a large 

number of scale-model predictors necessarily results in many square and interaction 

effects effectively reducing (or completely eliminating) degrees of freedom.  

If heteroscedasticity has been indicated either graphically or statistically, it is 

important to note that it can also result from a violation of several assumptions discussed 

previously. For example, a violation of the linearity assumption could result in model 

misspecification such as when missing an interaction effect (as indicated in Figure 1.1b) 

or nonlinear predictor effect, which can lead to heteroscedastic residual variances (Fox, 

2008); this applies to both experimental studies and non-experimental studies (Bryk & 

Raudenbush, 1988). Further, ignoring the presence of nested structures and estimating a 

single-level linear model violates the assumption of independence of residuals. In this 

situation, heteroscedastic residuals result from failing to use a linear mixed-effects model 

to account for differential effects of a predictor variable (i.e., random slopes; see chapter 

2). In addition, the use of an unreliable measure to obtain predictor values violates the 

assumption that predictors are measured without error. As a result, heteroscedasticity 

may result due to poor measurement precision at specific predictor values (Hayes & Cai, 
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2007). Taken together, it is critical that all other assumptions be satisfied when 

considering the legitimacy of observed heteroscedasticity.  

Correcting heteroscedasticity in the single-level linear model. In the single-level 

linear model, heteroscedasticity has traditionally been viewed as an impediment to 

unbiased inference. Because the Breusch-Pagan test and White’s general test do not 

explicitly correct for heterogeneity, methods have been developed to provide parameter 

estimates that are relatively unbiased in the presence of heteroscedasticity. Although 

many methods exist, for brevity, only variable transformation, robust standard errors, 

weighted least squares, and heterogeneous variance models will be discussed. 

When heteroscedasticity results from a violation of the assumption of linearity, 

one of the traditional methods to reduce the effects of heteroscedasticity is to employ a 

variable transformation. Although many potential transformations are available, their 

overall purpose is similar—to reduce the effect of heteroscedasticity by decreasing the 

scale of the residual values. As an example, the natural log transformation may be applied 

to positively skewed dependent and/or predictor variables when the variance of residuals 

increases with increases in the model-predicted outcome. Although transformations may 

be effective in reducing inference biases due to heteroscedasticity, they have potential 

downsides. As previously described when discussing normality of residuals, bias due to 

heteroscedasticity is only minimized on the transformed model scale, so fixed effect 

standard errors on the data scale remain downwardly biased (Manning, 1998). In 

addition, the transformed model clouds interpretation due to non-linear and non-additive 

model scale effects (Bryk & Raudenbush, 1988).  
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An alternative to variable transformation is to use a robust standard error 

correction, accomplished by using variants of a sandwich (or empirical) estimator. The 

sandwich estimator uses a heteroscedasticity (or asymptotically) consistent covariance 

matrix (HCCM) that provides less biased estimates without transformation or restrictive 

distributional assumptions such as normality or homoscedasticity of residuals (Huber, 

1967; White, 1980). Specifically, in typical linear model analyses where the assumption 

homoscedasticity of residuals is satisfied, the conditional variance of the outcome is 

estimated based on the estimated residual variance. However, in the presence of 

heteroscedasticity, the estimated residual variance will be an over- or under-estimate of 

conditional variance across predicted outcome values. In this situation, the sandwich 

estimator uses observed squared residuals to calculate the sampling variance—as 

opposed to using the estimated residual variance under the assumption of 

homoscedasticity—which decreases bias as individuals with large squared residuals are 

given less influence on the estimates of fixed effect standard errors (Kauermann & 

Carroll, 2001). 

Five primary HCCM variants have been developed—HC0 introduced by White 

(1980), HC1, HC2, and HC3 developed by MacKinnon and White (1985), and HC4 

developed by Cribari-Neto (2004). Note that HC0 is appropriate only for large samples 

and although HC1, HC2, and HC3 are asymptotically equivalent to HC0, they have better 

small samples properties and are less biased with homoscedastic residuals (MacKinnon & 

White, 1985). Further, Long and Ervin (2000) have shown that HC3 is most appropriate 

with samples of less than 250 individuals, especially when evaluating coefficients most 

responsible for creating heteroscedasticity, whereas Cribari-Neto (2004) has shown that 
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HC4 is less biased than HC3 in the presence of high leverage (i.e., outlier) values or 

when residuals are homoscedastic. Despite the advantage of maintaining data-scale 

interpretations, relaxing distributional assumptions comes at a price. The use of a 

sandwich estimator reduces downward bias in standard errors by increasing the sampling 

variance as appropriate, which can result in inefficient estimates and wider confidence 

intervals when compared to the standard error estimates produced by the linear model 

under the assumption of homoscedasticity (Kauermann & Carroll, 2001). 

A third available method to correct bias resulting from heteroscedasticity is to use 

a different estimation technique such as weighted least squares (WLS). WLS transforms 

the heteroscedastic linear model into a homoscedastic model by giving more weight to 

individuals with greater estimated precision (Greene, 2002). That is, individuals with 

smaller residual values are treated as more influential because their estimates are, in 

theory, closer to the true location of the regression line. Notably, WLS can be used when 

the form of heteroscedasticity is known or unknown; however, the efficiency of WLS is 

improved dramatically in the former situation. In addition, weights could be chosen a 

priori based on theory, but such situations rarely occur. More frequently, weights are 

determined empirically by estimating the linear model, evaluating all predictor–residual 

plots to determine the cause of heteroscedasticity, regressing the squared residual values 

onto the predictor variables causing the heteroscedasticity, and calculating the weight(s) 

as the reciprocal of the squared model predicted value (Greene, 2002). If these steps are 

repeated until the parameter estimates stop changing (i.e., they converge), the procedure 

is termed iteratively reweighted least squares. Finally, it is important to note that WLS 

only produces consistent estimates when the model is correctly specified by assuming 
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that the true weight values are known exactly. Therefore, choosing incorrect weights, or 

weights from a misspecified heteroscedastic model, leads to decreased efficiency and 

increased bias in parameter estimates (Hayes & Cai, 2007). 

One final method to correct bias due to heteroscedasticity is to use a 

heterogeneous variance model, which is directly applicable to experimental data that 

would typically be analyzed by analysis of variance (Bryk & Raudenbush, 1988). That is, 

a heterogeneous variance model is most applicable to the single-level model when 

heteroscedastic variances are observed across levels of a categorical predictor, such as 

when heterogeneity of variance is observed between treatment and control groups. The 

heterogeneous variance model does not correct or adjust for heteroscedasticity, but 

instead estimates a residual variance for each group 𝑗 (i.e., 𝜎𝑒𝑗
2 ) and is analogous to 

estimating separate linear models using data from each individual group 𝑗. Therefore, by 

using group-specific standard errors, fixed effects inferences are less biased as the model 

ensures Type I error rates remain closer to the nominal level.   

The Linear Mixed-Effects Model 

As stated above, a violation of the independence of residuals assumption indicates 

a non-zero residual correlation between individuals, implying that the data potentially 

have some underlying nested structure. Because repeated occasions nested within an 

individual (probably) have a higher correlation than occasions from different individuals, 

and given this correlation is typically deemed non-trivial, a linear mixed-effects model 

must be used—a failure to do so increases the risk of inaccurate standard errors and 

misleading inference. For repeated measures data, the linear mixed-effects model 

explicitly models this correlation by partitioning between-individual variability from 
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residual variance via location-model random effects. In the repeated-measures context, 

location-model random effects represent individual-specific deviations from location-

model fixed effects (i.e., individual differences; the effect is not the same for everyone in 

the sample). As an aside, the inclusion of location-model random effects is where the 

adjective mixed-effects originates; that is, a mixed-effects model includes both fixed and 

random effects. 

Before continuing, it is worth noting that the linear mixed-effects models 

described in this dissertation apply directly to repeated-measures data, with repeated 

occasions at level 1 nested within individuals at level 2 (i.e., the linear mixed-effects 

model specified as a multi-level model). Further, the linear mixed-effects models 

described here are primarily concerned with modeling individual effects (i.e., the 

conditional model) as opposed to population-averaged effects (i.e., the marginal model). 

As such, much of the description of linear mixed-effects models follows from this 

sampling design (i.e., occasions nested within individuals). Yet it is important to note that 

linear mixed-effects models, as well as the methods proposed throughout, are not limited 

specifically to this type of data, and also can be applied to individuals nested within 

groups (see, for example, Raudenbush & Bryk, 2002 or Leckie, French, Charlton, & 

Browne, 2014).  

The general form of the linear mixed-effects model for repeated-measures data is 

presented in (1.4). 

 𝐘𝑖 = 𝐗𝑖𝜝 + 𝐙𝑖𝐮𝑖 + 𝐞𝑖 (1.4) 

Here, subscript 𝑖 is included for all matrices that vary across individuals and 𝑛𝑖 denotes 

the number of occasions in 𝐘𝑖 for individual 𝑖. 𝐘𝑖 is an 𝑛𝑖 x 1 column vector of observed 
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outcomes for 𝑛 occasions within individual 𝑖. 𝐗𝑖 is an 𝑛𝑖 x 𝑝 design matrix of 𝑝 observed 

predictor variable values across the 𝑛 occasions within individual 𝑖. 𝜝 is a 𝑝 x 1 column 

vector of fixed effects for the intercept and each of the 𝑝 – 1 predictors. 𝐙𝑖 is an 𝑛𝑖 x 𝑞 

design matrix of 𝑞 occasion-level predictors that have location-model random effects for 

𝑛 occasions within individual 𝑖. In addition, 𝐮𝑖 is a 𝑞 x 1 column vector of 𝑞 location-

model random effect coefficients (i.e., deviations from the specific location-model fixed 

effects) for each individual 𝑖. Finally, 𝐞𝑖 is an 𝑛𝑖 x 1 column vector of residual values for 

𝑛 occasions within individual 𝑖. Note that for all models discussed in this dissertation, 𝐙𝑖 

will include an 𝑛𝑖 x 1 column vector of ones as the first column to represent the random 

intercept (although this is not required by the linear-mixed effects model), all random 

effects will have analogous fixed effect terms in 𝜝. Further, when 𝐮𝑖 = 𝟎 for all 

individuals 𝑖, the linear mixed-effects model in (1.4) reduces to a single-level linear 

model in (1.2) (Littell, Milliken, Stroup, & Wolfinger, 1996). 

In the linear mixed-effects model, the column vector of residual values for 

individual 𝑖, 𝐞𝑖, is assumed to be multivariate normally distributed with a mean of 0 and 

with a positive semi-definite covariance matrix, 𝐑𝑖, 𝐞𝑖 ~ 𝐍𝑛𝑖
(𝟎, 𝐑𝑖). 𝐑𝑖 contains the 

variance and covariance of the distribution of residual values and is a positive semi-

definite 𝑛𝑖 × 𝑛𝑖 matrix for the 𝑛 occasions for individual 𝑖. More commonly, mixed-

model notation posits that 𝐑 is constant between individuals (i.e., 𝐑𝑖 = 𝐑), however, to 

remain consistent with notation appearing later in this dissertation, the subscript 𝑖 is 

included here. By definition, for 𝐑𝑖 to be positive semi-definite, the determinant of 𝐑𝑖 

must be a non-negative value, or stated another way, 𝐑𝑖 can be inverted, at minimum. For 

repeated-measures data, 𝑛𝑖 is the number of 𝑛 repeated occasions for individual 𝑖, which 
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may vary between individuals (e.g., due to missing data). Thus, 𝐑𝑖 may be of different 

dimensions across individuals in the same sample. Further, note that when 𝑛𝑖 is large, 𝐑𝑖 

contains 
𝑛𝑖(𝑛𝑖+1)

2
 unique elements which may lead to difficulty in having converged 

estimates if all possible covariances across the 𝑛𝑖 occasions are estimated uniquely. 

In addition, the column vector of location-model random effect values for 

individual 𝑖, 𝐮𝑖, is assumed to be multivariate normally distributed with a mean vector of 

zero and positive semi-definite covariance matrix, 𝐆𝑖, 𝐮𝑖 ~ 𝐍𝑞(𝟎, 𝐆𝑖). 𝐆𝑖 contains the 

variances and covariances of the distribution of random effect values and is a positive 

semi-definite 𝑞 x 𝑞 matrix, where 𝑞 is the number of occasion-level predictors with 

random effects in 𝐙𝑖. Note that when the linear mixed-effects model assumes constant 𝐆𝑖  

between individuals, then 𝐆𝑖 = 𝐆; however, the subscript 𝑖 will be retained for 

homogeneous 𝐆 to map directly onto the models discussed below. Further, note that 

random effect variances will be denoted as 𝜎𝑢𝑟
2 , where the subscript 𝑟 indexes a specific 

location-model random effect in 𝐙𝑖 (e.g., 𝜎𝑢0
2  indicates the location-model random 

intercept variance). 

It is important to note that a linear mixed-effects model for repeated measures 

data partitions random effect variances from residual variance to account for correlation 

due to nested structures, but it does not explain variance in the outcome. That is, when 

interest is primarily on individual differences (i.e., a conditional model), the between-

individual variability in 𝐆𝑖 and within-individual variability in 𝐑𝑖 are re-aggregated into 

the 𝐕𝑖 matrix, calculated as shown in (1.5) 

 𝐕𝐚𝐫(𝐘𝑖|𝐗𝑖 , 𝐙𝑖) = 𝐕𝑖 = 𝐙𝑖𝐆𝑖𝐙𝑖
𝑇 + 𝐑𝑖 , (1.5) 
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where 𝐕𝑖 is the covariance matrix for the multivariate normal distribution of 𝐘𝑖 

conditional on 𝐗𝑖 and 𝐙𝑖 for individual 𝑖, 𝑓(𝐘𝑖|𝐗𝑖 , 𝐙𝑖) ~ 𝐍𝑛𝑖
(𝐗𝑖𝜝,𝐕𝑖). Note that 𝐙𝑖

𝑇 

indicates the transpose of 𝐙𝑖. 

Assumptions of the linear mixed-effects model. The primary statistical 

assumptions of the linear mixed-effects model are similar to the single-level linear model 

presented above, but with greater complexity due to multiple levels or sampling units of 

analysis. This section begins with a discussion of model specification concerns and then 

proceeds to describe the assumptions for both the location and scale models, with specific 

emphasis is placed on detecting and remedying heteroscedasticity at differing levels of 

analysis.    

Model specification. In the linear mixed-effects model, misspecification of the 𝐗𝑖 

in the location model, misspecification of the structure of 𝐑𝑖, or misspecification of either 

the number of random effects or the structure of 𝐆𝑖 can be detrimental to the underlying 

assumptions of the model relative to the severity of misspecification. With that said, 

although the greater complexity of the linear mixed-effects model magnifies the 

consequences of model misspecification when compared to the single-level linear model, 

a well-chosen linear mixed-effects model will be more accurate than a single-level linear 

model that fails to separate between-individual variability in 𝐆𝑖 from within-individual 

variability in 𝐑𝑖. Therefore, it is critical that the location and scale models are both 

specified as correctly (as least wrong) as possible. Because outcomes depend jointly on 

residuals and random effects, misspecification of the location model may result in 

incorrect residual values for individuals as well as inaccurate estimates of random effects 

(Hilden-Minton, 1995, section 4.1). Further, the distributions of unstandardized random 
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effects are necessarily different when 𝐗𝑖 and 𝐙𝑖 contain different predictor variables; 

thus, it has been recommended that predictors within 𝐙𝑖 be subsumed within 𝐗𝑖 (Verbeke 

& Molenberghs, 2000). 

Finally, note that random effects can only be independent when there is no 

correlation beyond what can be explained systematically by the level-2 predictor 

variables in the location model. That is, there are no additional levels of nesting (e.g., 

individuals cannot be additionally nested within groups). This implies that location-

model random effects have been specified correctly. Further, incorrectly specified 

location-model random effects (i.e., random slopes; see chapter 2) redistribute non-

independent variance to lower-level variance components, in this case 𝜎𝑒
2, which can 

potentially bias fixed effect standard errors and result in biased inferences (Snijders & 

Bosker, 2012). 

Location model assumptions. The assumptions of the location model include that 

the expected outcome 𝐘𝑖 is a linear function of one or more perfectly reliable predictors 

that can be measured at any level of the model, 𝐸(𝐘𝑖|𝐗𝑖 , 𝐙𝑖) = 𝐗𝑖𝜝 = 𝐘𝑖. In addition, it is 

worth noting that, although not technically an assumption, for repeated-measures data in 

which occasions are nested within individuals, location-model random effects can only be 

estimated for level-1 predictors. That is, random effects at level 2 represent differences 

between individuals; therefore, additional random effects cannot be estimated for level-2, 

individual-level predictors because there is no additional level of nesting by which 

individuals could vary (e.g., individuals are assumed not to be additionally nested within 

groups). 
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Residual assumptions. As stated above, the linear mixed-effects model assumes 

residual values to be multivariate normally distributed with a mean of zero and positive 

semi-definite covariance matrix 𝐑𝑖, 𝐞𝑖 ~ 𝐍𝑛𝑖
(𝟎, 𝐑𝑖). In addition, the model can assume 

residual values to be independent and constant between individuals (although not 

technically required). More generally, 𝐑𝑖 is simply assumed to have the correct 

covariance structure specified for the residuals within an individual (Littell et al., 1996). 

Many alternative covariance structures are available for 𝐑𝑖, with the choice of structure 

depending on the data and study design, such that, within an individual, 𝐑𝑖 can be 

structured so residuals are independent or correlated, with or without homoscedastic 

variances (see Littell, Pendergast, & Natarajan, 2000). Of particular note, the linear 

mixed effects model can estimate residuals within an individual to be independent and 

constant across repeated measurements, 𝐑𝑖 = 𝜎𝑒
2𝐈𝑛𝑖

 (Laird & Ware, 1982), where 𝐈𝑛𝑖
 is 

an 𝑛𝑖 x 𝑛𝑖 identity matrix (i.e., diagonal matrix of ones) with 𝑛𝑖 representing the number 

of 𝑛 repeated occasions for individual 𝑖 (i.e., implies zero correlation between occasions).  

With that said, it is an important distinction that specifying 𝐑𝑖 to have a 

heterogeneous variance structure across occasions within an individual is not the same as 

predicting (or allowing) heterogeneity between individuals because in this instance 

heterogeneous 𝐑𝑖 would consist of identical variance estimates for every individual. That 

is, the heterogeneity of residual variances in 𝐑𝑖 would still be assumed to be constant 

across individuals (i.e., 𝐑𝑖 = 𝐑), although this assumption can be relaxed through the use 

of a heterogeneous variance model described below. 

Random effect assumptions. The linear mixed-effects model assumes random 

effect values to be multivariate normally distributed with a mean of zero and positive 
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semi-definite covariance matrix 𝐆𝑖, 𝐮𝑖 ~ 𝐍𝑞(𝟎, 𝐆𝑖). Similar to 𝐑𝑖, the model can assume 

random effect values to be constant over individuals, although this assumption can be 

relaxed by using the heterogeneous variance model described below. 

As stated above, one reason to estimate the linear mixed-effects model is to 

account for non-independent residuals. For repeated-measures data, after accounting for 

between-individual differences via properly specified random effects, residuals can be 

assumed independent across individuals, although remaining non-independence can exist 

and can be tested empirically (i.e., if 𝐑𝑖 is diagonal for all 𝑖). Further, the (conditional) 

linear mixed-effects model assumes that residuals and random effects are independent of 

each other (i.e., no covariance between residuals in 𝐑𝑖 and random effects in 𝐆𝑖), an 

assumption that provides the formal definition of what a level indicates when the linear 

mixed-effects model is specified as a multi-level model—the number of sets of 

independent variance components. Therefore, repeated-measures data has two levels 

because the level-1 residuals and level-2 random effects are independent of each other. 

Detecting heteroscedasticity in the mixed-effects model. In general, the linear 

mixed-effects model for repeated-measures data can assume that residuals and random 

effects have constant variance across individuals (Snijders & Bosker, 2012; i.e., 𝐑𝑖 = 𝐑 

and 𝐆𝑖 = 𝐆, respectively). It is often assumed that each specific residual and random 

effect variance and covariance is homogeneous for all predictors across all levels of 

analysis. That is, both level-1 residuals and level-2 random effects are often assumed to 

have constant variance and covariance across all values of level-1 and level-2 predictors. 

This assumption is evaluated as detailed next.  
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 Detecting heterogeneous residual variances. Assuming all random effects have 

been correctly specified, diagnosing heterogeneity in residual variances requires 

estimating a single-level linear model for each level-2 unit using only level-1 predictors, 

assuming sufficient level-1, within-unit sample sizes (Hilden-Minton, 1995). Estimating 

unit-specific models isolates the level-1 effects and ignores confounding due to level-2 

predictors. All methods described above to detect heterogeneity in the single-level linear 

model can be used to test for residual heterogeneity within these unit-specific models.  

Further, a general summary statistic has been proposed by Raudenbush and Bryk 

(1987, 2002) to indicate overall heterogeneity in level-1 residuals across level-2 units 

without connection to a specific predictor variable. This statistic is presented in (1.6). 

 
𝑙𝑠total =

∑ [𝑑𝑓𝑖log(𝜎𝑖
2)]𝑖

∑ 𝑑𝑓𝑖𝑖
 

(1.6) 

Here, 𝑑𝑓𝑖 is the number of occasions within an individual 𝑖 minus the number of level-1 

predictors minus 1, and log(𝜎𝑖
2) is the natural log of the residual variance from a given 

unit-specific linear model. Using the quantity 𝑙𝑠total from (1.6), a standardized dispersion 

measure, 𝑑𝑖, is calculated shown in (1.7). 

 

𝑑𝑖 = √
𝑑𝑓𝑖
2

[log(𝜎𝑖
2) − 𝑙𝑠total] 

(1.7) 

Assuming the level-1 residuals are normally distributed, the summary statistic 𝐻 can then 

be calculated as the sum of squared 𝑑𝑖, as shown in (1.8). 

 𝐻 = ∑𝑑𝑖
2

𝑖

 
(1.8) 

The heterogeneity statistic, 𝐻, is distributed as a chi-square with degrees of freedom 

equal to the number of individuals minus 1, such that a statistically significant result 
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indicates significant heterogeneity of the level-1 residuals. Note that Raudenbush and 

Bryk (2002) recommend 𝐻 only be used when 𝑑𝑓𝑖 ≥ 10 because when 𝑑𝑓𝑖 < 10 the null 

distribution of 𝐻 is not a chi-square. If, however, 𝑑𝑓𝑖 < 10 for the majority of level-2 

units, Snijders and Bosker (2012) have suggested a simulation approach that ultimately 

uses equations (1.6) through (1.8) to evaluate heteroscedasticity.  

Heteroscedasticity of random effect variances. Due to the confounding of random 

effects by residuals as described above, evaluating heteroscedasticity of random effects is 

only recommended after the adequacy of residuals has been confirmed (Snijders & 

Bosker, 2012). Although the methods described above could be used to detect 

heteroscedasticity of random effects, the empirical Bayes estimates of random effects are 

affected by shrinkage to the overall mean; thus, it has been recommended that only the 

graphical methods be used when evaluating heteroscedasticity of random effects 

(Houseman, Ryan, and Coull, 2004).  

Correcting heteroscedasticity in the mixed-effects model. For repeated-measures 

data, non-constant, heterogeneous random effect variances can indicate that the model is 

missing a random effect in 𝐙𝑖 for a level-1 predictor or that 𝐗𝑖 is missing an interaction 

effect between a level-1 and level-2 predictor (i.e., a cross-level interaction effect; see 

Raudenbush & Bryk, 2002). As a result, Bryk and Raudenbush (1988) have suggested 

that all level-1 predictors be considered random until proven otherwise, which, of course, 

assumes sufficient level-2 sample sizes with which to estimate all random effects. If the 

subsequent model fails to converge when estimating an additional random effect, a 

potential workaround may be to use the variable as a predictor of random slope variance 
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in a heterogeneous variance model or mixed-effects location scale model, as described 

below. However, this conjecture has not yet been studied. 

In addition, if heterogeneity in random effects is observed across individuals (i.e., 

non-constant 𝐆𝑖), and no additional level of analysis can be explicitly defined by the 

sampling design, then a violation of this assumption can be remedied by modeling an 

empirical 𝐆𝑖 matrix at given values of predictors in a heterogeneous variance model or a 

mixed-effects location-scale model described below. That is, the 𝐆𝑖 is estimated as 

unique to an individual (or, stated another way, heterogeneous between individuals) 

conditional on the values of specified predictor(s). Note that this option is most efficient 

computationally for a categorical predictor, but heterogeneity across values of a 

continuous predictor can also be estimated. 

Heteroscedasticity as an Interesting Phenomenon 

To this point, heteroscedasticity has been presented alongside the other location 

and scale model assumptions of the single-level and mixed-effects linear models 

specifically with the goal of detecting and correcting heteroscedasticity in an effort to 

produce less biased fixed effect inferences. That is, traditional corrections have treated 

heteroscedasticity as a nuisance that only introduces bias into the model, not as an 

interesting phenomenon to study. Although it has been shown that heteroscedasticity can 

result from misspecification of the location model due to omitted fixed effects and 

interactions (Raudenbush & Bryk, 2002), the identification of predictors of scale-model 

heteroscedasticity is crucial to indicating which location model predictors and 

interactions require further study. Therefore, in recent decades, empirical scientists have 

recognized the importance of heteroscedasticity (or variability, more generally) using 
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indices of level-1 variability as both outcomes and predictors. With that said, modeling 

heteroscedasticity as an outcome has generally not involved the use of repeated-measures 

data; instead, modeling heteroscedasticity as an outcome is often used in educational 

research settings with cross-sectional data/designs (see Raudenbush & Bryk, 1987 or 

Konstantopoulos, 2008, who both use a two-stage mixed-effects modeling approach). As 

a result, only a discussion of modeling heteroscedasticity as a predictor is provided 

below. 

Heteroscedasticity as a predictor. Although cross-sectional designs can be 

modeled using residual (within-group) variability as a predictor (see Leckie, 2014 or 

Raudenbush & Bryk, 1987), using level-1 variability as a predictor of level-2 differences 

are more prominent in the analysis of repeated-measures data. They are frequently used 

in cognitive aging and health-related outcomes research using data obtained from 

measurement burst designs (Nesselroade & McCollam, 2000) or ecological momentary 

assessments (Stone & Shiffman, 2002) that yield many observations per individual. In 

these data, an index of variability termed intra-individual variability (IIV) is often 

calculated across repeated occasions using only an individual’s own responses 

(Nesselroade & Ram, 2004). The IIV variable is then used as a level-2, between-

individual predictor to evaluate the effect of being a more variable (or, less consistent) 

individual (Nesselroade & Ram, 2004; Ram, Rabbitt, Stollery, & Nesselroade, 2005). 

Note that the calculation of IIV at a minimum is a two-stage process in which variability 

estimates used in subsequent models were initially detrended to remove time-related 

effects (Rast & Zimprich, 2011). 
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One common metric of IIV is the intra-individual standard deviation (ISD𝑖), 

calculated as the standard deviation for each individual’s own responses over the repeated 

occasions (Hultsch, MacDonald, Hunter, Levy-Bencheton, & Strauss, 2000). Estabrook, 

Grimm, and Bowles (2012) hypothesize that ISD𝑖 is the most used IIV metric because it 

is relatively unaffected by extreme observations, ignores the order of responses, is simple 

to calculate, and is readily interpretable. As with any standard deviation, ISD𝑖 describes 

how much an individual varies with respect to their average level of performance, but is 

not adjusted for overall performance, such as floor or ceiling effects (Tractenberg & 

Pietrzak, 2011). As a result, a second metric termed the coefficient of variation (CV𝑖), 

which adjusts for overall performance, may be calculated as CV𝑖 =
ISD𝑖

x𝑖
, where x𝑖 

represents the individual’s mean across the repeated occasions (Haldane, 1955; Hultsch et 

al., 2000; Tractenberg & Pietrzak, 2011).  

IIV has been used often in cognitive aging and health research. For example, 

Hultsch et al. (2000) used a reaction time task to obtain several IIV metrics and found 

that greater IIV predicted lower performance on two memory tasks. With that said, IIV is 

not without limitations. First, predictors in single-level linear and linear mixed-effects 

models are assumed measured without error (i.e., perfectly reliable). This assumption will 

rarely be satisfied given variability generally represents error and an estimate of standard 

deviation may contain a significant amount of sampling error given it is typically based 

on only a few occasions per person. Second, IIV has been generally conceptualized only 

as short-term, transient fluctuation (Ram et al., 2005). Although some individuals may be 

more variable compared to others, IIV as a predictor implies that the repeated occasions 

used to calculate IIV are homoscedastic within an individual; however, if 
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heteroscedasticity is present and variability in response changes over occasions, the IIV 

metric becomes of questionable utility.  

The limitations of traditional two-stage approaches using variability as a predictor 

highlight the need to employ a more parsimonious and powerful model to predict 

heteroscedasticity by extending the linear mixed-effects model to include heterogeneous 

scale model across individuals (Hoffman, 2007). These models include the heterogeneous 

variance model, which allows residual and random effect variances and covariances to 

differ across individuals based on specific scale-model predictor fixed effects, as well as 

the mixed-effects location-scale model, which extends the heterogeneous variance model 

to include additional random effects for the effect of lower-level predictors of residual 

variance and covariance. 

The Heterogeneous Variance Model  

Although similar in nature to the heterogeneous variance model described above 

in the context of the single-level linear model (see Bryk & Raudenbush, 1988), the 

heterogeneous variance model in the linear mixed-effects model framework serves two 

purposes. First, the model is used to ensure that more correct covariance estimates are 

used when calculating standard errors for the location-model fixed effects, thereby 

reducing inferential bias (Littell et al., 1996). Second, the model is used to test 

hypotheses related to differential variability by identifying the direction and magnitude 

by which predictor variables of residual and random effect variances and covariances 

produce heteroscedasticity. The heterogeneous variance model in a mixed model 

framework estimates the location model and heterogeneous scale model across levels of 

analysis, with location-model variance components based on a log-linear combination of 
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predictor variables (Hedeker, Mermelstein, & Demitras, 2008). Note that the natural log 

link function is used on the model scale to ensure predicted variances remain positive on 

the data scale (Harvey, 1976) and the inverse hyperbolic tangent link function is used to 

ensure random effect correlations stay bounded within the interval –1 to +1 (i.e., 𝐆𝑖 

remains positive semi-definite; Leckie et al., 2014). 

Predicting location-model random effect variances and covariances. Scale-

model heterogeneity can be predicted for any location-model random effect variance or 

correlation in 𝐆𝑖, shown in (1.9) through (1.11) using slightly different notation compared 

to what was used above (described shortly). Note that because these random effect 

variances and correlations are now conditional on a set of predictor values unique to 

individual 𝑖, 𝐆𝑖 now requires the subscript 𝑖. 

 log(𝜎𝑢𝑟,𝑖
2 ) = 𝐀𝑖

𝑢𝑟𝛂𝑢𝑟 (1.9) 

 tanh−1 (𝜌𝑢𝑟,𝑖;𝑢𝑟′,𝑖
) = 𝐀

𝑖

𝑢𝑟;𝑢𝑟′
𝛂𝑢𝑟;𝑢𝑟′  (1.10) 

where, 

 
𝜌𝑢𝑟,𝑖;𝑢𝑟′,𝑖

=
𝜎𝑢𝑟,𝑖;𝑢𝑟′,𝑖

√𝜎𝑢𝑟,𝑖
2 𝜎𝑢𝑟′,𝑖

2

. 
(1.11) 

The new notation reflects the specific sets of predictors or effects for specific location-

model random effect variances 𝑢𝑟 or correlations 𝑢𝑟; 𝑢𝑟′ as notated in the superscript, 

where the superscript’s subscript 𝑟 indexes the specific location-model random effect. 

The superscript, therefore, is an index that denotes the element of 𝐆𝑖 to which each 

design matrix, 𝐀𝑖
𝑢𝑟 or 𝐀

𝑖

𝑢𝑟;𝑢𝑟′
, or parameter vector, 𝛂𝑢𝑟 or 𝛂𝑢𝑟;𝑢𝑟′ , refers. That is, the 

superscript indicates which 𝑟 location-model random effect is being estimated and that 

these random effects can be estimated using different sets of predictor variables. For 
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example, 𝐀𝑖
𝑢0 indicates the specific set of predictor variables for the location-model 

random intercept variance, 𝐀𝑖
𝑢1 indicates the set of predictors for an additional location-

model random effect variance, and 𝐀𝑖
𝑢0;𝑢1  indicates the set of predictors for their 

correlation. 

Here, 𝜎𝑢𝑟,𝑖
2  is the (log of the) estimated level-2 random effect variance 𝑟 for 

individual 𝑖, 𝜌𝑢𝑟,𝑖;𝑢𝑟′,𝑖
 is the correlation between random effect 𝑢𝑟 and 𝑢𝑟′ for individual 𝑖, 

and 𝜎𝑢𝑟,𝑖;𝑢𝑟′,𝑖
 is the covariance between random effect 𝑢𝑟 and 𝑢𝑟′ for individual 𝑖. Note 

that the correlation is used to allow the covariance to rescale as necessary based on the 

location-model random effect variances, 𝜎𝑢𝑟,𝑖
2  and 𝜎𝑢

𝑟′,𝑖

2 , in which the inverse hyperbolic 

tangent link is used to ensure 𝜌𝑢𝑟,𝑖;𝑢𝑟′,𝑖
 remains bounded between –1 and +1 (i.e., 𝐆𝑖 

remains positive semi-definite). Note that when 𝐆𝑖 is of order three or larger, appropriate 

link functions (e.g., log, tanh−1) are necessary but not sufficient to ensure that 𝐆𝑖 

remains positive definite (Leckie et al., 2014); although the Metropolis-Hastings 

algorithm developed for this dissertation uses methods that ensure 𝐆𝑖 remains positive 

definite (see Barnard, McCulloch, & Meng, 2000). 

In addition, 𝐀𝑖
𝑢𝑟 is a 1 x 𝑎𝑢𝑟 row vector and 𝐀

𝑖

𝑢𝑟;𝑢𝑟′
 is a 1 x 𝑎𝑢𝑟;𝑢𝑟′  row vector, 

containing 𝑎𝑢𝑟 and 𝑎𝑢𝑟;𝑢𝑟′  scale-model predictor variables for individual 𝑖. Note that both 

𝐀𝑖
𝑢𝑟 and 𝐀

𝑖

𝑢𝑟;𝑢𝑟′
 are row vectors because they can only contain level-2, individual-level 

predictors (i.e., a constant value across all occasions; known as time-invariant predictors, 

as described in chapter 2), and for the models in this dissertation 𝐀𝑖
𝑢𝑟 and 𝐀

𝑖

𝑢𝑟;𝑢𝑟′
 will 

have the first element be a 1 for all individuals to represent the intercept of the location-

model random effect variance or correlation.  
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Finally, 𝛂𝑢𝑟 is an 𝑎𝑢𝑟 x 1 column vector and 𝛂𝑢𝑟;𝑢𝑟′  is an 𝑎𝑢𝑟;𝑢𝑟′  x 1 column 

vector of 𝑎𝑢𝑟 or 𝑎𝑢𝑟;𝑢𝑟′  scale-model fixed effects for a specific location-model random 

effect variance 𝑢𝑟 or correlation 𝑢𝑟; 𝑢𝑟′ as notated in the superscript. Because fixed 

effects apply to all individuals equally, no subscript 𝑖 was included. 

Predicting residual variances and covariances. Similarly, scale-model 

heterogeneity can be predicted for all residual variances and correlations in 𝐑𝑖 as shown 

in (1.12) through (1.14). 

 log(𝜎𝑒𝑡,𝑖
2 ) = 𝐓𝑖

𝑒𝛕𝑒 (1.12) 

 tanh−1 (𝜌𝑒𝑡,𝑖;𝑒𝑡′,𝑖
) = 𝐓

𝑖

𝑒𝑡;𝑒𝑡′𝛕𝑒𝑡;𝑒𝑡′  (1.13) 

where, 

 
𝜌𝑒𝑡,𝑖;𝑒𝑡′,𝑖

=
𝜎𝑒𝑡,𝑖;𝑒𝑡′,𝑖

√𝜎𝑒𝑡,𝑖
2 𝜎𝑒𝑡′,𝑖

2

. 
(1.14) 

Here, 𝜎𝑒𝑡,𝑖
2  is the (log of the) estimated level-1 residual variance at occasion 𝑡 for 

individual 𝑖, 𝜌𝑒𝑡,𝑖;𝑒𝑡′,𝑖
 is the (inverse hyperbolic tangent of the) correlation between 

residual values for occasions 𝑡 and 𝑡′ for individual 𝑖, and 𝜎𝑒𝑡,𝑖;𝑒𝑡′,𝑖
 is the covariance 

between residuals for occasions 𝑡 and 𝑡′ for individual 𝑖. The matrix 𝐓𝑖 is for the residual 

variance, 𝐓𝑖
𝑒, or residual correlation, 𝐓

𝑖

𝑒𝑡;𝑒𝑡′ , as notated in the superscript. Note that both 

𝐓𝑖
𝑒 and 𝐓

𝑖

𝑒𝑡;𝑒𝑡′  are matrices because they can contain both level-1, occasion-level and/or 

level-2, individual-level predictors, and in the models described here will include a first 

column of ones to represent the intercept of location-model residual variances or 

correlations. Therefore, 𝐓𝑖
𝑒 is an 𝑛𝑖 x 𝑐𝑒 design matrix and 𝐓

𝑖

𝑒𝑡;𝑒𝑡′  is an 𝑛𝑖 x 𝑐𝑒𝑡;𝑒𝑡′  design 

matrix, containing 𝑐𝑒 or 𝑐𝑒𝑡;𝑒𝑡′   scale-model predictor variables for the 𝑛 occasions for 
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individual 𝑖. Finally, 𝛕𝑒 is a 𝑐𝑒 x 1 column vector and 𝛕𝑒𝑡;𝑒𝑡′  is a 𝑐𝑒𝑡;𝑒𝑡′  x 1 column vector 

of 𝑐𝑒 or 𝑐𝑒𝑡;𝑒𝑡′  scale-model fixed effects for the (log of the) residual variance or residual 

correlation between occasion 𝑡 and 𝑡′, respectively, as notated in the superscript. Similar 

to above, no subscript 𝑖 is indicated. 

Interpretation of fixed effects. Scale-model fixed effects can be interpreted 

similarly to the location-model fixed effects interpreted above. For example, 𝜎𝑢𝑟,𝑖
2  equals 

the intercept variance, exp(𝛼0
𝑢𝑟), when all predictors 𝐀𝑖

𝑢𝑟 = 0 and 𝜎𝑢𝑟,𝑖
2  increases for 

𝛂𝑢𝑟 > 0 (or decreases for 𝛂𝑢𝑟 < 0) with one-unit increases in each element of 𝐀𝑖
𝑢𝑟. 

Location-model random effect correlations, as well as residual variances and residual 

correlations, follow an identical pattern of interpretation. Finally, regardless of 

superscript, when 𝛂 = 𝛕 = 0, excluding the intercept of  the specific variance or 

correlation (i.e., the first column of ones in all 𝐀𝑖 and 𝐓𝑖), the heterogeneous variance 

model is reduced to the linear mixed-effects model shown in (1.4). 

Assuming a frequentist framework, the statistical significance of scale-model 

fixed effects can be evaluated by Wald 𝑝-values or model comparison using the 

likelihood ratio test (aka, deviance difference test) or information criteria (e.g., Akaike or 

Bayesian information criterion; see Littell et al., 1996). In a Bayesian framework, 

statistical significance is indicated by examining Bayesian confidence intervals or model 

comparisons based on the deviance information criterion (both detailed in chapter 3). 

Finally, specifying heterogeneous 𝐆𝑖 and/or 𝐑𝑖 reduces standard error bias of 

location-model fixed effects by ensuring individuals are given the correct variance 

components in 𝐆𝑖 and 𝐑𝑖, which are then re-aggregated into 𝐕𝑖 as shown in (1.15).  
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 𝐕𝑖 = 𝐙𝐆𝑖𝐙
𝑇 + 𝐑𝑖 (1.15) 

Brief example of the heterogeneous variance model. Because the notation for the 

scale model in (1.9) though (1.14) is (necessarily) complex, effects estimated by 

heterogeneous variance model can be solidified using a brief (albeit, overly simplistic) 

example; a much more detailed example is provided in chapter 2. 

Consider a sample of 20 individuals where the outcome, 𝑌𝑡,𝑖, was observed at 

three occasions with no missing data, and a location model including one level-1, 

occasion-level predictor, 𝑋𝑡,𝑖, one level-2, individual-level predictor, 𝑋𝑖, and two 

location-model random effects, 𝑢0,𝑖 and 𝑢1,𝑖, representing the location-model random 

intercept and the location-model random slope for 𝑋𝑡,𝑖, respectively, as well as their 

correlation, 𝜌𝑢0,𝑖;𝑢1,𝑖
. Thus, 𝑁 = 20 (total number of individuals), 𝑛𝑖 = 3 (number of 

repeated occasions within individual 𝑖), 𝑝 = 3 (number of location-model fixed effects 

including the fixed intercept), and 𝑞 = 2 (number of location-model random effects). 𝑋𝑖 is 

included as a predictor of both location-model random effect variances (i.e., in both 𝐀𝑖
𝑢0 

and 𝐀𝑖
𝑢1), but not for their correlation (i.e., not in 𝐀𝑖

𝑢0;𝑢1). Thus, 𝐆𝑖 is modeled as 

unstructured and heterogeneous conditional on the values of 𝑋𝑖. Further, the residual 

variance is predicted by 𝑋𝑖 and 𝑋𝑡,𝑖, which are both included in 𝐓𝑖
𝑒, with all residual 

correlations assumed to be zero. Thus, 𝐑𝑖 are modeled as independent, but heterogeneous 

(given 𝑋𝑡,𝑖) across repeated occasions, 𝐑𝑖 = 𝜎𝑒𝑡,𝑖
2 𝐈𝑛𝑖

. 

This heterogeneous variance model has one linear predictor for the location model 

shown in (1.16), four linear predictors for the scale model shown in (1.17) through (1.20), 
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with independent residual correlations shown in (1.21). Note that the location-model uses 

multi-level, scalar notation in which 𝛾 indicates a fixed effect (see chapter 2). 

 𝑌𝑡𝑖 = (𝛾00 + 𝑢0𝑖) + 𝛾01(𝑋𝑖) + (𝛾10 + 𝑢1𝑖)(𝑋𝑡,𝑖) + 𝑒𝑡𝑖 (1.16) 

 log(𝜎𝑢0,𝑖
2 ) = 𝛼0

𝑢0 + 𝛼1
𝑢0(𝑋𝑖) (1.17) 

 log(𝜎𝑢1,𝑖
2 ) = 𝛼0

𝑢1 + 𝛼1
𝑢1(𝑋𝑖) (1.18) 

 tanh−1(𝜌𝑢0,𝑖;𝑢1,𝑖
) = 𝛼0

𝑢0;𝑢1 (1.19) 

 log(𝜎𝑒𝑡,𝑖
2 ) = 𝜏0

𝑒 + 𝜏1
𝑒(𝑋𝑡,𝑖) + 𝜏2

𝑒(𝑋𝑖) (1.20) 

 𝜌𝑒𝑡,𝑖;𝑒𝑡′,𝑖
= 0 (1.21) 

The estimated variances and correlation from the scale-model equations can be mapped 

directly onto 𝐆𝑖 and 𝐑𝑖, in which the correlation has been converted to a covariance in 

the off diagonal of 𝐆𝑖, as shown in (1.22) through (1.26). 

 
𝐆𝑖 = [

𝜎𝑢0,𝑖
2 𝜎𝑢0,𝑖;𝑢1,𝑖

𝜎𝑢1,𝑖;𝑢0,𝑖
𝜎𝑢1,𝑖

2 ], 
(1.22) 

where 

 𝜎𝑢0,𝑖
2 = exp (𝛼0

𝑢0 + 𝛼1
𝑢0  (𝑋𝑖)) (1.23) 

 
𝜎𝑢1,𝑖;𝑢0,𝑖

= 𝜎𝑢0,𝑖;𝑢1,𝑖
= tanh(𝛼0

𝑢0;𝑢1)√exp (𝛼0
𝑢0 + 𝛼1

𝑢0  (𝑋𝑖)) exp (𝛼0
𝑢1 + 𝛼1

𝑢1  (𝑋𝑖)) 
(1.24) 

 𝜎𝑢1,𝑖
2 = exp (𝛼0

𝑢1 + 𝛼1
𝑢1  (𝑋𝑖)) (1.25) 

and 

 𝐑𝑖 = exp (𝜏0
𝑒 + 𝜏1

𝑒(𝑋𝑡,𝑖) + 𝜏2
𝑒(𝑋𝑖)) 𝐈𝑛𝑖

. (1.26) 

Examples from the literature. Examples of heterogeneous variance models in 

published literature are sparse, suggesting that many empirical scientists have yet to 
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consider the value of hypotheses based on differential variability in addition to mean 

structures. However, their use has increased in recent years. For example, Hedeker and 

Mermelstein (2007) and Hedeker, Mermelstein, Berbaum, and Campbell (2009) 

examined variability in positive and negative affect and found less heterogeneity in both 

level-2 random intercept variance and level-1 residual variance as an adolescent’s 

smoking experience increased. Almeida, Piazza, and Stawski (2009) found that level-1 

residual variance of negative affect increased with baseline age for men, was stable 

across age for women, and that men had significantly greater residual variability 

compared to women as baseline age increased. In addition, Diehl and Hay (2010) 

determined that level-1 residual variance of negative affect was significantly lower in 

older individuals and in individuals who were coherent with respect to their own 

perceived self-concept across different social roles and situations. Finally, Schneider, 

Junghaenel, Keefe, Schwartz, Stone, and Broderick (2012) used a heterogeneous variance 

model to predict variability in level-1 residuals and level-2 random intercept variance in 

outcomes that included pain intensity, fatigue, happiness, and frustration using a sample 

of rheumatology patients. Results indicated that higher levels of depression predicted 

greater level-1 residual variability of pain, happiness, and frustration. 

Limitations of the heterogeneous variance model. Although the heterogeneous 

variance model can include predictors to address heteroscedasticity at any level of 

analysis, the model is not without limitations. First, the ability to predict 

heteroscedasticity is contingent on the variables collected and evaluated, as is the case for 

all statistical models. Therefore, inferences of location-model fixed effects may still be 

biased if the location model or heterogeneous scale model is misspecified by omitting 
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important predictors and interactions (the second simulation study in chapter 4 begins to 

study the potential for bias). Second, the heterogeneous variance model requires that all 

scale-model predictors be represented by fixed effects, such that the effect of scale-model 

predictors apply equally to all individuals. Therefore, level-1 residual variance is not 

allowed to vary across individuals beyond the effect of the predictors. This limitation can 

be addressed by including random effects in the scale model using a mixed-effects 

location-scale model, discussed next. 

The Mixed-Effects Location-Scale Model 

 The heterogeneous variance model has the flexibility to include location-model 

random effects to model heterogeneity in mean levels across higher-level units, as well as 

scale-model predictor variables to estimate the average (i.e., fixed) effect of a predictor 

on heterogeneity of level-1 and/or level-2 variances. It is important to note that neither 

the location-model random effects nor the scale-model fixed effects explicitly account for 

individual differences in variability in the outcome. However, just as the location-model 

estimates can vary across higher-level units, so can the variability around an individual’s 

mean response (Cleveland, Denby, & Liu, 2002). Therefore, the heterogeneous variance 

model above can be extended to include scale-model random effects using a mixed-effects 

location-scale model to estimate individual differences in both mean levels and 

variability of a given outcome in a single model (Hedeker et al., 2008). Note this model 

has also been termed a double hierarchical generalized linear model (DHGLM; Lee & 

Nelder, 2006; Lee & Noh, 2012), which for the models discussed in this dissertation 

would use the identity link function for the location model. 
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 For repeated-measures data that have two levels of sampling units, scale-model 

random effects can be included for any level-1 predictor of the residual variance in 𝐑𝑖, 

which is conceptually similar to the inclusion of location-model random effects. That is, 

random effects cannot be specified for level-2 predictors of residual variance, or for any 

predictor of location-model random effect variances in 𝐆𝑖, because in repeated-measures 

data there are no higher-level units across which individuals could vary randomly. 

Therefore, only the scale model for the (log of the) residual variance in (1.12) is extended 

to include random effects, as shown in (1.27) using the same superscript notation as 

described for the heterogeneous variance model. 

 log(𝜎𝑒𝑡,𝑖
2 ) = 𝐓𝑖

𝑒𝛕𝑒 + 𝐖𝑖
𝑒𝛚𝑖

𝑒 (1.27) 

Here, both 𝐓𝑖
𝑒 and 𝛕𝑒 have identical dimensions and interpretations as described above 

for (1.12). 𝐖𝑖
𝑒 is an 𝑛𝑖 x 𝑤𝑒 matrix containing 𝑤𝑒 scale-model predictor variables from 

𝐓𝑖
𝑒 that were specified to have random effects in the scale model for the residual 

variance, which for the models discussed here includes a vector of ones as the first 

column in the matrix to represent the intercept. In repeated-measures data, only the 

effects of level-1 predictors can deviate randomly across individuals, in which the 

dimensions of 𝐖𝑖
𝑒 indicate level-1 predictor values for the 𝑛 occasions for individual 𝑖. In 

addition, 𝛚𝑖
𝑒  is a 𝑤𝑒 x 1 column vector of deviations for individual 𝑖 from each of the 𝑤𝑒 

fixed effects specified to be random in the scale model for the residual variance in 𝐖𝑖
𝑒. 

Finally, when 𝛚𝑖
𝑒 = 0, the mixed-effects location-scale model is reduced to the 

heterogeneous variance model in (1.12). 

The statistical assumptions of scale-model random effects are similar to location-

model random effects discussed above. That is, because 𝛚𝑖
𝑒 represents between-
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individual differences, the variance of any scale-model random effects, 𝜎𝜔𝑠,𝑖
𝑒

2 , is included 

in 𝐆𝑖 alongside the location-model random effect variances, 𝜎𝑢𝑟,𝑖
2 . Note that the subscript 

𝑠 indexes the specific scale-model random effect in 𝐖𝑖
𝑒 (e.g., 𝜎𝜔0,𝑖

𝑒
2  indicates the random 

intercept of the residual variance for individual 𝑖). In addition, the correlation between 

location- and scale-model random effects for individual 𝑖, 𝜌𝑢𝑟,𝑖;𝜔𝑠,𝑖
𝑒 , could also be 

estimated and predicted in 𝐆𝑖 (Hedeker et al., 2008) as shown below in (1.28) using a 

continuation of the brief example that was provided above. 

 

𝐆𝑖 =

(

 

𝜎𝑢0,𝑖
2 𝜌𝑢0,𝑖;𝑢1,𝑖

𝜌𝑢0,𝑖;𝜔0,𝑖
𝑒

𝜌𝑢1,𝑖;𝑢0,𝑖
𝜎𝑢1,𝑖

2 𝜌𝑢1,𝑖;𝜔0,𝑖
𝑒

𝜌𝜔0,𝑖
𝑒 ;𝑢0,𝑖

𝜌𝜔0,𝑖
𝑒 ;𝑢1,𝑖

𝜎𝜔0,𝑖
𝑒

2
)

  

 

(1.28) 

Note that scale-model random effect variances and correlations could also be predicted to 

be heterogeneous between individuals using methods identical to those described above 

for the location-model random effect variances and correlations.  

When location- and scale-model random effects are included in the mixed-effects 

location-scale model, location-model random effects 𝐮𝑖 and scale-model random effects 

𝛚𝑖
𝑒 are aggregated into 𝐦𝑖 which is an 𝑚𝐮𝑖+𝛚𝑖

𝑒 x 1 column vector of all location- and 

scale-model random effects, which is assumed multivariate normally distributed with a 

mean of zero and estimated covariance matrix 𝐆𝑖, 𝐦𝑖 ~ 𝐍𝑚(𝟎, 𝐆𝑖). Finally, the statistical 

significance of scale-model random effects is evaluated by model comparisons using the 

likelihood ratio test or information criteria (e.g., AIC, BIC) in the frequentist framework, 

or by deviance information criterion in a Bayesian framework. 

Examples from the literature. Scale-model random effects have been considered 

in the statistical literature using both frequentist and Bayesian frameworks, but have been 



39 

 

used far less frequently in practice by empirical scientists (Cleveland et al., 2002; 

Hedeker et al., 2008). This is troubling given that neglecting scale-model random effects 

potentially results in a misspecified model that has been shown to result in downwardly-

biased residual variance fixed effect standard errors, especially for level-2 predictors, an 

issue similar in nature to ignoring location-model random effects (Leckie, 2014; Leckie 

et al., 2014). Therefore, estimating a heterogeneous variance model without initially 

evaluating for scale-model random effects via mixed-effects location-scale model could 

result in spurious inferences, which could lead to Type I errors and inappropriate 

delegation of resources to identify the source of observed heterogeneity.  

With that said, the mixed-effects location-scale model is being used more 

frequently due to recent instructional papers (e.g., Hedeker et al., 2008; Hedeker & 

Mermelstein, 2012; Leckie et al., 2014; Lee & Noh, 2012; Rast, Hofer, & Sparks, 2012) 

and software tutorials (Hedeker & Nordgren, 2013; Leckie, 2014; Li, Bruyneel, & 

Lesaffre, 2014; Rast et al., 2012). Examples of several empirical studies are presented 

next. 

Hedeker et al. (2008) modeled both level-2 random intercept variance and level-1 

residual variance for positive and negative affect using data from 461 students who each 

averaged approximately 30 observations. Results indicated a statistically significant 

scale-model random intercept variance, and statistically significant correlation between 

location- and scale-model random intercepts. Hedeker and Mermelstein (2012) extended 

the location model from Hedeker et al. (2008) to include random linear time effects, but 

continued to model 𝐆𝑖 as constant between individuals (i.e., 𝐆𝑖 = 𝐆); results were similar 



40 

 

for the scale-model random intercept and correlation between location- and scale-model 

random intercepts.  

In addition, Rast and Zimprich (2011) estimated residual variance in reaction 

time, holding 𝐆𝑖 constant, using data from 335 individuals who averaged 20 reaction time 

trials, and found significant individual differences in residual variability and significant 

location- and scale-model random intercept correlation where higher average reaction 

times was associated with greater average variability. Rast et al. (2012) estimated residual 

variance in positive and negative affect, holding 𝐆𝑖 constant, using seven consecutive 

measurement days across 178 individuals, and found significant individual differences in 

variability for both outcomes. Further, individuals who were less variable in positive or 

negative affect had less variable responses to daily stressors such as having an argument 

with others.  

Li and Noh (2014) evaluated eye-tracking data from 43 non-schizophrenic and 43 

schizophrenic individuals, holding 𝐆𝑖 constant. Results indicated that schizophrenics had 

significantly greater residual variability in eye tracking compared to non-schizophrenic 

individuals. 

Finally, the mixed-effects location-scale model has also been applied to cross-

sectional data in education settings, as Leckie et al. (2014) estimated within-school 

residual variance in mathematics achievement using school sector (i.e., public vs. private) 

student SES as predictors and constant 𝐆𝑖 between schools. They also included scale-

model random effects for the residual variance intercept and student SES, finding 

significant between-school variability in both effects. 
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Chapter Summary 

The purpose of this chapter was to provide the theoretical framework of the 

mixed-effects location-scale model applied to conditionally normally distributed 

repeated-measures data. The chapter began by presenting the single-level linear model, 

its assumptions, and a discussion of heterogeneous variance alongside the common 

statistical methods used frequently by empirical scientists to account for or correct 

heterogeneity. This was followed by a description of the linear mixed-effects model that 

detailed how this model has been used traditionally to account for and predict 

heterogeneity of variance between-individuals in 𝐆𝑖 and 𝐑𝑖. Finally, the mixed-effects 

location-scale model was introduced, along with a background of how the model has 

been used in practice. Using the theoretical framework detailed in this chapter, chapter 2 

will now provide a complete model-building example of the mixed-effects location-scale 

model. 
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CHAPTER 2: A MODEL-BUILDING EXAMPLE OF THE MIXED-EFFECTS 

LOCATION-SCALE MODEL FOR CONDITIONALLY NORMALLY 

DISTRIBUTED REPEATED-MEASURES DATA 

Chapter 1 detailed the theoretical framework of the mixed-effects location-scale 

model for a conditionally normally distributed repeated-measures data beginning with the 

single-level linear model and continuing through the mixed-effects location-scale model. 

In this chapter, an explicit model-building example of the mixed-effects location-scale 

model is presented using repeated-measures data that is similar (but not identical) to the 

empirical data analysis presented in chapter 5. The chapter example highlights the 

application of the mixed-effects location-scale model and presents model equations in 

multi-level, scalar form (i.e., level-1 occasions nested within level-2 individuals), 

alongside details regarding model comparisons as well as the inclusion of random effects, 

predictors at both levels of analysis, and predictor interactions.  

The example below follows the model-building procedures and recommendations 

typically encountered in the literature (see Leckie et al., 2014; Hedeker et al., 2008), in 

which the location model is assumed properly specified before including scale-model 

random effects and predictors. It is important to note that the order in which these effects 

are included in the model has not been validated empirically and there is no consensus as 

to their order of entry into a model (see Bryk & Raudenbush, 1988, who recommend 

properly specifying the scale model before estimating effects in the location model); the 

second simulation study presented in chapter 4 begins to address this issue. With that 

said, the example will begin by modeling the location-model random intercept, followed 

by location-model fixed effects, and then location-model random effects for level-1 
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predictors. This is followed by a similar procedure for the scale model, whereby the 

scale-model random intercept is estimated initially, followed by fixed effects for the 

variances and correlations in 𝐑𝑖, random effects for level-1 predictors within 𝐑𝑖, and 

finally, level-2 predictors as fixed effects for variances and correlations in 𝐆𝑖. 

Description of the Chapter Example 

For the example in this chapter, consider a repeated-measures design that 

measured physical activity in a sample of 100 older adults, of which 50 have probable 

mid Alzheimer’s disease (AD) and 50 do not. Physical activity was measured using an 

accelerometer and quantified by vector magnitude, a composite metric of triaxial 

movement in the medio-lateral, antero-posterior, and vertical planes (i.e., front-to-back, 

side-to-side, and rotational movements, respectively; or, for the Postural Restoration 

savvy, sagittal, frontal, and transverse planes, respectively), which can range from 0 to a 

maximum dictated by the length of the occasion (known as an epoch). Each individual 

wore the accelerometer during waking hours over a 24-hour period; real-time 

accelerometer data was binned into 60-minute epochs. Thus, the dependent variable is the 

observed vector magnitude summed every 60 minutes over the course of 1 day, 𝑉𝑀𝑡,𝑖, 

where 𝑡 denotes the specific occasion (epoch) for individual 𝑖. Note that because the 

number of waking hours can vary between individuals, so can the number of total 

observations per individual (e.g., 10 awake hours = 10 observations; 16 awake hours = 16 

observations). The primary independent variable of interest is AD status, 𝐴𝐷𝑖, which is a 

binary level-2 predictor for individual 𝑖, where 0 = no AD and 1 = AD. Two covariates 

are also modeled. The first is the individual’s years of formal education, 𝐸𝑑𝑖, which is a 

continuous, level-2, individual-level variable collected at baseline. 𝐸𝑑𝑖 was centered at a 
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value of 12 (i.e., a high school graduate; 𝐸𝑑𝑖 − 12, where 0 indicates 12 years of formal 

education) to ensure the intercept value remains meaningful and to allow for meaningful 

interpretation of potential interaction effects. Note that a value of 12 was chosen 

arbitrarily for this example; in practice the centering value should be any value believed 

to be meaningful. The second covariate indicates whether the individual was alone or 

with others at any time during the epoch, 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖, which is a binary, level-1, occasion-

level variable, where 0 = not alone and 1 = alone. 

This example maps closely, but not identically, onto the empirical data analysis 

presented in chapter 5 that models vector magnitude as the outcome with years of formal 

education as one of several individual-level predictors. Note that the time-varying 

predictor indicating whether an individual was alone or not at a given occasion is a 

hypothetical covariate that is not included in chapter 5. It was included here to illustrate 

the flexibility of the mixed-effects location-scale model. 

The (Unconditional) Single-Level Linear Model 

 It was stated in chapter 1 that repeated-measures data most likely have a non-zero 

correlation between occasions within the same individual, the extent of which can be 

quantified directly using the linear mixed-effects model. However, this procedure is most 

accessible when considered as an extension of the (unconditional) single-level linear 

model shown in (2.1). Note that this is an unconditional model because the location 

model only includes the intercept. 

 𝑉𝑀𝑡,𝑖 = 𝛽0 + 𝑒𝑡,𝑖 (2.1) 

The subscript 𝑡, 𝑖 is required in this single-level model to identify the correct vector 

magnitude for an individual at a given occasion; thus, 𝑉𝑀𝑡,𝑖 is the vector magnitude at 
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specific to occasion 𝑡 for individual 𝑖, 𝛽0 is the location-model fixed intercept 

representing average vector magnitude across all observations, and 𝑒𝑡,𝑖 is the residual 

value at occasion 𝑡 for individual 𝑖 representing the difference between each vector 

magnitude at occasion 𝑡 for individual 𝑖 and the fixed intercept, 𝑒𝑡,𝑖 = 𝑉𝑀𝑡,𝑖 − 𝛽0.  

The unconditional single-level linear model in (2.1) assumes uncorrelated residual 

values and constant variance across individuals and observations. However, repeated-

measures data tends to violate the assumption of independence as repeated occasions 

nested within an individual will usually have one or more sources non-trivial correlation, 

each of which must be accounted for using a linear mixed-effects model. 

The Linear Mixed-Effects Model 

As described in chapter 1, the (conditional) linear mixed-effects model explicitly 

accounts for residual correlation due to nesting by partitioning residual variance into 

between- and within-individual variance components via location-model random effects. 

After including location-model random effects in the model, residuals are once again 

assumed independent between individuals. To account initially for the proportion of total 

variance in vector magnitude that is between individuals, a new location-model variance 

component is estimated, termed random intercept variance. The unconditional random 

intercept model is shown in (2.2) using multi-level, scalar notation because the model 

now includes distinct within- and between-individual levels of analysis; a simple visual 

depiction of this model presented for two individuals is also provided in Figure 2.1. 

 Level 1:       𝑉𝑀𝑡,𝑖 = 𝛽0,𝑖 + 𝑒𝑡,𝑖  

Level 2:           𝛽0,𝑖 = 𝛾00 + 𝑢0,𝑖 

Combined:  𝑉𝑀𝑡,𝑖 = (𝛾00 + 𝑢0,𝑖) + 𝑒𝑡,𝑖 

 

(2.2) 
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Figure 2.1. The unconditional random intercept model 

Here, although the level-1 model appears similar to (2.1), this model now describes 

within-individual variation in vector magnitude as a function of the intercept specific to 

individual 𝑖, 𝛽0,𝑖 (dashed lines in Figure 2.1), and a residual deviation from that intercept 

specifically at occasion 𝑡 for individual 𝑖, 𝑒𝑡,𝑖. Note that 𝛽0,𝑖 at level 1 is simply a 

placeholder for the effects included in the level-2, between-individual model, and is a 

function of the location-model fixed intercept, 𝛾00, representing the grand mean of the 

means across all individuals (the solid line in Figure 2.1), and the location-model random 

intercept, 𝑢0,𝑖, represents the constant deviation from the fixed intercept for individual 𝑖. 

These level-2 effects are substituted for 𝛽0,𝑖 at level 1 to create the combined equation.  

Note that because 𝛾00 is a fixed effect, it applies to every individual in the sample 

(thus, there is no subscript 𝑖) and serves as the reference point for quantifying the 
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location-model random effect 𝑢0,𝑖. This can be observed in Figure 2.1 as the fixed 

intercept 𝛾00 underestimates the actual observed intercept for individual 1 (i.e., 𝑢0,1 > 0) 

and overestimates the observed intercept for individual 2 (i.e., 𝑢0,2 < 0). 

Considering the multi-level, scalar format of (2.2) and the matrix representation 

of the linear mixed-effects model presented in (1.4), 𝐘𝑖 is an 𝑛𝑖 x 1 column vector 

holding the 𝑉𝑀𝑡,𝑖 outcomes, where 𝑛𝑖 is the number of 𝑛 repeated occasions within 

individual 𝑖. Further, because only the location-model fixed intercept is currently being 

modeled, 𝐗𝑖 is an 𝑛𝑖 x 1 column vector of ones for the 𝑛 repeated occasions within 

individual 𝑖, and 𝜝 is a scalar holding the estimate of the fixed intercept, 𝛾00. In addition, 

given that the intercept is also the only location-model random effect in this model, 𝐙𝑖 is 

an 𝑛𝑖 x 1 column vector of ones for the 𝑛 repeated occasions within individual 𝑖, and 𝐮𝑖 is 

a scalar holding the deviation from the location-model fixed intercept specific to 

individual 𝑖, 𝑢0,𝑖. Finally, 𝐞𝑖 is an 𝑛𝑖 x 1 column vector holding the residual values, 𝑒𝑡,𝑖, 

across the 𝑛 repeated occasions within individual 𝑖. 

In addition, as described in detail in chapter 1, 𝐆𝑖 holds the random effect 

variances for each individual 𝑖 at level 2. Because the random intercept for individual 𝑖, 

𝑢0,𝑖, is the only location-model random effect in this model and because it is currently 

assumed constant between individuals (i.e., 𝐆𝑖 = 𝐆), 𝐆 is a scalar holding the location-

model random intercept variance estimate, 𝜎𝑢0
2 , applicable to all individuals (i.e., no 

subscript 𝑖). Further, 𝐑𝑖 holds the residual variance estimates across the 𝑛 repeated 

occasions at level 1 for individual 𝑖. Assuming residuals to be independent and constant 

between- and within-individuals, 𝐑𝑖 = 𝜎𝑒
2𝐈𝑛𝑖

= 𝐑, 𝐑 is a diagonal matrix holding the 

constant residual variance estimate, 𝜎𝑒
2, that is applicable to all observations across all 
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individuals (i.e., no subscript 𝑡, 𝑖). Finally, 𝐕𝑖 is the 𝑛𝑖 x 𝑛𝑖 covariance matrix for the 

multivariate normal distribution of 𝐘𝑖 conditional on 𝐗𝑖 and 𝐙𝑖 for individual 𝑖, which in 

this example is also assumed constant between individuals, such that 𝐕𝑖 = 𝐙𝐆𝐙𝑇 + 𝐑 =

𝐕, calculated as shown below (note that thus far in this example, 𝐕 is compound 

symmetric, i.e., equal variances; equal covariances).  

𝐕 = 𝐙𝐆𝐙𝑇 + 𝐑 = [

1
1
⋮
1

] [𝜎𝑢0
2 ][1 1 ⋯ 1] +

[
 
 
 
𝜎𝑒

2 0 ⋯ 0

0 𝜎𝑒
2 0 ⋮

⋮ 0 ⋱ 0
0 ⋯ 0 𝜎𝑒

2]
 
 
 
 

=

[
 
 
 
 
(𝜎𝑢0

2 + 𝜎𝑒
2) 𝜎𝑢0

2 ⋯ 𝜎𝑢0
2

𝜎𝑢0
2 (𝜎𝑢0

2 + 𝜎𝑒
2) 𝜎𝑢0

2 ⋮

⋮ 𝜎𝑢0
2 ⋱ 𝜎𝑢0

2

𝜎𝑢0
2 ⋯ 𝜎𝑢0

2 (𝜎𝑢0
2 + 𝜎𝑒

2)]
 
 
 
 

 

The primary purpose of estimating the unconditional random intercept model in 

(2.2) is to quantify the proportion of variability in vector magnitude that is specifically 

between individuals (i.e., how much does 𝐆 contribute to 𝐕), obtained by calculating the 

unconditional intra-class correlation (ICC) as shown in (2.3).  

 
ICC =  

𝜎𝑢0
2

𝜎𝑢0
2 + 𝜎𝑒

2
 

(2.3) 

When specifying a conditional model with 𝐆 and 𝐑, the ICC ranges from 0 to 1, with 

larger values indicating more between-individual variability (note that ICC can range 

from –1 to +1 if an 𝐑-only, marginal model is estimated including a compound symmetry 

correlation instead). Further, the fixed intercept and location-model random intercept 

variance can be used to calculate a 95% random effects confidence interval, 𝛾00 ±
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1.96√𝜎𝑢0
2 , which indicates the expected variability in the intercept values for 95% of 

individuals in the sample (Snijders & Bosker, 2012). 

 Finally, regardless of whether the frequentist or Bayesian framework was used, 

model comparisons determine whether the random intercept is needed. Because (2.1) can 

be obtained by constraining 𝜎𝑢0
2  to be zero in (2.2), these models are considered nested. 

Thus, using a frequentist framework, the statistical significance of the location-model 

random intercept variance (i.e., whether the ICC is significantly different than 0) is 

determined using the likelihood ratio test or information criteria such as Akaike 

information criterion (AIC) or Bayesian information criterion (BIC; see Littell et al., 

1996), whereas a Bayesian framework requires model comparisons using the deviance 

information criterion (DIC), where smaller values indicate the more appropriate model 

(see chapter 3 for full description of DIC). 

The inclusion of predictors. Adding predictors to the linear mixed-effects model 

requires a greater amount of care compared to the single-level linear model, as 

haphazardly adding predictors without considering the levels of analysis can produce 

incorrect fixed effect estimates and interpretations. Therefore, this section will highlight 

the complexity of including predictors in the linear mixed-effect model by discussing 

time-invariant predictors, time-varying predictors, additional location-model random 

effects, and, finally, a brief comment on interaction effects.  

Time-invariant predictors. Predictors measured only once per individual or 

averaged across an individual’s occasions are termed time-invariant predictors because 

the predictor is a constant within an individual across their repeated occasions. Therefore, 

time-invariant predictors are level-2, individual-level predictors that explain between-
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individual differences. Note that the adjective time-invariant is used throughout this 

dissertation to remain consistent with the literature on longitudinal designs (e.g., see 

Hedeker & Gibbons, 2006; Hoffman, 2014; Singer & Willett, 2003); however, an 

alternate adjective could be occasion-invariant as replacing time with occasion may 

reduce confusion regarding models that are explicitly estimating change over time, which 

is not the case for any of the models described in this dissertation.  

Because time-invariant predictors carry between-individual effects, the 

procedures to include and interpret these predictors are similar to the single-level linear 

model. The primary difference between the two models, however, is that in the linear 

mixed-effects model, between-individual variability was partitioned into random 

intercept variance, 𝜎𝑢0
2 ; therefore, time-invariant predictors explain level-2, random 

intercept variance. 

Continuing with the example, consider two time-invariant predictors—years of 

formal education, 𝐸𝑑𝑖, and AD status, 𝐴𝐷𝑖, both measured for individual 𝑖 prior to 

receiving their accelerometer. Because 𝐸𝑑𝑖 is a continuous variable, it was centered at a 

value of 12 (i.e., a high-school graduate; as described in the example description above). 

Further, 𝐴𝐷𝑖 remained uncentered because 0 was already meaningful as it indicates an 

individual without AD. Because time-invariant predictors carry between-individual 

effects, and because they modify fixed intercept values, they are added to the level-2 

model for the intercept as shown in (2.4). 

 Level 1:       𝑉𝑀𝑡,𝑖 = 𝛽0,𝑖 + 𝑒𝑡,𝑖 

Level 2:           𝛽0,𝑖 = (𝛾00 + 𝑢0,𝑖) + 𝛾01(𝐴𝐷𝑖) + 𝛾02(𝐸𝑑𝑖 − 12) 

Combined:  𝑉𝑀𝑡,𝑖 = (𝛾00 + 𝑢0,𝑖) + 𝛾01(𝐴𝐷𝑖) + 𝛾02(𝐸𝑑𝑖 − 12) + 𝑒𝑡,𝑖 

 

(2.4) 
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Here, all previous effects interpreted for (2.2) remain identical, except that the location-

model fixed intercept, 𝛾00, now represents the average vector magnitude specifically for a 

high school graduate without AD. The new level-2 location-model fixed effect for AD 

status, 𝛾01, represents the average difference in vector magnitude between individuals 

with and without AD, where 𝛾01 > 0 indicates individuals with AD have greater average 

vector magnitude and 𝛾01 < 0 indicates individuals without AD have greater average 

vector magnitude. In addition, the location-model fixed effect for years of education, 𝛾02, 

represents the average difference in vector magnitude for every additional year of formal 

education. As stated above, both of these effects explain level-2 random intercept 

variance. 

 Finally, reconsidering the matrix formulation provided in (1.4), both level-2 

predictor variables 𝐴𝐷𝑖 and centered 𝐸𝑑𝑖 are added to 𝐗𝑖, which is now an 𝑛𝑖 x 3 matrix, 

and 𝜝 is now a 3 x 1 column vector holding the additional location-model fixed effects 

for 𝐴𝐷𝑖 and 𝐸𝑑𝑖, 𝛾01 and 𝛾02, respectively. All other matrices remain identical as 

described above. 

Time-varying predictors. Predictors that were measured concurrently alongside 

the outcome are termed time-varying predictors (or, alternatively, occasion-varying 

predictors). Including time-varying predictors in the linear mixed-effects model adds 

significant complexity to the analysis because time-varying predictors generally contain 

both level-2, between-individual and level-1, within-individual variability. That is, 

although an individual’s level of a given predictor may fluctuate across occasions at level 

1, some individuals will average higher or lower levels of the predictor when compared 
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to other individuals at level 2. As a result, it is possible that the two levels of the time-

varying predictor could have differential effects on the outcome.  

In addition, because time-varying predictors typically contain both level-2, 

between-individual and level-1, within-individual variability, including a time-varying 

predictor in a linear mixed-effects model without its between-individual counterpart will 

result in a weighted combination of the level-1 and level-2 effects called a convergence 

effect (see Sliwinski, Hoffman, & Hofer, 2010). The convergence effect assumes the 

level-1 and level-2 effects of the time-varying predictor are equal, an assumption that 

difficult to satisfy in practice (Neuhaus & Kalbfleisch, 1998). The extent to which these 

two effects are not equal will result in disproportional variance explained, and can even 

result in an increasing variance component if the level-1 and level-2 effects have opposite 

signs (Hoffman, 2014). Note that a convergence effect will often more closely represent 

the within-individual effect simply because level-1 occasions typically outnumber higher-

level units (Raudenbush & Bryk, 2002).  

Whether the effect of a time-varying predictor represents a convergence effect can 

be determined by calculating an ICC using the time-varying predictor as an outcome in 

an unconditional random intercept model similar to (2.2). Although seemingly odd, the 

outcome and time-varying predictor are both measured at all occasions, so there is no 

difference between them other than the side of the equal sign where these variables are 

located. Although time-varying predictors typically contain some proportion of between- 

and within-individual variability, convergence effects are not possible when the ICC = 0 

or + 1 (and/or –1 in a marginal linear mixed-effects model) because all the variability in 

the time-varying predictor is either within- or between-individuals, respectively. 
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As an example of a time-varying predictor that may inappropriately assume 

convergence effects, consider the occasion-level variable indicating whether the 

individual was alone or with others during a given epoch, 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖. In general, although 

an individual will fluctuate as to whether they are alone or not across occasions at level 1, 

some individuals will be alone more often compared to other individuals at level 2 (e.g., 

family visits more often). Therefore, including time-varying 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 in the linear mixed-

effects model by itself would result in a weighted combination of these within- and 

between-individual effects, explaining both level-1, residual variance and level-2, 

random intercept variance simultaneously. To resolve this problem, 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 could be 

explicitly partitioned into two variables that represent the unique level-1 and level-2 

effects, using the procedures described next. 

The partitioning procedure and the subsequent interpretation of the partitioned 

between-individual effect are dependent on whether person-mean centering or grand-

mean centering was used (note that person-mean centering is termed group-mean 

centering in cross-sectional studies; see Raudenbush & Bryk, 2002). Although 

interpretation resulting from person-mean centering (aka, variable centering) is more 

intuitive for repeated-measures data compared to grand-mean centering, person-mean 

centering does not lend itself directly to the interpretation of binary predictors such as 

𝐴𝑙𝑜𝑛𝑒𝑡,𝑖. Thus, grand-mean centering is used throughout this example. Hoffman (2014, 

chapter 8) provides a complete description of how person-mean centering is used to 

partition time-varying predictors in longitudinal data, whereas Enders and Tofighi (2007) 

provide a focused description of using group-mean centering in cross-sectional data. 

Although grand-mean centering implies the use of the grand mean in centering decisions, 
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in general, this form of centering simply results in predictors being centered at some 

meaningful constant (that could, in fact, be zero). Thus, grand-mean centering could 

instead be synonymously termed constant centering.  

To explicitly partition the between- and within-individual effects of 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 

using grand-mean centering, the proportion of occasions at which the individual was 

alone is calculated for each individual 𝑖, 𝐴𝑙𝑜𝑛𝑒𝑖, which is a constant (i.e., time-invariant 

predictor) within each individual that carries between-individual variability (as indicated 

by subscript 𝑖) explaining level-2, location-model random intercept variance. For 

example, if an individual had 10 repeated occasions and was alone for 7 of them, the 

proportion being alone is 7/10 = 0.70 or 70%. Note that 𝐴𝑙𝑜𝑛𝑒𝑖 could be centered at any 

meaningful proportion; however, in the example that follows, it will be left uncentered 

(i.e., 𝐴𝑙𝑜𝑛𝑒𝑖 − 0). By including both 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 and 𝐴𝑙𝑜𝑛𝑒𝑖 in the linear mixed-effects 

model, the fixed effect for 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 represents the pure level-1 effect of being alone or not 

at each occasion. The fixed effect for 𝐴𝑙𝑜𝑛𝑒𝑖 then represents the difference between the 

level-1 and level-2 effects (aka, a contextual effect; Raudenbush & Bryk, 2002) and is an 

explicit test of whether 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 modeled by itself would have erroneously assumed a 

convergence effect. That is, given that a convergence effect assumes the level-1, within-

individual and level-2, between-individual effects are equal, a statistically significant 

contextual effect indicates that the level-1 and level-2 effects are significantly different. 

The contextual effect is interpreted as the incremental change to the vector magnitude 

resulting from a one-unit increase in the proportion of total occasions at which the 

individual was alone over and above the effect of being alone at the current occasion. 

That is, the contextual effect indicates whether being alone at a given occasion has as 
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large of an effect if the individual is alone more often than others during the study period. 

Further, to obtain the level-2, between-individual effect, the level-1, within-individual 

and contextual effects are summed (i.e., within + contextual = between); this level-2, 

between-individual effect will also be interpreted below. 

Continuing with the example, consider including both 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 and 𝐴𝑙𝑜𝑛𝑒𝑖 in the 

location model as shown in (2.5). 

 Level 1:       𝑉𝑀𝑡,𝑖 = 𝛽0,𝑖 + 𝛽1,𝑖(𝐴𝑙𝑜𝑛𝑒𝑡,𝑖) + 𝑒𝑡,𝑖 

Level 2:           𝛽0,𝑖 = (𝛾00 + 𝑢0,𝑖) + 𝛾01(𝐴𝐷𝑖) + 𝛾02(𝐸𝑑𝑖 − 12) + 

                                        𝛾03(𝐴𝑙𝑜𝑛𝑒𝑖) 

                          𝛽1,𝑖 = 𝛾10 

Combined:  𝑉𝑀𝑡,𝑖 = (𝛾00 + 𝑢0,𝑖) + 𝛾01(𝐴𝐷𝑖) + 𝛾02(𝐸𝑑𝑖 − 12) +  

                                        𝛾03(𝐴𝑙𝑜𝑛𝑒𝑖) + 𝛾10(𝐴𝑙𝑜𝑛𝑒𝑡,𝑖) + 𝑒𝑡,𝑖 

 

 

(2.5) 

Here, all previous effects interpreted for (2.2) and (2.4) remain identical, with the 

location-model fixed intercept, 𝛾00, now representing the average vector magnitude 

specifically for a high school graduate without AD who is currently alone and who was 

alone at all occasions. 𝛽1,𝑖 is a new level-1 placeholder for the location-model fixed effect 

for 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖, 𝛾10, that represents the average difference in vector magnitude between 

individuals who were alone at a given occasion compared to individuals who were not 

after controlling for the proportion of occasions at which an individual was alone. In this 

model, 𝛾10 is a pure level-1 effect that explains level-1 residual variance. Further, 𝛾03 is 

the location-model fixed contextual effect for 𝐴𝑙𝑜𝑛𝑒𝑖 representing the difference between 

the level-1, within-individual and level-2, between-individual effects. More specifically, 
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𝛾03 represents the incremental change to vector magnitude that results from an individual 

being alone for an increased proportion of occasions after controlling for whether the 

individual is alone or not at a given occasion. Finally, as stated above, the pure level-2, 

between-individual effect is the sum of the level-1, within-individual and contextual 

effects, 𝛾10 + 𝛾03, which represents the average change in vector magnitude per one-unit 

increase in the proportion of occasions for which the individual reported being alone. 

Finally, adding to the matrix formulation of the linear mixed-effects model 

provided in (1.4), both 𝐴𝑙𝑜𝑛𝑒𝑖 and 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 are added to 𝐗𝑖, which is now an 𝑛𝑖 x 5 

matrix, and 𝜝 is now a 5 x 1 column vector holding the additional location-model fixed 

effects for 𝐴𝑙𝑜𝑛𝑒𝑖 at level 2, 𝛾03, and 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 at level 1, 𝛾10. All other matrices remain 

identical as described in the discussion of time-invariant predictors. 

Including additional random effects. The only random effect discussed thus far 

was the location-model random intercept, 𝑢0,𝑖. However, with repeated-measures data, 

additional location-model random effects (e.g., random slopes) can be specified for any 

level-1 predictor to the extent that the level-2 variability is non-zero and there are enough 

level-2 units (Snijders & Bosker, 2012). That is, for repeated-measures data, random 

slopes can only be estimated for time-varying predictors, and if necessary, ensure the 

location-model fixed-effect standard errors are less wrong (or, more correct). A location-

model random slope indicates the within-individual effect of a time-varying predictor 

differs randomly across individuals (i.e., a heterogeneous effect). Note that in repeated-

measures data, location-model random slopes cannot be included for level-2 predictors 

because there are no higher-level units over which the individuals could vary randomly.  
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With this in mind, a location-model random slope could only be estimated for the 

level-1 partition of the time-varying predictor 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖. Thus, extending the example to 

include this location-model random slope is shown in (2.6) and also presented visually in 

Figure 2.2.  

 Level 1:       𝑉𝑀𝑡,𝑖 = 𝛽0,𝑖 + 𝛽1,𝑖(𝐴𝑙𝑜𝑛𝑒𝑡,𝑖) + 𝑒𝑡,𝑖 

Level 2:           𝛽0,𝑖 = (𝛾00 + 𝑢0,𝑖) + 𝛾01(𝐴𝐷𝑖) + 𝛾02(𝐸𝑑𝑖 − 12) + 

                                        𝛾03(𝐴𝑙𝑜𝑛𝑒𝑖) 

                          𝛽1,𝑖 = (𝛾10 + 𝑢1,𝑖) 

Combined:  𝑉𝑀𝑡,𝑖 = (𝛾00 + 𝑢0,𝑖) + 𝛾01(𝐴𝐷𝑖) + 𝛾02(𝐸𝑑𝑖 − 12) +  

                                        𝛾03(𝐴𝑙𝑜𝑛𝑒𝑖) + (𝛾10 + 𝑢1,𝑖)(𝐴𝑙𝑜𝑛𝑒𝑡,𝑖) + 𝑒𝑡,𝑖 

 

 

(2.6) 

This model specifically evaluates whether the effect of being alone at a given occasion is 

the same for all individuals—whether the fixed linear effect of being alone is appropriate 

to describe everyone in the sample. Note that this model requires that the location-model, 

level-1, fixed effect for being alone, 𝛾10, is retained in the model regardless of its 

statistical significance. That is, random effects represent deviations from fixed effects, 

and without the fixed effect there would be nothing from which the random effect could 

deviate. Thus, the level-1 effect of being alone, 𝛽1,𝑖, is now represented at level 2 by the 

location-model fixed effect of being alone, 𝛾10, indicating the average difference in 

vector magnitude between being alone or not (the solid line in Figure 2.2), and the 

individual-specific deviation from the location-model fixed effect of being alone, 𝑢1,𝑖. 

Note in Figure 2.2 that 𝛾10 is an underestimate for individual 1 (i.e., upper dashed line; 

𝑢1,1 > 0) and an overestimate for individual 2 (i.e., lower dashed line; 𝑢1,2 < 0). 
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Figure 2.2. Random effect for level-1 effect of being alone or not 

In adding these new effects to the matrix formulation provided in (1.4), 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 is 

also included in 𝐙𝑖, which is now an 𝑛𝑖 x 2 matrix of predictors that have location-model 

random effects, and 𝐮𝑖 is now a 2 x 1 column vector additionally holding the deviation 

from the fixed 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 effect for individual 𝑖, 𝑢1,𝑖. All other matrices remain identical as 

described in the discussion of time-varying predictors. 

Similar to the random intercept variance, the random 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 slope variance, 𝜎𝑢1
2 , 

is estimated as constant between individuals and included in 𝐆 alongside the correlation 

between the random intercept and random 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 slope, 𝜌𝑢0;𝑢1
 and 𝜌𝑢1;𝑢0

 (used to 

obtain covariances), as shown below in (2.7). 
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𝐆 =

(

 
𝜎𝑢0

2 𝜌𝑢0;𝑢1
√𝜎𝑢0

2 𝜎𝑢1
2

𝜌𝑢1;𝑢0
√𝜎𝑢1

2 𝜎𝑢0
2 𝜎𝑢1

2

)

  

 

(2.7) 

Further, the location-model fixed effect for 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 and its location-model random slope 

variance can be used to calculate a 95% random effects confidence interval, 𝛾10 ±

1.96√𝜎𝑢1
2 , which indicates the expected variability in the difference between being alone 

or not for 95% of individuals in the sample (Snijders & Bosker, 2012). 

A brief comment on interaction effects. The linear mixed-effects model can 

include interaction effects composed of any combination of level-1 and level-2 

predictors. However, the inclusion of interaction effects that involve level-1 predictors as 

well as the identification of the specific variance component the interaction effect 

explains is complex due to the potential for assumed convergence effects, and is therefore 

beyond the scope of this chapter (see Hoffman 2014). Briefly, the interaction of pure 

level-1 predictors explains level-1, residual variance, the interaction of pure level-2 

predictors explains level-2, random intercept variance, and the interaction of a pure level-

1 predictor and a pure level-2 predictor (i.e., a cross-level interaction) explains level-1, 

residual variance if the level-1 effect is not random or it explains level-2 random slope 

variance if the level-1 effect is random. 

When considering the matrix formulation provided in (1.4), because interactions 

are multiplicative, the product of any predictors involved in the interaction (e.g., 𝐴𝐷𝑖 ∗

𝐴𝑙𝑜𝑛𝑒𝑖) would produce an additional column in 𝐗𝑖, with the location-model fixed effect 

for the interaction included in an additional row of 𝜝. Further, it is possible to include a 
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pure level-1 interaction as a location-model random effect, which would additionally 

modify 𝐙𝑖 and 𝐮𝑖 accordingly. 

The Heterogeneous Variance and Mixed-Effects Location-Scale Models 

 As described in chapter 1, the heterogeneous variance model allows scale-model 

predictors of residual and/or random effect variances to be heterogeneous between 

individuals using fixed effects. That is, the heterogeneous variance model has the 

flexibility to include location-model random effects to estimate heterogeneity in mean 

level across individuals as well as a log-linear combination of scale-model predictor 

variables to estimate the average (i.e., fixed) effect of a predictor on level-1 and/or level-

2 variances. It is important to note that neither the location-model random effects nor the 

scale-model fixed effects explicitly model the random individual differences in the 

variability of the outcome. Thus, the mixed-effects location-scale model is required to 

include scale-model random effects representing these individual differences.  

The scale-model random intercept. Although the theoretical framework in 

chapter 1 described the heterogeneous variance model prior to mixed-effects location-

scale model, it is important to estimate scale-model random effects in the same order as 

location-model random effects. That is, estimating a heterogeneous variance model (i.e., 

scale-model fixed effects) absent of scale-model random effects has been shown to result 

in downwardly biased standard errors for scale-model fixed effects of residual variance, 

especially for level-2, between-individual predictors (Leckie, 2014; Leckie et al., 2014).  

Following this recommendation, in the example below the mixed-effects location-

scale model is used initially to estimate an unconditional scale-model random intercept 

model for the residual variance to determine whether differences in residual variance 
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exist between individuals. Thus, assuming the location model in (2.6), the scale model for 

the residual variance is shown in (2.8) using multi-level, scalar notation similar to the 

location models above. Note that residual values are still assumed independent within 

individuals in which residual correlations are constrained to be zero, 𝐑𝑖 = 𝜎𝑒𝑖
2 𝐈𝑛𝑖

. 

Therefore, the subscript 𝑒 for the (log of the) residual variance in (2.8) does not require 

an additional subscript for occasion 𝑡 because there is only one estimated residual 

variance across all occasions for each individual. 

 Level 1:         log(𝜎𝑒𝑖
2) = 𝜏0,𝑖

𝑒  

Level 2:                  𝜏0,𝑖
𝑒 = 𝛿00

𝑒 + 𝜔0,𝑖
𝑒  

Combined:   log(𝜎𝑒𝑖
2) = 𝛿00

𝑒 + 𝜔0,𝑖
𝑒  

 

(2.8) 

Here, the level-1 scale model now describes within-individual variation in estimated 

residual variance as a function of the residual variance specific to individual 𝑖, 𝜏0,𝑖
𝑒 , which 

is simply a placeholder for the effects included in the level-2, between-individual model. 

Specifically, 𝜏0,𝑖
𝑒  is a function of the scale-model fixed intercept for the residual variance, 

𝛿00
𝑒 , representing the grand mean of the (log of the) residual variance estimates across all 

individuals, and the scale-model random intercept, 𝜔0,𝑖
𝑒 , representing the constant 

deviation from the fixed intercept for the residual variance for individual 𝑖. These level-2 

effects are substituted for 𝜏0,𝑖
𝑒  at level 1 to create the combined equation. Similar to the 

location models above, because 𝛿00
𝑒  is a fixed effect, it applies to every individual in the 

sample (i.e., there is no subscript 𝑖) and serves as the reference point for quantifying the 

scale-model random effect for the residual variance for each individual 𝑖, 𝜔0,𝑖
𝑒 .  

When considering the matrix formulation of the mixed-effects location-scale 

model shown in (1.27), both 𝐓𝑖
𝑒 and 𝐖𝑖

𝑒 are 𝑛𝑖 x 1 column vectors of ones for the 𝑛 
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occasions for individual 𝑖, whereas 𝛕𝑒 and 𝛚𝑖
𝑒 are scalars holding the fixed intercept of 

the (log of the) residual variance, 𝛿00
𝑒 , and the random deviation from the fixed intercept 

of the residual variance for each individual 𝑖, 𝜔0,𝑖
𝑒 , respectively. The variance of 𝜔0,𝑖

𝑒  is 

indicated by 𝜎𝜔0
𝑒

2 , and represents the scale-model random intercept variance.  

Further, 𝛚𝑖
𝑒 is subsumed within 𝐦𝑖 alongside location-model random effects, 𝐮𝑖. 

Therefore, when considering both location- and scale-model random effects, 𝐦𝑖 is a 3 x 1 

column vector where the first and second rows hold location-model random effects, 𝑢0,𝑖 

and 𝑢1,𝑖, and the third row holds the scale-model random effect, 𝜔0,𝑖
𝑒 , as shown in (2.9). 

 

𝐦𝑖 = [

𝐮𝑖

− −
𝛚𝑖

𝑒
] = [

𝑢0,𝑖

𝑢1,𝑖

𝜔0,𝑖
𝑒

] 
 

(2.9) 

Note that all elements in 𝐆 remain constant between individuals (i.e., no subscript 𝑖) 

given the unconditional scale model for all variances and correlations (used to obtain 

covariances) in 𝐆, as shown below in (2.10). 

 

𝐆 =

(

 
 
 
 

𝜎𝑢0
2 𝜌𝑢0;𝑢1

√𝜎𝑢0
2 𝜎𝑢1

2 𝜌𝑢0;𝜔0
𝑒√𝜎𝑢0

2 𝜎𝜔0
𝑒

2

𝜌𝑢1;𝑢0
√𝜎𝑢1

2 𝜎𝑢0
2 𝜎𝑢1

2 𝜌𝑢1;𝜔0
𝑒√𝜎𝑢1

2 𝜎𝜔0
𝑒

2

𝜌𝜔0
𝑒;𝑢0√𝜎𝜔0

𝑒
2 𝜎𝑢0

2 𝜌𝜔0
𝑒;𝑢1√𝜎𝜔0

𝑒
2 𝜎𝑢1

2 𝜎𝜔0
𝑒

2

)

 
 
 
 

 

 

 

(2.10) 

A visual depiction of a mixed-effects location-scale model is shown in Figure 2.3.  

Here, the distribution of the dashed lines around the location-model fixed intercept, 𝛾00  

(i.e., the solid line), indicate between-individual variability, modeled by including 

location-model random effects, 𝑢0,𝑖. The distribution of an individual’s data (i.e., the 

dots) around their own dashed lines indicates within-individual variability, 𝜎𝑒𝑖
2 ,  
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whereas 𝜎𝑒
2 is the fixed residual variance (i.e., exp(𝛿00

𝑒 ); the average residual variance 

across these two individuals). Individual differences in residual variance for a given 

individual 𝑖, 𝜔0,𝑖
𝑒 , represent the difference between 𝜎𝑒𝑖

2  and 𝜎𝑒
2. Note that individual 1 has 

more residual variability compared to individual 2; thus, the fixed residual variance 

estimate underestimates the residual variance for individual 1 (i.e., 𝜔0,1
𝑒 = 𝜎𝑒1

2 − 𝜎𝑒
2 > 0) 

and overestimates the residual variance for individual 2 (i.e.,  𝜔0,2
𝑒 = 𝜎𝑒2

2 − 𝜎𝑒
2 < 0). 

 

Figure 2.3. Visual depiction of the mixed-effects location-scale model 

Including scale-model predictors. It has been generally accepted that scale-

model predictors can only be included at their own level or lower (Hedeker et al., 2008; 

Snijders & Bosker, 2012). For example, in repeated-measures data, level-2 random effect 

variances are predicted only by level-2 predictors, whereas level-1 residual variances 

could be predicted by either level-1 or level-2 predictors. However, Hedeker and 

Nordgren (2013) have updated this perspective stating that a level-1 variable could be 

used to predict level-2 variance components by making the individual at level-2 more or 
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less heterogeneous across level-1 occasions. This suggestion is controversial as their 

software MIXREGLS is the only software available to estimate these effects. Thus, until 

more research is conducted, it is assumed that predictors can be used to explain 

heterogeneity at their own level or lower. More specifically, regardless of superscript, 

although the design matrix for the scale-model fixed effects of level-2 variance 

components in 𝐀𝑖, described in (1.9) and (1.10), as well as the design matrix for the 

scale-model fixed effects of level-1 residual variances in 𝐓𝑖, described in (1.12) and 

(1.13), can contain level-2 predictors, only 𝐓𝑖 can contain time-varying predictors. In 

addition, it is assumed the procedures for including time-varying predictors in the 

location model apply directly to the scale model for the residual variance. Therefore, 

throughout the examples below, variable partitioning and grand-mean centering are used 

to prevent erroneously assuming convergence effects as described above. 

 Predicting residual variances and correlations. Continuing with the example, 

consider the scale model for the residual variance in (2.8) that includes 𝐴𝐷𝑖, 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖, and 

𝐴𝑙𝑜𝑛𝑒𝑖 as predictors of within-individual heterogeneity in 𝐑𝑖, presented below in (2.11).  

 Level 1:         log(𝜎𝑒𝑡,𝑖
2 ) = 𝜏0,𝑖

𝑒 + 𝜏1,𝑖
𝑒 (𝐴𝑙𝑜𝑛𝑒𝑡,𝑖) 

Level 2:                    𝜏0,𝑖
𝑒 = (𝛿00

𝑒 + 𝜔0,𝑖
𝑒 ) + 𝛿01

𝑒 (𝐴𝐷𝑖) + 𝛿02
𝑒 (𝐴𝑙𝑜𝑛𝑒𝑖) 

                                   𝜏1,𝑖
𝑒 = 𝛿10

𝑒  

Combined:   log(𝜎𝑒𝑡,𝑖
2 ) = (𝛿00

𝑒 + 𝜔0,𝑖
𝑒 ) + 𝛿01

𝑒 (𝐴𝐷𝑖) + 𝛿02
𝑒 (𝐴𝑙𝑜𝑛𝑒𝑖) + 

                                                𝛿10
𝑒 (𝐴𝑙𝑜𝑛𝑒𝑡,𝑖) 

 

 

(2.11) 

Although 𝐑𝑖 is now predicted to be heterogeneous between individuals and across 

occasions, the residual values are still assumed independent within individuals, 𝐑𝑖 =
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𝜎𝑒𝑡,𝑖
2 𝐈𝑛𝑖

. Thus, the subscript 𝑒 for the (log of the) residual variance in (2.11) now requires 

the additional subscript for occasion 𝑡 because, given the time-varying predictor 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖, 

the estimated residual variance is allowed to vary across the 𝑡 occasions for each 

individual 𝑖. 

In (2.11), the fixed intercept included in the scale model for the residual variance, 

𝛿00
𝑒 , now represents the (log of the) residual variance specifically for an individual 

without AD who is currently alone and who was alone at all occasions. 𝜏1,𝑖
𝑒  is a new 

level-1 placeholder of the scale-model fixed effect for 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖, 𝛿10
𝑒 , that represents the 

difference in (the log of the) residual variance between individuals who were alone at a 

given occasion compared to individuals who were not, after controlling for the proportion 

of occasions at which an individual was alone. Further, 𝛿02
𝑒  is the scale-model fixed 

contextual effect (included to prevent erroneously assuming convergence effects for 

reasons discussed above) representing the difference between the level-1, within-

individual and level-2, between-individual effects, interpreted as the incremental 

difference in (the log of the) residual variance for a one-unit increase in the proportion of 

occasions an individual was alone after controlling for whether the individual was alone 

or not at a given occasion. In addition, the level-2, between-individual effect is the sum of 

the level-1 and contextual effects for being alone, 𝛿10
𝑒 + 𝛿02

𝑒 , which represents the 

difference in (the log of the) residual variance for a one-unit increase in the proportion of 

occasions at which the individual reported being alone. Further, 𝛿01
𝑒  is the scale-model 

fixed effect representing the difference in (the log of the) residual variance between 

individuals with and without AD. Finally, the predicted residual variance for individual 𝑖 
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at occasions 𝑡 is calculated by exponentiating the combined equation (excluding scale-

model random effect 𝜔0,𝑖
𝑒 ), as shown below in (2.12). 

 𝐑𝑖 = exp (𝛿00
𝑒 + 𝛿01

𝑒 (𝐴𝐷𝑖) + 𝛿02
𝑒 (𝐴𝑙𝑜𝑛𝑒𝑖) + 𝛿10

𝑒 (𝐴𝑙𝑜𝑛𝑒𝑡,𝑖)) 𝐈𝑛𝑖
 (2.12) 

When considering the matrix representations of the scale model for residual 

variance in (1.27), 𝐴𝐷𝑖, 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖, and 𝐴𝑙𝑜𝑛𝑒𝑖 are all added to 𝐓𝑖
𝑒, which is now a 𝑛𝑖 x 4 

matrix, and 𝛕𝑒 is now a 4 x 1 column vector holding the additional scale-model fixed 

effects 𝛿01
𝑒 , 𝛿02

𝑒 , and 𝛿10
𝑒 .  

Random effects for scale-model predictors of residual variance. Similar to the 

location model, when modeling repeated-measures data, scale-model random effects (i.e., 

random slopes) can only be specified for level-1, time-varying predictors included in the 

scale model for the residual variance (time-varying predictors cannot be included in the 

scale model for random effect variances and correlations in data with two levels of 

nesting). Therefore, in this example, only the effect of 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖, 𝛿10
𝑒 , could vary randomly 

between individuals. 

The procedure to include 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 as an additional random effect in the scale 

model for the residual variance is identical to the procedure for including additional 

random effects in the location model, as shown in (2.13). 

 Level 1:        log(𝜎𝑒𝑡,𝑖
2 ) = 𝜏0,𝑖

𝑒 + 𝜏1,𝑖
𝑒 (𝐴𝑙𝑜𝑛𝑒𝑡,𝑖) 

Level 2:                    𝜏0,𝑖
𝑒 = (𝛿00

𝑒 + 𝜔0,𝑖
𝑒 ) + 𝛿01

𝑒 (𝐴𝐷𝑖) + 𝛿02
𝑒 (𝐴𝑙𝑜𝑛𝑒𝑖) 

                                   𝜏1,𝑖
𝑒 = (𝛿10

𝑒 + 𝜔1,𝑖
𝑒 ) 

Combined:   log(𝜎𝑒𝑡,𝑖
2 ) = (𝛿00

𝑒 + 𝜔0,𝑖
𝑒 ) + (𝛿10

𝑒 + 𝜔1,𝑖
𝑒 )(𝐴𝐷𝑖) + 

                                               𝛿02
𝑒 (𝐴𝑙𝑜𝑛𝑒𝑖) + 𝛿10

𝑒 (𝐴𝑙𝑜𝑛𝑒𝑡,𝑖) 

 

 

(2.13) 
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Here, the level-1 effect of being alone at a given occasion, 𝜏1,𝑖
𝑒 , is now represented at 

level 2 by the fixed effect of being alone at a given occasion, 𝛿10
𝑒 , and the deviation from 

this fixed effect, 𝜔1,𝑖
𝑒 . More specifically, 𝜔1,𝑖

𝑒  indicates that the difference in (the log of 

the) residual variance between occasions in which the individual was alone or not, 𝛿10
𝑒 , 

does not describe all individuals equally. That is, compared to other individuals, being 

alone may have resulted in a greater increase in residual variability compared to being not 

alone. 

Adding these new effects to the matrix formulation in (1.27), 𝐖𝑖
𝑒 is now an 𝑛𝑖 x 2 

matrix of predictors that have scale-model random effects, and 𝛚𝑖
𝑒 is a 2 x 1 column 

vector now holding the individual-specific deviation from the scale-model fixed effect of 

𝐴𝑙𝑜𝑛𝑒𝑡,𝑖, 𝜔1𝑖
𝑒 . Similar to above, 𝛚𝑖

𝑒 will be subsumed within 𝐦𝑖 alongside location-

model random effects, 𝐮𝑖. Thus, 𝐦𝑖 is now a 4 x 1 column vector holding all location- 

and scale-model random effects.  

Finally, the scale-model random 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 slope variance, 𝜎𝜔1
𝑒

2 , is also included in 

𝐆 alongside the other location- and scale-model random effect variances and correlations 

(used to obtain covariances), as shown in (2.14).  

 

𝐆 =

(

 
 
 
 
 
 

𝜎𝑢0
2 𝜌𝑢0;𝑢1

√𝜎𝑢0
2 𝜎𝑢1

2 𝜌𝑢0;𝜔0
𝑒√𝜎𝑢0

2 𝜎𝜔0
𝑒

2 𝜌𝑢0;𝜔1
𝑒√𝜎𝑢0

2 𝜎𝜔1
𝑒

2

𝜌𝑢1;𝑢0
√𝜎𝑢1

2 𝜎𝑢0
2 𝜎𝑢1

2 𝜌𝑢1;𝜔0
𝑒√𝜎𝑢1

2 𝜎𝜔0
𝑒

2 𝜌𝑢1;𝜔1
𝑒√𝜎𝑢1

2 𝜎𝜔1
𝑒

2

𝜌𝜔0
𝑒;𝑢0√𝜎𝜔0

𝑒
2 𝜎𝑢0

2 𝜌𝜔0
𝑒;𝑢1√𝜎𝜔0

𝑒
2 𝜎𝑢1

2 𝜎𝜔0
𝑒

2 𝜌𝜔0
𝑒;𝜔1

𝑒√𝜎𝜔0
𝑒

2 𝜎𝜔1
𝑒

2

𝜌𝜔1
𝑒;𝑢0

√𝜎𝜔1
𝑒

2 𝜎𝑢0
2 𝜌𝜔1

𝑒;𝑢1
√𝜎𝜔1

𝑒
2 𝜎𝑢1

2 𝜌𝜔1
𝑒;𝜔0

𝑒√𝜎𝜔1
𝑒

2 𝜎𝜔0
𝑒

2 𝜎𝜔1
𝑒

2

)

 
 
 
 
 
 

 

 

 

 

(2.14) 

Note that all elements in 𝐆 remain constant between individuals (i.e., no subscript 𝑖) 

given the unconditional scale model for variances and correlations in 𝐆. Further, similar 
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to location-model random slope variances, scale-model random slope variances can be 

explained by including cross-level interactions in the scale model for the residual 

variance that include the random level-1 predictor and a level-2 predictor. Interaction 

effects involving time-varying predictors are as complex for the scale model as they are 

for the location model due the potential of erroneously assuming convergence effects. 

Therefore, an explicit example of a cross-level interaction is beyond the scope of this 

chapter (see Hoffman 2014). 

Predicting location-model random effect variances and correlations. Moving on 

to the prediction of random effect variances and correlations in 𝐆, assuming the location 

model in (2.6), consider extending the scale model for random effect variances and 

correlations to include 𝐴𝐷𝑖 and 𝐴𝑙𝑜𝑛𝑒𝑖 as predictors of between-individual heterogeneity 

in both the location-model random intercept and location-model random 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 slope 

variances, as presented below in (2.15) and (2.16), respectively (Note that 𝐆 now requires 

the subscript 𝑖; 𝐆𝑖). Further, the scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , and scale-

model random 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 slope variance, 𝜎𝜔1
𝑒

2 , will be estimated but not predicted to be 

heterogeneous across individuals (i.e., no subscript 𝑖) as shown in (2.17) and (2.18), as 

will all random effect correlations, 𝜌𝑢0,𝑖;𝑢1,𝑖
, 𝜌𝑢0,𝑖;𝜔0

𝑒, 𝜌𝑢0,𝑖;𝜔1
𝑒, 𝜌𝑢1,𝑖;𝜔0

𝑒, 𝜌𝑢1,𝑖;𝜔1
𝑒, and 𝜌𝜔0

𝑒;𝜔1
𝑒 

shown in (2.19) through (2.24). Note that Leckie et al. (2014) have suggested that the 

inverse hyperbolic tangent link used for random effect correlations is no longer sufficient 

to ensure 𝐆𝑖 remains positive definite given 𝐆𝑖 is larger than 2 x 2; however, this link is 

necessary to ensure that the range of scale-model fixed effects remains unbounded. 

 log(𝜎𝑢0,𝑖
2 ) = 𝛼0

𝑢0 + 𝛼1
𝑢0(𝐴𝐷𝑖) + 𝛼2

𝑢0(𝐴𝑙𝑜𝑛𝑒𝑖) (2.15) 
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 log(𝜎𝑢1,𝑖
2 ) = 𝛼0

𝑢1 + 𝛼1
𝑢1(𝐴𝐷𝑖) + 𝛼2

𝑢1(𝐴𝑙𝑜𝑛𝑒𝑖) (2.16) 

 log (𝜎𝜔0
𝑒

2 ) = 𝛼0
𝜔0

𝑒

 (2.17) 

 log (𝜎𝜔1
𝑒

2 ) = 𝛼0
𝜔1

𝑒

 (2.18) 

 tanh−1(𝜌𝑢0,𝑖;𝑢1,𝑖
) = 𝛼0

𝑢0,𝑖;𝑢1,𝑖
 (2.19) 

 tanh−1(𝜌𝑢0,𝑖;𝜔0
𝑒) = 𝛼0

𝑢0,𝑖;𝜔0
𝑒

 (2.20) 

 tanh−1(𝜌𝑢0,𝑖;𝜔1
𝑒) = 𝛼0

𝑢0,𝑖;𝜔1
𝑒

 (2.21) 

 tanh−1(𝜌𝑢1,𝑖;𝜔0
𝑒) = 𝛼0

𝑢1,𝑖;𝜔0
𝑒

 (2.22) 

 tanh−1(𝜌𝑢1,𝑖;𝜔1
𝑒) = 𝛼0

𝑢1,𝑖;𝜔1
𝑒

 (2.23) 

 tanh−1(𝜌𝜔0
𝑒;𝜔1

𝑒) = 𝛼0
𝜔0

𝑒;𝜔1
𝑒

 (2.24) 

The interpretation of scale-model fixed effects are identical to those for location-

model fixed effects, 𝛼0
𝑢0 represents the (log of the) location-model random intercept 

variance for an individuals without AD (i.e., when 𝐴𝐷𝑖 = 0) who was alone at every 

occasion (i.e., when 𝐴𝑙𝑜𝑛𝑒𝑖 = 0). In addition, 𝛼1
𝑢0 is the scale-model fixed effect 

representing the difference in (the log of the) location-model random intercept variance 

between individuals with and without AD, and 𝛼2
𝑢0 is the scale-model fixed effect 

representing the difference in (the log of the) location-model random intercept variance 

for a one-unit increase in the proportion of occasions at which the individual was alone. 

Therefore, the location-model random intercept variance specifically for individuals 

without AD who were alone at all occasions is given by (2.25), 

 𝜎𝑢0,𝑖
2 = exp (𝛼0

𝑢0) (2.25) 
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whereas the location-model random intercept variance specifically for individuals with 

AD who were alone at all occasions is given by (2.26). 

 𝜎𝑢0,𝑖
2 = exp(𝛼0

𝑢0 + 𝛼1
𝑢0) (2.26) 

Following exponentiation, a similar interpretation is used for the location-model random 

𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 slope variance, 𝜎𝑢1,𝑖
2 , conditional on scale-model fixed effects 𝛼0

𝑢1 and 𝛼1
𝑢1. 

Exponentiating the fixed effects for the scale-model random intercept variance and scale-

model random 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 slope variance, 𝛼0
𝜔0

𝑒

 and 𝛼0
𝜔1

𝑒

, respectively, will provide the scale-

model random intercept variance, 𝜎𝜔0
𝑒

2 , and scale-model random 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 slope variance, 

𝜎𝜔1
𝑒

2 . 

By contrast, although the correlations were estimated as constant between 

individuals, any covariance with a location-model random effect will be heterogeneous, 

as shown below in (2.27) to (2.32). 

 𝜎𝑢0,𝑖;𝑢1,𝑖
= tanh(𝛼0

𝑢0,𝑖;𝑢1,𝑖)√exp (𝛼0
𝑢0 + 𝛼1

𝑢0(𝐴𝐷𝑖) + 𝛼2
𝑢0(𝐴𝑙𝑜𝑛𝑒𝑖)) exp (𝛼0

𝑢1 + 𝛼1
𝑢1(𝐴𝐷𝑖) + 𝛼2

𝑢1(𝐴𝑙𝑜𝑛𝑒𝑖)) (2.27) 

 
𝜎𝑢0,𝑖;𝜔0

𝑒 = tanh (𝛼0

𝑢0,𝑖;𝜔0
𝑒

)√exp (𝛼0
𝑢0 + 𝛼1

𝑢0(𝐴𝐷𝑖) + 𝛼2
𝑢0(𝐴𝑙𝑜𝑛𝑒𝑖)) exp (𝛼0

𝜔0
𝑒

) 
(2.28) 

 
𝜎𝑢0,𝑖;𝜔1

𝑒 = tanh (𝛼0

𝑢0,𝑖;𝜔1
𝑒

)√exp (𝛼0
𝑢0 + 𝛼1

𝑢0(𝐴𝐷𝑖) + 𝛼2
𝑢0(𝐴𝑙𝑜𝑛𝑒𝑖)) exp (𝛼0

𝜔1
𝑒

) 
(2.29) 

 
𝜎𝑢1,𝑖;𝜔0

𝑒 = tanh (𝛼0

𝑢1,𝑖;𝜔0
𝑒

)√exp (𝛼0
𝑢1 + 𝛼1

𝑢1(𝐴𝐷𝑖) + 𝛼2
𝑢1(𝐴𝑙𝑜𝑛𝑒𝑖)) exp (𝛼0

𝜔0
𝑒

) 
(2.30) 

 
𝜎𝑢1,𝑖;𝜔1

𝑒 = tanh (𝛼0

𝑢1,𝑖;𝜔1
𝑒

)√exp (𝛼0
𝑢1 + 𝛼1

𝑢1(𝐴𝐷𝑖) + 𝛼2
𝑢1(𝐴𝑙𝑜𝑛𝑒𝑖)) exp (𝛼0

𝜔1
𝑒

) 
(2.31) 

 
𝜎𝜔0

𝑒;𝜔1
𝑒 = tanh (𝛼0

𝜔0
𝑒;𝜔1

𝑒

)√exp (𝛼0

𝜔0
𝑒

) exp (𝛼0

𝜔1
𝑒

) 
(2.32) 
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Thus, when considering heterogeneous location-model random intercept and random 

𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 slope variances, 𝐆𝑖 is modified slightly to include the subscript 𝑖 when 

appropriate, as shown below in (2.33). 

 

𝐆𝑖 =

(

 
 
 
 
 
 

𝜎𝑢0,𝑖
2 𝜌𝑢0,𝑖;𝑢1,𝑖√𝜎𝑢0,𝑖

2 𝜎𝑢1,𝑖
2 𝜌𝑢0,𝑖;𝜔0

𝑒√𝜎𝑢0,𝑖
2 𝜎𝜔0

𝑒
2 𝜌𝑢0,𝑖;𝜔1

𝑒√𝜎𝑢0,𝑖
2 𝜎𝜔1

𝑒
2

𝜌𝑢1,𝑖;𝑢0,𝑖√𝜎𝑢1,𝑖
2 𝜎𝑢0,𝑖

2 𝜎𝑢1,𝑖
2 𝜌𝑢1,𝑖;𝜔0

𝑒√𝜎𝑢1,𝑖
2 𝜎𝜔0

𝑒
2 𝜌𝑢1,𝑖;𝜔1

𝑒√𝜎𝑢1,𝑖
2 𝜎𝜔1

𝑒
2

𝜌𝜔0
𝑒;𝑢0,𝑖

√𝜎𝜔0
𝑒

2 𝜎𝑢0,𝑖
2 𝜌𝜔0

𝑒;𝑢1,𝑖
√𝜎𝜔0

𝑒
2 𝜎𝑢1,𝑖

2 𝜎𝜔0
𝑒

2 𝜌𝜔0
𝑒;𝜔1

𝑒√𝜎𝜔0
𝑒

2 𝜎𝜔1
𝑒

2

𝜌𝜔1
𝑒;𝑢0,𝑖

√𝜎𝜔1
𝑒

2 𝜎𝑢0,𝑖
2 𝜌𝜔1

𝑒;𝑢1,𝑖
√𝜎𝜔1

𝑒
2 𝜎𝑢1,𝑖

2 𝜌𝜔1
𝑒;𝜔0

𝑒√𝜎𝜔1
𝑒

2 𝜎𝜔0
𝑒

2 𝜎𝜔1
𝑒

2

)

 
 
 
 
 
 

 

 

 

(2.33) 

Finally, when considering the matrix formulations of the scale model for location-

model random effects in (1.9) and (1.10), 𝐀𝑖
𝑢0 and 𝐀𝑖

𝑢1 are now 1 x 3 row vectors given 

the addition of the level-2 predictors 𝐴𝐷𝑖 and 𝐴𝑙𝑜𝑛𝑒𝑖, whereas 𝐀𝑖
𝜔0

𝑒

, 𝐀𝑖
𝜔1

𝑒

, 𝐀𝑖
𝑢0;𝑢1, 𝐀𝑖

𝑢0;𝜔0
𝑒

, 

𝐀𝑖
𝑢0;𝜔1

𝑒

, 𝐀𝑖
𝑢1;𝜔0

𝑒

, 𝐀𝑖
𝑢1;𝜔1

𝑒

, and 𝐀𝑖
𝜔0

𝑒;𝜔1
𝑒

 all remain scalars equal to 1 given that the scale-

model random effect variances and all correlations were not predicted to be 

heterogeneous between individuals. Regarding the scale-model fixed effects for the level-

2 variances and correlations, 𝛂𝑢0 and 𝛂𝑢1 are now both 3 x 1 column vectors holding the 

additional scale-model fixed effect for 𝐴𝐷𝑖 and 𝐴𝑙𝑜𝑛𝑒𝑖, 𝛼1
𝑢0 and 𝛼2

𝑢0, and 𝛼1
𝑢1 and 𝛼2

𝑢1, 

respectively, whereas 𝛂𝜔0
𝑒
, 𝛂𝜔1

𝑒
, 𝛂𝑢0;𝑢1, 𝛂𝑢0;𝜔0

𝑒
, 𝛂𝑢0;𝜔1

𝑒
, 𝛂𝑢1;𝜔0

𝑒
, 𝛂𝑢1;𝜔1

𝑒
, and 𝛂𝜔0

𝑒;𝜔1
𝑒
 each 

remain scalars holding fixed intercepts representing the scale-model random intercept 

variance, 𝛼0
𝜔0

𝑒

, scale-model random 𝐴𝑙𝑜𝑛𝑒𝑡,𝑖 slope variance, 𝛼0
𝜔1

𝑒

, and the correlations 

between the random effects, 𝛼0

𝑢0,𝑖;𝑢1,𝑖
, 𝛼0

𝑢0,𝑖;𝜔0
𝑒

, 𝛼0

𝑢0,𝑖;𝜔1
𝑒

, 𝛼0

𝑢1,𝑖;𝜔0
𝑒

, 𝛼0

𝑢1,𝑖;𝜔1
𝑒

, and 𝛼0
𝜔0

𝑒;𝜔1
𝑒

.  

Chapter Summary 

 The purpose of this chapter was to present an explicit model-building example of 

the mixed-effects location-scale model that mapped directly onto the theoretical 
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framework detailed in chapter 1 and mapped closely onto the empirical data analysis 

presented in chapter 5. The example presented in this chapter followed the model-

building procedures and recommendations typically encountered in the literature, in 

which the location model was assumed properly specified before including scale-model 

random effects and predictors. With that order in mind, this chapter first included the 

location-model random intercept followed by location-model fixed effects, and then 

location-model random effects for a level-1, within-individual predictor. Then a similar 

procedure followed for the scale model, with the scale-model random intercept estimated 

initially, followed by scale-model fixed effects for the variances and correlations in both 

𝐆𝑖 and 𝐑𝑖, and finally, random effects of a level-1, within-individual predictor included 

in the scale model for the residual variance. 

Although the model-building sequence used in this chapter has been followed 

traditionally, methodological literature has only provided suggestions regarding the order 

in which effects should be modeled. Thus, the second simulation study presented in 

chapter 4 will detail the consequences misspecifying the location and/or scale model have 

on location- and scale-model fixed effects. Prior to the methodological studies in chapter 

4, however, explicit details regarding the estimation of the mixed-effects location-scale 

model are presented next in chapter 3, which describes a newly developed Markov chain 

Monte Carlo algorithm to estimate this model. 
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CHAPTER 3: MCMC ESTIMATION OF THE MIXED-EFFECTS LOCATION-

SCALE MODELS FOR A CONDITIONALLY NORMALLY DISTRIBUTED 

OUTCOME FOR REPEATED MEASURES DATA 

 Chapter 1 presented the theoretical framework for the mixed-effects location-

scale model and chapter 2 illustrated a complete example of the model alongside a 

discussion of relevant concepts pertaining to the model building process. In this chapter, 

the estimation of the mixed-effects location-scale model is presented, beginning with an 

introduction to current software available for estimation and its limitations. This 

discussion is followed by an overview of Bayes theorem, Markov chain Monte Carlo 

(MCMC) methods including estimation and convergence, and concludes with the 

technical details of the estimation algorithm used to estimate the mixed-effects location-

scale models in this dissertation. 

Current Software to Estimate the Mixed-Effects Location-Scale Model 

Most well-known, commercial statistical software packages (e.g., HLM, MLwiN, 

Mplus, SAS, SPSS, Stata) have the capability to estimate and predict heterogeneous 

variances in both 𝐆𝑖 and 𝐑𝑖. However, their utility is limited when attempting to estimate 

scale-model random effects. What follows below is a brief discussion of available 

software that uses likelihood-based methods in a frequentist framework to estimate the 

mixed-effects location-scale model. This is followed by a brief discussion of available 

software that uses the more flexible and powerful MCMC estimation algorithms. 

Software using maximum likelihood or restricted maximum likelihood 

estimation. HLM, MLwiN, Mplus, SAS, SPSS, and Stata use either maximum likelihood 

(ML) or restricted/residual maximum likelihood (REML) estimation (see Hartley & Rao, 



74 

 

1967 for ML, Patterson & Thompson, 1971 for REML) to estimate heterogeneous 

variances in both 𝐆𝑖 and 𝐑𝑖. ML estimates (known as MLEs) have been shown to be 

asymptotically consistent, asymptotically normal, and efficient, which means that as 

sample size increases, the estimated values converge onto their population values, the 

estimates converge onto a normal distribution, and that no other estimator produces 

smaller standard errors, respectively (Harville, 1977).  

The primary purpose of ML is to obtain a set of parameters that maximize the 

(log) likelihood function, 𝑓(𝐘𝑖|𝐗𝑖 , 𝐙𝑖) ~ 𝐍𝑛𝑖
(𝐗𝑖𝜝,𝐕𝑖), by estimating location-model 

fixed effects and variance components in a single model. Although ML performs well 

with large sample sizes, estimates of variance components will be downwardly biased 

because ML does not account for the estimation of the location-model fixed effects 

(Harville, 1977; Patterson & Thompson, 1974). For this reason, REML estimation has 

become much more of a gold standard in the frequentist framework. REML is used to 

produce less biased variance estimates by maximizing the (log) likelihood of the 

residuals and accounting for the uncertainty from the estimation of location-model fixed 

effects (Patterson & Thompson, 1971).  

With that said, of the software mentioned above using likelihood-based methods, 

only the NLMIXED procedure within SAS software (SAS Institute Inc., 2011) can 

estimate scale-model random effects (note, NLMIXED only implements ML). With that 

said, although NLMIXED can theoretically estimate any combination of location- and 

scale-model random effects, NLMIXED typically iterates slowly, often needs precise 

starting values to converge, and may require more computational memory than is 

available (Hedeker et al., 2008). As a result, Hedeker and Nordgren (2013) developed 
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their MIXREGLS software specifically to estimate the mixed-effects location-scale 

model for conditionally normally distributed response variables (also using only ML). 

Although MIXREGLS is a free, stand-alone program that can also be called directly 

within SAS, R, or Stata (see Hedeker & Nordgren, 2013 for SAS and R and Leckie, 2014 

for Stata), it has limited flexibility given it only estimates the location- and scale-model 

random intercept variance (i.e. no location- or scale-model random slopes). As a result of 

these limitations, a more powerful and flexible estimation method must be employed.  

Software that uses Markov chain Monte Carlo estimation. In contrast to 

software using ML, Bayesian methods using MCMC sampling algorithms can provide 

researchers with the ability to estimate complex mixed-effects location-scale models (i.e., 

that produced non-positive definite 𝐆𝑖 or convergence errors within NLMIXED or that 

could not be estimated in MIXREGLS). Two commonly used MCMC algorithms include 

Metropolis-Hastings (Metropolis & Ulam, 1949; Metropolis, Rosenbluth, Rosenbluth, 

Teller, & Teller, 1953) and the Gibbs sampler (Geman & Geman, 1984).  

The e-Stat estimation engine within the Stat-JR statistics add-on for the MLwiN 

software package (Browne, Charlton, Michaelides, Parker, Cameron, Szmaragd, et al., 

2013; Charlton, Michaelides, Parker, Cameron, Szmaragd, Yang, et al., 2013) allows the 

estimation of multiple location- and scale-model random effects using either Metropolis-

Hastings or the Gibbs sampler. An example using Stat-JR to estimate the mixed-effects 

location-scale model in an educational research setting using cross-sectional data has 

been provided by Leckie et al. (2014). In addition, WinBUGS and JAGS syntax has been 

presented to estimate a mixed-effects location-scale model, syntax that could be amended 
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to include any number of location- and/or scale-model random effects (Li et al., 2014; 

Lunn, Thomas, Best, & Spiegelhalter, 2000; Plummer, 2003, 2012; Rast et al., 2012). 

Although Stat-JR is a flexible package available to estimate the mixed-effects 

location-scale model, it is only free to empirical scientists and students affiliated with an 

academic institution based in the United Kingdom (UK). Therefore, MLwiN may be 

prohibitively expensive for anyone working outside of the UK. Indeed, as of January 

2015, Stat-JR was approximately $547 for a single-user license and $304 for a PhD 

student license. As a result, a novel MCMC estimator using the Metropolis-Hastings 

algorithm was developed for this dissertation using R software (R Core Team, 2013) to 

estimate the mixed-effects location-scale model. Notably, this algorithm allows for any 

number of location- and scale-model random effects. Before describing the specifics of 

this algorithm, however, it is important to discuss the Bayes theorem underlying MCMC 

estimation. 

Overview of Bayes’ Theorem for Continuous Outcomes 

Bayes’ theorem (Bayes, 1763) has many formulations for continuous outcomes. 

Constant across formulations, however, is the required use of probability density 

functions (i.e., continuous distributions) that allow probabilities to be calculated over a 

range of values given that the probability of observing one exact value within the 

distribution is zero. In general, continuous distributions are defined by 𝑓(∙); thus, Bayes’ 

theorem for continuous events is shown in (3.1).  

 
𝑓(𝑏|𝑎) =  

𝑓(𝑎|𝑏)𝑓(𝑏)

𝑓(𝑎)
 

(3.1) 

Before providing an interpretation of the individual elements in (3.1), it is important to 

note that for any continuous distribution to be a proper probability density function, it 
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must satisfy the non-negativity rule and normalization rule. That is, the distribution must 

be non-negative, 𝑓(∙) ≥ 0, and must integrate to 1, ∫ 𝑓(∙)𝑑 ∙ = 1
∞

−∞
, respectively (see 

Lynch, 2007).  

Further, applying the law of total probability to (3.1), where 𝑓(𝑎) =

∫𝑓(𝑎|𝑏)𝑓(𝑏)𝑑𝑏, Bayes’ theorem can be re-formulated as shown in (3.2), which has a 

form similar to that published originally by Bayes (1763). Note that because continuous 

distributions are density functions, the integral must be taken across the sample space of 

the distribution. 

 
𝑓(𝑏|𝑎) =  

𝑓(𝑎|𝑏)𝑓(𝑏)

∫ 𝑓(𝑎|𝑏)𝑓(𝑏)𝑑𝑏
∞

−∞

 
(3.2) 

Here, 𝑓(𝑏|𝑎) is the conditional posterior distribution of observing 𝑏 given 𝑎, 𝑓(𝑎|𝑏) is 

the conditional distribution of observing 𝑎 given 𝑏 (aka, the likelihood of the data), 𝑓(𝑏) 

is the distribution of the prior, and ∫ 𝑓(𝑎|𝑏)𝑓(𝑏)𝑑𝑏
∞

−∞
 is the marginal distribution or 

normalizing constant. Further, by the normalization rule, ∫ 𝑓(𝑎|𝑏)𝑓(𝑏)𝑑𝑏
∞

−∞
= 1. Thus, 

Bayes’ theorem can be additionally re-formulated as shown in (3.3), where ∝ indicates 

proportional to.  

 𝑓(𝑏|𝑎) ∝ 𝑓(𝑎|𝑏)𝑓(𝑏) (3.3) 

Here, the posterior conditional distribution is proportional to the likelihood of the data 

multiplied by the prior distribution. Note that for the remainder of this dissertation, 

𝑓(𝑎|𝑏) will be referred to as the likelihood of the data and 𝑓(𝑏) will be referred to as the 

likelihood of the prior. 

 Because it is often difficult to calculate the normalizing constant due to the non-

identifiable form of the posterior distribution and the fact that multiple integrals may be 
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involved, the proportional relationship in (3.3) serves as the basis for the sampling 

procedures that underlie MCMC methods (Rupp, Dey, & Zumbo, 2004). Further, because 

MCMC methods are used to sample observations with respect to the posterior 

distribution, by sampling enough observations, the characteristics of the posterior 

distribution (e.g., mean and variance) can be approximated, which serves to approximate 

the location- and scale-model fixed and random effects of interest. These methods are 

where the discussion turns next. 

Markov Chain Monte Carlo (MCMC) Methods 

The MCMC process was first described by mathematical physicists Metropolis 

and Ulam (1949) and Metropolis et al. (1953) who needed a method to integrate complex 

functions. This section will begin with a brief discussion of the theory of Markov chains 

as well as Monte Carlo methods followed by details of the MCMC process that includes 

prior specification, estimation, autocorrelation reduction, convergence, and the evaluation 

of model fit.  

Markov chain theory and Monte Carlo methods. Markov chains use 

probability theory and operate on quasi-random processes that create sequentially 

autocorrelated values. A Markov chain is a sequence of 𝑇 random states (e.g., 𝜅1, 𝜅2, 

𝜅3, ⋯, 𝜅𝑇) and begins with an event at a specific point, with all outcomes within the 

event referred to as the sample space (Bolstad, 2007). The chain is defined by its 

transition probability (aka, transition kernel), which is the probability that the current 

state, 𝜅, moves to another state, 𝜅∗, in a single step (Chib & Greenberg, 1995). A 

transition probability can be thought of as a conditional probability defined as the 

probability of moving to a particular next state given the current state, 𝑝(𝜅∗|𝜅). A 
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random event is a Markov process if the transition probabilities between different events 

in the sample space depend only on the event’s current state (Walsh, 2004). Thus, a 

subsequent event, 𝜅∗, should only be predicted by the current event, 𝜅. Note that because 

the future event is predicted from the first event, they are necessarily correlated—a more 

specific term is autocorrelated.  

As a simplistic example, the Markov process beings with an arbitrarily chosen 

starting value within the parameter’s sample space. Then, a second value is chosen 

dependent on the first value. Subsequently, a third value in the chain is chosen that is 

dependent on second, but not on the first. Further, a fourth value is chosen that is 

dependent on the third, but not the first or second, and so on. This process is repeated for 

a finite number of samples or iterations (Gallager, 1996). That is, the Markov process 

will continue to sample values until the transition duration (i.e., number of samples or 

iterations) is satisfied and the process is consistently sampling from the posterior 

distribution of interest known as the stationary distribution. The stationary distribution is 

identified when the predicted state is independent of the original state (i.e., defined by an 

autocorrelation equal to 0; Walsh, 2004). However, convergence is truly unknown in 

practice and can only be evidenced, not proven, using a variety of statistical and graphical 

methods described below. 

Finally, a Monte Carlo method is a broad term that describes a computer 

simulation approach to solving problems that employ a sequence of randomly generated 

numbers (Ertekin & Grossman, 2008). The original purpose of the Monte Carlo method 

was to compute complex integrals (Walsh, 2004). 
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The specifics of MCMC estimation. Whenever the functional form of the 

posterior distribution is unknown or presents computational difficulty, MCMC methods 

are often employed (Rupp et al., 2004). MCMC methods approximate the posterior 

distribution based on Bayes theorem in (3.3) via Monte Carlo computer simulation using 

the theory of Markov chains to randomly sample from some posterior distribution of 

interest. In general, MCMC simulations begin with initial parameter estimates defined by 

the researcher or sampled from the appropriate posterior distribution, and then 

successively sample values depending on the values previously sampled (Kim & Bolt, 

2007; Rupp et al., 2004). The MCMC process is considered complete when estimates 

converge to a stationary posterior distribution.  

 Specifying prior distributions. The prior distribution plays a fundamental role in 

Bayesian statistics and MCMC estimation. The characteristics of prior distributions (e.g., 

the mean and variance for a normal distribution) are typically specified based on one of 

three goals: 1) to describe existing knowledge, 2) to describe belief in the absence of 

existing knowledge, and 3) to have the prior contribute little, if any, information 

(Pullenayegum & Thabane, 2009).  

Prior specification is required for all model parameters, thus allowing known 

information to be incorporated into model estimation (Kim & Bolt, 2007). Because 

selection of a prior distribution is subjective, the characteristics of all prior distributions 

must be explicitly delineated before analysis is conducted. Further, it is important to note 

that misspecified prior distributions are a nonissue as long as the posterior distribution is 

a proper density function (i.e., it satisfies the non-negativity and normalization rules; 

Rupp et al., 2004).  



81 

 

 Finally, the prior distribution has the potential to increase or decrease the 

influence of the observed data, with the strength of the prior controlled through 

hyperparameters that describe the distribution of the prior (e.g., the variance of the prior 

distribution; Kim & Bolt, 2007). Strong priors that reduce the influence of the data are 

termed informative priors because they are specified to have small variances. By contrast, 

highly noninformative (or vague) priors have large variances that allows the collected 

data to have as much influence on the posterior distribution as possible. However, note 

that prior specification can be problematic, as theoretical justification for all priors is 

subjective, and even the use of noninformative priors could contribute more (or less) 

information than expected, which can over- (or under-) power the influence of your data 

(known as the prior-data conflict, Evans & Moshonov, 2006). 

The Metropolis-Hastings algorithm and the Gibbs sampler. The Metropolis 

algorithm was developed originally by mathematical physicists Metropolis and Ulam 

(1949) and Metropolis et al. (1953) who were having difficulty integrating complex 

functions. This algorithm was subsequently generalized by Hastings (1970) using an 

arbitrary transition probability function, defined as the probability that a current state 

moves to a subsequent state given the current state. 

In general, the Metropolis-Hastings (MH) algorithm is known as a rejection 

sampler (Rupp et al., 2004). The algorithm begins with an initial value, 𝜃, that is selected 

from the sample space of the prior distribution and represents the current value. Then, the 

algorithm randomly samples a candidate value, 𝜃∗, from an appropriately specified 

jumping (or, candidate-generating) distribution, 𝑄(𝜃∗|𝜃), defined as the probability (or 

likelihood) of selecting the candidate value, 𝜃∗, given the current value, 𝜃 (Chib & 
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Greenberg, 1995). Next, a MH ratio of the densities (𝑟MH,𝜃) is calculated based on the 

candidate and current values to determine when a candidate value should be accepted or 

rejected. A general form of this ratio using a Bayesian framework to predict parameter 𝜃 

is shown in (3.4). 

 
𝑟MH,𝜃 =

𝑓(𝐘𝑖|𝜃
∗)𝑓(𝜃∗)𝑄(𝜃|𝜃∗)

𝑓(𝐘𝑖|𝜃)𝑓(𝜃)𝑄(𝜃∗|𝜃)
 

(3.4) 

Here, 𝜃 is the current value of the parameter, 𝜃∗ is the candidate value of the parameter, 

and 𝐘𝑖 is the 𝑛𝑖 x 1 column vector of observed outcome data for individual 𝑖. The 

numerator of the ratio consists of 𝑓(𝐘𝑖|𝜃
∗), which is the likelihood of the observed data, 

𝐘𝑖, given the candidate value, 𝜃∗, 𝑓(𝜃∗) is the likelihood of the prior distribution for the 

candidate value, 𝜃∗, and 𝑄(𝜃|𝜃∗) is the likelihood of drawing the current value, 𝜃, given 

the candidate value, 𝜃∗ (i.e., the candidate-generating distribution). Similarly, the 

denominator consists of 𝑓(𝐘𝑖|𝜃) which is the likelihood of the observed data, 𝐘𝑖, given 

the current value, 𝜃, 𝑓(𝜃) is the likelihood of the prior distribution for the current value, 

𝜃, and 𝑄(𝜃∗|𝜃) is the likelihood of drawing the candidate value, 𝜃∗, given the current 

value, 𝜃 (again, the candidate-generating distribution). Note that 𝑓(𝐘𝑖|𝜃
∗) and 𝑓(𝐘𝑖|𝜃) 

may be required to be summed or multiplied over individuals depending on whether 

likelihoods are on the log scale or not. Further, when the candidate-generating 

distributions are symmetric, 𝑄(𝜃|𝜃∗) = 𝑄(𝜃∗|𝜃), these distributions can be factored from 

the MH ratio (Patz & Junker, 1999). 

 Accepting or rejecting the candidate value is determined with probability (3.5), 

 𝑚𝑖𝑛(𝑟MH, 1) (3.5) 

where 𝑟MH was defined in (3.4). This accept–reject process continues for a large number 

of 𝑇 iterations to form the Markov chain and is considered complete when the algorithm 
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samples consistently (i.e., converges) from a stationary distribution, which for Bayesian 

inference should approximate the posterior density function, 𝑓(𝑏|𝑎) (Patz & Junker, 

1999).  

Finally, the Gibbs sampler was introduced in the context of image sampling by 

Geman and Geman (1984). The Gibbs sampler is best viewed as a special case of the MH 

algorithm in which all candidate values are accepted unconditionally (Rupp et al., 2004). 

The Gibbs sampling process begins with an initial value, 𝜃, and then samples iteratively 

from univariate conditional distributions that include both the data as well as all 

previously and subsequently sampled values. This sequence is continued until the Gibbs 

sampler converges onto a stationary distribution, which is ideally equal to the posterior 

distribution. It is important to note that using the Gibbs sampler requires computing the 

normalizing constant defined in (3.2), which can be a difficult task for complex integrals; 

using a rejection-sampling algorithm, such as the MH algorithm, circumvents the need 

for these calculations (Patz & Junker, 1999). 

The tuning of candidate-generating distributions. It is important to note that 

the MH algorithm has lower efficiency (i.e., longer convergence times) with candidate 

acceptance rates below 15% or above 50% (Roberts & Rosenthal, 2001). Further, in 

situations where posterior and candidate distributions are normal (as in this dissertation), 

Roberts, Gelman, and Gilks (1997) recommend a 45% acceptance rate to achieve the 

greatest efficiency (i.e., the least number of iterations) of the MH algorithm. Appropriate 

acceptance rates can be achieved by tuning the variances of candidate distributions. That 

is, a series of preliminary iterations are used to evaluate the acceptance rate and adjust the 

variance of candidate distributions accordingly. Iterations contribute to the Markov chain 
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only after tuning is complete (Chib & Greenberg, 1995). Tuning of candidate variances is 

conducted as shown in (3.6). 

 
𝜎𝜃new

∗
2 =

𝜎𝜃
2 ∙ 𝜙−1(𝑝optimal 2⁄ )

𝜙−1(𝑝current 2⁄ )
 

(3.6) 

Here, 𝜎𝜃new
∗

2  is the new variance of the candidate-generating distribution for the parameter 

of interest, 𝜎𝜃
2 is the variance of the current candidate-generating distribution, 𝜙−1 

indicates the inverse cumulative density function of the standard normal distribution, 

𝑝optimal is the optimal acceptance rate, and 𝑝current is the current acceptance rate. 

Burn-in period and thinning. As stated above, the stationary distribution is 

obtained when the sampled values are independent of the starting state (i.e., no 

autocorrelation). By definition, independence implies no relationship or correlation 

between states; however, by nature of the sequential process of a Markov chain, adjacent 

values in the chain will share some positive and problematic autocorrelation. Thus, it has 

been recommended that posterior estimates based on a small number of sampled states 

not be trusted because the initial states will inevitably be influenced by their 

autocorrelation with the starting state (Kim & Bolt, 2007). Therefore, common practice is 

to dismiss a number of initial sampled states, often referred to as the burn-in period; 

posterior estimates are based on the sampled states following burn-in. There is no 

consensus on the number of initial sampled states to burn, although estimates typically 

range from the first 500 to 5000 values depending on the model, the data, and the 

structure of the algorithm itself (Kim & Bolt, 2007). Note that Raftery and Lewis (1992) 

suggested using an empirical method where the required burn-in period is the number of 

states necessary to achieve an estimated autocorrelation of 0.  
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Another strategy for reducing autocorrelation is to use thinning, where, for 

example, only the tenth value in the Markov chain is evaluated (Kim & Bolt, 2007). As 

the thinning distance is increased, the autocorrelation should decrease. Note that when 

thinning is used, the length of the Markov chain must be increased dramatically as a 

result of a drastic decrease in thinned sampled states. That is, if considering every tenth 

sampled state from an MCMC chain using 1000 iterations, only 100 (i.e., 1000/10) 

sampled states will be considered in estimates of the posterior distribution. 

Determining convergence of the Markov chain. Assuming a proper posterior 

density, the MCMC algorithm should converge onto the stationary distribution given 

enough iterations; however, the MH algorithm will continue sampling candidate values 

continuously until the Markov chain is terminated by the researcher (Spiegelhalter, 

Thomas, Best, & Lunn, 2003). Thus, determining convergence can be a subjective 

process and is always completed 100% post hoc. Several empirical methods for 

determining convergence have been developed, but each is not without limitations. Two 

statistical methods, one developed by Geweke (1992) and the other developed by Gelman 

and Rubin (1992) are often used (Cowles & Carlin, 1996). Graphical methods have also 

been developed, in which parameter estimates are graphed against the iteration number.  

Geweke (1992) developed a diagnostic test that compares the parameter mean 

across a set of earlier sampled states to the mean across later sampled states; convergence 

is indicated when the two means are similar. It is suggested that, for each parameter in the 

model, the mean of the first 10% of iterations (after burn-in) be compared to the last 50% 

of iterations. The Geweke test statistic is the difference of the two means divided by the 

estimated standard error (similar to a 𝑧-test). For a given parameter, a statistically 
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significant mean difference (i.e., 𝑧 < –1.96 or 𝑧 > 1.96) provides evidence that the chain 

has not converged. Note, however, that the standard error is largely affected by the 

number of iterations; therefore, Type I errors are possible, resulting in converged chains 

that have significantly different means. 

Alternatively, the Gelman and Rubin criterion compares the variances within and 

between multiple chains for each parameter (with divergent starting values) and 

calculates a variance ratio statistic, 𝑅̂, for each parameter similar to an 𝐹-test in analysis 

of variance (Gelman & Rubin, 1992). Convergence is likely when 𝑅̂ = 1; however, 

Gelman and Hill (2007) suggested using 𝑅̂ ≤ 1.5 as a cut-off for convergence. Although 

designed for multiple chains, a single chain can be partitioned to create multiple chains, 

at which point the Gelman and Rubin criterion is evaluated (Plummer, Best, Cowles, & 

Vines, 2006). Criticisms of this criterion include that it is inefficient, relies too heavily on 

the researcher to specify an exact target distribution, and that a single chain with adequate 

burn-in may be more efficient than multiple chains (Cowles & Carlin, 1996). 

Convergence can be evidenced graphically by examining trace plots (aka, 

sampling history plots). Examples of two trace plots are presented in Figure 3.1. 

Convergence is suggested by trace plots that level off (or snake) around the mean of the 

parameter estimate. Thus, the top plot of Figure 3.1 serves as an example of probable 

convergence, whereas the bottom plot of Figure 3.1 serves as an example of probable 

non-convergence. Note that convergence is defined by a range of sampled estimates, not 

by a single estimate. Thus, a narrower range equates to less variability, which is more 

indicative of convergence (Kass, Carlin, Gelman, & Neal, 1998). Further, problematic 

estimates can also be identified quickly by multi-modal histograms of sampled values.  
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Figure 3.1. Trace plots for parameter 𝜃 showing convergence and non-convergence 

It is important to note that in many situations the trace plot may not converge 

around an estimate as quickly as shown in top plot of Figure 3.1. In fact, convergence  

may not occur during a set number of iterations. Several factors directly affecting 

convergence include the selected prior distributions, the likelihood of the data, and/or 

initial estimates (Pullenayegum & Thabane, 2009). Further, Kim and Bolt (2007) 

indicated the algorithm employed might also affect the rate of convergence. For example, 

if the MH algorithm frequently rejects candidate values, the rate of convergence will 

inevitably be slower. In these situations, the length of the chain may need to be increased 

considerably. 

Intervals, significance, and model comparison. In a Bayesian analysis and 

MCMC estimation, each parameter is sampled from a distribution (i.e., all parameters are 

considered random). Therefore, when convergence evidence is strong, the estimate for a 

given parameter is determined by summary statistics of the posterior distribution of the 
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Markov chain. More specifically, the estimate for a given parameter is often defined by 

the mean or the median of the posterior distribution (Chib & Greenberg, 1995). Because 

this estimate is relatively uninformative in isolation, Bayesian confidence intervals can be 

placed around the estimate using several available methods. Two of the more common 

intervals include a symmetric credible interval, in which the 95% interval is based on the 

2.5 and 97.5 percentiles of the posterior distribution for the parameter of interest, or the 

highest posterior density interval, which captures 95% of the posterior distribution 

regardless of symmetry (Gill, 2008). Note that although the highest posterior density 

interval is more flexible, for unimodal distributions that are approximately symmetric, the 

two intervals will be similar (Gill, 2008). 

Although Bayesian p-values have been proposed (see Gelman, Meng, & Stern, 

1996), traditionally the significance of a given parameter is indicated by an credible or 

HPD interval that excludes zero. Further, Bayesian hypothesis testing can be conducted 

by evaluating whether the null value (which may or may not be zero) lies outside the 

interval.  

With that said, there may be occasions when evaluating significance via any 

interval is theoretically inappropriate, such as when evaluating the significance of 

location- or scale-model variance components. In these situations, overall model 

comparisons are required. In the context of MCMC estimation, several are available, of 

which the Bayes factor (BF), pseudo-Bayes factor, and deviance information criterion 

(DIC) will be discussed.  

The BF compares two models using a ratio of the marginal likelihoods of the data 

(i.e., the normalizing constant) from each model as shown in (3.7).  
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BF =

∫ 𝑓(𝐘𝑖|𝜃1)𝑓(𝜃1)𝑑𝜃1𝜃1

∫ 𝑓(𝐘𝑖|𝜃2)𝑓(𝜃2)𝑑𝜃2𝜃2

 
(3.7) 

A BF ≥ 1 indicates model 1 is preferred with the extent to which BF < 1 providing 

evidence against model 1 (Gill, 2008). Although BF comparisons are straightforward to 

interpret, their computation is difficult in practice given the difficulty in calculating the 

normalizing constant (Patz & Junker, 1999). Thus, the BF comparison is often 

approximated using a pseudo-Bayes factor called conditional predictive ordinate (CPO; 

Gelfand, Dey, & Chang, 1992). The CPO reduces computational complexity by only 

requiring the likelihood of the observed data given the current parameter, 𝑓(𝐘𝑖|𝜃), as 

shown in (3.8) 

 

CPO−1 =
1

𝑇
∑

1

𝑓(𝐘𝑖|𝜃)

𝑇

1

 , 
(3.8) 

where 𝑇 is the total number of sampled values in the chain for parameter 𝜃. 

One final model comparison is the deviance information criterion (DIC), shown in 

(3.9). The DIC attempts to identify the most parsimonious model by weighing model fit 

against model complexity and is similar conceptually to AIC or BIC from the frequentist 

framework; thus, the better fitting model has a lower DIC.  

 DIC = −2 log(𝑓(𝐘𝑖|𝜃)) + 2𝑝𝐷 (3.9) 

Here, −2log (𝑓(𝐘𝑖|𝜃)) is the –2 log-likelihood of the data given the model parameters 

(i.e., the deviance), and 𝑝𝐷 is the effective number of parameters that quantifies the 

penalty for complexity by correcting the natural bias of the deviance to prefer the model 

with more parameters, as shown in (3.10) 

 𝑝𝐷 = 𝐷(𝜃) − 𝐷(𝜃), (3.10) 
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where 𝐷(𝜃) is the sum of the posterior mean of the deviances as shown in (3.11)  

 

𝐷(𝜃) =
1

𝑇
∑−2 𝑙𝑜𝑔(𝑓(𝐘𝑖|𝜃current))

𝑇

1

, 
(3.11) 

and 𝐷(𝜃) is the deviance evaluated at the posterior mean of the parameter, 𝜃, as shown in 

(3.12). 

 𝐷(𝜃) = −2 𝑙𝑜𝑔 (𝑓(𝐘𝑖|𝜃)) (3.12) 

Concluding remarks. This section presented specifics regarding how Bayes’ 

theorem is used throughout MCMC estimation using the MH algorithm. Given the 

flexibility of the MH algorithm, while at the same time considering the limitations of ML 

or REML estimation for complex models described above, estimating the mixed-effects 

location-scale model using the MH algorithm provides obvious benefits. Therefore, the 

next section fully describes the MH algorithm used to estimate all mixed-effects location-

scale models in this dissertation, providing details regarding the likelihood functions for 

the observed data as well as specifics of all prior and candidate-generating distributions. 

The Metropolis-Hastings Algorithm to Estimate the Mixed-Effects Location-Scale 

Model 

To begin the MH estimation algorithm, starting values for location-model fixed 

and random effects as well as the residual variance were identified using a linear mixed-

effects model; starting values for scale-model fixed and random effects were set to zero. 

Below are the steps of the MH algorithm defining the value of 𝑟MH from (3.4) using the 

distributions from which candidate values were drawn as well as the distributions of the 

prior for each parameter. Prior to initiation of the chain, candidate variances for all 
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parameters were tuned using (3.6) to approximate an optimal acceptance rate of 45% 

(Roberts et al., 1997).  

Each step of the algorithm is represented below by each subsequent equation, 

where all parameters not being considered are held constant at their current values. The 

distributions are consolidated so that the parameter being considered in a given step 

within a given iteration is the only conditional value. Further, note that subscript 𝑘 is used 

for all model parameters as a generic index to indicate a given element within the specific 

parameter vector of interest, and that, when relevant, notation for all effects is mapped 

directly onto the multi-level, scalar notation used throughout chapter 2 (i.e., elements of 

𝜝 = 𝛾𝑘; elements of 𝛕𝑒 = 𝛿𝑘
𝑒). Thus, as an example, although the distribution of the data 

given the entire mixed-effects location-scale model is given by 𝑓(𝐘𝑖|𝜝, 𝐮𝑖), if only one 

element of 𝜝, say 𝛾𝑘, is being evaluated, then its distribution is denoted as 𝑓(𝐘𝑖|𝛾𝑘) to 

simplify the text. 

Location-model fixed effects. Using the multi-level, scalar notation provided in 

chapter 2, the elements of 𝜝 are represented by 𝛾𝑘, as shown initially in (2.2). Thus, 

location-model fixed effects are the elements of the 𝑝 x 1 column vector 𝜝, with 

individual location-model fixed effects within this vector denoted as 𝛾𝑘, where 𝑘 = 0 to 𝑝. 

The values of the 𝛾𝑘 parameters were updated individually using the MH ratio described 

generically in (3.4), and modified specifically for location-model fixed effects as shown 

in (3.13). 

 
𝑟MH,𝛾 =

𝑓(𝐘𝑖|𝛾𝑘
∗)𝑓(𝛾𝑘

∗)𝑄(𝛾𝑘|𝛾𝑘
∗)

𝑓(𝐘𝑖|𝛾𝑘)𝑓(𝛾𝑘)𝑄(𝛾𝑘
∗|𝛾𝑘)

 
(3.13) 

Here, 𝑓(𝐘𝑖|𝛾𝑘
∗) is the likelihood of the observed data for individual 𝑖, 𝐘𝑖, given the 

candidate value of the 𝑘th location-model fixed effect, 𝛾𝑘
∗. The likelihood of the observed 
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data was calculated as the product of the individual likelihoods across all individuals’ 𝑡 

repeated occasions using the multivariate normal distribution shown in (3.14). 

 

𝑓(𝐘𝑖|𝛾𝑘
∗) = ∏(

1

(2𝜋)
𝑡
2|𝐕𝑖|

1
2

𝑒−(𝐘𝑖−(𝐗𝑖𝜝+𝐙𝑖𝐮𝑖))
𝑇
𝐕𝑖

−1((𝐘𝑖−(𝐗𝑖𝜝+𝐙𝑖𝐮𝑖))/2))

𝑁

1

 

(3.14) 

Here, 𝐗𝑖𝜝 + 𝐙𝑖𝐮𝑖 is the location-model mean vector and 𝐕𝑖 is the covariance matrix for 

the multivariate normal distribution of 𝐘𝑖 conditional on 𝐗𝑖 and 𝐙𝑖 for individual 𝑖, 

𝑓(𝐘𝑖|𝐗𝑖 , 𝐙𝑖) ~ 𝐍𝑛𝑖
(𝐗𝑖𝜝,𝐕𝑖), as defined by (1.5).  

In addition, 𝑓(𝛾𝑘
∗) is the likelihood of the prior distribution for the candidate value 

of the 𝑘th location-model fixed effect, 𝛾𝑘
∗. An uninformative prior was used for all 𝛾𝑘

∗, 

sampled from the univariate normal distribution shown in (3.15).  

 𝑓(𝛾𝑘
∗) ~ 𝑁(0, 10000) (3.15) 

Finally, 𝑄(𝛾𝑘|𝛾𝑘
∗) represents the candidate-generating distribution and is the 

likelihood of drawing the current value of the 𝑘th location-model fixed effect, 𝛾𝑘, given 

the candidate value of the 𝑘th location-model fixed effect, 𝛾𝑘
∗. All location-model fixed 

effects were drawn from the univariate normal distribution shown in (3.16) 

 𝑄(𝛾𝑘|𝛾𝑘
∗) ~ 𝑁(𝛾𝑘

∗, 𝜎𝛾𝑘
2 ), (3.16) 

with the candidate-generating variance for the 𝑘th location-model fixed effect, 𝜎𝛾𝑘
2 , tuned 

to achieve candidate acceptance rates of 45% as described above. 

 Calculating the denominator of 𝑟MH,𝛾 followed a similar process. Here, the 

likelihood of the observed data for individual 𝑖 given the current value of the 𝑘th 

location-model fixed effect, 𝑓(𝐘𝑖|𝛾𝑘), the likelihood of the prior distribution for the 

current value of the 𝑘th location-model fixed effect, 𝑓(𝛾𝑘), and the candidate-generating 
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distribution, 𝑄(𝛾𝑘
∗|𝛾𝑘), each were obtained by substituting 𝛾𝑘 for 𝛾𝑘

∗ (and vice versa, as 

necessary) in (3.14), (3.15), and (3.16), respectively. 

Location-model random effects. Location-model random effects are the 

elements of the 𝑞 x 1 column vector 𝐮𝑖, with location-model random effect values for 

individual 𝑖 denoted as 𝑢𝑘,𝑖, where 𝑘 = 0 to 𝑞. Values of 𝑢𝑘,𝑖 were updated individually 

for each individual 𝑖 using the MH ratio shown in (3.17). 

 
𝑟MH,𝑢𝑖

=
𝑓(𝐘𝑖|𝑢𝑘,𝑖

∗ )𝑓(𝑢𝑘,𝑖
∗ )𝑄(𝑢𝑘,𝑖|𝑢𝑘,𝑖

∗ )

𝑓(𝐘𝑖|𝑢𝑘,𝑖)𝑓(𝑢𝑘,𝑖)𝑄(𝑢𝑘,𝑖
∗ |𝑢𝑘,𝑖)

 
(3.17) 

Here, 𝑓(𝐘𝑖|𝑢𝑘,𝑖
∗ ) is the likelihood of the observed data for individual 𝑖, 𝐘𝑖, given the 

candidate value of the 𝑘th location-model random effect for individual 𝑖, 𝑢𝑘,𝑖
∗ . The 

likelihood for each individual 𝑖, 𝑓(𝐘𝑖|𝑢𝑘,𝑖
∗ ), was calculated using the same multivariate 

normal distribution as shown on the right side of (3.14), where 𝑢𝑘,𝑖
∗  was used to form 𝐮𝑖.  

In addition, 𝑓(𝑢𝑘,𝑖
∗ ) represents the likelihood of the prior distribution for the 

candidate value of the 𝑘th location-model random effect for individual 𝑖, 𝑢𝑘,𝑖
∗ , which was 

sampled from the univariate normal distribution shown in (3.18) 

 𝑓(𝑢𝑘,𝑖
∗ ) ~ 𝑁(0, 𝜎𝑢𝑘,𝑖

2 ), (3.18) 

where 𝜎𝑢𝑘,𝑖
2  is the variance of the 𝑘th location-model random effect for individual 𝑖 

obtained from current 𝐆𝑖. 

Finally, 𝑄(𝑢𝑘,𝑖|𝑢𝑘,𝑖
∗ ) represents the candidate-generating distribution and is the 

likelihood of drawing the current value of the 𝑘th location-model random effect for 

individual 𝑖, 𝑢𝑘,𝑖, given the candidate value of the 𝑘th location-model random effect for 
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individual 𝑖, 𝑢𝑘,𝑖
∗ . All location-model random effects were sampled from the univariate 

normal distribution shown in (3.19)  

 𝑄(𝑢𝑘,𝑖|𝑢𝑘,𝑖
∗ ) ~ 𝑁(𝑢𝑘,𝑖

∗ , 𝜎𝑢𝑘,𝑖
2 ), (3.19) 

with the candidate-generating variance for the 𝑘th location-model random effect for 

individual 𝑖, 𝜎𝑢𝑘,𝑖
2 , tuned to achieve candidate acceptance rates of 45%. 

 Calculating the denominator of 𝑟MH,𝑢𝑖
 followed a similar process. Specifically, the 

likelihood of the observed data for individual 𝑖 given the current value of the 𝑘th 

location-model random effect for individual 𝑖, 𝑓(𝐘𝑖|𝑢𝑘,𝑖), the likelihood of the prior 

distribution for the current value of the 𝑘th location-model random effect for individual 𝑖, 

𝑓(𝑢𝑘,𝑖), and the candidate-generating distribution, 𝑄(𝑢𝑘,𝑖
∗ |𝑢𝑘,𝑖), each were obtained by 

substituting 𝑢𝑘,𝑖 for 𝑢𝑘,𝑖
∗  (and vice versa, as necessary) in (3.14), (3.18), and (3.19), 

respectively.  

Scale-model fixed effects for level-2 variance components. Scale-model fixed 

effects for level-2 variance components in 𝐆𝑖 are the elements of the 𝑎𝑢𝑟 x 1 column 

vector 𝛂𝑢𝑟, with individual scale-model fixed effects for level-2 variance components 

denoted by 𝛼𝑘
𝑢𝑟, where 𝑘 = 0 to 𝑎𝑢𝑟. Note that 𝑢𝑟 includes both location- and scale-model 

random intercept variances in 𝐆𝑖. Values of 𝛼𝑘
𝑢𝑟 were estimated on the log scale and 

updated individually using the MH ratio presented in (3.20).  

 
𝑟MH,𝛼𝑢𝑟 =

𝑓(𝐦𝑖|𝛼𝑘
𝑢𝑟∗

)𝑓(𝛼𝑘
𝑢𝑟∗

)𝑄(𝛼𝑘
𝑢𝑟|𝛼𝑘

𝑢𝑟∗
)

𝑓(𝐦𝑖|𝛼𝑘
𝑢𝑟)𝑓(𝛼𝑘

𝑢𝑟)𝑄(𝛼𝑘
𝑢𝑟∗

|𝛼𝑘
𝑢𝑟)

 
(3.20) 

As described in chapter 1, 𝐦𝑖 is a 𝑚𝐮𝑖+𝛚𝑖
𝑒𝑡  x 1 column vector holding all location- and 

scale-model random effects. Thus, 𝑓(𝐦𝑖|𝛼𝑘
𝑢𝑟∗

) is the likelihood of the deviations from 
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the 𝑘th location-model fixed effect, or 𝑘th fixed effect included in the scale model for the 

residual variance, for individual 𝑖, 𝐦𝑖, given candidate 𝐆𝑖, 𝐆𝑖
∗, for individual 𝑖 calculated 

from the (exponentiated) log-linear combination of 𝑘 candidate level-2, scale-model fixed 

effects, 𝛼𝑘
𝑢𝑟∗

, as defined in (1.9). The likelihood for individual 𝑖 was calculated using the 

multivariate normal distribution shown in (3.21), with a mean (vector) of zero and 

variances and covariances indicated by 𝐆𝑖
∗. 

 

𝑓(𝐦𝑖|𝛼𝑘
𝑢𝑟∗

) = ∏(
1

(2𝜋)
𝑡
2|𝐆𝑖

∗|
1
2

𝑒−(𝐦𝑖−𝟎)𝑇𝐆𝑖
∗−𝟏

((𝐦𝑖−𝟎)/2))

𝑁

1

 

(3.21) 

In addition, 𝑓(𝛼𝑘
𝑢𝑟∗

) is the likelihood of the prior density for the candidate value 

of the 𝑘th level-2, scale-model fixed effect, 𝛼𝑘
𝑢𝑟∗

. An uninformative prior was used for all 

𝛼𝑘
𝑢𝑟∗

, which were sampled from the univariate normal distribution shown in (3.22). 

 𝑓(𝛼𝑘
𝑢𝑟∗

) ~ 𝑁(0, 10000) (3.22) 

Further, 𝑄(𝛼𝑘
𝑢𝑟|𝛼𝑘

𝑢𝑟∗
) represents the candidate-generating distribution and is the 

likelihood of drawing the current value for the 𝑘th level-2, scale-model fixed effect, 𝛼𝑘
𝑢𝑟, 

given the candidate value of the 𝑘th level-2, scale-model fixed effect, 𝛼𝑘
𝑢𝑟∗

. All level-2, 

scale-model fixed effects were sampled from a truncated normal distribution, shown in 

(3.23), with lower bound, 𝑏, and upper bound, ℎ, determined before sampling using the 

lower-upper decomposition, to ensure 𝐆𝑖 remains positive definite (see Barnard et al., 

2000) 

 
𝑄(𝛼𝑘

𝑢𝑟|𝛼𝑘
𝑢𝑟∗

) =
1

√𝜎
𝛼𝑘

𝑢𝑟
2 (𝑍)

𝜙(𝜉), 
(3.23) 

where 
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𝜉 =

𝛼𝑘
𝑢𝑟∗

− 𝛼𝑘
𝑢𝑟

√𝜎
𝛼𝑘

𝑢𝑟
2

 
(3.24) 

 
𝜙(𝜉) =

1

√2𝜋
exp(

𝜉2

2
) 

(3.25) 

 𝑍 = 𝛷(𝜑) − 𝛷(𝜆) (3.26) 

 
𝛷(𝑥) = ∫ 𝜙(𝑥)𝑑𝑥

𝑥

−∞

 
(3.27) 

 
𝜑 =

ℎ − 𝛼𝑘
𝑢𝑟

√𝜎
𝛼𝑘

𝑢𝑟
2

 
(3.28) 

 
𝜆 =

𝑏 − 𝛼𝑘
𝑢𝑟

√𝜎
𝛼𝑘

𝑢𝑟
2

, 
(3.29) 

with the candidate-generating variance for the 𝑘th level-2, scale-model fixed effect, 𝜎
𝛼𝑘

𝑢𝑟
2 , 

tuned to achieve candidate acceptance rates of 45%. 

Calculating the denominator of 𝑟MH,𝛼𝑘
𝑢𝑟  followed a similar process. Specifically, 

the likelihood of the deviations from the 𝑘th location-model fixed effect, or fixed effect 

included in the scale model for the residual variance, for individual 𝑖, 𝐦𝑖, given current 

𝐆𝑖 for individual 𝑖 calculated from the (exponentiated) log-linear combination of 𝑘 

current level-2, scale-model fixed effects, 𝛼𝑘
𝑢𝑟, 𝑓(𝐦𝑖|𝛼𝑘

𝑢𝑟), was calculated using the 

right-hand side of (3.21). Further, the likelihood of the prior distribution for the current 

value of the 𝑘th level-2, scale-model fixed effect, 𝑓(𝛼𝑘
𝑢𝑟), as well as the candidate-

generating density, 𝑄(𝛼𝑘
𝑢𝑟∗

|𝛼𝑘
𝑢𝑟), was obtained by substituting 𝛼𝑘

𝑢𝑟 for 𝛼𝑘
𝑢𝑟∗

 (and vice 

versa, as necessary) using (3.22) and (3.23) through (3.29), respectively. 
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Finally, as stated in chapter 1, covariances in 𝐆𝑖 were modeled as correlations 

where fixed effects are elements of the 𝑎𝑢𝑟;𝑢𝑟′  x 1 column vector 𝛂𝑢𝑟;𝑢𝑟′ , with individual 

scale-model fixed effects for the correlation between level-2 variance components 

denoted by 𝛼
𝑘

𝑢𝑟;𝑢𝑟′
. Similar to above, note that 𝑢𝑟; 𝑢𝑟′ included all correlations between 

location- and scale-model random effects in 𝐆𝑖. Values were estimated on the inverse 

hyperbolic tangent scale and updated individually using the MH ratio shown in (3.30). 

 

𝑟
MH,𝛼

𝑢𝑟;𝑢
𝑟′ =

𝑓 (𝐦𝑖|𝛼𝑘

𝑢𝑟;𝑢𝑟′∗
) 𝑓 (𝛼𝑘

𝑢𝑟;𝑢𝑟′∗
)𝑄 (𝛼𝑘

𝑢𝑟;𝑢
𝑟′
|𝛼𝑘

𝑢𝑟;𝑢𝑟′∗
)

𝑓(𝐦𝑖|𝛼𝑘

𝑢𝑟;𝑢𝑟′
)𝑓(𝛼𝑘

𝑢𝑟;𝑢𝑟′
)𝑄 (𝛼𝑘

𝑢𝑟;𝑢𝑟′∗
|𝛼𝑘

𝑢𝑟;𝑢𝑟′
)

 

(3.30) 

The procedures used to estimate the fixed effects for correlation between level-2 variance 

components in 𝐆𝑖 were identical to the procedures described above for level-2 variance 

components, of course, only after substituting 𝛼𝑘

𝑢𝑟;𝑢𝑟′
 for 𝛼𝑘

𝑢𝑟, 𝛼𝑘

𝑢𝑟;𝑢𝑟′∗
 for 𝛼𝑘

𝑢𝑟∗
, and 𝜎

𝛼𝑘
𝑢𝑟

2  

for 𝜎
𝛼𝑘

𝑢𝑟;𝑢
𝑟′

2  as needed in (3.24) through (3.29). Therefore, explanations and 

interpretations are nearly identical and are therefore not re-presented. 

Scale-model fixed effects for the residual variance. All mixed-effects location-

scale models were estimated assuming 𝐑𝑖 was heterogeneous between individuals, but 

constant and independent within individuals, 𝐑𝑖 = 𝜎𝑒𝑖
2 𝐈𝑛𝑖

. Thus, similar to the description 

in chapter 2, correlations between residual values in 𝐑𝑖 were constrained to be zero and 

only one residual variance was estimated for each individual 𝑖. Thus, the subscript 

indicating occasion 𝑡 was not necessary. 

Using the multi-level, scalar notation provided in chapter 2, the elements of 𝛕𝑒 are 

represented by 𝛿𝑘
𝑒, as shown initially in (2.8). Therefore, scale-model fixed effects for the 

residual variance in 𝐑𝑖 are the elements of the 𝑐𝑒 x 1 column vector 𝛕𝑒, with individual 
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scale-model fixed effects for the residual variance denoted by 𝛿𝑘
𝑒, where 𝑘 = 0 to 𝑐𝑒. 

Values of 𝛿𝑘
𝑒 were estimated on the log scale and updated individually using the MH ratio 

shown in (3.31). 

 
𝑟MH,𝛿𝑒 =

𝑓(𝐘𝑖|𝛿𝑘
𝑒∗

)𝑓(𝛿𝑘
𝑒∗

)𝑄(𝛿𝑘
𝑒|𝛿𝑘

𝑒∗
)

𝑓(𝐘𝑖|𝛿𝑘
𝑒)𝑓(𝛿𝑘

𝑒)𝑄(𝛿𝑘
𝑒∗

|𝛿𝑘
𝑒)

 
(3.31) 

Here, 𝑓(𝐘𝑖|𝛿𝑘
𝑒∗

) is the likelihood of the observed data for individual 𝑖, 𝐘𝑖, given the 

candidate 𝐑𝑖, 𝐑𝑖
∗, for individual 𝑖 calculated from the (exponentiated) log-linear 

combination of 𝑘 candidate scale-model fixed effects for the residual variance, 𝛿𝑘
𝑒∗

. The 

likelihood for individual 𝑖 was calculated using the multivariate normal distribution as 

shown on the right-hand side of (3.14), where 𝛿𝑘
𝑒∗

 was used to form candidate 𝐑𝑖
∗ that 

was used in the calculation of 𝐕𝑖, as shown in (1.5). 

In addition, 𝑓(𝛿𝑘
𝑒∗

) is the likelihood of the prior distribution for the candidate 

value of the 𝑘th scale-model fixed effect for the residual variance, 𝛿𝑘
𝑒∗

. An uninformative 

prior was used for all 𝛿𝑘
𝑒∗

 parameters, which were sampled from the univariate normal 

distribution shown in (3.32). 

 𝑓(𝛿𝑘
𝑒∗

) ~ 𝑁(0, 10000) (3.32) 

Finally, 𝑄(𝛿𝑘
𝑒|𝛿𝑘

𝑒∗
) represents the candidate-generating distribution and is the 

likelihood of drawing the current value for the 𝑘th scale-model fixed effect for the 

residual variance, 𝛿𝑘
𝑒, given the candidate value for the 𝑘th scale-model fixed effect for 

the residual variance, 𝛿𝑘
𝑒∗

. All scale-model fixed effects for the residual variance were 

drawn from the univariate normal distribution shown in (3.33) 

 𝑄(𝛿𝑘
𝑒|𝛿𝑘

𝑒∗
) ~ 𝑁 (𝛿𝑘

𝑒∗
, 𝜎𝛿𝑘

𝑒
2 ), (3.33) 
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with the candidate-generating variance for the 𝑘th scale-model fixed effect for the 

residual variance, 𝜎𝛿𝑘
𝑒

2 , tuned to achieve candidate acceptance rates of 45%. 

 Calculating the denominator of 𝑟MH,𝛿𝑒 followed a similar process. Specifically, 

the likelihood of the observed data given current 𝐑𝑖 for individual 𝑖 based on the scale-

model fixed effects for the residual variance, 𝑓(𝐘𝑖|𝛿𝑘
𝑒), the likelihood of the prior 

distribution for the current value of the 𝑘th scale-model fixed effect for the residual 

variance, 𝑓(𝛿𝑘
𝑒), and the candidate-generating distribution, 𝑄(𝛿𝑘

𝑒∗
|𝛿𝑘

𝑒), each were 

obtained by substituting 𝛿𝑘
𝑒∗

 for 𝛿𝑘
𝑒 (and vice versa, as necessary) in (3.14), (3.32), and 

(3.33), respectively. 

Scale-model random effects. Scale-model random effects are elements of the 𝑤𝑒 

x 1 column vector 𝛚𝑖
𝑒, with individual scale-model random effects denoted as 𝜔𝑘,𝑖

𝑒 , where 

𝑘 = 0 to 𝑤𝑒. Values of 𝜔𝑘,𝑖
𝑒  were estimated on the log scale and updated individually for 

each individual 𝑖 using the MH ratio shown in (3.34).  

 
𝑟MH,𝜔𝑖

𝑒 =
𝑓(𝐘𝑖|𝜔𝑘,𝑖

𝑒 ∗
)𝑓(𝜔𝑘,𝑖

𝑒 ∗
)𝑄(𝜔𝑘,𝑖

𝑒 |𝜔𝑘,𝑖
𝑒 ∗

)

𝑓(𝐘𝑖|𝜔𝑘,𝑖
𝑒 )𝑓(𝜔𝑘,𝑖

𝑒 )𝑄(𝜔𝑘,𝑖
𝑒 ∗

|𝜔𝑘,𝑖
𝑒 )

 
(3.34) 

Here, 𝑓(𝐘𝑖|𝜔𝑘,𝑖
𝑒 ∗

) is the likelihood of the observed data for individual 𝑖, 𝐘𝑖, given the 

candidate value of the 𝑘th scale-model random effect for individual 𝑖, 𝜔𝑘,𝑖
𝑒 ∗

. The 

likelihood for each individual was calculated using the multivariate normal distribution 

on the right-hand side of (3.14), where 𝜔𝑘,𝑖
𝑒 ∗

 modified 𝐆𝑖 with the addition of the 𝑘 scale-

model random effect variance components (and additional covariances) as well as 𝐑𝑖 by 

modifying the residual variance for a given individual, both of which were used in the 

calculation of 𝐕𝑖, as shown in (1.5). 
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In addition, 𝑓(𝜔𝑘,𝑖
𝑒 ∗

) represents the likelihood of the prior distribution for the 

candidate value for the 𝑘th scale-model random effect, 𝜔𝑘,𝑖
𝑒 ∗

, which was sampled from 

the univariate normal distribution shown in (3.35) 

 𝑓(𝜔𝑘,𝑖
𝑒 ∗

) ~ 𝑁 (0, 𝜎𝜔𝑘,𝑖
𝑒

2 ), (3.35) 

where 𝜎𝜔𝑘,𝑖
𝑒

2  is the variance of the 𝑘th location-model random effect for individual 𝑖 

obtained from current 𝐆𝑖. 

Finally, 𝑄(𝜔𝑘,𝑖
𝑒 |𝜔𝑘,𝑖

𝑒 ∗
) represents the candidate-generating distribution and is the 

likelihood of drawing the current value of the 𝑘th scale-model random effect for 

individual 𝑖, 𝜔𝑘,𝑖
𝑒 , given the candidate value of the 𝑘th scale-model random effect for 

individual 𝑖, 𝜔𝑘,𝑖
𝑒 ∗

. All scale-model random effects were sampled from the univariate 

normal distribution shown in (3.36) 

 𝑄(𝜔𝑘,𝑖
𝑒 |𝜔𝑘,𝑖

𝑒 ∗
) ~ 𝑁 (𝜔𝑘,𝑖

𝑒 ∗
, 𝜎𝜔𝑘,𝑖

𝑒
2 ), (3.36) 

with the candidate-generating variance for the 𝑘th scale-model random effect for 

individual 𝑖, 𝜎𝜔𝑘,𝑖
𝑒

2 , tuned to achieve candidate acceptance rates of 45%. 

 Calculating the denominator of 𝑟MH,𝜔𝑖
𝑒 followed a similar process. Specifically, 

the likelihood of the observed data for individual 𝑖 given the current value of the 𝑘th 

scale-model random effect for individual 𝑖, 𝑓(𝐘𝑖|𝜔𝑘,𝑖
𝑒 ), the likelihood of the prior 

distribution for the current value of the 𝑘th scale-model random effect for individual 𝑖, 

𝑓(𝜔𝑘,𝑖
𝑒 ), and the candidate-generating distribution, 𝑄(𝜔𝑘,𝑖

𝑒 ∗
|𝜔𝑘,𝑖

𝑒 ), each were obtained by 

substituting 𝜔𝑘,𝑖
𝑒 ∗

 for 𝜔𝑘,𝑖
𝑒  (and vice versa, as necessary) in (3.14), (3.35), and (3.36), 

respectively. 
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Limitations of the algorithm. Although the MH algorithm presented in this 

chapter is flexible, it is not without limitations. First, the algorithm is limited to 

conditionally normally distributed outcomes; however, this does not preclude the use of 

variable transformation to approximate link functions from generalized linear models 

prior to estimating the model (e.g., natural log transformation = log link). Second, 

although residual variances in 𝐑𝑖 were allowed to be heterogeneous between individuals 

and across occasions within an individual, residual values were always assumed 

independent within an individual (although some quantity of within-individual 

correlation is being captured by the location-model random effects). That is, residuals 

were always assumed to have a correlation of zero because the algorithm does not (yet) 

allow the estimation of alternative covariance structures in 𝐑𝑖 (e.g., AR1, Toeplitz).  

Chapter Summary 

 The purpose of this chapter was to detail the current software and estimation 

algorithms available to estimate the mixed-effect location-scale model. The chapter 

began with an introduction to current software available for ML and MCMC estimation 

alongside their limitations. This was followed by an overview of Bayes theorem for 

continuous outcomes as well as the background information regarding MCMC 

methodology including discussions of estimation and convergence evaluation. Finally, 

the technical details of the MH algorithm used to estimate all mixed-effects location-scale 

models within this dissertation were presented. This algorithm was used to conduct the 

methodological studies to be reported chapter 4, which estimate the statistical power to 

detect and predict the scale-model random intercept variance and begin to study the 

consequences of alternative strategies for modeling location- and scale-model fixed and 
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random effects. The algorithm was also used to conduct the empirical data analysis in 

chapter 5. 
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CHAPTER 4: THE POWER TO DETECT AND PREDICT THE SCALE-MODEL 

RANDOM INTERCEPT VARIANCE AND THE CONSEQUENCES OF 

ALTERNATIVE STRATEGIES FOR MODELING LOCATION- AND SCALE-

MODEL FIXED AND RANDOM EFFECTS 

 Literature regarding the mixed-effects location-scale model has tended to focus on 

model estimation and interpretation (Cleveland, Denby, & Liu, 2000; Hedeker & 

Nordgren, 2013; Leckie et al., 2014; Lee & Nelder, 2006; Pugach, Hedeker, & 

Mermelstein, 2014; Rast et al., 2012). As a result, a paucity of methodological studies 

exists pertaining specifically to the mixed-effects location-scale model. In educational 

and social sciences literature, it appears that the only methodological studies to date have 

evaluated the effect of omitting the scale-model random intercept variance on inferences 

for fixed effects included in the scale model for the residual variance using educational 

data (Leckie, 2014; Leckie et al., 2014). The results of these studies indicated that Type I 

error rates for level-1 and level-2 fixed effects included in the scale model for the residual 

variance, as well as for their cross-level interaction, increased as the number of level-1 

and level-2 units increased, and that Type I error rates were most pronounced for level-2 

predictors (as high as 54% with 250 schools and 100 students per school). Thus, 

erroneously omitting scale-model random effects could result in incorrect inference for 

hypotheses specific to predicting individual differences in outcome variability, which 

could lead to (incorrect) final location and/or scale models that contain spuriously 

significant effects. 

With this in mind, this chapter presents two simulation studies that begin to 

address both of these concerns. The first simulation study provides power curves to detect 
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and predict the scale-model random intercept variance representing individual differences 

in outcome variability, and the second simulation study provides empirical scientists with 

information regarding the consequences of alternative strategies for modeling location- 

and scale-model fixed and random effects. A discussion of the results follows each 

simulation study; the chapter concludes with a discussion of the limitations and directions 

for future methodological research. 

Simulation Study I: The Power to Detect and Predict Scale-Model Random 

Intercept Variance 

Given that Leckie (2014) and Leckie et al. (2014) have shown that erroneously 

omitting significant scale-model random intercept variance can drastically increase Type 

I error rates for level-2 fixed effects included in the scale model for the residual variance, 

it is important for empirical scientists to know a priori when scale-model random 

intercept variance can be detected. Along these same lines, if the scale-model random 

intercept variance cannot be detected, it is important to know whether inferences can be 

trusted for fixed effects of level-2 predictors included in the scale model for the residual 

variance.  

To date, it appears that no methodological study has been conducted specifically 

evaluating the study design characteristics as well as model parameters that likely affect 

the power to detect the scale-model random intercept variance. Therefore, in the first 

simulation study, power curves were calculated to identify the sample of individuals at 

level 2, and number of repeated occasions within an individual at level 1, required to 

detect the scale-model random intercept variance based on pseudo-randomly sampled 

scale-model fixed and random intercepts, the correlation between location- and scale-
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model random intercepts, and the effect of a level-2 predictor included in both the 

location and scale models. In addition, for models in which the scale-model random 

intercept variance was detected, this study evaluated the power to detect the effect of a 

level-2 predictor included in the scale model for the residual variance; for models in 

which the scale-model random intercept variance could not be detected, this study also 

evaluated the Type I error rate for a level-2 predictor included in the scale model for the 

residual variance. 

Data-generating mixed-effects location-scale model. In the data-generating 

mixed-effects location-scale model for this simulation study, only the residual variance 

was specified to be heterogeneous between individuals (i.e., 𝐑𝑖), with the location- and 

scale-model random intercept variance, and their correlation, specified as homogeneous 

between individuals (i.e., 𝐆𝑖 = 𝐆; no subscript 𝑖 necessary).  

The data-generating location model is shown in (4.1), which included a fixed 

intercept, 𝛾00, random intercept, 𝑢0,𝑖, and the fixed effect for the level-2, time-invariant 

predictor, 𝛾01. 

 Level 1:       𝑌𝑡,𝑖 = 𝛽0,𝑖 + 𝑒𝑡,𝑖 

Level 2:       𝛽0,𝑖 = (𝛾00 + 𝑢0,𝑖) + 𝛾01(𝑋𝑖) 

Combined:  𝑌𝑡,𝑖 = (𝛾00 + 𝑢0,𝑖) + 𝛾01(𝑋𝑖) + 𝑒𝑡,𝑖 

 

(4.1) 

The scale model for the residual variance is shown in (4.2), which included the 

fixed intercept for the residual variance, 𝛿00
𝑒 , scale-model random intercept, 𝜔0,𝑖

𝑒 , and the 

fixed effect for the level-2, time-invariant predictor, 𝛿01
𝑒 , which was the same level-2 

predictor included in the location model in (4.1).  
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Level 1:        log(𝜎𝑒𝑖
2) = 𝜏0,𝑖

𝑒  

Level 2:                  𝜏0,𝑖
𝑒 = (𝛿00

𝑒 + 𝜔0,𝑖
𝑒 ) + 𝛿01

𝑒 (𝑋𝑖) 

Combined:   log(𝜎𝑒𝑖
2) = (𝛿00

𝑒 + 𝜔0,𝑖
𝑒 ) + 𝛿01

𝑒 (𝑋𝑖) 

 

(4.2) 

Here, 𝐑𝑖 was predicted to be heterogeneous between individuals, but residual values were 

assumed to be independent within an individual, such that the correlations between 

residuals were constrained to be zero, 𝐑𝑖 = 𝜎𝑒𝑖
2 𝐈𝑛𝑖

. Note that the subscript 𝑒 for the 

residual variance estimate did not require an additional subscript for occasion 𝑡 because 

there was only one estimated residual variance for each individual 𝑖. That is, there were 

no time-varying predictors in the scale model for the residual variance, so the residual 

variance was not estimated to vary across occasions within an individual. 

Finally, the scale models for the level-2 random effect variances and correlation 

in 𝐆 were assumed constant between individuals. That is, the level-2 scale models 

included only fixed intercepts for the location-model random intercept, 𝛼0
𝑢0, scale-model 

random intercept, 𝛼0
𝜔0

𝑒

, and the location-scale model random intercept correlation, 𝛼0
𝑢0;𝜔0

𝑒

, 

as shown below in (4.3). 

 log(𝜎𝑢0
2 ) = 𝛼0

𝑢0  

log (𝜎𝜔0
𝑒

2 ) = 𝛼0
𝜔0

𝑒

 

tanh−1(𝜌𝑢0;𝜔0
𝑒) = 𝛼0

𝑢0;𝜔0
𝑒

 

 

(4.3) 

The sampling distributions for study design and model parameters. 

Considering the paucity of methodological studies and small number of empirical studies 

using the mixed-effects location-scale model, most study design and model parameters 

were sampled from a range of values that could be reasonably expected from typical 
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repeated-measures data, with a uniform distribution used frequently to ensure appropriate 

coverage of potential effects and to increase applicability.  

Individuals and occasions. The number of individuals at level 2 and repeated 

occasions at level 1 were sampled from ranges that mirror what could be reasonably 

expected in traditional IIV studies (e.g., Nesselroade & Salthouse, 2004; Rast et al., 2012; 

Schmiedek, Lövdén, & Lindenberger, 2009), with the number of individuals sampled as 

shown in (4.4)  

 𝑁individuals ~ 𝑈(25,200) (4.4) 

and the number of repeated occasions within an individual sampled as shown in (4.5).  

 𝑛𝑖 ~ 𝑈(5,50) (4.5) 

Both of these sampled values were rounded to the nearest whole number and both 

simulation studies assumed complete data. Taken together, this allowed the total number 

of observations to range from 125 to 5,000 within the simulated datasets (which will be 

known for the remainder of this dissertation as replications). 

The total residual variance. Although the scale-model random intercept variance 

can be conceptualized as a proportion of total residual variance, this proportion is not 

calculated as directly as the ICC defined in (2.3). Briefly, Hedeker et al. (2008) used 

Cholesky factorization to standardize the unconditional location- and scale-model 

random intercept variances. Following standardization, the unconditional scale-model 

random intercept variance can be viewed directly as a proportion of total residual 

variance as shown in (4.6).  

 
𝜎𝑒𝑖

2 = exp(𝛿00
𝑒 +

1

2
(exp (𝛼0

𝜔0
𝑒

))) 
(4.6) 
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Here, 𝜎𝑒𝑖
2  is the total residual variance, 𝛿00

𝑒  is the fixed intercept for the (log of the) 

residual variance, and 𝛼0
𝜔0

𝑒

 is the fixed intercept for the (log of the) scale-model random 

intercept variance as defined in (4.3). It might be slightly confusing to see what appears 

to be double exponentiation of 𝛼0
𝜔0

𝑒

 in (4.6). The initial exponentiation of 𝛼0
𝜔0

𝑒

 is required 

to ensure the estimate of the scale-model random intercept variance remains positive (i.e., 

variance estimates are predicted on the log scale; thus, exp (𝛼0
𝜔0

𝑒

) = 𝜎𝜔0
𝑒

2 ). The second 

exponentiation is required to convert the total residual variance estimate (determined by 

𝛿00
𝑒  and 𝜎𝜔0

𝑒
2 ), which is also on the log scale, back onto the variance scale. 

 Accordingly, 𝛿00
𝑒  and 𝛼0

𝜔0
𝑒

 were sampled on the log scale as shown in (4.7) and 

(4.8), respectively. 

 𝛿00
𝑒  ~ 𝑈(0.59,1.93) (4.7) 

 𝛼0
𝜔0

𝑒

 ~ 𝑈(−5,−0.11) (4.8) 

The range of values for both 𝛿00
𝑒  and 𝛼0

𝜔0
𝑒

 were based on previous empirical studies of 

Hedeker et al. (2008), Rast and Zimprich (2011), and Rast et al. (2012). The fixed 

intercept for the residual variance, 𝛿00
𝑒 , mapped directly onto variance-scale estimates 

ranging between approximately 1.80 and 6.89 after exponentiation, whereas the fixed 

intercept for the scale-model random intercept variance, 𝛼0
𝜔0

𝑒

, mapped onto variance-scale 

estimates ranging from approximately 0 to 0.90 after exponentiation.  

In addition, when considering the calculation of total residual variance in (4.6), 

the range of values in (4.7) and (4.8) resulted in the proportion of total residual variance 

due specifically to the scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , to range from 
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approximately 0.00% (when 𝛼0
𝜔0

𝑒

= −5 regardless of the value of 𝛿00
𝑒 ) to 43.27% (when 

𝛼0
𝜔0

𝑒

= −0.11 and 𝛿00
𝑒 = 0.59). 

The location-model random intercept variance and the heterogeneous ICC. To 

explicitly determine the proportion of variance in the outcome at level 1 and level 2, the 

(log of the) location-model random intercept variance, 𝛼0
𝑢0, was fixed to 1 as shown in 

(4.9). 

 𝛼0
𝑢0 = 1 (4.9) 

Because the mixed-effects location-scale model allows scale-model predictors of all 

variances and correlations in 𝐆𝑖 and 𝐑𝑖, as well as individual differences in outcome 

variability via the scale-model random intercept variance, the ICC will necessarily be 

heterogeneous between individuals (i.e., as such the ICC will now also require the 

subscript 𝑖; 𝐼𝐶𝐶𝑖). Therefore, the notation for the ICC shown previously in (2.3) is no 

longer applicable and must be updated specifically for the mixed-effects location-scale 

model using notation described in (1.9) and (1.27). The matrix formulation for a generic 

model is shown in (4.10). 

 
ICC𝑖 =

exp(𝐀𝑖
𝑢0𝛂𝑢0)

exp(𝐀𝑖
𝑢0𝛂𝑢0) + exp(𝐓𝑖

𝑒𝛕𝑒 +
1
2

(exp(𝐖𝑖
𝑒𝛚𝑖

𝑒)))

 
(4.10) 

As described previously in chapter 1, 𝐀𝑖
𝑢0 is a 1 x 𝑎𝑢0 row vector containing the specific 

set of 𝑎𝑢0 level-2, individual-level predictor variables of the location-model random 

intercept variance for individual 𝑖, and 𝛂𝑢0 is 𝑎𝑢0 x 1 column vector containing the 

estimated fixed effect for each of these 𝑎𝑢0 level-2 predictors. Further, 𝐓𝑖
𝑒 is a 𝑛𝑖 x 𝑐𝑒 

matrix containing the 𝑐𝑒 level-1, occasion-level and/or level-2, individual-level predictors 
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of the residual variance across the 𝑛 occasions for individual 𝑖, and 𝛕𝑒 is the 𝑐𝑒 x 1 

column vector containing the estimated fixed effect for each of these 𝑐𝑒 level-1 or level-2 

predictors. Finally, 𝐖𝑖
𝑒 is an 𝑛𝑖 x 𝑤𝑒 matrix containing 𝑤𝑒 level-1 predictor variables 

included in the scale model for the residual variance specified to have random effects, 

and 𝛚𝑖
𝑒  is a 𝑤𝑒 x 1 column vector of deviations for individual 𝑖 from each of the 𝑤𝑒 

scale-model fixed effects specified to be random. 

 Specifically for the data-generating location and scale models described above, 

the location-model random intercept variance was unconditional and therefore assumed 

constant between individuals. Thus, 𝐀𝑖
𝑢0 is a scalar for each individual 𝑖 containing the 

value of 1 to indicate the intercept, and 𝛂𝑢0 is a scalar containing the (log of the) 

location-model random intercept variance, 𝛼0
𝑢0. In addition, 𝐓𝑖

𝑒 is an 𝑛𝑖 x 2 matrix 

containing a value of 1 to represent the intercept as well as the value of level-2 predictor 

𝑋𝑖, and 𝛕𝑒 is a 2 x 1 column vector containing the (log of the) fixed intercept for the 

residual variance and the (log of the) fixed effect for the level-2 predictor 𝑋𝑖. Finally, 

given that the scale-model random intercept was the only random effect included in the 

scale model for the residual variance, and that it was assumed constant across individuals 

(i.e., no predictors), 𝐖𝑖
𝑒 is a scalar for each individual 𝑖 containing the value of 1 to 

indicate the intercept, and 𝛚𝑖
𝑒 is a scalar containing the (log of the) scale-model random 

intercept variance, 𝛼0
𝜔0

𝑒

. 

In addition, the inclusion of the scale-model random intercept variance requires 

that multi-level notation be used for the scale model for the residual variance, as 

described in (2.8) and (2.11). Therefore, the heterogeneous ICC𝑖 for the data-generating 

model varies based on the fixed intercept for the residual variance, 𝛿00
𝑒 , and the fixed 
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effect for the level-2 predictor included in the scale model for the residual variance, 𝛿01
𝑒 , 

as shown in (4.11).  

 
ICC𝑖 =

exp(𝛼0
𝑢0)

exp(𝛼0
𝑢0) + exp((𝛿00

𝑒 + 𝛿01
𝑒 (𝑋𝑖)) +

1
2 (exp (𝛼0

𝜔0
𝑒

)))

 
(4.11) 

Therefore, with 𝛼0
𝑢0 fixed to 1, the range of values for 𝛿00

𝑒  and 𝛼0
𝜔0

𝑒

, defined by (4.7) and 

(4.8), respectively, was chosen specifically to ensure the unconditional heterogeneous 

ICC𝑖 (i.e., excluding 𝛿01
𝑒 ) ranged between approximately 0.20 and 0.60 on the data scale, 

which was considered reasonable for repeated-measures data. 

 The correlation between location- and scale-model random intercepts. The 

correlation between the location- and scale-model random intercepts, 𝜌𝑢0;𝜔0
𝑒, was 

sampled as fixed to either 0.00 or 0.50 determined by the Bernoulli distribution shown in 

(4.12). 

 𝜌𝑢0;𝜔0
𝑒  ~ 𝐵(1,0.50) (4.12) 

Here, the probability of success was set at 0.50 resulting in an approximately equal 

number of replications within each condition; sampled value of 0 indicated a correlation 

of 0.00, whereas a sampled value of 1 indicated a correlation of 0.50. A negative 

correlation was excluded from this simulation study because it was expected that any 

effects for the positive correlation would be mirrored for a negative correlation. 

The value of the level-2, time-invariant predictor. One level-2, time-invariant 

predictor, 𝑋𝑖, was included in both the location model and scale model for the residual 

variance, sampled from a standard normal distribution as shown in (4.13). 

 𝑋𝑖 ~ 𝑁(0,1) (4.13) 
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The effect for the level-2 predictor included in the location model. The effect for 

the level-2 predictor of the location-model random intercept variance was sampled from a 

zero-inflated Poisson distribution with a mean of 0.60 with a 0.20 probability of being an 

extra zero, as shown in (4.14). 

 𝛾01 ~ 𝑍𝐼𝑃(0.60,0.20) (4.14) 

This distribution was chosen because it forced predictor effects to be positive, allowing a 

clear indication of whether a misspecified location model or scale model for the residual 

variance increased or decreased the predictor’s effect. Further, it was expected that any 

effects for the positive parameter estimate would be mirrored for a negative estimate. 

 An initial simulation study of 100 replications using an unconditional, 

homogeneous ICC of 0.50, where exp(𝛼0
𝑢0) = exp(𝛿00

𝑒 ) = 2.72, exp (𝛼0
𝜔0

𝑒

) = 0, and 

𝑋𝑖 ~ 𝑁(0,1), resulted in an effect size (i.e., pseudo-R2) distribution with a median 

reduction of location-model random intercept variance of 0.03, IQR [0.01,0.19], which 

was considered reasonable. Pseudo-R2 was calculated as shown in (4.15), where 

unconditional and conditional imply that 𝑋𝑖 was excluded and included in the location 

model, respectively.  

 
pseudo–𝑅𝑢0

2 =
exp(𝛼0

𝑢0)
unconditional

− exp(𝛼0
𝑢0)

conditional

exp(𝛼0
𝑢0)

unconditional

 
(4.15) 

The effect for the level-2 predictor included in the scale model for the residual 

variance. The effect for the level-2 predictor included in the scale model for the residual 

variance, 𝛿01
𝑒 , explains scale-model random intercept variance and was sampled from a 

slightly more conservative zero-inflated Poisson distribution, with a mean of 0.25 and a 

0.20 probability of being an extra zero, as shown in (4.16).  
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 𝛿01
𝑒  ~ 𝑍𝐼𝑃(0.25,0.20) (4.16) 

An initial simulation study of 100 replications using an unconditional 

heterogeneous ICC of 0.47, where exp(𝛼0
𝑢0) = exp(𝛿00

𝑒 ) = 2.72, exp (𝛼0
𝜔0

𝑒

) = 0.25, 

and 𝑋𝑖 ~ 𝑁(0,1), resulted in an pseudo-R2 distribution with a median reduction of scale-

model random intercept variance of 0.04, IQR [0.01,0.14], that was consistent with 

results of Hedeker et al. (2008), Rast and Zimprich (2011), and Rast et al. (2012). Here, 

pseudo-R2 was calculated similarly to (4.15), with 𝛼0
𝜔0

𝑒

 substituted for 𝛼0
𝑢0; however, it is 

important to note that it has not been determined whether pseudo-R2 for the reduction in 

scale-model random intercept variance behaves in a similar fashion to pseudo-R2 for 

reduction of location-model random effect variances. 

Data generation. All data were simulated using SAS v. 9.4 (SAS Institute Inc., 

Cary, NC). A total of 4,000 individual replications were simulated for this study (i.e., 500 

replications per sampled parameter). All parameters were sampled pseudo-randomly 

using a seed based on the computer’s system clock (i.e., seed = 0), thus creating a 

different seed for each replication. 

Estimated model sequence. Four separate models were estimated for each 

replication, each of which only modified the scale model for the residual variance such 

that all level-2 random effects were considered homogeneous as shown in (4.3). It is 

generally not recommended to estimate scale-model random effects before estimating 

location-model random effects because individual mean differences would not have been 

partitioned out of residual variance via location-model random effects. As a result, these 

unaccounted for individual mean differences could result in Type I errors when 

evaluating the necessity of scale-model random effects. That is, scale-model random 
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effects (i.e., individual differences in residual variability) could be artifacts of existing, 

un-modeled individual mean differences. However, more research is needed on this topic. 

Therefore, to ensure proper evaluation of scale model random effects, the location model 

shown in (4.1) remained constant in all four estimated models, in which individual mean 

differences in the location-model fixed intercept, 𝛾00, were quantified by the location-

model random intercept variance, exp(𝛼0
𝑢0) = 𝜎𝑢0

2 , and explained by the level-2 fixed 

effect for 𝑋𝑖, 𝛾01. Table 4.1 provides the effects included in each mixed-effects location-

scale model; what follows below is a complete description of how the scale model was 

specified to change across the four models estimated in this study. 

Table 4.1 

The Effects Included in the Mixed-Effects Location-Scale Models for the First Simulation 

Study 

 Location Model  

Scale Model for  

Level-2 Variance 

Components  

Scale Model for  

Level-1 Residual 

Variance 

 

Fixed 

Effects 

Random 

Effects  Fixed Effects  

Fixed 

Effects 

Random 

Effects 

 𝛾00 𝛾01 𝑢0,𝑖  𝛼0
𝑢0 𝛼0

𝜔0
𝑒

 𝛼0
𝑢0;𝜔0

𝑒

  𝛿00
𝑒  𝛿01

𝑒  𝜔0,𝑖
𝑒  

Model 1 ● ● ●  ● ● ●  ● ● ● 

Model 2 ● ● ●  ●    ●   

Model 3 ● ● ●  ● ● ●  ●  ● 

Model 4 ● ● ●  ●    ● ●  
Note. A ● in a given column indicates that the effect is included in the model. 𝛾00 = location-model fixed 

intercept. 𝛾01 = location-model fixed effect for level-2 predictor 𝑋𝑖. 𝑢0,𝑖 = location-model random intercept 

for individual 𝑖. 𝛼0
𝑢0 = log of the scale-model fixed intercept for the location-model residual variance. 𝛼0

𝜔0
𝑒

 

= log of the scale-model fixed intercept for the scale-model random intercept. 𝛼0
𝑢0;𝜔0

𝑒

 = inverse hyperbolic 

tangent of the scale-model fixed intercept for the correlation between the location- and scale-model random 

intercepts. 𝛿00
𝑒  = log of the scale-model fixed intercept for the residual variance. 𝛿01

𝑒  = log of the scale-

model fixed effect for level-2 predictor 𝑋𝑖. 𝜔0
𝑒 = scale-model random intercept for individual 𝑖. 

 

Model 1. The first estimated model included the true scale model for the residual 

variance shown in (4.2), in which individual differences in residual variance were 

estimated via 𝜔0,𝑖
𝑒 , with the level-2 fixed effect, 𝛿01

𝑒 , allowing residual variance to be 
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heterogeneous across values of 𝑋𝑖, and to explain the scale-model random intercept 

variance, 𝜎𝜔0
𝑒

2 . 

Model 2. The second model, shown in (4.17), estimated an unconditional scale 

model for the residual variance by omitting the fixed effect for the level-2 predictor, 𝛿01
𝑒 , 

and further assumed that residual variance was homogeneous between individuals by 

omitting the scale-model random intercept, 𝜔0,𝑖
𝑒 . Because this scale model for the residual 

variance was a typical empty (or unconditional) model, the subscript 𝑖 was not 

technically required for any effect in this model. 

 Level 1:        log(𝜎𝑒𝑖
2) = 𝜏0,𝑖

𝑒  

Level 2:                  𝜏0,𝑖
𝑒 = 𝛿00

𝑒  

Combined:   log(𝜎𝑒𝑖
2) = 𝛿00

𝑒  

 

(4.17) 

Model 3. The third estimated model allowed individual differences in residual 

variance, but did not attempt to predict why these individual differences existed by 

omitting the fixed effect for the level-2 predictor, 𝛿01
𝑒 , as shown in (4.18).  

 Level 1:        log(𝜎𝑒𝑖
2 ) = 𝜏0,𝑖

𝑒  

Level 2:                  𝜏0,𝑖
𝑒 = (𝛿00

𝑒 + 𝜔0,𝑖
𝑒 ) 

Combined:   log(𝜎𝑒𝑖
2) = (𝛿00

𝑒 + 𝜔0,𝑖
𝑒 ) 

 

(4.18) 

Model 4. The fourth estimated model retained the fixed effect for the level-2 

predictor, 𝛿01
𝑒 , but omitted the scale-model random intercept, 𝜔0,𝑖

𝑒 , as shown in (4.19). 

Therefore, this model assumed no random variation (i.e., individual differences) in 

residual variance, but instead assumed residual variance to vary systematically with (i.e., 

as a deterministic function of) predictor 𝑋𝑖. 
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 Level 1:        log(𝜎𝑒𝑖
2 ) = 𝜏0,𝑖

𝑒  

Level 2:                  𝜏0,𝑖
𝑒 = 𝛿00

𝑒 + 𝛿01
𝑒 (𝑋𝑖) 

Combined:   log(𝜎𝑒𝑖
2 ) = 𝛿00

𝑒 + 𝛿01
𝑒 (𝑋𝑖) 

 

(4.19) 

Model estimation via MCMC. All mixed-effects location-scale models in the 

first simulation study were estimated using the MCMC estimator based on the 

Metropolis-Hastings algorithm described in chapter 3 that was developed and run in R v. 

3.1.0 (R Core Development Team, 2014). The four models described in the previous 

section were estimated for each of the 4,000 replications (i.e., 16,000 total estimated 

models) using the Crane supercomputer within the Holland Computing Center of the 

University of Nebraska-Lincoln. 

The estimation procedure was identical for all models. Although true values for 

all model parameters were known, to better simulate real-world conditions, start values 

for the location-model fixed effects, 𝛾00 and 𝛾01, the location-model random intercept 

variance, 𝜎𝑢0
2 , and the residual variance, 𝜎𝑒

2 (which served as a proxy for the fixed 

intercept of the residual variance, 𝛿00
𝑒 ), were based on preliminary estimation of a 

traditional linear mixed-effects model using the lme4 package in R developed by Bates, 

Mächler, Bolker, and Walker (2014). Start values for the effect for the level-2 predictor 

included in the scale model for the residual variance, 𝛿01
𝑒 , the scale-model random 

intercept variance, 𝜎𝜔0
𝑒

2 , and the correlation between the location- and scale-model 

random intercepts, 𝜌𝑢0;𝜔0
𝑒, were all set to 0. 

Prior to initiation of the Markov chain, candidate-generating distributions for all 

parameters (for all replications) were tuned as described in chapter 3 using 20 tuning 

chains of 50 iterations to achieve an optimal acceptance rate of 45%. Following tuning, 
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the Markov chain for every replication, regardless of the sampled parameter values, was 

initially specified to sample 5,000 iterations. However, initial testing determined that the 

MCMC estimator was not consistently meeting convergence criteria for replications 

simulated to have fewer than 50 individuals. As a result, the Markov chain for any 

replication with fewer than 50 individuals was specified to sample 7,500 iterations, which 

consistently met convergence criteria.  

The burn-in period consisted of the first 1,000 iterations, regardless of the number 

of iterations, with a thinning interval of 1 (i.e., no thinning); convergence was assessed 

empirically by Geweke’s diagnostic test (Geweke, 1992) and the Gelman and Rubin 

criterion (Gelman & Rubin, 1992), both calculated using the CODA package in R 

developed by Plummer et al. (2006). As described in detail in chapter 3, Geweke’s 

diagnostic test is a 𝑧-test, where 𝑧 < –1.96 or 𝑧 > 1.96 indicated the parameter failed to 

meet convergence criteria, whereas the Gelman and Rubin criterion, 𝑅̂, is essentially an 

𝐹-test, where 𝑅̂ ≤ 1.5 was used to indicate convergence. Because both criteria have the 

potential to indicate non-convergence as a Type I error, convergence was defined as 

satisfying at least one criterion. For parameters that failed to converge, visual inspection 

of trace plots and posterior distributions was conducted for a pseudo-random sample of 

approximately 10% of the failed parameters across models.  

Finally, the estimate for each parameter was based on the mean of the posterior 

distribution provided by the Markov chain. Parameter recovery and accuracy were 

calculated for the model 1 (i.e., the true model). Recovery estimates were calculated as 

the proportion of the 4,000 replications in which the estimated 95% credible interval for a 

given parameter contained the true sampled value. The accuracy of parameter estimates 
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was evaluated using signed bias calculated as the difference between the estimated 

parameter, 𝜃, and the true value of the parameter, 𝜃, as shown in (4.20). 

 Bias = 𝜃 − 𝜃 (4.20) 

Signed bias estimates were calculated for each parameter using the mean bias for a given 

parameter across the 4,000 replications, presented alongside their 95% confidence 

interval. The larger the absolute value of the bias estimate, the larger the distance 

between the estimated and true parameter value, with a positive bias estimate indicating 

the parameter was overestimated. 

Estimated model comparisons. First, to determine the power to detect the scale-

model random intercept variance, 𝜎𝜔0
𝑒

2 , the deviance information criterion (DIC) from 

model 2 and model 3 were compared directly, with lower DIC values indicating 

improved model fit. DIC was calculated as described in (3.9) through (3.12), and this 

model-based comparison was akin to indicating that 𝜎𝜔0
𝑒

2  was greater than zero. Note that 

model 1 (i.e., the true model) was not evaluated here because this analysis assumed the 

traditional model-building approach in which random effects were evaluated prior to 

fixed effects (i.e., model 1 included the fixed effect for the level-2 predictor, whereas 

model 3 did not). 

Given that all sample characteristics and model parameters were sampled on 

continuous scales (except the correlation between location- and scale-model random 

intercepts), the number of individuals, 𝑁, the number of repeated occasions, 𝑛𝑖, the fixed 

effect for the level-2 predictor included in the location model, 𝛾01, the fixed intercept for 

the residual variance, 𝛿00
𝑒 , and the scale-model random intercept variance, 𝜎𝜔0

𝑒
2 , were each 

partitioned into 20 bins allowing for more reliable estimation of their univariate power 
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curves. The (univariate or marginal) power to detect 𝜎𝜔0
𝑒

2  was then calculated for each bin 

as the proportion of replications where the DIC from model 3 was lower than model 2 for 

each sampled parameter. The univariate power curves were constructed by connecting 

calculated power across bins; no smoothing was used in order to prevent masking the 

observed change in power across bins.  

In addition, because the univariate power curves held the other sampled 

parameters at their average values across models, they may have captured power too 

simplistically. Thus, to determine whether certain combinations of sampled parameters 

moderated the power to detect the scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , 

interactions between all sampled parameters were evaluated. Given the unknown 

functional form for all sampled parameters, generalized additive models (GAM; see 

Hastie & Tibshirani, 1986) were considered initially to evaluate whether the detection of 

𝜎𝜔0
𝑒

2  (as determined by lower DIC between models 2 and 3) was moderated by the sample 

parameters. However, the local scoring algorithm would not converge for any GAM that 

included 𝜎𝜔0
𝑒

2 . A second approach proposed a series of multivariable logistic regression 

models predicting significant 𝜎𝜔0
𝑒

2  evaluating for interactions between the binned sampled 

parameters. However, quasi-complete separation occurred upon inclusion of any 

interaction effect. This indicated that the detection of 𝜎𝜔0
𝑒

2  was almost perfectly predicted 

by the moderation of the sampled parameters included in the interaction effect. Therefore, 

in the reported analysis, multivariable logistic regression models were estimated to 

predict significant 𝜎𝜔0
𝑒

2  in which all sampled parameters were modeled as continuous. 

These models assumed a linear functional form (i.e., linearity in the logit) between each 
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continuous predictor and the logit (or log-odds) of detecting 𝜎𝜔0
𝑒

2 . This assumption was 

tested via the Box-Tidwell test (Box & Tidwell, 1962), and was violated for all sampled 

parameters. Thus, a liberal p < .20 was used as impetus to examine power curves for a 

specific two-way interaction effects. 

Second, using only replications in which the scale-model random intercept 

variance, 𝜎𝜔0
𝑒

2 , estimated by model 3 was detected, the power to detect the effect of the 

level-2 predictor included in the scale model for the residual variance, 𝛿01
𝑒 , was calculated 

using 𝛿01
𝑒  estimated from model 1 (i.e., the true model). Statistical significance for 𝛿01

𝑒  

was indicated by its 95% credible interval, defined as the region between the 2.5 and 97.5 

percentiles of the posterior distribution excluding 0, as described in chapter 3. When 

calculating the power to detect 𝛿01
𝑒  estimated from model 1, all sampled parameters were 

partitioned into 20 bins (except the correlation between location- and scale-model 

random intercepts) and the power to detect 𝛿01
𝑒  within each bin was calculated as the 

proportion of replications for which 𝛿01
𝑒  was statistically significant. A univariate power 

curve for each sampled parameter was constructed by connecting calculated power across 

bins, with no smoothing parameter. 

Similar to the univariate power curves for detecting 𝜎𝜔0
𝑒

2 , the univariate power 

curves for detecting 𝛿01
𝑒  may have been overly simplistic; thus, a series of multivariable 

logistic regression models were used (again due non-convergence of the local scoring 

algorithm from the GAM and quasi-separation when using binned sampled parameters in 

logistic regression) to determine which additional sampled parameters moderated the 

power to detect 𝛿01
𝑒 . Because the Box-Tidwell test indicated linearity of the logit was 
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violated for each sampled parameter, p < .20 was used to indicate whether power curves 

should be examined for a specific two-way interaction effect. 

In addition, given that the data were available, a replication of Leckie (2014) and 

Leckie et al. (2014) was also conducted. Here, using only replications in which the scale-

model random intercept variance, 𝜎𝜔0
𝑒

2 , was detected and the effect of the true sampled 

value of the level-2 predictor included in the scale model for the residual variance, 𝛿01
𝑒 , 

was 0, the Type I error rate for 𝛿01
𝑒  estimated by model 3 was calculated as the proportion 

of these replications for which 𝛿01
𝑒  estimated by model 3 was (spuriously) statistically 

significant, presented alongside its 95% Clopper-Pearson confidence interval (the 

Clopper-Pearson interval is an exact confidence interval that has been shown to have 

greater coverage probability than either the Wald or Agresti-Coull intervals; see Agresti 

& Coull, 1998 and Clopper & Pearson, 1934). 

Finally, for replications in which the scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , 

was not detected, the proportion of replications was determined in which the true sampled 

value of the level-2 predictor included in the scale model for the residual variance, 𝛿01
𝑒 , 

was 0. Further, using only the replications for which the true sampled value of 𝛿01
𝑒  was 0, 

Type I error rates were calculated for 𝛿01
𝑒  estimated from model 4, presented alongside its 

95% Clopper-Pearson confidence interval.  

Results of simulation study I. The results of the first simulation study are 

provided below. Convergence criteria and signed bias are discussed initially, followed by 

a description of the power to detect the scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , and 

the power to detect the effect for the level-2 predictor included in the scale model for the 
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residual variance, 𝛿01
𝑒 . Finally, Type I error rates are discussed for 𝛿01

𝑒  when 𝜎𝜔0
𝑒

2  could 

not be detected for replications in which the true sampled value of 𝛿01
𝑒  was zero. 

Table 4.2 

Total Number and Proportion of Parameters Satisfying Geweke’s and/or Gelman and 

Rubin’s Convergence Criterion (𝑁 = 4,000) 

 Model 1 Model 2 Model 3 Model 4 

Location Model     

     𝛾00 3942 (98.55) 3951 (98.78) 3945 (98.63) 3960 (99.00) 

     𝛾01 3908 (97.70) 3956 (98.90) 3933 (98.33) 3934 (98.35) 

Scale Model     

     𝛿00
𝑒  3979 (99.48) 3996 (99.90) 3982 (99.55) 3993 (99.83) 

     𝛿01
𝑒  3990 (99.75) - - 3995 (99.88) 

     𝛼0
𝑢0 3953 (98.83) 3971 (99.28) 3963 (99.08) 3955 (98.88) 

     𝛼0
𝑢0;𝜔0

𝑒

 3963 (99.08) - 3728 (93.20) - 

     𝛼0
𝜔0

𝑒

 3975 (99.38) - 3986 (99.65) - 
Note. Data are presented as number (%). 𝛾00 = location-model fixed intercept. 𝛾01 = location-model fixed 

effect for level-2 predictor 𝑋𝑖. 𝑢0,𝑖 = location-model random intercept for individual 𝑖. 𝛼0
𝑢0 = log of the 

scale-model fixed intercept for the location-model residual variance. 𝛼0
𝜔0

𝑒

 = log of the scale-model fixed 

intercept for the scale-model random intercept. 𝛼0
𝑢0;𝜔0

𝑒

 = inverse hyperbolic tangent of the scale-model 

fixed intercept for the correlation between the location- and scale-model random intercepts. 𝛿00
𝑒  = log of the 

scale-model fixed intercept for the residual variance. 𝛿01
𝑒  = log of the scale-model fixed effect for level-2 

predictor 𝑋𝑖. 𝜔0
𝑒 = scale-model random intercept for individual 𝑖. 

 

Convergence evaluation. The proportion of parameters across replications 

satisfying Geweke’s and/or the Gelman and Rubin convergence criterion are presented in 

Table 4.2. Results indicated that at least one convergence criterion was met for a very 

high proportion of replications across all four models. The only exception was the 

(inverse hyperbolic tangent of the) correlation between the location- and scale-model 

random intercepts, 𝛼0
𝑢0;𝜔0

𝑒

, estimated by model 3 that had a convergence rate of 93.20% 

(which was still considered acceptable, however). This smaller convergence rate was 

hypothesized to result from the omission of the effect for the level-2 predictor in the scale 

model for the residual variance, 𝛿01
𝑒 , which necessarily increased estimated scale-model 

random intercept variance, 𝜎𝜔0
𝑒

2  (as the missing 𝛿01
𝑒  would have explained, or reduced, 
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𝜎𝜔0
𝑒

2 ). This hypothesis was supported given that the convergence rate for 𝛼0
𝑢0;𝜔0

𝑒

 estimated 

by model 1, which included 𝛿01
𝑒 , was 99.08%.  

With that said, of the 272 replications in which 𝛼0
𝑢0;𝜔0

𝑒

 estimated by model 3 

failed to converge, a pseudo-random sample of 27 trace plots (i.e., ≈10%) were 

examined, with each trace plot having one subtle peak or valley, which may have 

prevented convergence criterion from being met. An archetype for this observation is 

presented in Figure 4.1 for replication 134. 

 

Figure 4.1. Trace plot from replication 134 for the correlation between the location- and 

scale-model random intercepts (tanh-1 scale). 

 

Parameter recovery and accuracy. Parameter recovery was indicated by the 

proportion of replications for which the estimated 95% credible interval contained the 

true sampled parameter value, whereas the accuracy of parameter estimates was indicated 

by signed bias; both are presented for the model 1 (i.e., the true model) in Table 4.3. 

Model 1 recovered the location-model random intercept variance and most scale-model 
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fixed and random effects with 95% Clopper-Pearson intervals that included expected 

error rates (i.e., 95% recovery indicates a 5% error rate). However, the 95% credible 

interval for 𝛾00 and 𝛾01 included the true sampled parameter for approximately 90% of 

replications, which was unexpectedly low given the starting values for these parameters 

estimated by the traditional linear mixed-effects model were nearly identical to final 

model estimates from the mixed-effects location-scale model; signed bias estimates were 

0.00 for both 𝛾00 and 𝛾01. Therefore, given the ideal starting values and absence of 

signed bias for both 𝛾00 and 𝛾01, it was hypothesized that the MCMC algorithm may 

have sampled from highly leptokurtic posterior distributions (i.e., small posterior 

standard deviations), which resulted in extremely narrow 95% credible intervals that may 

have just excluded the true sampled parameter. 

Table 4.3 

Parameter Recovery and Signed Bias for Parameters Estimated by Model 1 (i.e., the true 

model; 𝑁 = 4,000) 

 Recovery Signed Bias 

Location Model   

     𝛾00 3650 (91.25) 0.00 [–0.01,0.00] 

     𝛾01 3524 (88.10) 0.00 [0.00,0.00] 

Scale Model   

     𝛿00
𝑒  3779 (94.48) 0.00 [–0.01,0.00] 

     𝛿01
𝑒  3758 (93.95) 0.00 [0.00,0.00] 

     𝛼0
𝑢0 3813 (95.33) 0.03 [0.02,0.03] 

     𝛼0
𝑢0;𝜔0

𝑒

 3262 (81.55) –0.05 [–0.06,–0.05] 

     𝛼0
𝜔0

𝑒

 3714 (92.85) 0.14 [0.12,0.16] 
Note. Recovery presented as frequency (percent). Signed bias presented as mean [95% CI]. 𝛾00 = location-

model fixed intercept. 𝛾01 = location-model fixed effect for level-2 predictor 𝑋𝑖. 𝑢0,𝑖 = location-model 

random intercept for individual 𝑖. 𝛼0
𝑢0 = log of the scale-model fixed intercept for the location-model 

residual variance. 𝛼0
𝜔0

𝑒

 = log of the scale-model fixed intercept for the scale-model random intercept. 𝛼0
𝑢0;𝜔0

𝑒

 

= inverse hyperbolic tangent of the scale-model fixed intercept for the correlation between the location- and 

scale-model random intercepts. 𝛿00
𝑒  = log of the scale-model fixed intercept for the residual variance. 𝛿01

𝑒  = 

log of the scale-model fixed effect for level-2 predictor 𝑋𝑖. 𝜔0
𝑒 = scale-model random intercept for 

individual 𝑖. 
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In addition, the 95% credible interval for the (inverse hyperbolic tangent of the) 

correlation between the location- and scale-model random intercepts, 𝛼0
𝑢0;𝜔0

𝑒

, included the 

true sampled parameter for only 81.55% of replications, and bias estimates indicated that 

model 1 underestimated the true parameter of 𝛼0
𝑢0;𝜔0

𝑒

 by an average of 0.05 (or 4.88% on 

the variance scale; [1 − exp(−0.05)] ∗ 100). Both results were hypothesized to result 

from the overestimation of the (log of the) scale-model random intercept variance, 𝛼0
𝜔0

𝑒

, 

by an average of 15.03% (i.e., [exp(0.14) − 1] ∗ 100), which affected the estimated 

correlation between location- and scale-model random intercepts. Further, although the 

overestimation of 𝛼0
𝜔0

𝑒

 by 15.03% appears significant, it represented an average 

difference between the true sampled value and the model-estimated value of 0.011 on the 

variance-scale (mean 𝜎𝜔0
𝑒

2  of true sampled values = 0.076 vs. mean 𝜎𝜔0
𝑒

2  estimated by 

model 1 = 0.087). Therefore, considering 𝛼0
𝜔0

𝑒

 had a convergence rate of 99.38% and 

recovery of 92.95%, the overestimation of 𝛼0
𝜔0

𝑒

 was not considered to bias the power 

estimates presented below; however, this overestimation was noted when appropriate. 

The power to detect the scale-model random intercept variance. Considering all 

4,000 replications, the average decrease in DIC between models 2 and 3 was 695.53, 95% 

CI [644.12, 746.95], with an overall empirical power rate to detect the scale-model 

random intercept variance of 89.93%, 95% CI [88.95%, 90.84%], 𝑛significant = 3,597.  

Univariate (or marginal) power curves based on the detection the scale-model 

random intercept variance, 𝜎𝜔0
𝑒

2 , were calculated across bins for the number of 

individuals, the number of repeated occasions, the fixed effect of the level-2 predictor 

included in the location model, and the fixed intercept for the residual variance. Each 
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univariate power curve was essentially flat, with an empirical power rate of 

approximately 90% across bins (as stated above, the average empirical power rate to 

detect 𝜎𝜔0
𝑒

2  was 89.93%). An exemplar of the functional form of this power curve is 

presented in Figure 4.2 for the (log of the) fixed intercept for the residual variance 

estimated by model 3. Overall, the flat function forms of these power curves at the 

average power to detect 𝜎𝜔0
𝑒

2  were hypothesized to result from each power curve being 

marginalized across the remaining sampled parameters. 

 

Figure 4.2. Power curve to detect scale-model random intercept variance by the fixed 

intercept for the residual variance (on the log scale) 

 

Similarly, for the correlation between the location- and scale-model random 

intercepts, an empirical power rate was approximately 90% for both conditions. 
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Specifically, when this correlation was sampled to be 0, the power to detect 𝜎𝜔0
𝑒

2  was 

89.78%, 95% CI [88.39%,91.05%] and 90.08%, 95% CI [88.66%,91.38%] when this 

correlation was sampled to be 0.50; no statistically significant difference in power was 

indicated between the sampled correlation conditions, Χ2 (1, N = 4,000) = 0.10, p = 0.75. 

 

Figure 4.3. Power to detect scale-model random intercept variance (on variance scale) 

By contrast, Figure 4.3 presents the univariate power curve to detect the scale-

model random intercept variance, 𝜎𝜔0
𝑒

2 , by the amount of 𝜎𝜔0
𝑒

2  estimated by model 3, in 

which the 𝑥-axis is on the variance scale, not the log scale. Here, the power to detect 𝜎𝜔0
𝑒

2  

increases as estimated 𝜎𝜔0
𝑒

2  increases from 0.00 to 0.10 before reaching 100% power when 

𝜎𝜔0
𝑒

2  was estimated by model 3 to be at least 0.15.  



128 

 

 

Figure 4.4. Power to detect scale-model random intercept variance (on variance scale) 

showing power increases from 0.00 to 0.10 (𝑛 = 1,696) 

 

Figure 4.4 presents the univariate power curve to detect the scale-model random 

intercept variance, 𝜎𝜔0
𝑒

2 , by 𝜎𝜔0
𝑒

2  ranging from 0.00 to 0.10 (𝑛 = 1,696). Here, 80% power 

to detect 𝜎𝜔0
𝑒

2  is achieved when 𝜎𝜔0
𝑒

2  was estimated to be approximately 0.03 (or, when 

taking into account the 15% overestimation, 80% power was achieved when 𝜎𝜔0
𝑒

2  was 

approximately 0.026). This small variance estimate to achieve 80% power to detect 𝜎𝜔0
𝑒

2  

was hypothesized to result specifically from the averaging of the four other sampled 

parameters across replications. Therefore, a multivariable logistic regression model was 

estimated in which the sampled parameters were modeled on their continuous scales (due 

non-convergence of the local scoring algorithm from the GAM and quasi-separation 
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when using binned sampled parameters) to determine which sampled parameters 

estimated by model 3 moderated the relationship between 𝜎𝜔0
𝑒

2  estimated by model 3 and 

whether 𝜎𝜔0
𝑒

2  was detected via DIC model comparison. The results of the final 

multivariable logistic regression model are presented in Table 4.4, in which only 

replications for which 𝜎𝜔0
𝑒

2  was less than 0.10 were considered (𝑛 = 1,696). Note that both 

the number of individuals and the number of occasions were centered at their lowest 

possible sampled values of 25 and 5, respectively, and that 𝜎𝜔0
𝑒

2  was left uncentered given 

0 was possible (centering in the final model did not affect the inference of the two-way 

interaction effects). Further, the effect of 𝜎𝜔0
𝑒

2  is reported for a 0.01-unit increase given 

𝜎𝜔0
𝑒

2  ranged from 0.00 to 0.10 in these models. 

Table 4.4 

Logistic Regression Results Predicting whether the Scale-Model Random Intercept 

Variance was Detected as Estimated by Model 3 (𝑛 = 1,696) 

   95% Credible Interval 

 Log-Odds SE Lower Upper 

Intercept –7.31 0.59 –8.46 –6.16 

𝑁𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 (0=25) 0.03 0.00 0.02 0.04 

𝑛𝑖 (0=5) 0.01 0.01 –0.02 0.04 

𝜎𝜔0
𝑒

2  0.56 0.12 0.33 0.78 

𝜎𝜔0
𝑒

2 ∗ 𝑁𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 0.01 0.00 0.00 0.01 

𝜎𝜔0
𝑒

2 ∗ 𝑛𝑖 0.09 0.01 0.07 0.11 
Note. Bold font indicates p < .20. 𝑁𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 = number of individuals. 𝑛𝑖 = number of repeated occasions 

within an individual. 𝜎𝜔0
𝑒

2  = scale-model random intercept variance from model 3. 

 

Results indicated that the effect of 𝜎𝜔0
𝑒

2  estimated by model 3 was moderated by 

the number of individuals and the number of repeated occasions; no other two-way or 

higher interactions achieved p < 0.20. Interpretation of specific effects from this final 

model is not provided due to the violation of linearity of the logit for all sampled 

parameters (i.e., non-linear functional form as indicated by the Box-Tidwell test). In 
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general, however, the power to detect 𝜎𝜔0
𝑒

2  by the amount of 𝜎𝜔0
𝑒

2  increased with increases 

in either the number of individual or the number of repeated occasions. In addition, the 

power curves presented below for the two-way interactions are based on the binned 

versions of the sampled parameters, not continuous versions; thus, these power curves are 

simply approximations of the two-way interaction effects indicated by the multivariable 

logistic regression analysis.  

 

Figure 4.5. Power to detect the scale-model random intercept variance by the number of 

individuals (𝑛 = 1,696) 

 

An approximation of the interaction effect between the scale-model random 

intercept variance, 𝜎𝜔0
𝑒

2 , and the number of individuals is shown graphically by the power 

curves presented in Figure 4.5. Here, the number of individuals was binned into groups of 

25 to prevent congestion of power curves. This resulted in 7 total power curves, which 
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indicated that the power to detect 𝜎𝜔0
𝑒

2  increased more quickly for larger sample sizes. For 

example, sample sizes ranging from 25 to 50 achieved 80% power to detect 𝜎𝜔0
𝑒

2  when 

𝜎𝜔0
𝑒

2  was approximately 0.055 (or 0.047 when taking into account 15% overestimation 

observed by the true model), whereas sample sizes ranging from 176 to 200 achieved 

80% power to detect 𝜎𝜔0
𝑒

2  when 𝜎𝜔0
𝑒

2  was approximately 0.02 (or 0.017 when taking into 

account 15% overestimation by the true model).  

 

Figure 4.6. Power to detect the scale-model random intercept variance by the number of 

repeated occasions 

 

An approximation of the interaction effect between scale-model random intercept 

variance, 𝜎𝜔0
𝑒

2 , and the number of repeated occasions within an individual is shown 

graphically by the power curves in Figure 4.6. Here, repeated occasions were binned into 
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groups of 5 to prevent congestion of the power curves; 9 power curves were calculated, in 

which the power to detect 𝜎𝜔0
𝑒

2  increased more quickly with more repeated occasions. For 

example, for 5 to 10 occasions, 80% power to detect 𝜎𝜔0
𝑒

2  was achieved when 𝜎𝜔0
𝑒

2  was 

approximately 0.065 (or 0.055 when considering the 15% overestimation by the true 

model), whereas for 46 to 50 occasions, 80% power to detect 𝜎𝜔0
𝑒

2  was achieved when 𝜎𝜔0
𝑒

2  

was approximately 0.015 (or 0.013 when considering 15% overestimation by the true 

model). 

The power to detect the effect for a level-2 predictor included in the scale model 

for the residual variance. Using only replications in which the scale-model random 

intercept variance, 𝜎𝜔0
𝑒

2 , was significant (𝑛 = 3,597), the empirical power rate for the fixed 

effect for the level-2 predictor in the scale model for the residual variance, 𝛿01
𝑒 , was 

approximately 26.69%, 95% CI [25.25%,28.17%], 𝑛significant = 960. This result was 

expected given that the zero-inflated Poisson distribution from which 𝛿01
𝑒  was sampled 

resulted in a majority of zeros being sampled (𝑛𝑧𝑒𝑟𝑜𝑠 = 2,733; 75.98%). In addition, for 

replications in which 𝜎𝜔0
𝑒

2  was detected and 𝛿01
𝑒  was sampled to be 0 (𝑛 = 2,733), the 

Type I error rate for 𝛿01
𝑒  estimated by the model 1 (i.e., the true model) was 3.51%, 95% 

CI [2.85%,4.27%], which was close to the expected 5%.  

As a replication of Leckie (2014) and Leckie et al. (2014), considering 

replications where 𝜎𝜔0
𝑒

2  was detected and where the true value of 𝛿01
𝑒  was sampled to be 0 

(𝑛 = 2,733), the Type I error rate from model 4 that erroneously omitted 𝜎𝜔0
𝑒

2  was 14.82%, 

95% CI [13.51%,16.21%]. This finding supported the results of Leckie (2014) and Leckie 

et al. (2014), albeit with a smaller Type I error rate than they reported, and indicated that 
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erroneously omitting 𝜎𝜔0
𝑒

2  considerably increases Type I error rates for level-2 fixed 

effects included in the scale model for the residual variance. 

 

Figure 4.7. Power to detect a level-2 predictor of scale-model residual variance by the 

effect of the predictor estimated by model 1 (𝑛 = 3,597) 

 

Considering only replications in which the scale-model random intercept 

variance, 𝜎𝜔0
𝑒

2 , was detected (𝑛 = 3,597), the estimated univariate power curve for the 

binned fixed effect of the level-2 predictor included in the scale model for the residual 

variance, 𝛿01
𝑒 , estimated by model 1 is shown in Figure 4.7 (in which the 𝑥-axis is the 

actual parameter estimate for 𝛿01
𝑒  on the log scale). The parameter estimate of 𝛿01

𝑒  had 

inadequate statistical power when 𝛿01
𝑒  was less than 0.25, and near 100% power when 𝛿01

𝑒  

was greater than or equal to 0.25.  
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The parameter estimate for the fixed effect of the level-2 predictor included in the 

scale model for the residual variance, 𝛿01
𝑒 , was presented initially due to the unknown 

behavior of pseudo-R2 calculated for the reduction of scale-model random intercept 

variance, 𝜎𝜔0
𝑒

2 . With that in mind, pseudo-R2 was calculated by substituting 𝛼0
𝜔0

𝑒

 for 𝛼0
𝑢0 in 

(4.15) by comparing the reduction in 𝜎𝜔0
𝑒

2  estimated by models 1 and 3. The univariate 

power curve across binned values of 𝛿01
𝑒  is shown in Figure 4.8. 

 

Figure 4.8. Power to detect scale-model fixed effect for level-2 predictor by the 

predictor’s effect size estimate 

 

Results indicated a median reduction of scale-model random intercept variance of 

0.13, IQR [0.02,0.88], in which the parameter estimate of 𝛿01
𝑒  had inadequate statistical 

power when 𝛿01
𝑒  explained less than 50% of scale-model random intercept variance, 𝜎𝜔0

𝑒
2 , 
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and near 100% power when 𝛿01
𝑒  explained more than 50% of 𝜎𝜔0

𝑒
2 . Although this power 

curve is similar in functional form to Figure 4.7, this result does not provide explicit 

confirmation of the consistency of calculating pseudo-R2 for 𝜎𝜔0
𝑒

2 ; thus, all power curves 

presented below are based on the binned parameter estimate of 𝛿01
𝑒  estimated by model 1. 

 

Figure 4.9. Power to detect a level-2 predictor of scale-model residual variance by the 

number of individuals 

 

The remaining power curves for the fixed effect of the level-2 predictor included 

in the scale model for the residual variance, 𝛿01
𝑒 , were calculated across binned values of 

the number of individuals, the number of repeated occasions, the fixed intercept for the 

residual variance, and the scale-model random intercept variance. All power curves were 

nearly identical, with empirical power rates of approximately 25% across bins for these 
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sampled parameters (as stated above, the average empirical power rate to detect 𝛿01
𝑒  was 

26.69%). An exemplar of this functional form is presented for the number of individuals 

in Figure 4.9. Similar results were indicted for the correlation between the location- and 

scale-model random intercepts, 𝜌𝑢0𝑤0
; when 𝜌𝑢0𝑤0

 was sampled to be 0 the empirical 

power to detect 𝛿01
𝑒  was 27.15%, 95% CI [25.12%,29.17%], and empirical power was 

26.20%, 95% CI [24.15%,28.34%] when 𝜌𝑢0𝑤0
 was sampled to be 0.50; no statistically 

significant difference in the empirical power rate was indicated between conditions, Χ2 

(1, N = 3,597) = 0.41, p = 0.52. When considered together, similar to the univariate 

power curves for detecting the scale-model random intercept variance, the empirical 

power estimates consistently near 25% representing the average power to detect 𝛿01
𝑒  was 

hypothesized to result from the univariate power curves being marginalized across the 

other sampled parameters. 

Because the univariate power curve presented in Figure 4.7 for the fixed effect of 

the level-2 predictor included in the scale model for the residual variance, 𝛿01
𝑒 , assumed 

all sampled parameters were averaged across replications, the power to detect 𝛿01
𝑒  may 

have been estimated too simplistically. Given that power increased for estimated 𝛿01
𝑒  < 

0.25, jumped vertically for estimated 𝛿01
𝑒  ≈ 0.25, and then appeared to plateau near 100% 

for estimated 𝛿01
𝑒  ≥ 0.25, a series of piecewise logistic regression models were estimated 

to determine which continuous sampled parameters moderated whether 𝛿01
𝑒  estimated by 

model 1 was significant. Similar to the logistic model for the scale-model random 

intercept variance, all sampled parameters were modeled on continuous scales as a result 

of the non-convergence of the local scoring algorithm from the GAM and quasi-

separation using binned sampled parameters. Of the 3,597 replications in which the scale-
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model random intercept variance, 𝜎𝜔0
𝑒

2 , was detected, 2,724 (75.73%) estimated the fixed 

effect for the level-2 predictor included in the scale model for the residual variance, 𝛿01
𝑒 , 

to be less than 0.25 (M = –0.00, SD = 0.06, min = –0.38, max = 0.24), whereas 873 

(24.27%) replications estimated 𝛿01
𝑒  ≥ 0.25 (M = 1.14, SD = 0.41, min = 0.25, max = 

3.10). The results of the final piecewise logistic regression model are presented in Table 

4.5. For the final piecewise logistic model, the total number of individuals and the 

number of repeated occasions within an individual were centered at their lowest sampled 

values (i.e., 25 and 5, respectively), whereas both 𝛿01
𝑒  and scale-model random intercept 

variance, 𝜎𝜔0
𝑒

2 , were left uncentered given zero was a possible sampled value. Further, the 

effect of both 𝛿01
𝑒  and 𝜎𝜔0

𝑒
2  are reported for a 0.01-unit increase.  

Table 4.5 

Piecewise Logistic Regression Results Predicting whether the Scale-Model Fixed Effect 

for a Level-2 Predictor was Detected from Model 1 with a Breakpoint at 0.25 (𝑛 = 3,597) 

   95% CI 

 Log-Odds SE Lower Upper 

Intercept: 𝛿01
𝑒 < 0.25   –23.28 3.97 –31.06 –15.51 

Intercept: 𝛿01
𝑒 ≥ 0.25   –12.34 3.04 –18.30 –6.38 

𝛿01
𝑒 < 0.25   –0.10 0.18 –0.46 0.25 

𝛿01
𝑒 ≥ 0.25   0.10 0.12 –0.13 0.34 

𝑁𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 (0=25) 0.21 0.03 0.15 0.27 

𝑛𝑖 (0=5) 0.43 0.09 0.26 0.61 

𝜎𝜔0
𝑒

2  –0.10 0.01 –0.13 –0.07 

(𝛿01
𝑒 < 0.25) ∗ 𝑁𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠   0.01 0.00 0.01 0.01 

(𝛿01
𝑒 < 0.25) ∗ 𝑛𝑖   0.01 0.01 0.00 0.02 

(𝛿01
𝑒 < 0.25) ∗ 𝜎𝜔0

𝑒
2    –0.34 0.07 –0.47 –0.22 

Note. Bold font indicates p < .20. 𝛿01
𝑒  = log of the scale-model fixed effect for level-2 predictor 𝑋𝑖.  

𝑁𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 = number of individuals. 𝑛𝑖 = number of repeated occasions within an individual. 𝜎𝜔0
𝑒

2  = scale-

model random intercept variance from model 3.  

 

Two-way interactions were indicated between 𝛿01
𝑒  < 0.25 and the number of 

individuals, occasions, and the scale-model random intercept variance, 𝜎𝜔0
𝑒

2 ; no 



138 

 

interaction effects were indicated for 𝛿01
𝑒  ≥ 0.25 and no additional two-way or higher 

interactions were indicated. Interpretations for effects in this final model are not provided 

due to the non-linear functional form for all sampled parameters as indicated by the Box-

Tidwell test. In general, however, the power to detect 𝛿01
𝑒  < 0.25 increased with increases 

in the number of individual or the number of repeated occasions and decreased with 

increases in 𝜎𝜔0
𝑒

2 . In addition, power curves for the two-way interactions are based on the 

binned versions of the sampled parameters, not continuous versions, and thus are simply 

approximations of the interaction effects indicated by the final piecewise model.  

 

Figure 4.10. Power to detect the scale-model fixed effect for the level-2 predictor by the 

number of individuals 
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An approximation of the two-way interaction between the fixed effect of the 

level-2 predictor included in the scale model for the residual variance, 𝛿01
𝑒 , estimated to 

be < 0.25, and the number of individuals is shown graphically in Figure 4.10. 

Here, the number of individuals was binned into groups of 25 to prevent congestion of 

the power curves; this resulted in 7 total power curves. In general, the power to detect 

smaller values of 𝛿01
𝑒  increased more quickly as the number of individuals increased; 

however, even replications with samples ranging from 175 to 200 individuals failed to 

achieve 80% statistical power when 𝛿01
𝑒  < 0.25. 

 

 

Figure 4.11. Power to detect the scale-model fixed effect for the level-2 predictor by the 

number of repeated occasions 
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A similar finding was observed for the approximation of the two-way interaction 

between 𝛿01
𝑒  < 0.25 and the number of repeated occasions within an individual shown 

Figure 4.11. Here, the power to detect smaller values of 𝛿01
𝑒  increased more quickly as 

the number of occasions increased. Only occasions ranging from 31 to 35 achieved 80% 

power when 𝛿01
𝑒  < 0.25; however, this was likely a spurious result given the significant 

increase in power between 𝛿01
𝑒 = 0.11 and 𝛿01

𝑒 = 0.12 for this specific range of 

occasions. 

 

Figure 4.12. Power to detect the scale-model fixed effect for the level-2 predictor by the 

scale-model random intercept variance 

 

Finally, an approximation of the interaction between the fixed effect of the level-2 

predictor in the scale model for the residual variance, 𝛿01
𝑒 , estimated to < 0.25 and the 

scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , is presented in Figure 4.12. Although the 
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pattern of interaction is not clearly indicated, especially at smaller values of 𝛿01
𝑒 , the 

power to detect 𝛿01
𝑒  increases more quickly for smaller values of 𝜎𝜔0

𝑒
2 . For 𝜎𝜔0

𝑒
2  ranging 

from 0.00 to 0.01, 80% power to detect 𝛿01
𝑒  was achieved when 𝛿01

𝑒  was approximately 

0.06. These results suggested that increasing 𝜎𝜔0
𝑒

2  resulted in smaller parameter estimates 

for 𝛿01
𝑒  to become undetectable. 

The ability to detect the fixed effect for a level-2 predictor included in the scale 

model for the residual variance when the scale-model random intercept variance 

cannot be detected. Of the 4,000 replications in this study, model 3 indicated that 3,597 

(89.93%) replications detected significant scale-model random intercept variance, 𝜎𝜔0
𝑒

2 . 

For the 403 replications in which model 3 did not detect 𝜎𝜔0
𝑒

2 , the true sampled value of 

the fixed effect for the level-2 predictor included in the scale model for the residual 

variance, 𝛿01
𝑒 , was 0. Thus, for these 403 replications, model 1 and model 4 (i.e., the only 

models to include 𝛿01
𝑒 ) should never have estimated 𝛿01

𝑒  as statistically significant, and 

therefore any statistically significant estimate for 𝛿01
𝑒  would be a Type I error. With this 

in mind, if 𝜎𝜔0
𝑒

2  was not detected but retained in the model, as in model 1, the Type I error 

rate for 𝛿01
𝑒  was 0.99%, 95% CI [0.27%,2.52%], whereas if 𝜎𝜔0

𝑒
2  was not detected and 

omitted from the model, as in model 4, the Type I error rate for 𝛿01
𝑒  increased to 2.48%, 

95% CI [1.20%,4.52%]. Taken together, these results suggest that 𝜎𝜔0
𝑒

2  must be detected 

before it can be predicted, and that if 𝜎𝜔0
𝑒

2  is not detected and either retained or omitted, 

continuing to model between-individual differences in residual variability with a level-2 

predictor is most likely unproductive, although this does not entirely preclude continuing 

to evaluate for systematically-varying effects of level-2 predictors. 
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The ability to detect a truly systematically-varying fixed effect for a level-2 

predictor included in the scale model for the residual variance. Of the 3,597 

replications in which scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , was detected, 177 of 

these replications (4.92%) indicated that the inclusion of the level-2 predictor included in 

the scale model for the residual variance, 𝛿01
𝑒 , explained the majority of 𝜎𝜔0

𝑒
2 , such that a 

non-significant proportion of unexplained 𝜎𝜔0
𝑒

2  remained (as indicated by comparing DIC 

between models 1 and 4). This result indicated that for these 177 replications, individual 

differences in residual variability were not random, but instead were truly systematically 

varying by 𝛿01
𝑒 . For these 177 replications, the consequences of removing the remaining 

non-significant scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , from the model was 

examined. Specifically, the Type I error rate for a level-2 predictor included in the scale 

model for the residual variance, 𝛿01
𝑒 , estimated by true model 1 that included 𝜎𝜔0

𝑒
2  was 

lower than the Type I error rate for 𝛿01
𝑒  estimated by model 4 that excluded 𝜎𝜔0

𝑒
2  (9.72%, 

95% CI [4.00%,19.01%] vs. 13.89%, 95% CI [6.87%,24.06%], respectively). Although 

both Type I error rates were considerably higher than nominal 5% for the majority of the 

confidence interval, these results suggest that if residual heterogeneity is indicated to vary 

systematically (but not randomly otherwise), non-significant 𝜎𝜔0
𝑒

2  should be retained in 

subsequent models to provide better (albeit, potentially inadequate) control of the Type I 

error rate. 

Discussion of the first simulation study. The first simulation study set out to 

accomplish three specific aims identified to be lacking in the methodological literature 

regarding the mixed-effects location-scale model. First, this study calculated the 
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statistical power to detect the scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , and further 

evaluated how the power function for 𝜎𝜔0
𝑒

2  varied by several study design characteristics, 

as well as model parameters that would typically be estimated in a mixed-effects 

location-scale model. Results indicated that the power to detect 𝜎𝜔0
𝑒

2  increased with 

concurrent increases in 𝜎𝜔0
𝑒

2 , which was moderated by the number of individuals as well 

as by the number of repeated occasions within an individual. Taken together, these results 

were not surprising as they align with statistical power theory for typical repeated-

measures analyses. That is, more data generally increases the probability of finding a 

statistically significant effect. Therefore, based on the results shown in Figures 4.5 and 

4.6, it is recommended that at least 100 individuals measured at a minimum of 20 

occasions should result in approximately 80% power to detect 𝜎𝜔0
𝑒

2  as small as 0.035 (i.e., 

the average 𝜎𝜔0
𝑒

2  indicated in this study). 

Second, the power to detect the effect of a level-2 predictor included in the scale 

model for the residual variance, 𝛿01
𝑒 , was evaluated only for replications in which the 

scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , was detected (although it could have been 

evaluated for all replications given that 𝛿01
𝑒 = 0 for all replications in which 𝜎𝜔0

𝑒
2  was not 

detected). Results indicated that power increased substantially when parameter estimates 

of 𝛿01
𝑒  were > 0.25 (or 𝛿01

𝑒  explained at least 50% of 𝜎𝜔0
𝑒

2 ). A subsequent piecewise 

logistic regression model indicated that power was approximately 100% for replications 

in which 𝛿01
𝑒  ≥ 0.25, a result not moderated by any study design characteristic or model 

parameter. A more interesting result was that the power to detect 𝛿01
𝑒  < 0.25 increased 

with increases in the number of individuals or in the number of repeated occasions within 
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an individual, but decreased with increases in 𝜎𝜔0
𝑒

2  (i.e., more scale-model random 

intercept variance resulted in smaller 𝛿01
𝑒  parameter estimates to become undetectable). 

These results provided direct insight into how and when Type I errors for 𝛿01
𝑒  are likely to 

occur. That is, the true sampled value for 𝛿01
𝑒  was 0 for all replications in which 𝛿01

𝑒  was 

estimated to be less than 0.25. Thus, a Type I error for 𝛿01
𝑒  became more likely with 

increased power to detect 𝛿01
𝑒  resulting from drastic increases in the number of 

individuals or occasions and decreases in 𝜎𝜔0
𝑒

2  (although power remained less than 80% 

for sampled values of individuals and occasions in this study). This statement, of course, 

assumes the empirical scientist is not interested in 𝛿01
𝑒  effects < 0.25, which may or may 

not be true given the specific field of study. In addition, given that 98.97% of replications 

for which 𝛿01
𝑒  was estimated to be > 0.25 had true sampled values greater than 0, the 

drastic increase in power observed when 𝛿01
𝑒  estimates were > 0.25 may indicate that 0.25 

is the upper bound of estimation error when 𝛿01
𝑒  is actually 0. 

Third, Type I error rates for the effect of a level-2 predictor included in the scale 

model for the residual variance, 𝛿01
𝑒 , were evaluated using only replications in which the 

scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , was not detected. The most interesting 

finding from this portion of the study was that all models in which 𝜎𝜔0
𝑒

2  could not be 

detected had a true sampled value of 𝛿01
𝑒  = 0. This indicated that in the absence of 

significant 𝜎𝜔0
𝑒

2 , any statistically significant effect for 𝛿01
𝑒  was a Type I error; although 

Type I error rates were 0.99% for 𝛿01
𝑒  if 𝜎𝜔0

𝑒
2  was not detected but retained in the model 

and only increased to 2.48% if 𝜎𝜔0
𝑒

2  was not detected and omitted from the model. Taken 

together, these results suggested that if 𝜎𝜔0
𝑒

2  cannot be detected initially, the inclusion of 
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level-2 predictors in the scale model for the residual variance to detect systematically-

varying effects could be a potentially fruitless endeavor; however, Type I error rates were 

low regardless of whether 𝜎𝜔0
𝑒

2  was retained or omitted. Therefore, if 𝜎𝜔0
𝑒

2  was minimal 

(whether it was tested empirically or not), results suggested that when testing variability-

related hypotheses, it is unlikely that systematically-varying effects would be detected for 

level-2 predictors included in the scale model for the residual variance. 

Fourth, truly systematically-varying residual heterogeneity was indicated when 

significant scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , became non-significant upon the 

inclusion of the level-2 predictor in the scale-model for the residual variance, 𝛿01
𝑒 . For 

these replications, the Type I error rate for 𝛿01
𝑒  was lower if non-significant 𝜎𝜔0

𝑒
2  was 

retained in the model as opposed to being omitted from the model (9.72% vs. 13.89%, 

respectively, with considerable overlap in their confidence intervals). Although these 

results indicated control of Type I error rate was likely inadequate in the presence of 

systematically varying effects, it is recommended that the remaining non-significant 𝜎𝜔0
𝑒

2  

be retained in the model in the presence of truly systematically-varying effects. 

The first simulation study defined the power to detect the scale-model random 

intercept variance and effect of a level-2 predictor included in the scale model for the 

residual variance for a range of study design characteristics as well as model parameters 

using a fixed location model. Thus, the logical next step was to inform empirical 

scientists about the model-building process of the mixed-effects location-scale model. 

Specifically, it is unknown how a misspecified location model affects the accuracy and 

inference of estimated scale-model fixed and random effects, or alternatively, how a 

misspecified scale model affects the accuracy and inferences of location-model fixed and 
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random effects. These inquiries are the primary purpose the second simulation study 

detailed next. 

Simulation Study II: The Consequences of Alternative Strategies for Estimating 

Location- and Scale-Model Fixed and Random Effects 

 In the model-building tradition, most empirical scientists attempt to identify the 

most inclusive yet parsimonious final model and therefore tend to remove non-

statistically significant effects throughout the model-building process. To date, few 

methodological studies have provided insight directly into the model-building process of 

the mixed-effects location-scale model; however, some research has been provided by 

Cleveland et al. (2000), Leckie (2014), Leckie et al (2014). The literature search for this 

dissertation found no methodological study that explicitly evaluated the consequences of 

specifying the location model prior to the scale model (or vice versa), or that provided 

insight into whether the location and scale models should be built concurrently.  

These model-building inquires essentially reduce to how misspecifying the 

location and/or scale model influence subsequent decisions about which of these 

parameters to retain during the model-building process. Therefore, the purpose of the 

second simulation study was to begin to address these concerns by evaluating whether a 

misspecified scale model affects the accuracy and inference of a fixed effect for a level-2 

predictor included in the location model, and whether a misspecified location model 

affects the accuracy and inference of fixed and random effects included in the scale 

model for the residual variance. 

Description of individual parameters. This second simulation study used the 

results of the first simulation study to inform the size of the parameters necessary to 
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ensure a conventional level of 80% statistical power to detect the scale-model random 

intercept variance, 𝜎𝜔0
𝑒

2 , given that random scale effects are the primary reason an 

empirical scientist would estimate the mixed-effects location-scale model. For this 

second simulation study, 100 individuals were observed for 20 repeated occasions (as 

recommended by the first simulation study), with the location-model random intercept 

variance, 𝜎𝑢0
2 , and fixed intercept for the residual variance, 𝛿00

𝑒 , both fixed at 1 (on the log 

scale); the correlation between the location- and scale-model random intercepts, 𝜌𝑢0,𝜔0
𝑒, 

was fixed to 0 given that the first simulation study indicated this correlation did not 

influence the power to detect 𝜎𝜔0
𝑒

2 .  

Initially, the scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , was fixed at 0.075 on 

the variance scale (or –2.59 on the log scale) for 1,000 replications. However, the 

statistical power to detect 𝜎𝜔0
𝑒

2  was 99.80%, 95% CI [99.28%,99.98%], with drastically 

increased Type I error rates estimated by the true model for the fixed effect of a level-2 

predictor included in both the location model and scale model for the residual variance 

(to be discussed in detail below). As a result, a second set of replications was simulated 

with 𝜎𝜔0
𝑒

2  fixed to 0.035 on the variance scale (or –3.35 on the log scale), resulting in 

statistical power to detect 𝜎𝜔0
𝑒

2  of 85.35%.  

In addition to the value of the level-2 predictor 𝑋𝑖, which was sampled from a 

standard normal distribution defined by (4.13), the only model parameters sampled in the 

second simulation study were fixed effect of the level-2 predictor to be included in the 

location model and scale model for the residual variance, 𝛾01 and 𝛿01
𝑒 , respectively. Both 
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parameter estimates were sampled from the zero-inflated Poisson distributions described 

in (4.14) and (4.16), respectively.  

Data generation. All replications were simulated in SAS v. 9.4, with the level-2 

predictor, 𝑋𝑖, the location-model fixed effect for the level-2 predictor, 𝛾01, and the fixed 

effect of the level-2 predictor included in the scale model for the residual variance, 𝛿01
𝑒 , 

sampled pseudo-randomly using a seed based on the system clock (i.e., seed = 0). For the 

first set of 1,000 replications, the scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , was fixed 

at 0.075; the second set simulated 2,000 additional replications fixed 𝜎𝜔0
𝑒

2  at 0.035. The 

number of replications was doubled in the second set simply to afford more certainty 

when assessing whether the increased Type I error rates for the true model calculated 

from the first set of analyses were simply a coincidence. 

Table 4.6 

The Effects Included in the Mixed-Effects Location-Scale Models for the Second 

Simulation Study 

 Location Model  

Scale Model for  

Level-2 Variance 

Components  

Scale Model for  

Level-1 Residual 

Variance 

 

Fixed 

Effects 

Random 

Effects  Fixed Effects  

Fixed 

Effects 

Random 

Effects 

 𝛾00 𝛾01 𝑢0,𝑖  𝛼0
𝑢0 𝛼0

𝜔0
𝑒

 𝛼0
𝑢0;𝜔0

𝑒

  𝛿00
𝑒  𝛿01

𝑒  𝜔0,𝑖
𝑒  

Model 5 ● ● ●  ● ● ●  ● ● ● 

Model 6 ●  ●  ●    ●   

Model 7 ● ● ●  ●    ●   

Model 8 ● ● ●  ● ● ●  ●  ● 

Model 9 ●  ●  ● ● ●  ●  ● 

Model 10 ●  ●  ● ● ●  ● ● ● 
Note. A ● in a given column indicates that the effect is included in the model. 𝛾00 = location-model fixed 

intercept. 𝛾01 = location-model fixed effect for level-2 predictor 𝑋𝑖. 𝑢0,𝑖 = location-model random intercept 

for individual 𝑖. 𝛼0
𝑢0 = log of the scale-model fixed intercept for the location-model residual variance. 𝛼0

𝜔0
𝑒

 

= log of the scale-model fixed intercept for the scale-model random intercept. 𝛼0
𝑢0;𝜔0

𝑒

 = inverse hyperbolic 

tangent of the scale-model fixed intercept for the correlation between the location- and scale-model random 

intercepts. 𝛿00
𝑒  = log of the scale-model fixed intercept for the residual variance. 𝛿01

𝑒  = log of the scale-

model fixed effect for level-2 predictor 𝑋𝑖. 𝜔0,𝑖
𝑒  = scale-model random intercept for individual 𝑖. 
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Estimated model sequence. In this second simulation study, six models were 

estimated for each replication as shown in Table 4.6; the models in this second simulation 

study are numbered 5-10 to avoid any overlap with models 1-4 from the first simulation 

study. Similar to the estimated models described for the first simulation study, all models 

included the location-model random intercept variance, 𝜎𝑢0
2 ; both 𝜎𝑢0

2  and the scale-model 

random intercept variance as well as their correlation were estimated as homogeneous 

between individuals (i.e., 𝐆𝑖 = 𝐆).  

Further, based on the increased Type I error rates presented by Leckie (2014), 

Leckie et al. (2014), and the replication of these studies presented in the first simulation 

study, no model was estimated that included a level-2 predictor in the scale model for the 

residual variance, 𝛿01
𝑒 , in the absence of the scale-model random intercept variance, 𝜎𝜔0

𝑒
2 . 

That is, given that 𝜎𝜔0
𝑒

2  had adequate statistical power to be detected, omitting this 

variance component would have led to increased Type I error rates for 𝛿01
𝑒 . A description 

of each estimated model is provided below.  

Model 5. The fifth estimated model was the true model (identical to model 1 from 

the first simulation study), which estimated both the correct location model, as shown in 

(4.1), and correct scale model for the residual variance, as shown in (4.2) and (4.3). In 

this true model, individual mean differences in the location-model fixed intercept, 𝛾00, 

were estimated via 𝑢0,𝑖, with the location-model random intercept variance, exp(𝛼0
𝑢0) =

𝜎𝑢0
2 , explained by the fixed effect for the level-2 predictor, 𝛾01.  

Further, the scale model for the residual variance estimated individual differences 

in residual variability via 𝜔0,𝑖
𝑒 , and also estimated the fixed effect of the level-2 predictor, 
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𝛿01
𝑒 , which allowed the residual variance to be heterogeneous across values of 𝑋𝑖, and to 

reduce the scale-model random intercept variance, exp (𝛼0
𝜔0

𝑒

) = 𝜎𝜔0
𝑒

2 . 

Model 6. The sixth estimated model misspecified both the location and scale 

models, in which the location model, as shown in (4.21), allowed for individual mean 

differences via 𝑢0,𝑖, but omitted the fixed effect for the level-2 predictor, 𝛾01, to predict 

those individual differences.  

 Level 1:       𝑌𝑡,𝑖 = 𝛽0,𝑖 + 𝑒𝑡,𝑖 

Level 2:       𝛽0,𝑖 = (𝛾00 + 𝑢0,𝑖) 

Combined:  𝑌𝑡,𝑖 = (𝛾00 + 𝑢0,𝑖) + 𝑒𝑡,𝑖 

 

(4.21) 

The scale model for the residual variance for model 6 was identical to the scale 

model for model 2 shown in (4.17), and was misspecified by omitting the fixed effect for 

the level-2 predictor, 𝛿01
𝑒 , and further assumed that residual variance was constant across 

individuals by omitting the scale-model random intercept, 𝜔0,𝑖
𝑒 . Thus, this model is a 

typical empty (or unconditional) linear mixed-effects model, and therefore the subscript 𝑖 

would not be required for any effects included in the scale model for the residual 

variance. 

Model 7. The seventh model estimated the correct location model shown above in 

(4.1), where individual mean differences were estimated via 𝑢0,𝑖, and explained by the 

fixed effect for the level-2 predictor, 𝛾01. However, the scale model for the residual 

variance was misspecified by omitting the fixed effect of the level-2 predictor, 𝛿01
𝑒 , and 

further assumed that residual variance was constant across individuals by omitting the 

scale-model random intercept, 𝜔0,𝑖
𝑒 , as shown for model 2 in (4.17). 
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 Model 8. The eighth model estimated the correct location model shown in (4.1), 

where individual mean differences were estimated via 𝑢0,𝑖, and explained by the fixed 

effect for the level-2 predictor, 𝛾01, but misspecified the scale model for the residual 

variance by omitting the fixed effect of the level-2 predictor, 𝛿01
𝑒 , as shown for model 3 

in (4.18). Therefore, this model allowed for individual differences in residual variance, 

but did not attempt to explain (or predict) why these individual differences existed. 

Model 9. The ninth estimated model misspecified both the location and scale 

models. Here, the location model allowed for individual mean differences via 𝑢0,𝑖, but 

omitted the fixed effect for the level-2 predictor, 𝛾01, to predict these individual 

differences, as shown for model 6 in (4.21). Further, the scale model for the residual 

variance included the scale-model random intercept, 𝜔0,𝑖
𝑒 , but omitted the fixed effect of 

the level-2 predictor, 𝛿01
𝑒 , as shown above for model 3 in (4.18). Therefore, this model 

allowed for individual differences in residual variance, but did not attempt to explain why 

these individual differences existed. 

Model 10. The tenth, and final, model estimated the correct scale model for the 

residual variance shown in (4.2), where individual differences in residual variability were 

estimated via 𝜔0,𝑖
𝑒 , with a fixed effect of the level-2 predictor, 𝛿01

𝑒 , allowing residual 

variance to be heterogeneous across values of 𝑋𝑖, and to reduce the scale-model random 

intercept variance, exp (𝛼0
𝜔0

𝑒

) = 𝜎𝜔0
𝑒

2 . However, the location model was misspecified, 

such that although it included individual mean differences via 𝑢0,𝑖, it omitted the fixed 

effect for the level-2 predictor, 𝛾01, to predict these individual differences, as shown for 

model 6 in (4.21). 
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MCMC estimation, parameter convergence, recovery, and accuracy. Similar 

to the first simulation study, all mixed-effects location-scale models were estimated using 

the MCMC estimator described in chapter 3. The procedure for estimation was identical 

to the first simulation study, where start values were determined by a traditional mixed-

effects model, with 20 initial tuning chains for 50 iterations, a Markov chain of 5,000 

iterations, a burn-in period of 1,000 iterations, and a thinning interval of 1. Convergence 

was determined by satisfying Geweke’s and/or the Gelman and Rubin criterion based on 

the 4,000 iterations following burn in. Finally, parameter recovery estimates were 

calculated as the proportion of replications in which the estimated 95% credible interval 

contained the true sampled value, whereas parameter accuracy was measured by signed 

bias, as shown in (4.20), calculated for each parameter within each of the six models, 

presented alongside its 95% confidence interval. 

Estimated model comparisons. The first set of comparisons for the second 

simulation study determined the effect a misspecified scale model for the residual 

variance had on the Type I and Type II error rates for the fixed effect for the level-2 

predictor included in the location model, 𝛾01. Because 𝛾01 was sampled pseudo-

randomly, the significance of 𝛾01 was first determined by the 95% credible interval 

excluding 0 using the true model 5. For all replications in which 𝛾01 was actually 

sampled to be 0, Type I error rates for 𝛾01 were calculated based on 𝛾01 estimated by 

model 7 and model 8 and presented alongside their Clopper-Person 95% confidence 

interval. Alternatively, for replications in which 𝛾01 from model 5 was statistically 

significant (with true values ≠ 0), Type II error rates were calculated for 𝛾01 estimated by 

model 7 and model 8 and presented alongside their Clopper-Person 95% confidence 
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interval. Further, for all replications, signed bias in the standard deviation of the posterior 

distribution of 𝛾01 was evaluated by comparing the posterior standard deviation of 𝛾01 

estimated by model 7 and model 8 to the posterior standard deviation of 𝛾01 estimated by 

model 5. 

The second set of comparisons determined the effect that a misspecified location 

model had on the scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , and the fixed effect for the 

level-2 predictor included in the scale model for the residual variance, 𝛿01
𝑒 . Although 𝜎𝜔0

𝑒
2  

should have adequate statistical power, the significance of 𝜎𝜔0
𝑒

2  was evaluated by 

comparing the DIC from model 6 to the DIC from model 9. In addition, because the 

effect of 𝛿01
𝑒  was sampled pseudo-randomly, the statistical significance of 𝛿01

𝑒  was 

evaluated initially using the 95% credible interval from the true model 5. For replications 

in which 𝛿01
𝑒  was actually sampled to be 0, Type I error rates were calculated for 𝛿01

𝑒  

estimated from model 10 and presented alongside the Clopper-Person 95% confidence 

interval, whereas for replications in which true model 5 estimated 𝛿01
𝑒  as significant (with 

true values ≠ 0), Type II error rates were calculated for 𝛿01
𝑒  estimated from model 10 and 

presented alongside the Clopper-Person 95% confidence interval. Significance was 

determined by the 95% credible interval of the posterior distribution of the fixed effect 

for the level-2 predictor included in the scale model for the residual variance, 𝛿01
𝑒 , that 

excluded 0. Finally, for all replications, signed bias in the standard deviation of the 

posterior distribution of 𝛿01
𝑒  was evaluated by comparing the posterior standard deviation 

of 𝛿01
𝑒  estimated by model 10 to the posterior standard deviation of 𝛿01

𝑒  estimated by true 

model 5. 
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Results of simulation study II. The results of the second simulation study are 

presented below. First, the rationale behind simulating a second set of 2,000 replications 

for this simulation study is discussed, which is then followed by the results with respect 

to convergence and signed bias. Finally, the consequences of modeling location-model 

fixed effects in the presence of a misspecified scale model for the residual variance are 

discussed, followed by the consequences of modeling scale-model fixed effects in the 

presence of a misspecified location model. 

Why two sets of simulated data were required. The first set of 1,000 replications, 

in which the scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , was fixed to 0.075, indicated 

that the Type I error rate for the fixed effect of the level-2 predictor included in the 

location model, 𝛾01, estimated by true model 5 was 11.23%, 95% CI [8.89%,13.94%]; 

the Type I error rate for the level-2 fixed effect included in the scale model for the 

residual variance, 𝛿01
𝑒 , estimated by true model 5 was 6.61%, 95% CI [5.00%,8.54%]. 

Although the error rate for 𝛿01
𝑒  was closer to the nominal 5%, the error rate for 𝛾01 in the 

location model was exceedingly high. This was unexpected given that the Type I error 

rates from the first simulation study estimated by true model 1 were 6.35%, 95% CI 

[5.39%,7.43%], and 3.19%, 95% CI [2.60%,3.86%], for 𝛾01 and 𝛿01
𝑒 , respectively. 

 The increased Type I error rates observed in the second simulation study for the 

fixed effects for the level-2 predictor included in the location model and scale model for 

the residual variance, 𝛾01 and 𝛿01
𝑒 , were hypothesized to result from an overpowered 

scale-model random intercept variance, 𝜎𝜔0
𝑒

2 . That is, the empirical power rate for 𝜎𝜔0
𝑒

2  

from the first set of 1,000 replications was 99.80%, 95% CI [99.28%,99.98%]. Therefore, 

a second set of 2,000 replications were simulated with 𝜎𝜔0
𝑒

2  decreased from 0.075 to 
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0.035; the number of replications was increased to afford more certainty in determining 

whether error rates from the first set of simulated replications were simply a coincidence. 

Using this second set of replications, the empirical power rate to detect 𝜎𝜔0
𝑒

2  decreased to 

85.35%, 95% CI [83.72%,86.87%], with Type I error rates estimated by true model 5 for 

𝛾01 to be 5.81%, 95% CI [4.60%,7.23%], and for 𝛿01
𝑒  to be 2.02%, 95% CI 

[1.40%,2.83%], both of which were much closer to Type I error rates from the first 

simulation study. Thus, the hypothesis regarding an overpowered 𝜎𝜔0
𝑒

2  was, at best, 

partially supported given that this change in its population model value cannot be 

disentangled from the concomitant increase in replications in the second set. 

Further, in this second set of replications, models 6 through 10 could not be 

estimated for replication 1,484 and it was dropped from all subsequent analyses. It was 

hypothesized that this replication was non-estimable because the true sampled value for 

the fixed effect of the level-2 predictor included in the scale model for the residual 

variance, 𝛿01
𝑒 , was 4; thus, exp(4) ≈ 54.60, which would have made estimation of any 

level-2 random effect impossible given that ICC𝑖 → 0 as 𝑋𝑖 becomes increasingly 

positive. 

Overall, given that the majority of research questions for the second simulation 

study were based primarily on the Type I and Type II error rates across models, any 

result from the first set of replications was considered untrustworthy because Type I error 

rates for the true model were upwardly biased. Thus, only the results of the second set of 

1,999 replications are presented below. 

Convergence evaluation. The number and proportion of parameters across 

replications satisfying Geweke’s and/or the Gelman and Rubin convergence criterion are  
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Table 4.7 

Number and Proportion of Parameters Satisfying Geweke’s and/or Gelman and Rubin’s Convergence Criterion (𝑁 = 1,999) 

 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 

Location Model       

     𝛾00 1966 (98.30) 1979 (98.95) 1986 (99.30) 1981 (99.05) 1984 (99.20) 1969 (99.45) 

     𝛾01 1955 (97.75) - 1984 (99.20) 1962 (98.10) - - 

Scale Model       

     𝛿00
𝑒  1992 (99.60) 1997 (99.85) 1999 (99.95) 1991 (99.55) 1989 (99.45) 1991 (99.55) 

     𝛿01
𝑒  1993 (99.65) - - - - 1995 (99.75) 

     𝛼0
𝑢0 1990 (99.50) 1994 (99.70) 1991 (99.55) 1991 (99.55) 1994 (99.70) 1991 (99.55) 

     𝛼0
𝑢0;𝜔0

𝑒

 1982 (99.10) - - 1880 (94.00) 1985 (99.25) 1987 (99.35) 

     𝛼0
𝜔0

𝑒

 1984 (99.20) - - 1988 (99.40) 1978 (98.90) 1975 (98.75) 

Note. Data presented as frequency (%). 𝛾00 = location-model fixed intercept. 𝛾01 = location-model fixed effect for level-2 predictor 𝑋𝑖. 𝑢0,𝑖 = location-model 

random intercept for individual 𝑖. 𝛼0
𝑢0 = scale-model fixed intercept for the location-model residual variance. 𝛼0

𝜔0
𝑒

 = scale-model fixed intercept for the scale-

model random intercept. 𝛼0
𝑢0;𝜔0

𝑒

 = scale-model fixed intercept for the correlation between the location- and scale-model random intercepts. 𝛿00
𝑒  = scale-model 

fixed intercept for the residual variance. 𝛿01
𝑒  = scale-model fixed effect for level-2 predictor 𝑋𝑖. 𝜔0,𝑖

𝑒  = scale-model random intercept for individual 𝑖. 
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Table 4.8 

Parameter Recovery for Location- and Scale-Model Effects (𝑁 = 1,999) 

 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 

Location Model       

     𝛾00 1809 (90.45) 1860 (93.00) 1832 (91.60) 1815 (90.75) 1828 (91.40) 1840 (92.00) 

     𝛾01 1795 (89.75) - 1830 (91.50) 1795 (89.75) - - 

Scale Model       

     𝛿00
𝑒  1886 (94.30) 1455 (72.75) 1454 (72.70) 1890 (94.50) 1886 (94.30) 1889 (94.45) 

     𝛿01
𝑒  1889 (94.45) - - - - 1894 (94.70) 

     𝛼0
𝑢0 1917 (95.85) 1443 (72.15) 1902 (95.10) 1911 (95.55) 1433 (71.65) 1430 (71.50) 

     𝛼0
𝑢0;𝜔0

𝑒

 1999 (99.95) - - 1999 (99.95) 1872 (93.60) 1999 (99.95) 

     𝛼0
𝜔0

𝑒

 1895 (94.75) - - 1544 (77.20) 1546 (77.30) 1888 (94.40) 

Note. Data presented as frequency (%). 𝛾00 = location-model fixed intercept. 𝛾01 = location-model fixed effect for level-2 predictor 𝑋𝑖. 𝑢0,𝑖 = location-model 

random intercept for individual 𝑖. 𝛼0
𝑢0 = scale-model fixed intercept for the location-model residual variance. 𝛼0

𝜔0
𝑒

 = scale-model fixed intercept for the scale-

model random intercept. 𝛼0
𝑢0;𝜔0

𝑒

 = scale-model fixed intercept for the correlation between the location- and scale-model random intercepts. 𝛿00
𝑒  = scale-model 

fixed intercept for the residual variance. 𝛿01
𝑒  = scale-model fixed effect for level-2 predictor 𝑋𝑖. 𝜔0,𝑖

𝑒  = scale-model random intercept for individual 𝑖.
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Table 4.9 

Signed Bias for Location- and Scale-Model Effects (𝑁 = 1,999) 

 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 

Location Model       

𝛾00 0.00 [–0.01,0.01] 0.01 [0.00,0.02] 0.00 [–0.01,0.01] 0.00 [0.00,0.01] 0.00 [–0.01,0.01] 0.00 [–0.01,0.01] 

𝛾01 0.01 [0.00,0.01] - 0.01 [0.00,0.01] 0.00 [0.00,0.01] - - 

Scale Model       

𝛿00
𝑒  0.00 [–0.01,0.00] 0.13 [0.12,0.15] 0.13 [0.12,0.15] 0.00 [–0.01,0.00] 0.00 [–0.01,0.00] 0.00 [–0.01,0.00] 

𝛿01
𝑒  0.00 [0.00,0.00] - - - - 0.00 [0.00,0.00] 

𝛼0
𝑢0 0.03 [0.02,0.03] 0.18 [0.16,0.19] 0.00 [–0.01,0.00] 0.03 [0.02,0.03] 0.21 [0.19,0.22] 0.21 [0.19,0.22] 

𝛼0
𝑢0;𝜔0

𝑒

 0.00 [0.00,0.00] - - 0.00 [0.00,0.00] 0.08 [0.06,0.09] 0.00 [0.00,0.00] 

𝛼0
𝜔0

𝑒

 0.06 [0.03,0.08] - - 0.73 [0.66,0.80] 0.72 [0.65,0.79] 0.06 [0.04,0.08] 

Note. Data presented as mean [95% CI]. 𝛾00 = location-model fixed intercept. 𝛾01 = location-model fixed effect for level-2 predictor 𝑋𝑖. 𝑢0,𝑖 = location-model 

random intercept for individual 𝑖. 𝛼0
𝑢0 = scale-model fixed intercept for the location-model residual variance. 𝛼0

𝜔0
𝑒

 = scale-model fixed intercept for the scale-

model random intercept. 𝛼0
𝑢0;𝜔0

𝑒

 = scale-model fixed intercept for the correlation between the location- and scale-model random intercepts. 𝛿00
𝑒  = scale-model 

fixed intercept for the residual variance. 𝛿01
𝑒  = scale-model fixed effect for level-2 predictor 𝑋𝑖. 𝜔0,𝑖

𝑒  = scale-model random intercept for individual 𝑖. 
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presented in Table 4.7. The convergence criterion was met for a high proportion of 

replications across all six models. As in the first simulation study, the parameter with the 

lowest convergence rate was the correlation between the location- and scale-model 

random intercepts, 𝛼0
𝑢0;𝜔0

𝑒

, for model 8. Of the 120 replications that failed to converge, a 

pseudo-random sample of 12 trace plots (10%) were examined, with each trace plot 

having a subtle peak or valley across iterations that was nearly identical to the trace plot 

shown in Figure 4.1 presented previously for the first simulation study. Similar to the first 

simulation study, this decrease in convergence was hypothesized to result from the 

omission of the effect of the level-2 predictor in the scale model for the residual variance, 

𝛿01
𝑒 , which necessarily increased estimated scale-model random intercept variance, 𝜎𝜔0

𝑒
2  

(as 𝛿01
𝑒  explicitly explains, or reduces, 𝜎𝜔0

𝑒
2 ). This hypothesis was supported given that the  

convergence rate for 𝛼0
𝑢0;𝜔0

𝑒

 from model 5, which included 𝛿01
𝑒 , was 99.10%, and the 

convergence rate from model 9, which excluded the level-2 fixed effects in both the 

location model and scale model for the residual variance (resulting in a similar increase to 

location-model random intercept variance), was 99.25%. 

Parameter recovery and accuracy. The number and proportion of replications for 

which the estimated 95% credible interval for each parameter contained the true sampled 

value are presented in Table 4.8, whereas signed bias for each parameter is presented in 

Table 4.9.  

Model 5 (i.e., the true model) recovered all scale-model fixed and random effects, 

as well as the location-model random intercept variance, with expected error rates for a 

95% credible interval. Recovery for both location model fixed effects, 𝛾00 and 𝛾01, was 

only around 90%, which (similar to the first simulation study) was unexpected given that 
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the starting values for these parameters estimated by the traditional linear mixed effect 

model were hypothesized to be nearly identical to the final model estimates from the 

mixed-effects location-scale model—a hypothesis that was supported by signed bias 

estimates of at 0.00 for both effects. Therefore, given the ideal starting values and 

absence of signed bias for both 𝛾00 and 𝛾01, it was hypothesized that the MCMC 

algorithm may have sampled from highly leptokurtic posterior distributions (i.e., small 

posterior standard deviations), which may have resulted in extremely narrow 95% 

credible intervals that only just excluded the true sampled parameter. Further, the (log of 

the) scale-model random intercept variance, 𝛼0
𝜔0

𝑒

, was overestimated by an average of 

0.06 on the log scale (or 6.18% on the variance scale; [exp(0.06) − 1] ∗ 100). Although 

overestimation by 6.18% appeared significant, it only represented an average difference 

between the true value and the model-estimated value of 0.002 on the variance scale (true 

value of 𝜎𝜔0
𝑒

2  = 0.035 vs. mean 𝜎𝜔0
𝑒

2  estimated by model 1 = 0.037). Therefore, the 

overestimation of 𝛼0
𝜔0

𝑒

 was not considered to bias any results presented below. 

When considering misspecified models 6 through 10, their recovery and bias 

estimates followed expected patterns. That is, if the location-model fixed effect of the 

level-2 predictor, 𝛾01, was omitted (as in models 6, 9, and 10), the (log of the) location-

model random intercept variance, 𝛼0
𝑢0, had poor recovery and was overestimated by an 

average of 0.18 to 0.21 on the log scale (or 19.72% to 23.37% on the variance scale; e.g., 

[exp(0.18) − 1] ∗ 100 = 19.72%), expected given that 𝛾01 would have reduced 

location-model random intercept variance, exp(𝛼0
𝑢0) = 𝜎𝑢0

2 . Similarly, if the fixed effect 

for the level-2 predictor, 𝛿01
𝑒 , was omitted from the scale model for the residual variance 
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(as in models 6 through 9), the (log of the) scale-model random intercept variance, 𝛼0
𝜔0

𝑒

, 

had poor recovery and was overestimated by 0.72 to 0.73 on the log scale (or 105.44% to 

107.51% on the variance scale; e.g., [exp(0.72) − 1] ∗ 100 = 105.44%), expected given 

that 𝛿01
𝑒  would have reduced scale-model random intercept variance, exp (𝛼0

𝜔0
𝑒

) = 𝜎𝜔0
𝑒

2 . 

Finally, if both the fixed and random effects were omitted from the scale model for the 

residual variance (as in models 6 and 7), the fixed intercept for the residual variance, 𝛿00
𝑒 , 

had poor recovery and was overestimated by 0.13 on the log scale (or 13.88% on the 

variance scale; e.g., [exp(0.13) − 1] ∗ 100 = 13.88%), expected given that that 

partitioning 𝜎𝜔0
𝑒

2  out of 𝛿00
𝑒  would have necessarily decreased 𝛿00

𝑒 . 

The effect of misspecifying the scale model for the residual variance on the 

fixed effect for a level-2 predictor included in the location model. Of the 1,999 total 

replications, 1,290 (64.53%) replications had true values for the fixed effect of the level-2 

predictor included in the location model, 𝛾01, sampled to be 0. Using these 1,290 

replications, the Type I error rate for 𝛾01 estimated from model 7 was 4.50%, 95% CI 

[3.43%,5.77%], whereas the Type I error rate for 𝛾01 estimated from model 8 was 4.81%, 

95% CI [3.70%,6.12%]. Both of these error rates were near the expected 5%, and provide 

evidence that misspecifying the scale model for the residual variance should not bias the 

inference of the fixed effect for a level-2 predictor included in the location model. 

In addition, based on true model 5, the fixed effect for the level-2 predictor 

included in the location model, 𝛾01, was significant for 784 replications, of which 75 

replications had true values of 𝛾01 sampled to be 0. Thus, considering only the remaining 

709 replications that had a true sampled value of 𝛾01 > 0, the Type II error rates for 𝛾01 

estimated from model 7 (which omitted the fixed effect for the level-2 predictor in the 
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scale model for the residual variance, 𝛿01
𝑒 , as well as the scale-model random intercept 

variance, 𝜎𝜔0
𝑒

2 ) and from model 8 (which omitted 𝛿01
𝑒 , but included 𝜎𝜔0

𝑒
2 ) were identical at 

0.14%, 95% CI [0.00%,0.78%]. These results suggest that misspecifying the scale model 

for the residual variance has little effect on the ability to detect the fixed effect for a 

level-2 predictor included in the location model, given that this effect actually exists. 

Finally, the posterior standard deviation for 𝛾01 was identical for models 5, 7, and 

8, and was estimated to be 0.16, 95% CI [0.16,0.16]. Thus, when comparing the posterior 

standard deviations from true model 5 to misspecified models 7 and 8, no signed bias was 

indicated, as the difference in posterior standard deviations for 𝛾01 was 0.00, 95% CI 

[0.00,0.00]. When considered alongside the Type II and Type I error rates reported 

above, these results suggest rather convincingly that misspecifying the scale model for 

the residual variance has very minimal effect on the correct inference and accuracy of the 

fixed effect of a level-2 predictor included in the location model. 

The effect of misspecifying the location model on the fixed effect for a level-2 

predictor included in the scale model for the residual variance. Based on a comparison 

of model 6 and model 9, the statistical power to detect the scale-model random intercept 

variance was 85.35%, 95% CI [83.72%,86.87%], 𝑛𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 = 1,707. 

When considering the 1,707 replications in which scale-model random intercept 

variance was detected, 1,340 (78.50%) replications had the true value of 𝛿01
𝑒  sampled to 

be 0. For these replications, the Type I error rate for 𝛿01
𝑒  estimated from model 10 was 

2.09%, 95% CI [1.39%,3.01%]. In addition, true model 5 indicated that 𝛿01
𝑒  was 

significant for 400 replications, of which 33 of these replications had true values of 𝛿01
𝑒  

sampled to be 0. Thus, considering only the remaining 367 replications that had a true 
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sampled values of 𝛿01
𝑒  > 0 (values of 𝛿01

𝑒  which will always have 100% power to be 

detected, as observed in the first simulation study), the Type II error rate for 𝛿01
𝑒  

estimated from model 10 (which omitted location-model fixed effect for the level-2 

predictor, 𝛾01) was 0.00%, 95% CI [0.00%,0.00%]. Further, the posterior standard 

deviation for 𝛿01
𝑒  was identical for models 5 and 10, and was estimated to be 0.04, 95% 

CI [0.04,0.04]. Thus, when comparing the posterior standard deviations from model 5 to 

model 10, no signed bias was indicated, as the difference in posterior standard deviations 

for 𝛿01
𝑒  was 0.00, 95% CI [0.00, 0.00]. Taken together, these results indicate rather 

convincingly that misspecifying the location model by excluding a level-2 fixed effect 

has no effect on the correct detection or accuracy of the fixed effect for a level-2 

predictor included in the scale model for the residual variance. 

In addition, the consequences of misspecifying the location model have on the 

effect of a level-2 predictor included in the scale-model for the residual variance, 𝛿01
𝑒 , 

were considered using only the 292 (14.61%) replications in which scale-model random 

intercept variance, 𝜎𝜔0
𝑒

2 , was not detected. For all 292 replications, the true sampled value 

of 𝛿01
𝑒  = 0 (results consistent with the first simulation study), with the Type I error rate 

for 𝛿01
𝑒  estimated by model 10 to be 2.05%, 95% CI [0.76%,4.42%]. Further, the 

posterior standard deviations for 𝛿01
𝑒  were identical for models 5 and 10 (and identical to 

signed biases reported previously), estimated to be 0.04, 95% CI [0.04,0.04]. Thus, when 

comparing the posterior standard deviations from model 5 to model 10, no signed bias 

was indicated, as the difference in posterior standard deviations for 𝛿01
𝑒  was 0.00, 95% CI 

[0.00, 0.00]. Taken together, these results provide further support that misspecifying the 

location model by excluding a level-2 fixed effect has no effect on the correct detection 
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and accuracy of the fixed effect of a level-2 predictor included in the scale model for the 

residual variance when  𝜎𝜔0
𝑒

2  was not detected. Further, in the presence of a misspecified 

location model, these results corroborate those presented in the first simulation study 

suggesting that 𝜎𝜔0
𝑒

2  must exist before it can be predicted and that it is acceptable to 

continue to model residual heterogeneity as systematically varying using a level-2 

predictor although this endeavor would most likely be unproductive. 

Discussion of the second simulation study. The results of the second simulation 

study suggest that misspecifying the scale model for the residual variance by omitting 

fixed and/or random effects (𝛿01
𝑒  and/or 𝜎𝜔0

𝑒
2 ) had no effect on recovery, accuracy, or 

Type I and Type II error rates of the fixed effect for the level-2 predictor included in the 

location model. Similarly, misspecifying the location model by omitting a fixed effect for 

a level-2 predictor (𝛾01) had no effect on Type I or Type II error rates for the fixed effect 

of the level-2 predictor included in the scale model for the residual variance (𝛿01
𝑒 ).  

Given that misspecifying the scale model for the residual variance did not bias the 

fixed effect for the level-2 predictor included in the location model, these results suggest 

that failing to model individual differences in residual variance only limits potential 

research questions available to the empirical scientist. That is, if an empirical scientist has 

only been concerned with the prediction of individual differences in mean level, their 

inferences for the fixed effects for level-2 predictors included in the location model to 

explain these differences remained unbiased regardless of whether significant fixed or 

random effects were erroneously omitted in the scale model. However, estimating 

individual differences in mean level only accounts for half of the potential research 

questions available to the empirical scientist who collect repeated-measures data. This is 



165 

 

because failing to estimate fixed and random effects in the scale model for the residual 

variance precludes the examination of specific research questions pertaining specifically 

to individual differences in outcome variability.  

The primary purpose of including fixed effects of level-2 predictors in a mixed-

effect location-scale model is to reduce (or explain) their specific random intercept 

variance component. Not surprisingly then, the model substantially overestimated the 

scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , if the scale model for the residual variance 

was misspecified by omitting the fixed effect of the level-2 predictor, 𝛿01
𝑒 ; a similar result 

was indicated for the location-model random intercept variance, 𝜎𝑢0
2 , if the location 

model omitted the fixed effect for the level-2 predictor, 𝛾01, albeit to a lesser extent. 

Although signed bias indicated that overestimation was larger for 𝜎𝜔0
𝑒

2  compared to 𝜎𝑢0
2  

(105.44% to 107.51% vs. 19.72% to 23.37% on the variance scale, respectively), the 

scale of each variance component must be considered—𝜎𝜔0
𝑒

2  was fixed to 0.035, whereas 

𝜎𝑢0
2  was fixed to 2.72. Because both level-2 predictor effects, 𝛾01 and 𝛿01

𝑒 , were sampled 

from a zero-inflated Poisson distribution, an identical sampled non-zero value (say, a 

value of 1) would have explained a greater proportion of 𝜎𝜔0
𝑒

2  relative to 𝜎𝑢0
2  simply 

because there was considerably more variance available to be predicted in 𝜎𝑢0
2  within the 

location model. Thus, omitting the level-2 fixed effect resulted in 𝜎𝜔0
𝑒

2  in the scale model 

appearing to be overestimated to a greater extent compared to 𝜎𝑢0
2  in the location model. 

In addition, if both the scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , and the fixed 

effect for the level-2 predictor in the scale model for the residual variance, 𝛿01
𝑒 , were 

omitted (akin to modeling homogeneous residual variance in a linear mixed-effects 
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model), the model overestimated the fixed intercept for the residual variance, 𝛿00
𝑒 , by 

approximately 13.88%. What is important to note is that the overestimation of residual 

variance did not affect bias of the fixed effect for the level-2 predictor included in the 

location model, 𝛾01; however, bias for 𝛾01 would have been considerable if the location-

model random intercept variance, 𝜎𝑢0
2 , had not been initially partitioned out of residual 

variance. This result was hypothesized to occur because 𝜎𝜔0
𝑒

2 , that was initially partitioned 

out of residual variance, was re-aggregated into total residual variance during analysis, as 

described by (4.6), which is then used in the calculation of 𝐕𝑖 (in the presence of location-

model random effects) or 𝐑𝑖 (in the absence of location-model random effects).  

Finally, two sets of replications were simulated for the second simulation study, 

with Type I error rates from the true model for both the location- and scale-model fixed 

effects of a level-2 predictor, 𝛾01 and 𝛿01
𝑒 , varying greatly between sets of replications. It 

was initially hypothesized that the substantial Type I error rate for 𝛾01 (i.e., 11.23%) 

observed using the first set of replications resulted from an overpowered scale-model 

random intercept variance, 𝜎𝜔0
𝑒

2 . Based on the results of the first simulation study, this 

hypothesis appeared to be partially supported given that the second set of replications had 

more reasonable Type I error rates for 𝛾01 (i.e., 5.81%). However, the second simulation 

study failed to provide further support for this hypothesis given that the estimated value 

of 𝜎𝜔0
𝑒

2  had no effect on the Type I error rate for 𝛾01. Therefore, when considering this 

additional evidence, the unusually large Type I error rates from the first set of 

replications was considered to result primarily from random sampling, as Type I error 

rates decreased to more appropriate levels upon sampling a larger set of replications. 
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Limitations of the Simulation Studies and Directions for Future Methodological 

Research 

 The purpose of the simulation studies provided in this chapter was to 1) provide 

empirical scientists with the information necessary to conduct a priori power analyses for 

hypotheses specifically regarding constant individual differences in outcome variability, 

and 2) inform empirical scientists about the consequences misspecifying the location 

model or scale model for the residual variance have on fixed effects for a level-2 

predictor. Because model building is a multi-step process, the synthesis of both studies 

provides useful information for model-building in practice, as will be described in the 

general discussion provided in chapter 6. With that said, both simulation studies had 

limitations that could be addressed by future research. 

First, both simulation studies were conducted under highly controlled (i.e., 

ideal/simulated) conditions, and although study design characteristics and model 

parameter values were sampled from ranges informed by a small existing literature, 

complete and consistent recommendations cannot be made unless observed data collected 

by the empirical scientist satisfy the specific conditions for each parameter studied. More 

specifically, extrapolation is not recommended beyond the range of values sampled for 

parameter, only complete data was used, and all models assumed the location-model 

random intercept variance was estimated before scale-model random intercept variance. 

The results of both simulation studies were based on analyses of complete data, 

which is unrealistic in real-world data collection, especially for repeated-measures data 

from longitudinal designs. Missing data has been shown to deteriorate statistical power 

and have potentially disastrous effects on the accuracy and recovery of fixed and random 
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effects, especially given that traditional methods of handling missing data such as listwise 

deletion, mean/median substitution, or last observation carried forward are still being 

used routinely by empirical scientists (Enders, 2010; Saha & Jones, 2009; Shao & Zhong, 

2003). Although the effects that missing data have on location-model fixed and random 

effects from repeated-measures data have been well documented (assuming the missing 

data mechanism is known; e.g., missing at random; see Yang & Maxwell, 2014), future 

research should evaluate the effects missing data have on the recovery, accuracy, and 

error rates for level-1 and level-2 effects included in the scale model. 

In addition, the location-model random intercept variance, 𝜎𝑢0
2 , was included in 

every model under the assumption that individual mean differences must be accounted 

for prior to evaluating individual differences in outcome variability. This assumption has 

not been tested empirically; thus, future research should evaluate the recovery, accuracy, 

and Type I error rates resulting from modeling scale-model random intercept variance, 

𝜎𝜔0
𝑒

2 , in the absence of significant 𝜎𝑢0
2 .  

Fourth, the results of the first simulation study indicated that the correlation 

between location- and scale-model random intercepts, 𝜌𝑢0;𝜔0
𝑒, did not influence power to 

detect 𝜎𝜔0
𝑒

2 . However, this result could not explicitly indicate that 𝜌𝑢0;𝜔0
𝑒 had no effect on 

the recovery or accuracy of estimated 𝜎𝑢0
2  when erroneously omitting 𝜎𝜔0

𝑒
2  (and, as a 

result, 𝜌𝑢0;𝜔0
𝑒). In the second simulation study, 𝜌𝑢0;𝜔0

𝑒 was fixed to 0, but future research 

should evaluate whether a true non-zero value of 𝜌𝑢0;𝜔0
𝑒 influences estimates of 𝜎𝑢0

2 . 

Further, the first set of replications from the second simulation study indicated the 

true model had large Type I error rates for the fixed effect of a level-2 predictor included 

in the location model, 𝛾01, which were mitigated in the second simulation study by 
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decreasing the scale-model random intercept variance, 𝜎𝜔0
𝑒

2 , and doubling the number of 

replications. Based on the results of the second simulation study, it was hypothesized that 

the decrease in Type I error rates for 𝛾01 was primarily a function of resampling and 

increased replications, not from the decrease in 𝜎𝜔0
𝑒

2 . However, this hypothesis needs to 

be tested explicitly; thus, future research should determine the effect of a drastically 

overpowered 𝜎𝜔0
𝑒

2  on the Type I error rates of location-model fixed effects.  

Additionally, both simulation studies only considered the effect of a level-2, 

individual-level predictor. This was intentional, as random effects in repeated-measures 

data represent between-individual differences to be predicted by individual-level 

variables. However, this provided only partial coverage of the effects available to be 

tested in the mixed-effects location-scale model. Thus, future research should evaluate 

how fixed and random effects of level-1, occasion-specific predictors included in (or 

omitted from) the scale model for the residual variance influence recovery, accuracy, and 

error rates of location-model fixed and random effects, and vice versa, as explaining 

residual variance by level-1 fixed effects in the location model results in less residual 

variance to be partitioned into random scale variance. This same suggestion can also be 

made for level-2 predictors included in the scale model for the random effects in 𝐆𝑖, 

which were assumed homogeneous between individuals for both simulation studies. 

Finally, regarding the actual estimation of the mixed-effects location-scale model, 

the MCMC estimates from this study were based on a single Markov chain for each 

parameter and estimates may have been more accurate and less biased (where bias 

existed) had starting values been chosen based on the true values. Although it was noted 

that starting values for specific scale-model effects were set to 0 to more realistically 
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simulate the uncertainty of true values typically encountered in real-world applications, 

additional research should be conducted to using multiple chains and diverse starting 

values to provide empirical scientists with information regarding best practices to ensure 

true values are accurately recovered with minimal bias when estimating the mixed-effects 

location-scale model using MCMC estimation. In addition, given the use of 

uninformative priors for all parameters, all posterior means provided by the MCMC 

estimator approximated the ML estimates from a frequentist framework (e.g., by either 

PROC NLMIXED or MIXREGLS as described in chapter 3). As a result, the posterior 

means for the variance components provided in both simulation studies may have been 

downwardly biased to an unknown extent; thus, developing a REML estimator to be used 

within the MCMC estimation procedure is another area where future research is needed. 

Chapter Summary 

The purpose of chapter 4 was to present the results of two simulation studies. The 

first simulation study provided power curves to detect and predict scale-model random 

intercept variance, with the primary purpose of providing empirical scientists with 

necessary information regarding study design characteristics and model parameters that 

will allow them to conduct a priori power analyses for variability-related hypotheses 

using the mixed-effects location-scale model. The second simulation study provided 

empirical scientists with information regarding the consequences of misspecifying the 

location and/or scale model for the residual variance, results of which were used in the 

empirical analysis, presented next in chapter 5, to inform the model-building procedure 

for testing fixed and random effects in both the location model and scale model for the 

residual variance.  
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CHAPTER 5: MOVEMENT VARIABILITY IN OLDER ADULTS WITH AND 

WITHOUT PROBABLE MILD ALZHEIMER’S DISEASE 

 Until recently, evaluating variability-based research questions had required 

empirical scientists to use non-model-based statistical techniques such as intra-individual 

standard deviation (𝐼𝑆𝐷𝑖) or the coefficient of variation (𝐶𝑉𝑖); the limitations of both 

approaches were detailed in chapter 1. With that said, recent instructional papers (e.g., 

Cleveland et al., 2000; Hedeker et al., 2008; Hedeker & Mermelstein, 2012; Leckie et al., 

2014; Rast, Hofer, & Sparks, 2012) and software tutorials (Hedeker & Nordgren, 2013; 

Leckie, 2014; Rast et al., 2012) have allowed variability-based questions to be answered 

directly using a model-based technique known as the mixed-effects location-scale model. 

Examples of empirical studies using this model were presented in chapter 1; briefly, the 

mixed-effects location-scale model has been applied to positive and negative affect 

(Hedeker et al., 2008, Hedeker et al., 2009, Hedeker et al., 2012; Pugach et al., 2014; 

Rast et al., 2012) as well as to eye-tracking data (Lee & Noh, 2012). 

 In this chapter, an empirical data analysis is presented showing the capability of 

the mixed-effects location-scale model to estimate and predict individual differences in 

unstructured physical activities between older adults with and without probable mild 

Alzheimer’s disease (AD), using a design and data similar to the illustrative example 

provided in chapter 2.  

Method 

Participants and data collection. The data were collected from 92 older adults, 

39 with probable mild AD and 53 healthy individuals, using ecological momentary 

assessments. Note that individuals with probable AD may have had slight variations in 
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severity, as their clinical dementia rating could range from 0.5 (i.e., very mild) to 1.0 

(mild). Data collection was complete as of February 14, 2015. Physical activity was 

measured using the Actigraph GT3X+ tri-axial accelerometer worn on the hip 24 hours a 

day for 5 to 13 consecutive days. The GT3X+ eliminates noise outside of an individual’s 

movement based on a sampling frequency between 30Hz and 100Hz (ActiGraph, 2012). 

These raw sampling frequencies were then converted to acceleration units known as 

activity counts (measured in units of gravity, 𝑔), which represent the aggregated physical 

movement in the medio-lateral (ML, front-to-back, sagittal), antero-posterior (AP, side-

to-side, frontal), and vertical planes (VT, rotational, transverse) for a given length of 

occasion, known as an epoch. Movement in each orthogonal axis could have been 

evaluated separately, but for this study, movement was aggregated into a tri-axial 

composite metric known as average vector magnitude, calculated as VM =

√ML2 + AP2 + VT2 (ActiGraph, 2012). 

For the purposes of data analysis, only physical activity during waking hours were 

evaluated, as determined by self-report diary data from each individual. Real-time 

accelerometer data was binned into 60-minute epochs for two reasons. First, the length of 

this epoch is consistent with time between occasions in the individual’s self-report diary. 

Second, a shorter epoch is viewed as unnecessary because individuals with mild AD 

generally spend 60-75% of their day in sedentary activities, which highlights the purpose 

of the present study to predict location- and scale-model differences between individuals 

with and without mild AD.  

Measures. The primary outcome was the observed average vector 

magnitude, 𝑉𝑀𝑡,𝑖, aggregated every 60 minutes only during epochs in which the 
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individual was awake. Vector magnitude was chosen (versus the other three uni-axial 

metrics) to evaluate whether this tri-axial metric provided insight into the total movement 

of traditionally sedentary individuals and to begin to provide support for evaluating tri-

axial movement. 

The primary independent variable was mild AD status, 𝑚𝐴𝐷𝑖, which was a 

binary, level-2 predictor for individual 𝑖, where 0 = no AD and 1 = mild AD. Probable 

mild AD was determined by comprehensive clinical assessment by a licensed practitioner 

as detailed by Burns, Cronk, Anderson, Donnely, Thomas, Harsha, and Swerdlow (2008). 

Six covariates were also included: day of study as well as the individual’s age, 

years of formal education, biologic sex, cardiorespiratory capacity, and body 

composition, as described by Watts et al. (2013). As stated above, individuals wore the 

accelerometer for 5 to 13 consecutive days. However, because 99.07% of observations 

occurred within the first seven days (only 84 total observations were recorded after day 7; 

0.93%), any observation after the seventh study day were excluded from analysis. In 

addition, technically the data presented a three-level model; that is, observations were 

nested within days nested within individuals. However, because no systematic or random 

change in average vector magnitude was expected (or of specific research interest), to 

account for all variability and to remove its level of nesting, day of study was modeled in 

both the location model and scale model for the residual variance as a categorical, level-1 

predictor, 𝐷𝑎𝑦1𝑡,𝑖 through 𝐷𝑎𝑦7𝑡,𝑖, with the first study day serving as reference. 

Regarding the individual-specific covariates, both an individual’s age, 𝐴𝑔𝑒𝑖, and 

years of formal education, 𝐸𝑑𝑖, were continuous, level-2 predictors for individual 𝑖, 

where higher values indicated older and more educated individuals, respectively. The 
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biologic sex covariate indicated whether the individual was a woman, 𝑊𝑜𝑚𝑎𝑛𝑖, and was 

therefore a binary, level-2 predictor for individual 𝑖, where 0 = man and 1 = woman. 

Cardiorespiratory capacity was evaluated using a treadmill test and measured by peak 

oxygen volume (VO2), 𝑉𝑂2𝑖, which was a continuous, level-2 predictor for individual 𝑖, 

where greater 𝑉𝑂2𝑖 indicated greater cardiorespiratory capacity. Finally, body 

composition was quantified by body mass index (BMI), 𝐵𝑀𝐼𝑖, calculated by the 

individual’s height and weight (after a morning bowel voiding attempt). Therefore, 𝐵𝑀𝐼𝑖 

was a continuous, level-2 predictor for individual 𝑖, where greater 𝐵𝑀𝐼𝑖 indicated a 

greater ratio of weight to height. 

Research questions. Given the novelty of evaluating individual differences in 

variability for older adults with and without probable mild AD, four research questions 

were proposed in lieu of specific hypotheses.  

The first research question set to determine whether individual differences in 

mean movement in average vector magnitude existed, and whether the average amount of 

movement adequately describe everyone in the sample, or whether some individuals 

move more than others, on average. If movement showed significant individual 

differences, the second research question set to determine whether these individual 

differences could be predicted by probable mild AD status after controlling for day in 

study, age, years of formal education, biologic sex, cardiorespiratory capacity, and body 

composition. 

Similarly, the third research question set to determine whether individual 

differences in the residual variance for average vector magnitude existed. That is, 

whether the fixed residual variance estimate assumed by traditional linear models (e.g., 
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linear regression, linear mixed-effects model) adequately described everyone in the 

sample, or whether movement was actually more variable for some individuals compared 

to others, on average. If individual differences existed in movement variability, the fourth 

research question set to determine whether these individual differences could be 

predicted by probable mild AD status after controlling for day in study, age, years of 

formal education, biologic sex, cardiorespiratory capacity, and body composition. 

Data considerations. Because average vector magnitude could not assume 

negative values, the truncation of the data at zero created semi-continuous data. Briefly, 

semi-continuous data is considered to result from two separate processes—one process 

for the zero values (termed the binary part) and the other process for the non-zero values 

(termed the continuous part). With application to repeated-measures data in which 

occasions are nested within individuals, the binary part would be estimated using a 

mixed-effects logistic regression model, where average vector magnitude would be 

dichotomized into zero and non-zero values (i.e., no movement, 𝑉𝑀𝑡,𝑖 = 0, and some 

movement, 𝑉𝑀𝑡,𝑖 > 0), with the probability of 𝑉𝑀𝑡,𝑖 = 0 being modeled. By contrast, the 

continuous part would exclude zero values and only model data where 𝑉𝑀𝑡,𝑖 > 0. Thus, 

the model for the continuous part would be estimated using a linear (or generalized 

linear) mixed-effects model using an appropriate conditional distribution. Note that both 

parts of the model could include predictors and additional random effects as appropriate. 

Simultaneous estimation of the continuous and binary part would require a two-part 

model (see Olsen & Schafer, 2001); however, because the mixed-effects location-scale 

model applies only to the continuous part, any observation where average vector 



176 

 

magnitude equaled zero was excluded from the current analyses (note this exclusion does 

not preclude future estimation of the binary part in future analyses).  

In addition, examination of residual values from an unconditional traditional 

linear mixed-effects model indicated a right-skewed distribution of residuals. Therefore, 

average vector magnitude was natural log transformed for all models estimated below 

similar in nature to using an identity link with a log-normal distribution of residuals. 

Following transformation, residual values were normally distributed. 

Estimated models. The second simulation study described in chapter 4 found that 

the fixed effects for level-2 predictors included in the location model were unbiased by 

effects omitted in the scale model for the residual variance (and vice versa); thus, a 

traditional model-building approach was retained where the location-model fixed and 

random effects were estimated prior to the fixed and random effects within the scale 

model for the residual variance. Note that all model equations presented below use the 

multi-level, scalar notation described in chapter 2. 

Research question 1. The first research question of whether individual 

differences in (the log of) average vector magnitude existed was addressed directly by 

comparing the DIC between an unconditional location-model random intercept model to 

a single-level linear model without any random effects; a smaller DIC indicated a better 

fitting model. The estimated single-level linear model had a location model that assumed 

no individual mean differences (i.e., no random intercept) in (the log of) average vector 

magnitude as shown in (5.1). As stated above, day of study was included in all location 

models to account for all systematic and random variability due to day of study. 
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 Level 1:       log(𝑉𝑀𝑡,𝑖) = 𝛽0,𝑖 + 𝛽1,𝑖(𝐷𝑎𝑦2𝑡,𝑖) + 𝛽2,𝑖(𝐷𝑎𝑦3𝑡,𝑖) + 

                                                𝛽3,𝑖(𝐷𝑎𝑦4𝑡,𝑖) + 𝛽4,𝑖(𝐷𝑎𝑦5𝑡,𝑖) + 

                                                𝛽5,𝑖(𝐷𝑎𝑦6𝑡,𝑖) + 𝛽6,𝑖(𝐷𝑎𝑦7𝑡,𝑖) + 𝑒𝑡,𝑖 

Level 2:                     𝛽0,𝑖 = 𝛾00 

                                    𝛽1,𝑖 = 𝛾10 

                                    𝛽2,𝑖 = 𝛾20 

                                    𝛽3,𝑖 = 𝛾30 

                                    𝛽4,𝑖 = 𝛾40 

                                    𝛽5,𝑖 = 𝛾50 

                                    𝛽6,𝑖 = 𝛾60 

Combined:  log(𝑉𝑀𝑡,𝑖) = 𝛾00 + 𝛾10(𝐷𝑎𝑦2𝑡,𝑖) + 𝛾20(𝐷𝑎𝑦3𝑡,𝑖) + 

                                                 𝛾30(𝐷𝑎𝑦4𝑡,𝑖) + 𝛾40(𝐷𝑎𝑦5𝑡,𝑖) + 

                                                 𝛾50(𝐷𝑎𝑦6𝑡,𝑖) + 𝛾60(𝐷𝑎𝑦7𝑡,𝑖) + 𝑒𝑡,𝑖 

 

 

 

 

 

 

(5.1) 

Here, 𝛾00 is the location-model fixed intercept representing (the log of) average vector 

magnitude across all observations and individuals specifically on the first study day, and 

𝛾10 through 𝛾60 are location-model fixed effects representing the difference in (the log 

of) average vector magnitude between the first study day and the second through seventh 

study days, respectively. Further, 𝑒𝑡,𝑖 is the residual value representing the difference 

between (the log of) observed average vector magnitude at day 𝑡 for individual 𝑖 and the 

mean of (the log of) average vector magnitude on a specific day 𝑡. 

The scale model for the residual variance estimated for this single-level model is 

shown in (5.2), where residual variances were allowed to be heterogeneous across study 
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days. Note that although residual variances were modeled as heterogeneous across study 

days given the inclusion of the day of study indicator variables, residual values were still 

assumed to be independent within individuals, such that within-individual correlations in 

𝐑 were assumed to be 0 (a current limitation of the MH algorithm discussed in chapter 3). 

With that said, the mixed-effects location-scale model defined by (5.1) and (5.2) does 

account for individual mean differences via the location-model random intercept; thus, 

the model does not completely ignore within-individual correlation. 

 Level 1:         log(𝜎𝑒𝑡
2 ) = 𝜏0

𝑒 + 𝜏1
𝑒(𝐷𝑎𝑦2𝑡,𝑖) + 𝜏2

𝑒(𝐷𝑎𝑦3𝑡,𝑖) + 

                                               𝜏3
𝑒(𝐷𝑎𝑦4𝑡,𝑖) + 𝜏4

𝑒(𝐷𝑎𝑦5𝑡,𝑖) + 

                                               𝜏5
𝑒(𝐷𝑎𝑦6𝑡,𝑖) + 𝜏6

𝑒(𝐷𝑎𝑦7𝑡,𝑖) 

Level 2:                    𝜏0
𝑒 = 𝛿00

𝑒  

                                   𝜏1
𝑒 = 𝛿10

𝑒  

                                   𝜏2
𝑒 = 𝛿20

𝑒  

                                   𝜏3
𝑒 = 𝛿30

𝑒  

                                   𝜏4
𝑒 = 𝛿40

𝑒  

                                   𝜏5
𝑒 = 𝛿50

𝑒  

                                   𝜏6
𝑒 = 𝛿60

𝑒  

Combined:   log(𝜎𝑒𝑡
2 ) = 𝛿00

𝑒 + 𝛿10
𝑒 (𝐷𝑎𝑦2𝑡,𝑖) + 𝛿20

𝑒 (𝐷𝑎𝑦3𝑡,𝑖) + 

                                 𝛿30
𝑒 (𝐷𝑎𝑦4𝑡,𝑖) + 𝛿40

𝑒 (𝐷𝑎𝑦5𝑡,𝑖) + 

                             𝛿50
𝑒 (𝐷𝑎𝑦6𝑡,𝑖) + 𝛿60

𝑒 (𝐷𝑎𝑦7𝑡,𝑖)   

 

 

 

 

 

 

(5.2) 

Here, 𝛿00
𝑒  is the (log of the) fixed intercept for the residual variance specifically on the 

first study day, and 𝛿10
𝑒  through 𝛿60

𝑒  are scale-model fixed effects for the residual variance 



179 

 

representing the difference in residual variance between the first study day and the 

second through seventh study days, respectively. 

To evaluate individual differences in mean level of (the log of) average vector 

magnitude, an unconditional location-model random intercept model was estimated as 

shown in (5.3); the scale model for the residual variance was as shown in (5.2). 

 Level 1:       log(𝑉𝑀𝑡,𝑖) = 𝛽0,𝑖 + 𝛽1,𝑖(𝐷𝑎𝑦2𝑡,𝑖) + 𝛽2,𝑖(𝐷𝑎𝑦3𝑡,𝑖) + 

                                                𝛽3,𝑖(𝐷𝑎𝑦4𝑡,𝑖) + 𝛽4,𝑖(𝐷𝑎𝑦5𝑡,𝑖) + 

                                                𝛽5,𝑖(𝐷𝑎𝑦6𝑡,𝑖) + 𝛽6,𝑖(𝐷𝑎𝑦7𝑡,𝑖) + 𝑒𝑡,𝑖 

Level 2:                     𝛽0,𝑖 = (𝛾00 + 𝑢0,𝑖) 

                                    𝛽1,𝑖 = 𝛾10 

                                    𝛽2,𝑖 = 𝛾20 

                                    𝛽3,𝑖 = 𝛾30 

                                    𝛽4,𝑖 = 𝛾40 

                                    𝛽5,𝑖 = 𝛾50 

                                    𝛽6,𝑖 = 𝛾60 

Combined:  log(𝑉𝑀𝑡,𝑖) = (𝛾00 + 𝑢0,𝑖) + 𝛾10(𝐷𝑎𝑦2𝑡,𝑖) + 

                                                   𝛾20(𝐷𝑎𝑦3𝑡,𝑖) + 𝛾30(𝐷𝑎𝑦4𝑡,𝑖) + 

                                                   𝛾40(𝐷𝑎𝑦5𝑡,𝑖) + 𝛾50(𝐷𝑎𝑦6𝑡,𝑖) + 

                                                   𝛾60(𝐷𝑎𝑦7𝑡,𝑖) + 𝑒𝑡,𝑖 

 

 

 

 

 

 

(5.3) 

Here, 𝑢0,𝑖 is the location-model random intercept value for each individual 𝑖 representing 

the individual-specific deviation (or difference) from the location-model fixed intercept, 

𝛾00, thus allowing for constant individual mean differences across all study days. Note 
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that the variance of the 𝑢0,𝑖 values was quantified by the location-model random intercept 

variance, 𝜎𝑢0
2 , which was assumed constant between individuals (i.e., no subscript 𝑖; 𝐆𝑖 =

𝐆), as shown in (5.4). 

 log(𝜎𝑢0
2 ) = 𝛼0

𝑢0 (5.4) 

Research question 2. Whether individual differences in (the log of) average 

vector magnitude could be predicted by probable mild AD status after controlling for day 

in study, an individual’s age, years of formal education, biologic sex, cardiorespiratory 

capacity, and body composition were addressed by including these level-2, individual-

level predictors in the location model.  

The inclusion of a specific covariate in the final location model was determined 

based on a series of preliminary, covariate-only location models where the significance of 

the specific covariate’s location-model fixed effect was evaluated. Each preliminary, 

covariate-only location model included only one covariate in addition to day of study; 

thus, five separate location-model random intercept models were estimated, one for each 

covariate. An example of the preliminary location model for day in study as well as for 

an individual’s age, 𝐴𝑔𝑒𝑖, is presented in (5.5). 

 Level 1:       log(𝑉𝑀𝑡,𝑖) = 𝛽0,𝑖 + 𝛽1,𝑖(𝐷𝑎𝑦2𝑡,𝑖) + 𝛽2,𝑖(𝐷𝑎𝑦3𝑡,𝑖) + 

                                                𝛽3,𝑖(𝐷𝑎𝑦4𝑡,𝑖) + 𝛽4,𝑖(𝐷𝑎𝑦5𝑡,𝑖) + 

                                                𝛽5,𝑖(𝐷𝑎𝑦6𝑡,𝑖) + 𝛽6,𝑖(𝐷𝑎𝑦7𝑡,𝑖) + 𝑒𝑡,𝑖 

Level 2:                     𝛽0,𝑖 = (𝛾00 + 𝑢0,𝑖) + 𝛾01(𝐴𝑔𝑒𝑖) 

                                    𝛽1,𝑖 = 𝛾10 

                                    𝛽2,𝑖 = 𝛾20 

 

 

 

(5.5) 
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                                    𝛽3,𝑖 = 𝛾30 

                                    𝛽4,𝑖 = 𝛾40 

                                    𝛽5,𝑖 = 𝛾50 

                                    𝛽6,𝑖 = 𝛾60 

Combined:  log(𝑉𝑀𝑡,𝑖) = 𝛾00 + 𝛾10(𝐷𝑎𝑦2𝑡,𝑖) + 𝛾20(𝐷𝑎𝑦3𝑡,𝑖) + 

                                                 𝛾30(𝐷𝑎𝑦4𝑡,𝑖) + 𝛾40(𝐷𝑎𝑦5𝑡,𝑖) + 

                                                 𝛾30(𝐷𝑎𝑦6𝑡,𝑖) + 𝛾40(𝐷𝑎𝑦7𝑡,𝑖) + 

                                                 𝛾01(𝐴𝑔𝑒𝑖) + 𝑒𝑡,𝑖 

 

 

 

(5.5) 

Here, 𝛾10 through 𝛾60 are location-model fixed effects representing the difference in (the 

log of) average vector magnitude between the first study day and the second through 

seventh study days, respectively, whereas 𝛾01 represents the difference in (the log of) 

average vector magnitude for each additional year of age. Models for additional 

covariates were estimated by retaining all day of study fixed effects, but substituting the 

other covariates in place of for 𝐴𝑔𝑒𝑖 alongside its unique fixed effect 𝛾. 

Research question 3. Whether individual differences in the residual variability of 

(the log of) average vector magnitude existed was addressed directly by modifying the 

scale model for the residual variance to include the scale-model random intercept for 

each individual 𝑖, as shown in (5.6). Note that this model used the final location model 

determined by research question 2. 

 Level 1:        log(𝜎𝑒𝑡,𝑖
2 ) = 𝜏0,𝑖

𝑒 + 𝜏1
𝑒(𝐷𝑎𝑦2𝑡,𝑖) + 𝜏2

𝑒(𝐷𝑎𝑦3𝑡,𝑖) + 

                                               𝜏3
𝑒(𝐷𝑎𝑦4𝑡,𝑖) + 𝜏4

𝑒(𝐷𝑎𝑦5𝑡,𝑖) + 

                                               𝜏5
𝑒(𝐷𝑎𝑦6𝑡,𝑖) + 𝜏6

𝑒(𝐷𝑎𝑦7𝑡,𝑖) 

 

(5.6) 
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Level 2:                   𝜏0,𝑖
𝑒 = (𝛿00

𝑒 + 𝜔0,𝑖
𝑒 ) 

                                    𝜏1
𝑒 = 𝛿10

𝑒  

                                    𝜏2
𝑒 = 𝛿20

𝑒  

                                 𝜏3
𝑒 = 𝛿30

𝑒  

                                 𝜏4
𝑒 = 𝛿40

𝑒  

                                 𝜏5
𝑒 = 𝛿50

𝑒  

                                 𝜏6
𝑒 = 𝛿60

𝑒  

Combined:   log(𝜎𝑒𝑡.𝑖
2 ) = (𝛿00

𝑒 + 𝜔0,𝑖
𝑒 ) + 𝛿10

𝑒 (𝐷𝑎𝑦2𝑡,𝑖) + 

                                               𝛿20
𝑒 (𝐷𝑎𝑦3𝑡,𝑖) + 𝛿30

𝑒 (𝐷𝑎𝑦4𝑡,𝑖) + 

                                               𝛿40
𝑒 (𝐷𝑎𝑦5𝑡,𝑖) + 𝛿50

𝑒 (𝐷𝑎𝑦6𝑡,𝑖) + 

                                               𝛿60
𝑒 (𝐷𝑎𝑦7𝑡,𝑖) 

 

 

 

(5.6) 

Here, 𝛿00
𝑒  is the fixed intercept for the (log of the) residual variance, and 𝜔0,𝑖

𝑒  is the scale-

model random intercept representing the deviation from the fixed intercept for the (log of 

the) residual variance specifically for individual 𝑖, thus allowing for constant between-

individual differences in residual variance. The variance of the 𝜔0,𝑖
𝑒  values is quantified 

by the scale-model random intercept variance, 𝜎𝜔0
𝑒

2 . Further, it was assumed that the 

location- and scale-model random intercept variances and correlation were constant 

across individuals (i.e., no subscript 𝑖; 𝐆𝑖 = 𝐆). This assumption was shown for the 

location-model random intercept variance in (5.4), and is shown below in (5.7) and (5.8) 

for the scale-model random intercept variance and the correlation between the location- 

and scale-model random intercepts, respectively. 

 log (𝜎𝜔0
𝑒

2 ) = 𝛼0
𝜔0

𝑒

 (5.7) 
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 tanh−1(𝜌𝑢0;𝜔0
𝑒) = 𝛼0

𝑢0;𝜔0
𝑒

 (5.8) 

Research question 4. Whether individual differences in the residual variability of 

(the log of) average vector magnitude were predicted by probable mild AD status after 

controlling for day of study, an individual’s age, years of formal education, biologic sex, 

cardiorespiratory capacity, and body composition were addressed by including these 

predictors in the scale model for the residual variance.  

The model-building approach used for the scale model for the residual variance 

shadowed the approach detailed above for the location model, where day of study 

indicator variables were included to account for all systematic and random variability due 

to day of study, and the inclusion of a specific covariate in the final scale model for the 

residual variance was determined based on the preliminary significance of a specific 

covariate’s fixed effect. Note that although residual variances were modeled as 

heterogeneous across study days given the inclusion of the day of study variables, 

residual values were still assumed to be independent within individuals (i.e., all residual 

correlations in 𝐑𝑖 were still assumed to be 0).  

Each scale model for the residual variance included only one covariate in addition 

to day of study; thus, five separate mixed-effects location-scale models were estimated, 

one for each covariate. An example covariate-only scale model for the residual variance 

which includes day in study as well as an individual’s age, 𝐴𝑔𝑒𝑖, is presented in (5.9).  

 Level 1:        log(𝜎𝑒𝑡,𝑖
2 ) = 𝜏0,𝑖

𝑒 + 𝜏1
𝑒(𝐷𝑎𝑦2𝑡,𝑖) + 𝜏2

𝑒(𝐷𝑎𝑦3𝑡,𝑖) + 

                                               𝜏3
𝑒(𝐷𝑎𝑦4𝑡,𝑖) + 𝜏4

𝑒(𝐷𝑎𝑦5𝑡,𝑖) + 

                                               𝜏5
𝑒(𝐷𝑎𝑦6𝑡,𝑖) + 𝜏6

𝑒(𝐷𝑎𝑦7𝑡,𝑖) 

 

 (5.9) 
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Level 2:                  𝜏0,𝑖
𝑒 = (𝛿00

𝑒 + 𝜔0,𝑖
𝑒 ) + 𝛿01

𝑒 (𝐴𝑔𝑒𝑖) 

                                   𝜏1
𝑒 = 𝛿10

𝑒  

                                   𝜏2
𝑒 = 𝛿20

𝑒  

                                𝜏3
𝑒 = 𝛿30

𝑒  

                                𝜏4
𝑒 = 𝛿40

𝑒  

                                𝜏5
𝑒 = 𝛿50

𝑒  

                                𝜏6
𝑒 = 𝛿60

𝑒  

Combined:   log(𝜎𝑒𝑡.𝑖
2 ) = (𝛿00

𝑒 + 𝜔0,𝑖
𝑒 ) + 𝛿10

𝑒 (𝐷𝑎𝑦2𝑡,𝑖) + 

                                               𝛿20
𝑒 (𝐷𝑎𝑦3𝑡,𝑖) + 𝛿30

𝑒 (𝐷𝑎𝑦4𝑡,𝑖) + 

                                               𝛿40
𝑒 (𝐷𝑎𝑦5𝑡,𝑖) + 𝛿50

𝑒 (𝐷𝑎𝑦6𝑡,𝑖) + 

                                               𝛿60
𝑒 (𝐷𝑎𝑦7𝑡,𝑖) + 𝛿01

𝑒 (𝐴𝑔𝑒𝑖) 

 

 

 

 

(5.9) 

Here, 𝛿10
𝑒  through 𝛿60

𝑒  are fixed effects representing the difference in residual variance 

between the first study day and the second through seventh study days, respectively, 

whereas 𝛿01
𝑒  represents the difference in residual variance for each additional year of age. 

The scale model for the residual variance that included additional covariates was 

estimated by retaining all day of study fixed effects, but substituting the other covariates 

in place of 𝐴𝑔𝑒𝑖 alongside its unique fixed effect 𝛿𝑒. 

Analytic strategy. All available data (excluding zeros) collected during the first 

seven study days were included in analysis; no imputation methods were employed for 

missing data. As detailed in chapter 3, the inclusion of any additional random effect was 

evaluated by model comparison using DIC, where smaller DIC indicated improved model 

fit. To describe random variation around a given location- or scale-model fixed effect, 

95% random effect confidence intervals were calculated as: fixed effect ± 
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1.96√random effect variance. Further, effect sizes are reported as proportion of 

variance explained using pseudo-R2 calculated as: (variancelarger – variancesmaller) / 

variancelarger, with the specific variance component explained by the level-2 predictor 

dependent on whether the predictor was included in the location or scale model. In 

addition, the decision to include a given covariate in the final location or scale model was 

determined by the 80% credible interval (i.e., the 10th to 90th percentile of the posterior 

distribution) which excluded zero. For the final location and scale models, all continuous 

covariates were centered near their mean to ensure meaningful interpretation of the 

intercept. After including all relevant covariates, the significance of probable mild AD 

status in the location and scale models was determined by a fixed effect for which its 

95% credible interval excluded zero. 

Model estimation via MCMC. All models were estimated using the MCMC 

estimator detailed in chapter 3. Start values for all location-model fixed effects, the 

location-model random intercept variance, and the residual variance (which served as a 

proxy for the scale-model fixed intercept), were based on preliminary estimation of a 

traditional linear mixed-effects model using the lme4 package in R developed by Bates et 

al. (2014). Start values for additional fixed and random effects included in the scale 

model for the residual variance as well as the correlation between the location- and scale-

model random intercepts were set to zero. Prior to initiation of the Markov chain, the 

candidate-generating distribution of all parameters were tuned to achieve an acceptance 

rate of 45% using 20 tuning chains of 100 iterations. Following tuning, the Markov chain 

was specified to sample 100,000 iterations (due to increased model complexity compared 

to the models estimated in the simulation studies), with a burn-in period set to the first 
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25,000 iterations and a thinning interval of 1 (i.e., no thinning). Convergence was 

assessed empirically by Geweke’s diagnostic test (Geweke, 1992) and the Gelman and 

Rubin criterion (Gelman & Rubin, 1992), both calculated using the CODA package in R 

(Plummer et al., 2006). Convergence was defined as satisfying at least one criterion; all 

parameters met convergence criteria.  

Results 

Average vector magnitude was measured between 5 and 13 days, with 92 

individuals providing 9,251 total observations (M = 124.76, SD = 129.10, range = 0.00 to 

1734.20), with the average of 99.16 observations per individual (SD = 12.26, range = 55 

to 120). Of these observations, 291 (3.12%) were excluded due to zero values (a much 

lower proportion than expected) and an additional 84 (0.94%) observations were 

excluded because they occurred after the seventh study day. In addition, within the 

probable mild AD group, five individuals were missing their baseline cardiorespiratory 

capacity (i.e., VO2) measurements with one additional individual missing years of formal 

education; no missing data was observed for healthy individuals. As a result, the final 

location and scale models were based on 8,442 total observations from 86 individuals 

(data scale: M = 131.80, SD = 130.68, range = 0.10 to 1734.20; log scale: M = 4.37, SD = 

1.27, range = –2.30 to 7.46).  

Table 5.1 

Group-Specific Descriptive Statistics 

 

Healthy Individuals 

(n = 53)  

Individuals with Probable 

Mild AD  

(n = 33) 

 M (SD) Range  M (SD) Range 

Age 73.19 (6.53) 62 to 92  72.73 (7.47) 60 to 86 

Years of Education 17.32 (3.38) 12 to 25  15.61 (2.94) 10 to 20 

VO2 max 1.60 (0.45) 0.79 to 2.74  1.73 (0.56) 0.62 to 3.10 

Body Mass Index 26.42 (4.42) 19.69 to 36.68  27.18 (5.03) 19.31 to 38.38 
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Group-specific descriptive statistics are provided in Table 5.1. Of the 86 

individuals included in the final models, 47 (54.65%) were women, of which 37 

(69.81%) were healthy individuals and 10 (30.30%) were individuals with probable mild 

AD, Χ2 (1, N = 86) = 12.81, p < .001. A statistically significant between-group difference 

was also indicated for years of education, t(84) = 2.40, p < .05, with healthy individuals 

being slightly more educated, on average (although both groups averaged an equivalent 

of a bachelor’s degree); the groups were similar in terms of age, VO2 max, and BMI.  

Building the location model. An initial location-model random intercept model 

which included day of study as location model fixed effects with an unconditional scale 

model for the residual variance estimated a homogeneous ICC of 0.19, indicating that 

19% of the variability in (the log of) average vector magnitude was due to level-2, 

between-individual differences. That is, up to 19% of total variability in (the log of) 

average vector magnitude was available to be explained by probable mild AD status. 

 Research question 1. Individual differences in (the log of) average vector 

magnitude was evaluated by comparing an unconditional location-model random 

intercept model defined in (5.3) to the single-level linear model defined in (5.1). Results 

indicated that the location-model random intercept model fit better than the single-level 

linear model, DIC = 28,051.44 vs. 29,723.48, respectively, indicating significant 

individual mean differences in (the log of) average vector magnitude (fixed intercept, 𝛾00 

= 4.38 on log scale; location-model random intercept variance = 0.31 on the variance 

scale). A 95% random effects confidence interval indicated that approximately 95% of 

the sample had predicted individual (log of) average vector magnitude intercepts ranging 

between 3.77 and 4.98 (data scale: 43.54 and 145.78), indicating most activity was 
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sedentary (i.e., sitting, reading, or lying down; Crouter, Horton, & Bassett, 2012). These 

results indicated that significant constant individual differences in (the log of) average 

vector magnitude existed and could be potentially predicted by mild AD status. 

Research question 2. Whether individual differences in (the log of) average 

vector magnitude were predicted by mild AD status after controlling for day in study, an 

individual’s age, years of formal education, biologic sex, cardiorespiratory capacity, and 

body composition was addressed by including these level-2 predictors in the location 

model. Preliminary, covariate-only location models indicated that body composition was 

not statistically significant and was therefore excluded from the final location model.  

Results of the final location-model are provided in Table 5.2. Note that age was 

centered at 70, years of education was centered at 16 (i.e., a college graduate), and 

cardiorespiratory capacity (VO2) was centered at 1.50 mL/(kg·min). Results indicated 

that the location-model level-2 predictors as a set explained approximately 16.85% of 

location-model random intercept variance. Compared to healthy individuals, individuals 

with probable mild AD averaged nonsignificantly lower average vector magnitude by  

18.94% (i.e., [1 − exp(−0.21)] ∗ 100), B = –0.21, 95% CI [–0.47,0.02], after controlling 

for day of study, age, years of formal education, biologic sex, and cardiorespiratory 

capacity. Probable mild AD status explained approximately 1.89% of location-model 

random intercept variance and was not statistically significant as the 95% credible 

interval included zero. Therefore, results indicated individual differences in (the log of) 

average vector magnitude were not predicted by mild AD status after controlling for the 

age, years of formal education, biologic sex, and cardiorespiratory capacity; however, a 

difference of 18.94% in total unstructured movements may indicate some clinical utility. 
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Table 5.2 

Results of the Final Location Model 

   

95% Credible 

Interval 

Location Model 

Posterior 

Mean 

Posterior 

SD Lower Upper 

Fixed Intercept, 𝛾00 4.36 0.15 4.07 4.63 

Day of Studya     

     Day 2, 𝛾10 –0.06 0.04 –0.14 0.02 

     Day 3, 𝛾20 –0.06 0.04 –0.13 0.01 

     Day 4, 𝛾30 –0.05 0.04 –0.12 0.03 

     Day 5, 𝛾40 –0.01 0.04 –0.09 0.06 

     Day 6, 𝛾50 –0.03 0.04 –0.11 0.04 

     Day 7, 𝛾60 –0.20 0.06 –0.31 –0.09 

Age (0 = 70), 𝛾02 –0.01 0.01 –0.03 0.00 

Years of Education (0 = 16), 𝛾03 0.02 0.02 –0.01 0.04 

Woman, 𝛾04 0.18 0.14 –0.05 0.44 

VO2 (0 = 1.50), 𝛾05 0.28 0.12 0.07 0.50 

Mild Alzheimer's Status, 𝛾01 –0.21 0.12 –0.47 0.02 

Scale Model for the Residual Variance     

Residual Variance Fixed Intercept, 𝛿00
𝑒𝑡  0.18 0.04 0.11 0.26 

Day of Studya     

     Day 2, 𝛿10
𝑒𝑡  0.16 0.05 0.06 0.26 

     Day 3, 𝛿20
𝑒𝑡  0.08 0.05 –0.02 0.18 

     Day 4, 𝛿30
𝑒𝑡  0.06 0.05 –0.04 0.16 

     Day 5, 𝛿40
𝑒𝑡  0.12 0.05 0.02 0.23 

     Day 6, 𝛿50
𝑒𝑡  0.03 0.05 –0.07 0.13 

     Day 7, 𝛿60
𝑒𝑡  0.33 0.06 0.21 0.46 

Variance Components     

Location-Model Random Intercept, 𝛼0
𝑢0 –1.36 0.17 –1.68 –1.02 

Note. Statistically significant effects are presented in boldface. DIC = 26,392.28. 
aReference day was study day 1. 

Building the scale model for the residual variance. All models estimated below 

used the final location model that included the location-model random intercept variance 

and location-model fixed effects for mild AD status, age, years of education, biologic 

sex, and cardiorespiratory capacity. 

Research question 3. When compared to the final location model, the addition of 

the scale-model random intercept variance improved model fit, DIC = 26,392.28 vs. 
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25,399.39, respectively, indicating significant individual differences in the residual 

variability of (the log of) average vector magnitude, with (the log of) the residual 

variance fixed intercept being 0.06 and scale-model random intercept variance of 0.29. 

The 95% random effects confidence interval indicated approximately 95% of the sample 

had predicted individual (log of the) residual variance intercepts ranging between –0.50 

and 0.62 (variance scale: 0.60 and 1.86), indicating that significant constant individual 

differences in residual variability were available to be predicted by mild AD status. 

Research question 4. Whether individual differences in the residual variability of 

(the log of) average vector magnitude were predicted by mild AD status after controlling 

for day of study, an individual’s age, years of formal education, biologic sex, 

cardiorespiratory capacity, and body composition was addressed by including these level-

2 predictors in the scale model for the residual variance. Preliminary, covariate-only 

models indicated that cardiorespiratory capacity and body composition did not predict 

individual differences in residual variability and were excluded from the final scale 

model for the residual variance. 

Results indicated that the level-2 predictors included in the scale model for the 

residual variance as a set explained approximately 8.69% of the scale-model random 

intercept variance. Individuals with probable mild AD averaged 1.01% (i.e., 

[exp(0.01) − 1] ∗ 100) more residual variability compared to healthy controls, B = 0.01, 

95% CI [–0.21,0.22], after controlling for day of study, age, years of formal education, 

and biologic sex. The fixed effect of probable mild AD status explained 0.00% of scale-

model random intercept variance and was not statistically significant as the 95% credible 

interval included zero. This result indicated that individual differences in the residual  
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Table 5.3 

Results of the Final Location and Scale Model for the Residual Variance 

   

95% Credible 

Interval 

Location Model 

Posterior 

Mean 

Posterior 

SD Lower Upper 

Fixed Intercept, 𝛾00 4.37 0.14 4.11 4.62 

Day of Studya     

     Day 2, 𝛾10 –0.03 0.04 –0.11 0.04 

     Day 3, 𝛾20 –0.05 0.04 –0.12 0.02 

     Day 4, 𝛾30 –0.06 0.04 –0.13 0.01 

     Day 5, 𝛾40 0.01 0.04 –0.07 0.08 

     Day 6, 𝛾50 –0.03 0.04 –0.10 0.04 

     Day 7, 𝛾60 –0.19 0.05 –0.29 –0.09 

Age (0 = 70), 𝛾02 –0.01 0.01 –0.03 0.01 

Years of Education (0 = 16), 𝛾03 0.01 0.02 –0.02 0.05 

Woman, 𝛾04 0.18 0.14 –0.09 0.44 

VO2 (0 = 1.50), 𝛾05 0.26 0.10 0.07 0.46 

Mild Alzheimer's Status, 𝛾01 –0.23 0.11 –0.45 –0.02 

Scale Model for the Residual Variance     

Residual Variance Fixed Intercept, 𝛿00
𝑒𝑡  0.19 0.12 –0.02 0.44 

Day of Studya     

     Day 2, 𝛿10
𝑒𝑡  0.16 0.05 0.06 0.26 

     Day 3, 𝛿20
𝑒𝑡  0.14 0.05 0.04 0.23 

     Day 4, 𝛿30
𝑒𝑡  0.08 0.05 –0.02 0.19 

     Day 5, 𝛿40
𝑒𝑡  0.12 0.05 0.01 0.23 

     Day 6, 𝛿50
𝑒𝑡  –0.01 0.05 –0.10 0.09 

     Day 7, 𝛿60
𝑒𝑡  0.39 0.07 0.25 0.54 

Age (0 = 70) , 𝛿02
𝑒𝑡  0.01 0.01 –0.01 0.02 

Years of Education (0 = 16) , 𝛿03
𝑒𝑡  –0.02 0.02 –0.06 0.01 

Woman, 𝛿04
𝑒𝑡  –0.28 0.12 –0.54 –0.10 

Mild Alzheimer's Status, 𝛿01
𝑒𝑡  0.01 0.11 –0.21 0.22 

Variance Components     

Location-Model Random Intercept, 𝛼0
𝑢0 –1.36 0.18 –1.70 –1.00 

Location-Scale Random Intercept 

Correlation, 𝛼0
𝑢0;𝜔0

𝑒

 –0.15 0.04 –0.23 –0.09 

Scale-Model Random Intercept, 𝛼0
𝜔0

𝑒

 –1.33 0.18 –1.67 –0.97 
Note. Statistically significant effects are presented in boldface. DIC = 25,396.46. 
aReference day was study day 1. 
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variability of (the log of) average vector magnitude were not predicted by mild AD status 

after controlling for age, years of formal education, and biologic sex. 

Finally, all location-model posterior means and standard deviations in Table 5.3 

were very similar to those estimated by the final location model presented in Table 5.2. 

However, in the final location and scale model for the residual variance, the fixed effect 

for mild AD status was statistically significant, B = –0.23, 95% CI [–0.45,–0.02], with 

individuals with probable mild AD averaging 20.65% (i.e., [1 − exp(−0.23)] ∗ 100) 

lower average vector magnitude compared to healthy individuals. This result updated the 

previous result reported for the second research question and indicated that probable mild 

AD status does predict individual differences in (the log of) average vector magnitude. 

Discussion 

This chapter explicitly detailed the applicability of the mixed-effects location-

scale model to an empirical dataset examining total movement (measured in three axes of 

motion) in a sample of older adults with and without probable mild AD. A traditional 

model-building approach was employed throughout, in which the location model was 

specified prior to specifying the scale model for the residual variance. Although 

significant individual differences in the residual variability of (the log of) average vector 

magnitude were observed, as indicated by the scale-model random intercept variance, 

results indicated probable mild AD status did not explain a significant proportion of these 

individual differences after adjusting for an individual’s age, years of formal education, 

and biologic sex.  

With that said, significant individual differences in the mean level of (the log of) 

average vector magnitude were observed, as indicated by the location-model random 
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intercept variance. Prior to including the individual-level predictors in the final scale 

model for the residual variance, no statistically significant differences were observed in 

(the log of) average vector magnitude between individuals with and without probable 

mild AD after controlling for an individual’s age, years of formal education, biologic sex, 

and cardiorespiratory capacity. However, this difference became statistically significant 

upon inclusion of level-2 predictors the final scale model for the residual variance, as 

individuals with probable mild AD status had significantly lower (log of) average vector 

magnitude compared to healthy individuals after controlling for the covariates. On the 

surface, this appeared to contradict the results of the second simulation study. However, 

in the final location model presented in Table 5.2, in which the scale model for the 

residual variance did not include any level-2 predictors nor scale-model random intercept 

variance, the 95% credible interval for the location-model fixed effect of probable mild 

AD status only just included zero, 95% CI [–0.47,0.02], whereas when including the 

level-2 predictors and random intercept variance in the scale model for the residual 

variance, the 95% credible interval for the location-model fixed effect of probable mild 

AD status just excluded zero, 95% CI [–0.45,–0.02]. The difference in parameter 

estimates of mild AD status between models that omitted and included the final scale 

model for the residual variance was only 0.02 on the log scale (i.e., –0.21 vs. –0.23) or 

1.71% on the data scale (i.e., 18.94% vs. 20.65%). From a strictly statistical perspective, 

it is difficult to determine which result is the least wrong, but it is a safe assumption that 

this minimal difference does not indicate significant bias. Thus, it is the task of the 

empirical scientist to determine whether the consistent observed difference of 

approximately 20% is clinically meaningful, irrespective of statistical significance. 
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In the second simulation study reported in chapter 4, the location-model fixed 

effects for level-2 predictors and location-model random intercept variance, as well as 

their associated precision (i.e., posterior standard deviations), remained unbiased 

regardless of whether the level-2 predictors and/or random intercept were included in the 

scale model for the residual variance, with no modification of statistical significance 

across models. With that said, the current location model and scale model for the residual 

variance included day of study as a set of level-1 fixed effects, although this empirical 

analysis cannot quantify potential bias in location-model fixed effects of level-2 

predictors resulting from the exclusion of relevant level-1 predictors in the scale model 

for the residual variance. 

 Finally, the primary statistical limitation of this study was that although residual 

variances were specified to be heterogeneous across study days, the residual values were 

assumed to be independent. As stated throughout, the assumption of independence was 

untestable using the MCMC estimator developed for this dissertation, and may have 

introduced bias into inferences of location- and scale-model fixed effects to an unknown 

extent.  

Chapter Summary 

The purpose of this chapter was to provide an explicit example showing the 

capability of the mixed-effects location-scale model to evaluate mean- and variability-

related hypotheses using empirical data collected from 86 older adults with and without 

mild probable Alzheimer’s disease. The chapter began with a brief description of the 

study design, data collection procedure, and description of the variables collected, and 

concluded with a description of the mixed-effects location-scale model building 
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procedure employed to determine whether individual differences in both mean level and 

variability of unstructured movement was predicted by a clinical diagnosis of probable 

mild Alzheimer’s disease after controlling for relevant covariates. 

In chapter 6, an overarching summary the simulation studies and empirical 

analysis conducted in this dissertation is presented followed by a discussion of specific 

empirical research areas that could benefit from evaluating and predicting individual 

differences in outcome variability through estimation of the mixed-effects location-scale 

model. 
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CHAPTER 6: GENERAL DISCUSSION 

 This final chapter presents an overarching summary of the simulation studies and 

empirical analysis conducted in this dissertation as well as specific empirical research 

areas that could benefit from evaluating and predicting individual differences in outcome 

variability through estimation of the mixed-effects location-scale model. 

Brief Summary of Results 

Conducting methodological studies without application is an exercise in futility. 

Thus, following the two simulation studies presented in chapter 4, a direct application of 

the mixed-effects location-scale model was presented in chapter 5 to show a novel 

application of this model when evaluating individual differences in mean level and 

variability of unstructured movement in individuals with and without probable mild 

Alzheimer’s disease. Given its limited precedent in the literature, application of the 

mixed-effects location-scale model will most likely be relatively novel to empirical 

scientists across many fields of study. It is this novelty that is most exciting, as it 

potentially engenders additional variability-based research questions, especially to those 

empirical scientists who have focused solely on questions related to mean levels of an 

outcome. Indeed, what is noteworthy is the fact that mean- and variability-based 

questions can be evaluated in a single model.  

To begin to address some of the nuances of studying individual differences in 

response variability, two simulations studies were conducted. The first simulation study 

provided power curves for detecting scale-model random intercept variance (i.e., 

individual differences in response variability) across several study design characteristics 

and model parameters. This study provided initial insight for empirical scientists to 
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design studies to evaluate individual differences in variability—and to ensure these 

differences could be detected if they actually exist. It was recommended that a minimum 

of 20 repeated occasions from at least 100 individuals be collected to ensure at least 80% 

power to detect the scale-model random intercept variance of 0.035. After ensuring 

individual differences in residual variability can be detected, power curves were then 

calculated for the prediction of these individual differences by an individual-level 

variable. Results indicated approximately 100% power to detect the fixed effect of an 

individual-level predictor that was ≥ 0.25 (or that explained ≥ 50% of the scale-model 

random intercept variance), which was not moderated by any study design characteristic 

or model parameter. Further, the power to detect the fixed effect of an individual-level 

predictor that was < 0.25 (or that explained < 50% of the scale-model random intercept 

variance) increased with increases in the number of individuals and the number of 

repeated occasions within an individual (although the number of individuals and 

occasions used in this study failed to achieve 80% power for these effects), but decreased 

with increases in 𝜎𝜔0
𝑒

2  (i.e., more scale-model random intercept variance resulted in 

smaller parameter estimates, or effect sizes, for the individual-level predictor to become 

undetectable). Further, if individual differences in variability were not detected, it was 

unlikely that systematic differences in variability could be predicted by level-2 fixed 

effects. With that said, Type I error rates for these systematically-varying effects were 

lower when retaining non-significant scale-model random intercept variance in the 

model, often near or below the nominal 5%. Thus, results suggest that although it may be 

appropriate to model systematically-varying effects, the detection of the scale-model 

random intercept variance should occur prior to predicting individual-level differences in 



198 

 

residual variability to increase the likelihood that these predictor effects would be 

detected. 

The second simulation study was conducted to inform empirical scientists about 

the consequences of predicting individual differences in the presence of a misspecified 

location and/or scale model. Traditionally, the location model has been specified prior to 

the scale model; however, there is no consensus among methodologists (e.g., Bryk & 

Raudenbush, 1988) and this model-building procedure has not been studied extensively. 

Given that model-building is a multi-step process, results of this simulation study 

informed model-building practice by indicating that it was unnecessary to explicitly 

specify the location model before the scale model for the residual variance (or vice versa) 

when estimating individual differences in both the location and scale model, and 

subsequently predicting them with individual-level predictors, given that Type I error 

rates remained low and bias was non-existent. 

Finally, when considering the theoretical framework presented for the mixed-

effects location-scale model alongside the two simulation studies and empirical analysis, 

this dissertation provides empirical scientists with incredibly useful information as they 

progress from study design through analysis, interpretation, and reporting for publication. 

With this in mind, what follows below is a discussion of specific empirical research areas 

that could benefit from evaluating and predicting individual differences in residual 

variability through the use of mixed-effects location-scale model. 

Directions for Future Empirical Research 

Given the novelty of the mixed-effects location-scale model, empirical scientists 

from a wide array of fields would benefit from resources (e.g., pedagogical articles) 
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pertaining to the use of this model, specifically informing them how individual 

differences in response variability can be identified and predicted. Presenting the mixed-

effects location-scale model in this format, although requiring considerable cognitive 

effort, would not be overwhelmingly daunting as many empirical scientists have some 

existing familiarity with the linear mixed-effects model used to evaluate individual 

differences in mean levels and in change over time. With this information in mind, the 

remainder of this chapter describes potential empirical research areas for which the 

mixed-effects location-scale model could be directly applicable. 

Regarding the practical application of the mixed-effects location-scale model, the 

overwhelming majority of publications that have actually applied this model have been 

found within nicotine and tobacco research (e.g., Hedeker & Mermelstein, 2007; Hedeker 

et al., 2008; Hedeker et al., 2009). Each of these studies used ecological momentary 

assessments to evaluate positive and negative affect immediately following the use of a 

combustible cigarette. This same approach could be applied directly when studying 

individuals who use electronic cigarettes (or e-cigarettes). For example, although it is 

important to determine whether the lung function (as measured by, say, methacholine 

challenge) of e-cigarette users improves, on average, compared to traditional cigarette 

smokers, it would also be important to determine whether the lung function of e-cigarette 

users is more variable given that individuals are essentially self-titrating their nicotine, as 

well as the characteristics of an individual or e-cigarette that may predict increases (or 

decreases) in variability. 

In addition, pediatric obesity research has embraced the technological side of data 

collection by routinely using accelerometers to continuously collect physical activity 
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data, in the presence or absence of an intervention, over a given study period. The sheer 

quantity of data per child produced by an accelerometer lends itself nicely to the 

application of a mixed-effects location-scale model. To date, pediatric obesity research 

has focused primarily on a child’s mean level of physical activity, under the assumption 

that all children respond to the intervention in a consistent manner (i.e., homoscedastic 

residuals; see Cushing, Walters, & Hoffman, 2014). Individual differences in the 

variability of physical activity could (and should) also be evaluated, especially with a 

non-homogenous sample of children (i.e., not a randomized controlled trial). It may be 

that a novel intervention is more effective for some children compared to others, where a 

differential treatment effect necessarily increases response variability. Therefore, 

although mean levels of physical activity may increase for the intervention condition 

compared to a control condition, the intervention may increase variability to the point that 

a sizeable proportion of children have physical activity levels in the presence of the 

intervention at or below their baseline/control level. An awareness of this information 

would be critically important! Thus, the ability to identify individual differences in the 

variability in physical activity, and predict why these individual differences exist, would 

afford knowledge of the child-level characteristics related to increased variability in the 

presence of the intervention. Given that physical activity should be a lifestyle or habit, the 

goal of any intervention should be to create a consistent response. Thus, it would be 

important to identify the characteristics of the children who responded positively and 

consistently to the intervention, and continue to modify the intervention for the children 

who displayed increased variability regardless of whether their mean levels increased or 

decreased.  
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Although this dissertation has spoken specifically to repeated-measures data, it 

does not preclude the mixed-effects location-scale model from being applied to cross-

sectional data (see Leckie et al., 2014). For example, within-school variability in 

standardized test scores could be identified and subsequently predicted by the proportion 

of students who meet some fitness standard, or, perhaps more likely, be predicted by the 

proportion of students within a school that receive free/reduced lunch as a proxy for 

socio-economic status. This information could be used subsequently to inform potential 

policy changes. 

In conclusion, estimation of the mixed-effects location-scale model allows 

empirical scientists to pose and answer a plethora of research questions that they may 

have never considered in their specific area of research. Indeed, given that the use of this 

model is relatively rare in most fields of study, the purpose of this dissertation was to 

provide empirical scientists with practical information to ensure they have the tools 

necessary to design an appropriate study to answer variability-related questions or 

hypotheses in addition to presenting them with explicit examples of model estimation and 

interpretation. Although this dissertation explores the tip of the iceberg when considering 

the methodological studies that still need to be conducted regarding the mixed-effects 

location-scale model, it provides important initial groundwork for empirical scientists to 

begin confidently and competently using this model in their own area of research. 
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