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a b s t r a c t

This paper investigates the nonlinear dynamics of a vehicle with two flexible flapping

wings. The body dynamics and the wings’ deformation are monolithically grouped into a

single system of equations, with aerodynamics accounted for by a quasi-steady blade

element method. A periodic shooting method is then used to locate closed orbits of this

non-autonomous system, and Floquet multipliers assess the linearized stability about the

nonlinear orbit. This framework is then exposed to a gradient based optimizer, in order

to quantify the role of wing planform variables, wing structure variables, and kinematic

actuation variables in obtaining vehicles with superior open-loop stability characteristics,

and/or low-power requirements.

Published by Elsevier Ltd.

1. Introduction

A recent work by the authors (Stanford et al., 2012) has studied the power-optimal aeroelastic response of a flexible
flapping wing in hover. The wing itself is modeled as a geometrically-nonlinear beam structure, and quasi-steady airloads
are computed using a blade-element method. Parameterizing the wing’s shape and stiffness distribution (as a function of
the spanwise location along the wing), as well as the kinematics used to actuate the wing, the peak power requirements
were minimized using gradient-based optimization, subject to an aerodynamic lift-generation constraint and a series of
stress-based failure constraints. The results demonstrate that substantial decreases in the peak power requirements are
available by properly phasing the energy flow between the inertial kinetic energy rate, the elastic strain energy rate, and
the aerodynamic losses. Optimal tailoring of these energy transfer mechanisms for flapping wings is discussed in great
detail by Tantanawat and Kota (2007).

One deficiency of the framework outlined by Stanford et al. (2012) is the assumption that the root of the wing is pinned
in space, and the flapping kinematics are realized by rotations about this fixed joint. Such an assumption mimics the set-up
commonly found in bench-top experiments (for example, Wu et al. (2010)), but an actual flapping wing MAV may show
relevant interactions between the flight dynamics of a body and the aeroelastic behavior of the flapping wings. The goal of
this work is to discuss numerical methods by which these interactions may be captured, quantify the stability of the
resulting time-periodic system, and introduce these metrics into the optimization process.

If the wing joints of two (or potentially more) flapping wings are attached to an inertial body (fuselage) which is free to
translate and rotate in space, several interesting interactions can occur. The flight dynamics of the body will react to the
unsteady inertial and aerodynamic loads generated by the flapping wings in a nonlinear manner: derivations of these
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equations of motion can be found in work by Sun et al. (2007) and Orlowski and Girard (2011). The motion of the wings
relative to the body is wholly prescribed by the kinematics in this work, but the absolute motion of the wings is a
combination of the kinematics and the body motion. The inertial and aerodynamic loads generated by the wings are thus
altered, closing a feedback loop between the wings and the body. If the wings are considered to be flexible as well,
a strongly-coupled three-field dynamics problem results: body dynamics, wing deformation, and wing aerodynamics
(fluidic state). The aerodynamic modeling used here (Berman and Wang, 2007) is quasi-steady, and so the aerodynamic
terms can be projected onto the rigid and deformational dynamics states, but this will not be possible for higher-fidelity
unsteady fluids tools (e.g. Navier–Stokes). Examples of flight dynamics analysis with flexible flapping wings are given by
Richter and Patil (2010) and by Su and Cesnik (2011).

A periodic shooting method can be used to locate a closed time-periodic orbit of the non-autonomous system (the
flapping frequency, like the kinematics, is prescribed here). This entails forcing the system state (which, in general, will be
a monolithic vector containing the aerodynamic, structural, and body motion unknowns, as well as their time derivatives)
as computed at the end of a flapping cycle to coincide with the prescribed state at the beginning. The general technique is
described by Nayfeh and Balachandran (1995), where a time integration scheme connects the beginning and end of the
flapping cycle, and the required derivative of the latter state with respect to the former is the monodromy matrix, or state-
transition matrix (Johnson, 1980). The eigenvalues of this matrix are the Floquet multipliers: if each multiplier lies within
the unit circle, the system is stable. Here stability implies that perturbations to the trimmed orbit at the beginning of a
flapping cycle will have been found to decay at the end of the cycle, and the flight motion gradually returns to the trimmed
time-periodic orbit (Nayfeh and Balachandran, 1995).

Floquet analysis of bodies with flapping wings is considered by Bierling and Patil (2009), Dietl and Garcia (2008),
Rosenfeld and Wereley (2009), Richter and Patil (2010), and Bolender (2010), where the motion is typically found to be
unstable in an open-loop sense. As the multipliers quantify the stability of the system, they can be introduced into a
design-optimization setting, in order to draw relationships between various design parameters and the resulting stability.
Optimization of Floquet multipliers has been considered by Seyranian et al. (2000) for generic structural systems, Celi
(1999) for rotorcraft, and by the authors (Stanford et al., in press) specifically for flapping wing flight dynamics. This latter
work is limited to rigid wings and kinematic design variables: wing flexibility and a greater variety of design variables are
the contribution of the current work.

It should finally be noted that the process of applying design optimization to a flapping wing system in order to
improve its open-loop stability (by pushing each Floquet multiplier towards the unit circle) is not meant to replace the
eventual inclusion of a closed-loop controller. This work is meant to ascertain the degree to which orbital stability is
affected during the design process, and demonstrate conflicts that arise between this stability and input power
requirements to sustain flight. Open-loop stability may be obtained, in some cases, using the techniques discussed below,
but the resulting system is unable to hold a position (station-keeping) in the presence of any disturbance, or maintain
stability at all when the disturbance is very strong (Stanford et al., in press). Closed-loop control of a general flapping
system can be obtained (see Oppenheimer et al. (2010), for example), and it is expected that a feedback controller can be
included for the specific system used here as well, where linearization occurs about an entire nonlinear orbit (Floquet
multiplier) obtained via a shooting method.

2. Equations of motion

The vehicle under consideration in this work (seen in Fig. 1) operates within a fixed inertial coordinate system
(xi�yi�zi). A second coordinate system is attached to the center of gravity of a rigid fuselage body (xb�yb�zb, located at
point B), and a third coordinate system (xw�yw�zw) is located at the hinge point H. This wing system rotates with respect
to the body as dictated by the commanded kinematics, and specifies the location of the un-deformed wing. The flexible
wing deforms within this system, and is assumed to be clamped at the root (point H).

Fig. 1. Body and flapping wing coordinate systems.
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The attitude and position of the body is defined by

uB ¼ fcB YB FB
g

T
, ir

B ¼ fix
B

iy
B

iz
B g

T
, ð1Þ

where the susbscript (i) indicates that the term is written in the inertial coordinate system, and uB is a collection of three
Euler angles. The angular velocity of the body, written in the body frame, is

bx
B ¼

cos YB
� �

cos FB
� �

sin FB
� �

0

�cos YB
� �

sin FB
� �

cos FB
� �

0

sin YB
� �

0 1

2
666664

3
777775 �

_C
B

_Y
B

_F
B

8><
>:

9>=
>;¼ EbiU _u

B: ð2Þ

The transformation matrix between the inertial frame and the body frame is given by

Tbi ¼

1 0 0

0 cos CB
� �

�sin CB
� �

0 sin CB
� �

cos CB
� �

2
6664

3
7775 �

cos YB
� �

0 sin YB
� �

0 1 0

�sin YB
� �

0 cos YB
� �

2
6664

3
7775 �

cos FB
� �

�sin FB
� �

0

sin FB
� �

cos FB
� �

0

0 0 1

2
6664

3
7775: ð3Þ

The velocity of the body is then written as

i
_rB
¼ i

_xB
i
_yB

i
_zB

n oT
¼ iv

B ¼ TbiUbvB , ð4Þ

where bvB is the velocity written in the body-attached coordinate system. The acceleration of the body is given as

i
_vB
¼ Tbi � b

~xB
� bvBþTbi � b

_vB , ð5Þ

where the tilde operator indicates a skew-symmetric matrix.
The prescribed flapping kinematics of the wing (i.e., attitude of the un-deformed wing with respect to the body) are

governed by three Euler angles uW ¼ fW yW ZW
n oT

, where fW is the azimuthal stroke plane motion, yW is the out-of-

stroke plane deviation, and ZW is the wing rotation (feathering). The angular velocity of the un-deformed wing with

respect to the body (written in the wing frame) is computed as wxW ¼ EwbU _u
W , where Ewb is constructed in a similar

manner to Eq. (2). The transformation matrix between the body frame and the wing frame is given by Twb, which is
constructed in a similar manner to Eq. (3)

Finally, the unsteady deformation of each flapping wing is captured by discretizing the structure into one-dimensional
beam elements, as seen in Fig. 2. Three displacements and three rotations (as measured in the wing system xw�yw�zw)
are computed at each finite element node, and a set of element coordinate systems (xe�ye�ze) follow each beam finite
element as it deforms. The transformation between each of these local systems and the wing system is Tew, which may be
computed with Rodriguez parameters, as demonstrated by Crisfield (1990).

The relevant metrics of the body motion may be grouped into a state vector qB

qB ¼ ir
B

� �T
uB
� �T

bvB
� �T

bx
B

� �T
n oT

: ð6Þ

There are 12 members of this vector, 6 of which are longitudinal (confined to the yb–zb plane in Fig. 1). The structural
deformation of each finite element node (three displacements and three rotations), written in the wing coordinate system,
may also be grouped into state vectors: uR and uL for the right and the left wings, respectively. For longitudinal flight
dynamics, each member of uR will be equal (or equal and opposite) to its counterpart in uL. This work will compute
trimmed periodic orbits in the longitudinal plane only, but Floquet multipliers governing lateral dynamics should be
retained for a stability analysis. To compute these lateral modes, uR and uL need to be considered as separate.

Fig. 2. Deformed and un-deformed wing configurations.

B. Stanford et al. / Journal of Fluids and Structures 38 (2013) 238–254240



The unsteady motion of the body is governed by the following equation:

I
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8>>>>><
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, ð7Þ

or in more compact form as

MB
� _qB
þAB

� qBþPB
¼ RB, ð8Þ

where I is the identity matrix, m is the complete mass of the vehicle (body plus wings), and IB is the inertia tensor of the
body, written in the body coordinate system at point B. The matrix MB is constant, and the matrix AB is a function of the
body dynamics qB. The force and moment vectors PB and RB are highly nonlinear functions of both the body dynamics and
the wing structural dynamics. PF and PM are the forces and moments about the body’s center of gravity due to the inertial
loads induced by the flapping wings

PF ¼
X

wings
fPFB qB, _qB

� �
þPFu qB, _qB

� �
� uþPF _u qB

� �
� _uþPF €u � €ug, ð9Þ

PM ¼
X

wings
PMB qB, _qB

� �
þPMu qB, _qB,u

� �
� uþPM _u qB,u

� �
� _uþPM €u ðuÞ � €u

n o
, ð10Þ

where PFB and PMB reflect the inertial effect of the rigid wings, and the remaining terms are nonlinear couplings between
the body’s motion and the wing’s structural dynamics. The deformation vector u (and its time derivatives) will be either
uRor uL, depending on the wing summation index.

The vectors RF and RM are the forces and moments about the body’s center of gravity due to aerodynamic loads and
gravitational loads

RF ¼m � bgþ
X

wings
RFaero qB, _qB,u, _u, €u

� �n o
, ð11Þ

RM ¼
X

wings
RMgðuÞþRMaero qB, _qB,u, _u, €u

� �n o
, ð12Þ

where bg is the gravitational vector written in the body frame, RMg are moments about the body’s center of gravity due to
gravitational forces (where the moment arm depends on the wing’s deformation u), and RFaero and RMaero are aerodynamic
forces and moments, both of which are highly-nonlinear functions of the vehicle’s total state. Further details concerning
the rigid-wing terms of Eqs. (9)–(12) can be found by Sun et al. (2007) and Stanford et al. (in press), while the terms which
include flexible wing motion are detailed by Richter and Patil (2010) and Su and Cesnik (2011).

Though the interactions between flexible wing motion and rigid body motion are captured in a fully nonlinear manner
(PMu, for example), the deformation of the wing finite element structure (Fig. 2) is assumed to be governed by linear
mechanics in this work. For a given wing, the equations of motion written in the wing frame are

M � €uþ Cgyr qB
� �
þC

� �
� _uþ Kdyn qB, _qB

� �
þKÞ � u¼ F iner qB, _qB

� �
þFaero qB, _qB,u, _u, €u

� �
:

�
ð13Þ

This equation can be written for either the right (uR) or the left (uL) wing, where each term in the matrices and vectors
will be equal (or equal and opposite) to its counterpart in the other wing. M is a consistent mass matrix, C is a structural
damping matrix (proportional to the mass matrix, for this work), and K is a linear stiffness matrix. Cgyris a skew-symmetric
gyroscopic matrix which captures the Coriolis forces, interactions between the deformational velocity _u and the rotation of
the wing frame, which in turn is a function of both the prescribed kinematics as well as the body motion qB. Kdynis a
dynamic stiffness matrix which captures the (typically) softening interaction between the rotating frame and the
deformation.

The vector F iner is the inertial forces due solely to rigid body motions of the wing frame, and Faerois an aerodynamic
force vector. The aerodynamic force vector can be distilled into forces and moments acting at the hinge point H, and
transformed into the body frame using Twb, in order to compute RFaero and RMaero for Eqs. (11) and (12), respectively (where
the moments RMaero must also include the additional moment arm between points B and H in Fig. 1). Aerodynamic effects
are captured using the two-dimensional quasi-steady blade element method formulated by Berman and Wang (2007),
which will be briefly described here. An airfoil (blade element) is established at each finite element in Fig. 2, and based
upon the instantaneous velocity and acceleration of the element (an average of the two nodal values), two aerodynamic
forces and one aerodynamic moment is computed in the deformed element coordinate system (xe�ye�ze), as seen in Fig. 3

dFye

dxe
¼m22 � vze �

_c�rf � G � vze�m11 � aye
�

dFv
ye

dxe
, ð14Þ

dFze

dxe
¼�m11 � vye

� _cþrf � G � vye
�m22 � aze�

dFv
ze

dxe
, ð15Þ
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dMxe

dxe
¼ m11�m22ð Þ � vye

� vze�Ia �
€c�

dMv
xe

dxe
: ð16Þ

The translational velocities vye
and vze , the axial angular velocity _c, the translational accelerations aye

and aze , and the
axial angular accelerations €c represent the total motion of the blade elements (finite elements), written in the deformed
element coordinate system. These values reflect the motion of the body (qB, _qB), the prescribed kinematic motion of the
wings (uW ), and the subsequent structural deformation of the wings ( _u, €u). rf is the density of the fluid, m11, m22, and Ia are
added mass terms, and G is the fluid circulation, given by

G¼�0:5 � CT � c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vye

2þvze
2

q
sinð2aÞþ0:5 � CR � c

2 _c, ð17Þ

where c is the chord length of the element, CT and CR are the translational and rotational force coefficients, and a is the
wing section’s angle of attack. The viscous terms given above are computed by

d

dxe

Fv
ye

Fv
ze

( )
¼ 0:5 � rf � c CD 0ð Þ � cos2 að ÞþCD p=2

� �
� sin2 að Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vye

2þvze
2

q vye

vze

( )
, ð18Þ

dMv
xe

dxe
¼

1

16
� p � rf � c

4 m1 � f þm2 �
_c
��� ���� �

_c, ð19Þ

where CD is the drag coefficient at angles of attack of 0 and p=2, m1 and m2 are dimensionless viscous parameters, and f is
the flapping frequency. The aerodynamic force vector of Eq. (13) must be written in the wing frame, and is computed by
assembling over each finite element (e)

Faero ¼
X

e

0:5Le � T
4
ew

d

dxe

0 Fye
Fze Mxe 0 0 0 Fye

Fze Mxe 0 0
n oT

, ð20Þ

where Le is the length of each finite element, and T4
ew ¼ diagfTew,Tew,Tew,Tewg, which will be a function of the deformation

vector u at each node.
Because the aerodynamic model is quasi-steady rather than unsteady (i.e., the history of the aerodynamics has no

explicit effect upon the system), the aerodynamic terms can be expressed as functions of the body dynamics and the
wing’s structural deformation, via Faero, RFaero, and RMaero. The system behavior is then completely specified by the
simultaneous solution of Eq. (8) (for qB) and Eq. (13) (one each for uR and uL). For unsteady aerodynamics models (such as
finite-state inflow representations, vortex shedding methods, or Navier–Stokes solvers), a three-field approach is required. The
two-field dynamics problem considered here is efficiently solved by combining the two sets of equations in a monolithic manner

_qB

_uR

€uR

_uL

€uL

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
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I

M

I

M

2
6666664

3
7777775

�1 RB
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�AB
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aero� KR
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� u_ R
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� �
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� �

� _uL

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
: ð21Þ

Grouping all of the unknowns into a state vector q, Eq. (21) can be written compactly as

_q ¼ R q, _qð Þ: ð22Þ

This system of equations is solved with time marching, utilizing a trapezoidal rule for the time derivatives. To account
for the strongly-nonlinear dependence of R upon the states q and _q, several Newton–Raphson iterations are conducted
within each time step.

Though a direct higher-fidelity analog to Eq. (21) does not, to the best of the to the authors’ knowledge, exist in the
literature, portions of Eq. (21) have shown adequate comparisons to existing data. The quasi-steady blade element
aerodynamic model is presumably of greatest concern (accuracy-wise). The interested reader is referred to Stanford et al.
(2012) for a comparison of this model to a high-order Navier–Stokes solver in terms of aerodynamic force generation of a

Fig. 3. Blade-element aerodynamic force and moment computations.
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rigid flapping wing pinned at its root. Stanford et al. (in press) compare flight-dynamic pole-placement (described below)
to Navier–Stokes data (from Sun et al. (2007)) for a moving body with two rigid flapping wings, across a range of vehicle
scales. Though the comparisons in both of these studies would indicate an acceptable level of accuracy, there is no
concrete way of knowing whether the design-optimization studies performed below will push the model outside its range
of validity, or whether physical interactions that the optimizer chooses to exploit are low-fidelity artifacts. Clearly, more
research is needed in this area.

3. Periodic shooting and Floquet multipliers

For a given set of initial conditions, g¼ qð0Þ, Eq. (22) can be integrated through a single flapping cycle (of period T), and
the final state will be qðTÞ. If these two states are equal, then the system is moving through a trimmed periodic orbit.
Despite the periodic nature of the prescribed wing kinematics (uW ), this will not be the case in general, and so the periodic
shooting method is utilized to locate the prescribed initial state g that drives the final state qðTÞ to coincide with g.
The general procedure for nonlinear dynamical systems is described by Nayfeh and Balachandran (1995), and will be
briefly described here.

The derivative of q (at any time t40) with respect to g can be computed by time-integrating the equation

@

@t

@q

@g

� 	
¼
@ _q

@g
¼ J �

@q

@g
@q

@g

����
t ¼ 0

¼ I, ð23Þ

where I is the identity matrix, and the Jacobian J, referencing the equations of motion (Eq. (22)), is given by

J ¼ I�
@R

@ _q

� 	�1

�
@R

@q
: ð24Þ

The differential equation for @q=@g is a linear differential equation with time-varying coefficients and multiple right-
hand-sides, and may be time-integrated in conjunction with the original equations of motion for q (Eq. (22)). A vector of
objective functions may be specified as

g ¼ qðTÞ�g¼ 0: ð25Þ

Forcing g ¼ 0 would provide a trimmed hovering motion (station-keeping), which is of concern in this work. Different
expressions for g are required if trimmed forward-flight is desired (Bierling and Patil, 2009), though this is not considered
here. A recurring Newton update loop can be used to locate the initial conditions g that satisfy Eq. (25)

@q

@g

����
t ¼ T

�I

� 	n

� gnþ1�gn
� �

¼ gn, ð26Þ

where n is the iteration number, which continue until gn-0. It is understood that a single iteration of Eq. (26) requires
time integration through an entire flapping cycle.

The matrix of Eq. (26) is singular, however, due to the fact that prescribing the initial position of the body ir
B has no

impact on the problem. The same orbit will be obtained regardless of where in space the vehicle begins. A remedy
suggested by Bierling and Patil (2009) is to replace the two prescribed longitudinal initial conditions (iy

B and iz
B ) with two

kinematic variables, grouped into the vector y (which may be a flap phase and amplitude, for example). The two kinematic
variables y, along with the remaining members of g, are grouped into a vector of control parameters p. It is now desired to
locate the vector p such that Eq. (25) is satisfied. Even though the body positions have been removed from the set of
control variables, they remain in the definition of g: the position at the end of the cycle should coincide with the initial
position (which is simply set to zero).

The new recurrence equation is

@g

@p

� 	n

� pnþ1�pn
� �

¼ gn: ð27Þ

The majority of the matrix in Eq. (27) is composed of @q=@g, but the derivative @q=@y is now needed as well. This term
can be computed by differentiating the equations of motion with respect to the control variables y
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����
t ¼ 0

¼ 0: ð29Þ

Like @q=@g, this linear set of ordinary differential equations for @q=@y may be computed forward in time, in conjunction
with q, and it has two right hand sides, which is the size of y. As y is a collection of parameters, the explicit residual
derivative @R=@y is a known quantity. The value of @q=@y at the final time step (t¼ T) can be used to populate @g=@p.
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Once Eq. (27) has converged (g-0), a trimmed periodic orbit of the system has been located, and the monodromy
matrix (Nayfeh and Balachandran, 1995), or state transition matrix (Johnson, 1980) is defined as

U¼
@q

@g

����
t ¼ T

: ð30Þ

The eigenvalues Li of this matrix are the Floquet multipliers, and the characteristic exponents are defined as
li ¼ ln Lið Þ=T . The periodic system is stable if each Li is located within the unit circle (i.e., the real parts of each li are
negative).

4. Parameterization and optimization

The deforming flapping wing structure seen in Fig. 2 is discretized into N equal-length beam finite elements. Each
element plays two simultaneous roles: it acts as the structural cross-section, as well as the airfoil of each aerodynamic
blade element (in contrast with scenarios where a beam-like spar constitutes structural reinforcement for a larger wing
surface, as in Isogai and Harino (2007)). The dimensions of each rectangular element cross-section can be varied
independently, as seen in Fig. 4. The chord length of each element, ci, acts as both the aerodynamic chord for the blade
element method (namely Eqs. (17)–(19)), as well as the width of the beam structure, and will thus have a strong inertial
and stiffness impact. The thickness of each element, hi, will slightly alter the aerodynamic forces (via the added mass terms
m11, m22, and Ia), and will also have a significant effect upon the wing’s mass and stiffness. These dependencies are
explicit; the coupled nature of the aeroelastic flight dynamics solver will ensure that both chord and thickness distribution
affect each term in Eq. (21) in an implicit manner.

The kinematic flapping motions are assumed to be of the form (Berman and Wang, 2007)

fW
¼

fm

sin�1 Kf
� � sin�1 Kf sinð2pf tÞ

� �
þfo,

yW
¼ ym cos 2pf tþysð Þþyo,

ZW ¼
Zm

tanh CZ
� � tanh CZ sin 2pf tþZs

� �� �
þZo: ð31Þ

The parameter Kf may vary between 0 (sinusoidal waveform) and 1 (triangular waveform), while the parameter CZ
varies between 0 (sinusoidal waveform) and N (step function). Not including the frequency f , ten parameters describe the
three flapping angles in Eq. (31)as a function of time. Two of these parameters must be set aside for the periodic shooting
method

y¼ fm fo

n o
: ð32Þ

The amplitude and offset of the azimuthal stroke plane motion provides the shooting method with enough authority to
force a trimmed orbit (g ¼ 0), a choice made by Richter and Patil (2010) and Bierling and Patil (2009) also.

The remaining 8 kinematic parameters not used in y are set as design variables, which may be grouped with the chord
and thickness variables to form the final design vector

x¼ c1 c2 � � � cN h1 h2 � � � hN Kf ym ys yo Zm Zs Zo CZ
n o

: ð33Þ

The baseline, lower bounds, and upper bounds of these design variables are given in Table 1.

Fig. 4. Chord length and thickness of each finite element along the beam-wing.
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Two optimization problems are considered here. The first attempts to push each Floquet multiplier towards the unit
circle, using a bound formulation

min

x, b b

s:t: :

99Li99rb i¼ 1,. . .,n,

dtipðtÞrdn,

wtipðtÞrwn,

sðtÞrsn,

xminrxrxmax,

8>>>>>><
>>>>>>:

ð34Þ

where the bound b is both an objective function and a design variable. If b decreases below unity in a feasible manner,
then the system achieves open-loop stability. The second constraint stipulates that the minimum separation distance
between the left and the right wing tip always be larger than some threshold dn. Aerodynamic physics that govern
wing–wing interactions and wing–body interactions (i.e., clap-fling) have not been included in the analysis, and so
maintaining a separation of dn should preserve the accuracy of the method. Similarly, the third constraint requires that the
out-of-plane structural tip deflection (as measured in the local wing frame) remain less than wn, in order to minimize the
geometric structural nonlinearities (which have not been included either).

The fourth constraint of Eq. (34) requires that the elastic Von-Mises stresses that develop throughout the wing
structure remain less than some allowable value, and the fifth constraint requires that the design variables lie between the
side constraints given in Table 1. A second optimization problem minimizes the peak power required to actuate both
wings, with no regard to the Floquet multipliers

min

x
max pðtð Þ Þ

s:t: :

dtipðtÞrdn,

wtipðtÞrwn,

sðtÞrsn,

xminrxrxmax:

8>>>><
>>>>:

ð35Þ

The power requirements are given by the following equation:

p¼ dKE=dtþdSE=dtþpaero: ð36Þ

where KE is the kinetic energy of the wing (due to both rigid body and deformational motions), SE is the strain energy of
the beam (due only to deformational motions), and paero is the aerodynamic power.

Both optimization problems (34) and (35) are solved using gradient-based optimization via the method of moving
asymptotes (Svanberg, 1987), with design gradients of the objectives and constraints computed using finite difference
approximations. Analytically-computed derivatives of Floquet multipliers can be obtained (see Stanford et al. (in press), for
rigid flapping wings), but the method becomes less tractable for larger systems. This is because the monodromy matrix U

is itself a derivative (of the final state with respect to the initial state), and so design derivatives of this matrix, required for
the Floquet multiplier derivatives, necessitate second derivatives of the system (e.g., @2R=@q2). For smaller systems, these
higher-derivatives can be computed using finite differences over the vector q; if all required first derivatives are computed
analytically, the process can be labeled ‘‘semi-analytical’’ (Shih et al., 1996). Obviously, this process is not feasible for high-
dimensional state vectors.

5. Results

For this work, a single flapping cycle is broken into 100 time steps, and Eqs. (22), (23), and (29) are integrated in time
using a trapezoidal rule. The periodic shooting method will typically converge (using under-relaxation of Eq. (27)) within
5–20 iterations, depending on the initial guess. The body has an ellipsoidal shape, with a major axis of 0.07 m and a minor
axis of 0.014 m. Two flexible flapping wings are attached to this body, each with a length of 10 cm. Each wing is discretized
into 10 beam elements (N), resulting in 28 possible design variables (Eq. (33)), though subsets of the design vector x are
explored below. The remaining parameters are given in Table 2, where brBH is the distance from the body’s center

Table 1
Baseline values and side constraints for each design variable.

ci (mm) hi (mm) Kf (dimensionless) ym (rad) ys (rad) yo (rad) Zm (rad) Zs (rad) Zo (rad) CZ (dimensionless)

Min. 10 0.2 0.01 �p/4 �p/2 �p/4 �p/2 �p/2 �p/2 0.01

Baseline 25 0.6 0.01 0 0 0 p/4 p/2 �p/2 0.1

Max. 60 2.5 0.99 p/4 p/2 p/4 p/2 p/2 p/2 4
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of gravity to each hinge point, measured in the body frame (B to H in Fig. 1), and mbody is the mass of the elliptical body.
The total mass of the system, m in Eq. (7), is the sum of mbody and the mass of the two wings, where the latter is computed
from the chord ci and thickness hi distribution along the span.

Focusing first on the baseline parameters of Table 1, the convergence of the periodic shooting method is given in Fig. 5.
Eq. (27) converges in 7 iterations, when the norm of g (Eq. (25)) decreases to 10�9. The two kinematic control parameters
grouped into the vector y (fmand fo) are also shown at each iteration. These are only two of many control parameters in p
used to enforce time-periodicity; the initial conditions of the body and wing deformation, g, are not shown here. Each
member of the initial guess p0 is set to zero except fm, which is set to p=3 rad. In order to trim the vehicle, the amplitude
of this azimuthal stroke motion is decreased to 0.593 rad, and the offset fo is dropped to �0.332. The mean stroke motion
is therefore biased towards the rear of the vehicle.

Additional details concerning the convergence to time-periodicity are given in Fig. 6, which shows the longitudinal
body position and attitude (lateral terms are zero, as the flapping is symmetric), and the out-of-plane wing tip deflection
wtip. These are plotted as a function of the azimuthal flapping stroke motion fW , at selected iterations of Fig. 5. It is noted
that the range of this flapping motion changes at each iteration, via the amplitude and phase information in Fig. 5. During
the first iteration, each plotted system degree of freedom, and its first time derivative, begins at 0 when t¼0. This is
because g is set to zero, as noted above. The system state at the end of the flapping cycle (t¼ T) is very different from
the initial state. The body has drifted forward (iy

B ) by 2.45 cm, upwards (iz
B ) by 0.24 cm, and is pitched up (CB) by 16.11.

The structural tip deflection, on the other hand, is nearly time-periodic, but the deformational velocity ( _wtip), is not.
The second iteration of the periodic shooting method is distinctly different from the first, and if under-relaxation is not

used (a factor of 0.8) during these initial iterations, the process will diverge. The dynamic behavior of the third iteration
finally shows some similarity with the final, converged periodic orbit. During this periodic motion, the body oscillates
about the origin through a small orbit, consistently pitched up. The final wing deformation is much smaller than in the first
iteration, with an amplitude of 13.3% of the wing length L. Peak deflection occurs near stroke reversal, which is typically
due to the inertial load vector F iner (Stanford et al., 2012). The deflection hysteresis loop between the downstroke and the
upstroke is related to the damping, either structural (C) or aerodynamic (Faero).

Table 2
Geometric, inertial, and elastic properties of the flapping vehicle.

Parameter Value Parameter Value

brBH {70.015 0.03 0} m f 200 rad/s

mbody 0.01 kg rf 1.225 kg/m3

IB(1,1) 1.6987�10�5 kg m2 CT 1.83

IB(2,2) 1.3067�10�6 kg m2 CD(0) 0.21

IB(3,3) 1.6987�10�5 kg m2 CD(p/2) 3.35

N 10 CR p
Wing length 10 cm m1 0.2

Elastic modulus 70 GPa m2 0

Shear modulus 26.9 GPa sn 350 MPa

Wing density 1000 kg/m3 Wn 2 cm

C 20 �M dn 4 cm

Fig. 5. Convergence of the periodic shooting method for the baseline design.
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Additional information pertaining to the time-periodic dynamics of the system is given in Figs. 7 and 8. The former
shows four snapshots of the vehicle motion, with the wing tip and the body’s center of gravity traced out through the orbit.
The motion of a fictional rigid wing is also shown, to highlight the differences between the commanded wing motion (via
the root kinematics) and the actual motion of the flexible wing. These differences are also noted in Fig. 8, which shows the
motion of both wing tip sections. It should be emphasized that the wing is not actually rigid; if it were, the periodic
shooting method would converge to a different orbit. Furthermore, Fig. 8 shows the absolute motion of the wing, rather
than the motion of the wing relative to the body.

Fig. 6. Body position (iyB
, izB

), attitude (WB), and out-of-plane wing tip deformation (wtip) as a function of the azimuthal flapping stroke motion fW ,

at selected iterations during the shooting method.

Fig. 7. Four snapshots of the time-periodic baseline vehicle dynamics.
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Except for fmand fo, the kinematics for the baseline case are as indicated in Table 1, with the out-of-stroke plane
deviation yW set to zero. Despite this, the stroke plane of Fig. 8 is clearly pitched up, which is due to the attitude of the
vehicle seen in Fig. 6. The flexible wing is also traveling through a figure-8 motion, which is due in small part to a similar
path traveled by the body (whose path is also seen in Fig. 8), and in larger part to the passive deflection of the wing. The
effective stroke of the flexible wing is wider than the fictional rigid wing, which would indicate (and is confirmed below),
that a vehicle outfitted with rigid wings would require a larger stroke amplitude fm to achieve a trimmed state, and thus
expend more power.

The Floquet multipliers Li of this trimmed periodic system are given in Fig. 9, along with multipliers for the periodic
dynamics of a vehicle with rigid wings. Unlike the fictional rigid wing data of the previous two figures, the rigid data in
Fig. 9 is from an entirely separate periodic shooting analysis. The kinematic control parameters are listed above the figure,
where the stroke amplitude needed to trim the rigid system is 18.0% higher than for the flexible system, as expected. The
three multipliers associated with the body position (ix

B , iy
B , and iz

B ) are always equal to unity, for the same reason that
these terms cannot be used to control the periodic shooting method. Perturbing the initial position of the vehicle’s orbit by
some d will just cause the final state to be shifted by this same amount: the fundamental dynamics remain unchanged.

The remaining eight multipliers dominated by the body motion (as opposed to flexible wing motion) can be directly
compared with their rigid counterparts, where the advent of flexibility has improved the stability of the subsidence critical
mode, from 1.167 down to 1.136. This is a lateral mode, whereas the next two largest modes (whose stability has
decreased with flexibility) are oscillatory longitudinal modes. As the largest Floquet multipliers lie outside the unit circle,
the trimmed periodic orbit of this baseline design is unstable, and perturbations from the orbit will amplify over time. The
remaining multipliers of the flexible system are all stable for this case, though instabilities of the flexible wing deformation
are in some cases possible (Rosenfeld and Wereley, 2009). Many eigenvalues lie very close to the unit circle, which
represent high-frequency vibration modes of the beam structures, which are lightly damped. If stiffness-proportional
damping had been used for this work (rather than mass-proportionality), the multipliers of the strongly-damped higher
modes would tend towards zero.

Fig. 8. Time-periodic wing tip motion and body motion of the baseline vehicle.

Fig. 9. Floquet multipliers of the baseline time-periodic system, as well as a vehicle with rigid wings.
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Having assessed the behavior of the baseline design, attention is now turned to design optimization. Six optimal cases
are presented here. The first two consider only chord ci and thickness hi variables to minimize the Floquet multipliers
(Eq. (34)) or the peak power (Eq. (35)). The second two solve these problems only using the kinematic design variables, and
the final two utilize the entire variable vector x of Eq. (33). The performance of these six optimal designs is given in Table 3,
the kinematic motions for each design in Table 4, and the chord and thickness distributions are drawn in Fig. 10 (where the
thicknesses are scaled by a factor of five).

Several observations can be made from this data. Providing the optimizer with more design variables (case 3 as
opposed to cases 1 or 2) improves the performance metrics, in that lower peak power consumption and more stable
vehicles may be obtained. Generally, chord and thickness variables are more successful at decreasing power (i.e., case 1b)
than decreasing the Floquet multipliers (case 1a), and the opposite is true for the kinematic variables (cases 2a and 2b).
It should be noted, however, that though cases 1a and 1b have no explicit design control over the kinematics, they do
implicitly control fm and fo in order to trim the vehicle. Case 1a drops each chord variable ci to its lower bound (10 cm),
and thus the azimuthal stroke amplitude must be increased to 0.851 rad in order to achieve a periodic orbit. Case 1b, on
the other hand, can decrease the power requirement by decreasing the stroke amplitude to 0.333 rad, and therefore must
increase the wing chord towards the tip (where the velocities will be highest) to generate enough aerodynamic lift
for trim.

These trade-offs are not available to the optimizer when only kinematics are provided in cases 2a and 2b, and so other
design strategies must be used. Stability is improved (case 2a) by shifting the azimuthal stroke motion towards the rear of
the vehicle (fo¼�0.656 rad), and providing a moderate amount of out-of-stroke plane deviation yW which is out of phase
with fW (such that the wing tip travels in a loop). The power-optimal design of case 2b is defined by large values of CZ,
where the snap-like rotation at the ends of each stroke correspond to a sharp drop in aerodynamic power.

The periodic dynamics of case 3a are seen in Fig. 11, where chord, thickness, and kinematic variables are all used to
improve the stability. The kinematic variables for this design are very similar to the design of case 2a, though the
magnitudes of both fo and ym are larger. The rearward shift of the flapping motion (fo) and the looped path of the wing tip
(ym) are clearly seen in the figure. The wing’s chord and thickness distribution are very different from the corresponding

Table 3
Stability and peak power consumption of the six optimal designs.

Case Design variables Optimization Max (:Li:) Max (p(t))

Baseline – – 1.136 1306 W/kg

1a ci and hi Eq. (34) 1.045 2189 W/kg

1b ci and hi Eq. (35) 1.146 204.4 W/kg
2a Kinematics Eq. (34) 0.987 1411 W/kg

2b Kinematics Eq. (35) 1.081 698.8 W/kg
3a ci, hi, and kinematics Eq. (34) 0.978 1307 W/kg

3b ci, hi, and kinematics Eq. (35) 1.106 78.51 W/kg

Table 4
Kinematic parameters of the six optimal designs.

Case Control variables Design variables

fm (rad) fo (rad) Kf (dimensionless) ym (rad) ys (rad) yo (rad) Zm (rad) Zs (rad) Zo (rad) CZ (dimensionless)

Baseline 0.593 �0.332 0.010 0 0 0 p/4 p/2 �p/2 0.100

1a 0.851 �0.374 0.010 0 0 0 p/4 p/2 �p/2 0.100

1b 0.333 �0.371 0.010 0 0 0 p/4 p/2 �p/2 0.100

2a 0.638 �0.656 0.037 �0.105 0.175 0.614 0.656 1.107 �1.267 0.252

2b 0.493 �0.383 0.131 �0.011 �0.088 �0.201 0.749 1.385 �0.945 3.219

3a 0.633 �0.754 0.035 �0.204 0.220 0.522 0.682 1.073 �1.517 0.254

3b 0.224 �0.387 0.121 �0.005 �0.094 0.184 0.901 1.517 �1.207 0.402

Fig. 10. Optimal chord and thickness distributions along the wing: thickness is scaled by a factor of 5.
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case 1a, however, where the wing is much thinner, has a larger aspect ratio, and the local chord is largest at mid-span. Due
in part to the large rearward shift of the kinematics, and in part to the large out-of-plane structural deformations (at least
compared to the baseline data of Fig. 7: the wtip constraint is active), the tips of the left and right wing come in close
proximity to each other, and to the body. The dtip constraint is active for this case.

This relationship between wing proximity and stability has also been noted by Stanford et al. (in press), and decreasing
the allowable dn will presumably push the critical Floquet multiplier farther inside the unit circle. The blade-element
aerodynamic tool used here is incapable of correctly capturing these interactions, however. The stress constraint s is
inactive for this and every case considered in this work. This is due to the fact that the tip deflection constraint is a
reasonable surrogate for the elastic stresses, and the former constraint boundary is more conservative than the latter.
Replacing the linear beam model with a nonlinear model would allow the wtip constraint to be removed from the problem
definition, and then the stress constraint is expected to become active, as seen in Stanford et al. (2012).

It can also be seen in Fig. 11 that the body of the vehicle is pitched up (CB) throughout the periodic orbit by roughly 451,
which is much larger than the baseline design (Fig. 7) or any of the power-optimal designs. A similar body attitude is
utilized by case 2a; the Floquet multipliers of both cases are given in Fig. 12. Two significant challenges are inherent in
these optimal solutions to Eq. (34) via the bound method. The first is the fact that some Floquet multipliers permanently
reside on the unit circle (or very close to it), and therefore should not be included in the optimization problem. Therefore,
the eigenvectors of each multiplier are scanned to find modes with substantial rigid-body motion. Eight such multipliers
are then retained for the constraint Lirb, as a vehicle with rigid wings would have 8 relevant modes.

Fig. 11. Four snapshots of the time-periodic vehicle dynamics for case 3a.

Fig. 12. Floquet multipliers of the optimal time-periodic systems of case 2a and case 3a.
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The second problem is mode-switching: improving the stability of a critical Floquet multiplier will typically cause
another multiplier to destabilize, and the identity of the critical mode will switch. This presents a discontinuity in the
design space, impeding the convergence of the gradient-based optimizer. As such, it seems likely that superior designs to
cases 2a and 3a exist in the design space, but could not be located with the tools utilized here. Non-gradient-based
optimizers may be considered, but these methods may struggle with the periodic shooting method. For the gradient-based
approach used here, the initial guess for the orbit control vector p0(Eq. (27)) is set equal to the converged vector from the
previous design iterate. If p0 is instead re-initialized to a vector of zeros, the shooting method can diverge, particularly for
highly-optimal designs. A non-gradient-based optimizer has no logical choice for an initial guess p0.

Despite these issues, the largest Floquet multiplier of the eight modes dominated by rigid-body motion has been
pushed into the unit circle. For case 2a, the largest Li is 0.987, and so this vehicle is stable in an open loop sense. As with
the baseline vehicle in Fig. 9, many multipliers associated with the flexible wing dynamics lie directly on the unit circle in
Fig. 12. Because the multipliers associated with the body motion (ix

B , iy
B , and iz

B ) are still equal to unity, this vehicle is
longitudinally and laterally stable but cannot hold a fixed hovering position in the presence of a disturbance, as will be
seen below. Closed-loop feedback control is needed for station-keeping (Oppenheimer et al., 2010).

Including all of the chord, thickness, and kinematic design variables in case 3a decreases the largest Li of the eight
rigid-body modes to 0.978 (Fig. 12). This vehicle is also (in theory) open loop stable, with stronger damping back to the
trimmed orbit in the presence of disturbances than case 2a. The Floquet multipliers predict a linear stability, an outcome
which is exactly realized for very small disturbances (Nayfeh and Balachandran, 1995). Nonlinearities induced by larger
disturbances to the trimmed orbit can still cause unstable motion, but the lower Floquet multiplier in case 3a (as opposed
to case 2a) should provide a greater robustness with regards to this effect. However, it can be seen in Fig. 12 that a high-
frequency mode (associated with wing torsion) has inadvertently moved outside the unit circle during the case 3a
optimization process. This design is still linearly unstable therefore, the ramifications of which are discussed below.

The problem of unstable flexible wing modes may be remedied by including all of the Floquet multipliers in the bound
constraint of Eq. (34). This substantial increase in the number of eigenvalue constraints severely complicated both the
mode-switching and the mode-identification issues described above, and for this work, prevented any conclusive
convergence of the optimization process. Additional work is needed to clarify and solve these issues.

The trimmed periodic motion of case 3b is seen in Fig. 13. The overall shape of the wing is very similar to that of case 1b, as are
many of the design trends. A low stroke amplitude (fm¼0.224 rad, the smallest of any seen in Table 4) drops the required inertial
power, but the large out-board wing chord, as well as the substantial deformational velocity due to the inertial tip snap, provides
enough aerodynamic lift to satisfy trim requirements. The power requirements are also decreased by the very low thickness at the
wing tip (Fig. 10), which will drop the rotational moment of inertia. The commanded stroke-deviation yW is very small for this
case, but the same passive wing deformation provides the final wing motion with a strong figure-8 pattern. It is finally noted that
the body motion for this case is much smaller than the previous examples, presumably due to the small movement of the wings
and the forces/moments they impart on the body. For this case then, linearizing the dynamics about a fixed point (zero body
movement), and evaluating the resulting eigenvalues may give very similar modes to the nonlinear orbit-based process used here
(comparisons between the two methods are discussed by Bierling and Patil (2009)).

The peak power for this case is two orders of magnitude less than the power requirements of the baseline design, but
the expected tradeoff with stability is evident, where the largest Floquet multiplier of case 3b lies well outside the unit

Fig. 13. Four snapshots of the time-periodic vehicle dynamics for case 3b.
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circle. Additional details of the power consumption for these two cases are given in Fig. 14, where power is normalized by
the mass of the body, and is broken out into components listed in Eq. (36). The kinetic energy rate dKE=dt is broken into a
rigid portion (associated with the kinematics of the fictional rigid wings) and a flexible portion ( _uR

�M � €uR
þ _uL
�M � €uL

),
where the former is the main contributor for the baseline vehicle. The elastic portion of dKE=dt and the strain energy rate
( _uR
� K � uRþ _uL

� K � uL) nearly cancel one another, as may be inferred from the deformational equations of motion (Eq.
(13)), termed ‘‘reactance cancelation’’ by Tantanawat and Kota (2007).

The aerodynamic power of the baseline design is largely positive, with peaks at t=T near 0.5 and 1, which corresponds
to moments of high wingtip velocity in Fig. 7. Contrastingly, the aerodynamic power of the optimal case 3b is the dominant
term, and has substantial negative values. This negative aerodynamic power is due to rapid rotation of the wings at stroke
reversal, via the relatively large value of CZ¼0.402 (these trends are exploited even more by case 2b, where CZ¼3.219).
Peaks in aerodynamic power are offset by near-simultaneous drops in the flexible portion of dKE=dt, and in dSE=dt, termed
‘generative-load exploitation’ by Tantanawat and Kota (2007). These energy trade-offs keep the peak values of the total
power p well below the largest of any individual power term, and it is these peak total values which are exposed to the
optimizer in Eq. (35).

If a long-time simulation is performed for the system dynamics of Eq. (22), and the initial conditions (g) and the
kinematic controls (y) are set equal to the values found in the trimmed control vector p, then the system state will return
to g at the end of each flapping cycle. If the system is unstable, then numerical round-off errors will eventually destabilize
this recurrence. Regardless of the stability, if the initial conditions are perturbed by some vector g, then the state error at
the end of the Nth flapping cycle is (Nayfeh and Balachandran, 1995)

eN ¼ qðNTÞ�g¼UN
� g: ð37Þ

Clearly, the eigenvalues of the monodromy matrix U (Floquet multipliers) dictate whether the error e decays to zero (at
which point the dynamics return to the trimmed orbit) or amplifies. Furthermore, eN is only a linearized trend (albeit
about a fully nonlinear orbit): long-time marching of the system is required to assess whether or not nonlinearities
destabilize the system.

This exercise is conducted in Figs. 15 and 16 for the optimal case 3a, where a perturbation is applied to the initial body
pitch angle CB only: the remaining members of g are zero. The left side of Fig. 15 plots the pitch angle as a function of time

Fig. 14. Input power requirements for the baseline design and the optimal design case 3b.

Fig. 15. Case 3a pitch dynamics in response to an initial perturbation from the trimmed pitch angle.
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through five flapping cycles, for three perturbation values. The right side provides the normalized error in discrete time
through 400 flapping cycles: the pitch angle is sampled at the end of each cycle, compared to the trimmed pitch angle, and
then normalized by the perturbation value. Each of these normalized errors in discrete time begins at unity, and deviations
from the linearized prediction of Eq. (37) are indicative of nonlinear effects.

The linearized error eN is slightly under-damped, and decreases to zero within 250 flapping cycles. After 300 cycles,
a high-frequency unstable oscillation is noted. The former effect is due to the fact that all of the Floquet multipliers with
substantial rigid-body content are within the unit circle, while the latter is because a high-frequency flexible mode is
outside this circle, as seen in Fig. 12. Smaller initial perturbations (0.001 and 0.01 rad) closely follow the initially-stable
trends of the linearized model, but then sharply diverge after 300 flapping cycles. Presumably, this is due to nonlinear
interactions between the unstable torsional wing mode and the body dynamics. Larger perturbations (0.1 rad) cause the
system to diverge almost immediately. Though not shown here, the long-time dynamics of case 2a to a small perturbation
are stable, as all of the pertinent Floquet multiplier lie within the unit circle (Fig. 12).

Additional discrete-time results for case 3a are given in Fig. 16 for the body’s vertical position (iz
B ) error in response to

the same initial pitch perturbations. These errors all start at 0, as the perturbation is solely applied to pitch. The linearized
position error does not settle back to zero, but rather to some negative value. This is as discussed above: the Floquet
multiplier associated with iz

B is equal to unity, and so the open-loop system has no way of forcing this metric back to its
original value: closed-loop control is required. Fully-nonlinear simulations with small pitch perturbations destabilize after
300 flapping cycles, while larger perturbations destabilize much sooner, behavior similar to that of Fig. 15.

6. Conclusions

This paper has developed a framework for analyzing the time-periodic flight and structural dynamics of a small vehicle
with two flexible flapping wings. The kinematics of the wings are prescribed, but the subsequent beam-like passive
deformation of the wings, and the nonlinear motion of the body due to the inertial and aerodynamic wing loading, is not.
This strongly coupled system is assembled into a two-field monolithic system of equations, where the quasi-steady blade
element aerodynamic states are projected onto the wing deformation and body dynamic states. Periodic orbits of this
system are computed with a periodic shooting method, where the initial conditions of the system are identified such that
the final state converges to this initial state. This process is facilitated with the state transition matrix, as well as replacing
two of the position initial conditions with two kinematic control parameters.

The final system is then exposed to a gradient-based optimizer, in order to solve six optimization problems: minimize
the largest flight mechanics eigenvalue (Floquet multiplier) of the system for improved stability, or minimize the peak
power draw during the cycle, for shape/structure variables, kinematic variables, or both. Design derivatives of the
objectives and constraints are found using finite differencing. In general, kinematic variables have greater leverage at
improving the stability, where all the Floquet multipliers can be pushed within the unit circle. Open-loop stability can be
obtained, but closed-loop control is still needed for station-keeping in the presence of a disturbance, or for maintaining
stability in the presence of large disturbances. Chord and thickness variables are more adept at decreasing power
requirements, but both metrics are further improved by including the entire suite of available design variables.
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