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1. Introduction

The sustainability of  the beef  industry is of  vital importance to 
U.S. agriculture. Guaranteeing a good eating experience is a top 
priority for the beef  industry (Boleman et al., 1998; Brooks et al., 
2000; Lorenzen et al., 1993; McKenna et al., 2002; Morgan et al., 
1991). However, the beef  industry has long struggled to produce 
consistently tender products. In order to manage and reduce vari-
ation in tenderness, one must be able to determine this trait effec-
tively and accurately. The beef  industry is therefore in need of  an 
instrument to measure tenderness in a noninvasive manner.

Hyperspectral imaging (HSI) is a combination of  video image 
analysis and near-infrared spectroscopy (NIR), which are the two 
most commonly used technologies for predicting beef  tenderness 
(Konda Naganathan et al., 2008a, 2008b). Near-infrared spectros-
copy works by measuring the relative intensity of  light reflected 
from an object across a broad spectrum of  wavelengths. Hyper-
spectral imaging provides greater detail by providing the same in-
formation on a pixel-by-pixel basis. This technique simultaneously 

collects muscle structure and biochemical information that have 
high degrees of  relationship with beef  tenderness. The muscle 
structure and biochemical properties include muscle pH which in-
fluences activity of  proteolytic enzymes, sarcomere length (an in-
dication of  degree of  muscular contraction at rigor), extent of  pro-
teolysis, amount and insolubility of  connective tissue (collagen), 
and composition (Felter, 2007). This concept was demonstrated 
using a bench-top HSI system (Konda Naganathan et al., 2008a, 
2008b). A canonical discriminant model was developed using im-
age textural features, and it forecasted two tenderness categories—
namely tender and tough—with an accuracy of  94.5% (Konda Na-
ganathan et al., 2008a). Several other studies (Cluff  et al., 2008, 
2013; ElMasry et al., 2012; Wu et al., 2012) have also shown the 
potential of  hyperspectral imaging for beef  tenderness assessment. 
A comprehensive review on the application of  hyperspectral imag-
ing for detecting quality attributes of  red meat, including tender-
ness in beef, can be found elsewhere (Xiong et al., 2012).

Most of  the HSI systems used for beef  tenderness prediction 
are off-line systems that require a one-inch thick steak to be excised 
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Abstract
A prototype on-line acousto-optic tunable filter (AOTF)-based hyperspectral image acquisition system (λ = 450–
900 nm) was developed for tenderness assessment of  beef  carcasses. Hyperspectral images of  ribeye muscle on sta-
tionary hanging beef  carcasses (n = 338) at 2-day postmortem were acquired in commercial beef  slaughter or packing 
plants. After image acquisition, a strip steak was cut from each carcass, vacuum packaged, aged for 14 days, cooked, 
and slice shear force tenderness scores were collected by an independent lab. Beef  hyperspectral images were mo-
saicked together and principal component (PC) analysis was conducted to reduce the spectral dimension. Six different 
textural feature sets were extracted from the PC images and used in Fisher’s linear discriminant model to classify beef  
samples into two tenderness categories: tender and tough. The pooled feature model performed better than the other 
models with a tender certification accuracy of  92.9% and 87.8% in cross-validation and third-party true validation, re-
spectively. Two additional metrics namely overall accuracy and a custom defined metric called accuracy index, were 
used to compare the tenderness prediction models.
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from the carcass to predict tenderness. However, the beef  indus-
try does not want to excise one-inch ribeye steak from each car-
cass for tenderness prediction as it is very expensive and degrades 
the value of  that primal cut. The industry wants an instrument that 
can image the ribeye exposed on a ribbed carcass on-line. There-
fore, the first objective of  this study was to develop a prototype 
on-line acousto-optic tunable filter (AOTF)-based HSI system for 
acquiring hyperspectral images of  ribeye muscle on hanging beef  
carcasses in commercial beef  packing plants. The AOTF HSI sys-
tem can acquire hyperspectral images of  the ribeye muscle without 
the need to move the ribeye muscle as in the case of  dispersive HSI 
systems, such as spectrograph-based HSI systems. The AOTF HSI 
system can be converted to a multispectral imaging (MSI) system 
easily by programming it to acquire only select wavelength images 
for faster image acquisition and analysis.

The hyperspectral image analysis method contains the follow-
ing steps: (1) image calibration, (2) region-of-interest (ROI) selec-
tion, (3) spectral dimensionality reduction, (4) image feature ex-
traction, (5) image feature selection, and (6) tenderness prediction 
model development (Konda Naganathan, 2011; Subbiah et al., 
2012, 2014). Of  these steps, image feature extraction is an impor-
tant step, as image textural features have been identified as po-
tential indicators of  beef  tenderness (Li et al., 1999, 2001). Even 
though a number of  textural feature extraction algorithms have 
been tested for beef  tenderness prediction using RGB images 
(Jackman et al., 2008), only gray level co-occurrence matrix and 
wavelet features have been tested in the hyperspectral image do-
main for beef  and pork tenderness evaluation (Barbin et al., 2013; 
Konda Naganathan et al., 2008a, 2008b). Therefore, the second 
objective of  this study was to test various textural feature extrac-
tion algorithms for beef  tenderness prediction.

Hundreds of  textural features can be extracted from a hyper-
spectral image because it usually contains hundreds of  tonal im-
ages, each representing a wavelength. When such a large number 
of  features are used to predict one outcome, in this case tender-
ness, chances of  developing an over-fitted tenderness prediction 
model are very high. An over-fitted model performs exceptionally 
well for a data set that was used to build the model. When this over 
fitted model is evaluated using a new data set, it fails drastically. 
One way to test whether or not a tenderness prediction model is 
over fitted is to implement true validation of  the model using a 
new data set. So, the third objective of  this study was to conduct 
a third-party validation to evaluate the accuracy of  the hyperspec-
tral imaging system.

In summary, the objectives of  this study were to:
(1) develop a prototype on-line acousto-optic tunable filter 

(AOTF)-based hyperspectral imaging system for acquiring 
images of  the ribeye muscle on hanging beef  carcasses in 
commercial beef  packing plants,

(2) develop methods to predict beef  tenderness from hyper-
spectral images; in particular, compare different textural 
feature extraction algorithms for their usefulness in beef  
tenderness assessment, and

(3) conduct a third-party true validation of  the AOTF system 
for beef  tenderness prediction.

2. Materials and methods

2.1. Prototype on-line hyperspectral image acquisition system

A prototype on-line AOTF HSI system (Figure 1) was designed 
and fabricated to collect reflectance images of  ribeye muscle (lon-
gissimus dorsi) on hanging beef  carcasses in commercial beef  pack-
ing plants. The system consisted of  a camera module, a radio fre-
quency (RF) unit (Model: 150-10DFS-16X1, ChromoDynamics,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lakewood, NJ), and a computer (Acer Aspire T135 equipped with 
a 2.6 GHz AMD dual core processor, and 2 GB of  RAM), and 
mounted on an adjustable-height mobile console.

2.1.1. Camera module
The camera module included an Andor iXON camera (Model: 

DU-885k-CSO-#VP, Andor, South Windsor, CT.), an AOTF op-
tical head (Model: HSi-300, ChromoDynamics, Lakewood, NJ), 
a lens (Model: 24 mm f/2.8D AF, Nikon Inc., Melville, NY), and 
a custom-built periscope assembly. The AOTF optical head had a 
spectral sensitivity in the visible-near infrared (VNIR) region rang-
ing from 450 to 900 nm and had a spectral resolution of  2 nm at 
600 nm and 4.2 nm at 900 nm. In the AOTF HSI system, spec-
tral resolution is a function of  wavelength. Therefore, the system 
had different spectral resolutions at different wavelengths. The 
Andor iXON camera is an ultrasensitive high performance scien-
tific camera with a 2D EMCCD sensor array with a resolution of  
1004 × 1002 pixels. However, a smaller rectangular field of  view 
was sufficient to completely cover beef  ribeye muscle. Therefore, 
an image size of  600 × 1000 pixels was found sufficient to cap-
ture the entire beef  ribeye muscle; so, the rest of  the pixels were 
cropped out during image acquisition to reduce the image data 
size. Additionally, the Andor camera had a frame rate of  31.4 
frames per second with a quantum efficiency of  65% at 600 nm. 
The Nikon lens had a focal length of  24 mm and a maximum ap-
erture of  2.8. The RF unit sent a radio frequency electronic signal 

Figure 1. Schematic of  the prototype on-line acousto-optic tunable filter 
(AOTF)-based hyperspectral imaging system (HSI). Parts: (1) camera mod-
ule, (2) radio frequency unit, (3) uninterrupted power supply, (4) computer, 
(5) monitor, (6) height-adjustable mobile console, (7) vertical tower, (8) 
cantilever, (9) tool balancer, (10) tension-adjustable retractable cable, (11) 
camera, (12) acousto-optic tunable filter, (13) lens, (14) locating plates, (15) 
periscope assembly that houses a mirror and light bulbs, and (16) handle.
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to the AOTF optical head and based on the frequency of  the sig-
nal, the AOTF optical head controlled which wavelengths of  light 
were allowed to the camera.

2.1.2. Periscope assembly
In beef  packing plants, the ribeye muscle is exposed by mak-

ing a cut between the 12th and 13th rib of  each beef  carcass. The 
ribbing process separates the hind and fore quarters of  a beef  car-
cass with a gap 20–25 cm at the dorsal end. To accommodate this 
size limitation, a periscope-type design was used in building the 
system. The periscope assembly was a part of  the camera module 
and comprised of  a mirror, two tungsten halogen bulbs (Model: 
EZK 12 V, 150 W, Philips), and locating plates. A periscope design 
was employed so that the system would not be obstructed by the 
hindquarter of  the carcass, which is directly above the exposed ri-
beye. A mirror was positioned at a 45° angle, so that the reflected 
signal from the beef  ribeye would be directed at a 90° angle onto 
the AOTF optical head. The distance of  the mirror from the lens 
was optimized and fixed to cover a field of  view (FOV) of  size 
13 cm × 18 cm that would cover the entire ribeye muscle. In order 
to provide uniform lighting, diffusers were placed in front of  the 
bulbs. The purpose of  the locating plates was to firmly and posi-
tively hold the camera module onto the exposed portion of  the car-
cass during image acquisition.

2.1.3. Mobile console
The computer, the RF unit, and an uninterrupted power sup-

ply (UPS) unit were placed in the console (Figure 1). It was also 
equipped with a vertical tower, a cantilever, and a tool balancer. 
One end of  the cantilever was attached to the vertical tower and 
the other end was equipped with a tool balancer. This tool balancer 
had a retractable, tension-adjustable cable and provided the facility 
to operate at a preset height. The camera module was connected to 
the tool balancer cable through a snap-style clip. The tool balancer 
bore the weight of  the camera module and provided ease of  han-
dling. It also placed the camera module at approximately the same 
height as the exposed ribeye on a hanging carcass. The cantilever 
provided the ability to image carcasses on two adjacent rails with-
out moving the mobile console, while stationing the mobile con-
sole between the two rails. In addition, the console was equipped 
with gas springs at its bottom to adjust its height. During transport, 
the console was lowered, but during operation, it was kept in a 
raised position. In summary, this design allowed portability, mov-
ing the system from plant to plant, and mobility within the plant. 
The system power was backed up with an UPS unit to safeguard 
the system from power surge and failure.

2.2. Samples

Data were collected in two regional beef  packing plants over a pe-
riod of  three days. A total of  338 beef  carcasses were imaged af-
ter 36–48 h of  postmortem. In order to have tenderness variation in 
the sample population, beef  carcasses representing the USDA qual-
ity grades of  Prime, Choice, Select, and Standard were used. The 
USDA quality grades were assigned by a trained USDA grader fol-
lowing the USDA beef  carcass grading standards (USDA, 1997). 
The selected carcasses were railed off  for image acquisition.

2.3. Hyperspectral image acquisition

Figure 2 demonstrates how the prototype on-line AOTF HSI sys-
tem was used to acquire an image of  the ribeye muscle on a hang-
ing beef  carcass in a commercial beef  packing plant. An integra-
tion time of  35 ms, a gain factor of  2, and a band interval of  5 nm 
were used as imaging parameters. This setup provided 91 bands 
between 450 nm and 900 nm. The camera module of  the system  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
was placed on the exposed ribeye muscle so that the camera cov-
ered the entire longissimus dorsi muscle. The camera module was 
moved laterally in such a way that the locating plates came in firm 
contact with the hanging carcass and provided a steady setup to 
avoid shaking of  the camera module during image acquisition. Af-
ter the firm placement, the camera was triggered to acquire a hy-
perspectral image. It took approximately four seconds to acquire 
one hyperspectral image of  the beef  ribeye muscle.

In addition to the beef  images, dark and white reference im-
ages were acquired at approximately 45–60 min intervals. The ref-
erence images were used to calibrate the beef  images. The white 
images were collected using a 99% spectralon plate (Labsphere, 
North Sutton, NH), whereas the dark images were collected by 
closing the camera lens with a cap. The size of  the spectralon plate 
was 13 cm × 13 cm, which did not cover the entire imaging FOV. 
Therefore, two white reference images, one covering the bottom 
half  of  the FOV and the other covering the top half  of  the FOV, 
were acquired. The two white reference images were merged by 
averaging the overlapping regions and a combined white reference 
image size 13 cm × 18 cm was created.

2.4. Reference tenderness scores and carcass traits

Carcass characteristics such as marbling, ribeye area, and the 
USDA quality and yield grades were collected. The carcass char-
acteristics were estimated by a USDA meat grader following the 
USDA grading protocols (USDA, 1997). After imaging the ribeye 
of  the hanging beef  carcasses, strip loin steaks were cut from the 
carcasses and vacuum packaged. All strip loin steaks were aged for 
14 days in refrigerated conditions (not frozen) at 2 °C by following 
a standard protocol (AMSA, 1995). Immediately after the aging 
period, the steaks were cooked and slice shear force (SSF) values 
were collected by an independent third-party lab following the pro-
cedures explained by Shackelford et al. (1999). The samples having 
SSF values greater than 245.2 N (Lorenzen et al., 2009) were con-
sidered as tough and the rest were classified as tender. Within each 
day of  sample collection, the samples were sorted based on the 
SSF values and the carcasses were alternately assigned for train-
ing and validation to ensure that the tenderness distribution within 
each data set was similar. The SSF values pertaining to the train-
ing set were shared with the system provider for developing ten-
derness calibration equations. The SSF values pertaining to the 
validation dataset were sequestered and the third-party lab kept it 

Figure 2. Acquiring image of  beef  ribeye using the prototype on-line 
acousto-optic tunable filter (AOTF)-based hyperspectral imaging system 
(HSI).
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with themselves for validating the tenderness predictions assigned 
by the system.

2.5. Hyperspectral image processing

Image calibration and processing algorithms were conducted in 
the lab using ENVI 4.8 (ITTVIS, Boulder, CO), and MATLAB 
7.1 (The MathWorks Inc., Natick, MA) with Image Processing, 
Wavelet, and Statistics Toolboxes. A flowchart showing the differ-
ent steps of  image processing is shown in Figure 3.

2.5.1. Image calibration and region-of-interest (ROI) selection
Calibrated beef  reflectance images were obtained by subtract-

ing the dark image and dividing with the dark-subtracted white im-
age (Figure 3). Even after calibrating the beef  images, some bright 
spots at the middle of  the image and dark spots at the top and 
bottom portions of  the image remained due to uneven illumina-
tion. Lighting variation was more predominant in the vertical di-
mension as compared to the horizontal dimension of  the image. 
Therefore, the cross-track illumination correction function (ENVI, 
2014) available in ENVI was used to reduce the lighting variations 
along the vertical dimension of  the image. The effects of  uneven 
illumination were minimized, after implementing the illumina-
tion correction. After calibration, a region-of-interest (ROI) of  size 
180 × 400 pixels (28.8 × 64 mm) was manually selected within the 
ribeye muscle area. All subsequent image processing steps were 
performed on these ROI hyperspectral images.

2.5.2. Mosaic principal component analysis
Hyperspectral images are collected at very narrow wavelength 

intervals that result in redundant (or correlated) information in 
adjacent (wavelength) images. One of  the methods to reduce the 
dimensionality of  a hyperspectral image is principal component 
analysis (PCA). PCA determines principal component (PC) im-
ages, such that they explain maximum variation of  the original 
hyperspectral image. In mosaic PCA, all the hyperspectral im-
ages of  the training set were mosaicked (assembling images next 
to each other in a systematic manner, similar to an image mon-
tage) together and the resulting mosaicked image was subjected 
to the PCA procedure, and loading vectors were obtained (Konda 
Naganathan, 2011; Subbiah et al., 2014). This method explains 
both within-sample and between-sample variations (Konda Naga-
nathan, 2011; Subbiah et al., 2014). The first three principal com-
ponents (PC) explained over 99% of  the variation of  the origi-
nal image. Therefore, three PC images (Figure 4) were created for 
each hyperspectral image by multiplying the first three loading vec-
tors with the hyperspectral images. Additional analyses were per-
formed on the PC band images.

2.5.3. Feature extraction
One of  the objectives of  this study was to extract different hy-

perspectral image feature sets and compare their relative perfor-
mances in predicting beef  tenderness. Even though some of  these 
feature sets have been evaluated already in the RGB image domain 
for beef  tenderness, only a few feature sets such as gray level co-oc-
currence matrix features and wavelet features, have been evaluated 
in the hyperspectral image domain especially for beef  and pork 
tenderness prediction (Barbin et al., 2013, Konda Naganathan et 
al., 2008a and Konda Naganathan et al., 2008b). Therefore, six 
different sets of  features were obtained from the hyperspectral im-
ages: (1) descriptive statistical features (DSF), (2) wavelet features 
(WF), (3) gray level co-occurrence matrix features (GLCMF), (4)  
Gabor features (GF), (5) Laws features (LF), and (6) local binary 
pattern features (LBPF). An additional analysis scenario, pooled 
features (PF), was also created by pooling all the features. These 
features sets provided a diverse set of  features. The wavelet and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gabor features are joint spatial-frequency features, whereas the 
other features are spatial features. The PC images were processed 
by the feature extraction algorithms written in MATLAB (The 
MathWorks Inc., Natick, MA).

2.5.3.1. Descriptive statistical features (DSF) — Six descrip-
tive statistical features: mean, standard deviation, second moment, 
entropy, skewness and kurtosis, were extracted from each PC im-
age. A total of  18 descriptive statistical features (3 PC images × 6 
descriptive features per PC image) were extracted. These features 
explained some of  the following image attributes: average gray-
level value, dispersion of  the gray-level values, uniformity, infor-
mation content, symmetry or asymmetry, and distribution.

2.5.3.2. Wavelet features (WF) — In this analysis, symmet-
ric Daubechies 4 wavelet was used as the mother wavelet because 
it was shown to perform better than the other mother wavelets for 
predicting beef  palatability (Jackman et al., 2009). Four decom-
position levels were used. At each decomposition level, the input 
PC image was decomposed into one low frequency approximation 
image and three high frequency detail images, one in each orien-
tation – horizontal, vertical and diagonal. The detail images were 
averaged to get rotationally invariant results (Subbiah, 2004). The 
approximation image became the input image for the next level of  
decomposition. For each PC image, five features namely four en-
ergy features (Subbiah, 2004) from the Level-1 to Level-4 detail im-
ages and one energy feature from the Level-4 approximation im-
age, were computed. A total of  15 wavelet features were extracted 
(3 PC images × 5 descriptive features per PC image).

2.5.3.3. Gray-level co-occurrence matrix features (GLCMF) 
— On the PC images, gray-level co-occurrence matrix (GLCM) 
analysis with g = 256, d = 1 and θ = {0°, 45°, 90°, 135°} was con-
ducted for extracting image texture features ( Konda Naganathan 
et al., 2008a and Li et al., 1999). The GLCM procedure produced 
four textural features: contrast, correlation, entropy and homoge-
neity, for each PC image. A total of  12 GLCM features were ex-
tracted (3 PC images × 4 GLCM features per PC image).

Figure 3. Flow chart showing different image processing steps.
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2.5.3.4. Gabor features (GF) — The algorithm for the Gabor 
filter described in Manjunath and Ma (1996) was implemented. 
Gabor filter design requires four parameters: number of  scales (S), 
number of  orientations (K), center frequencies along the horizon-
tal axis (Ul), and vertical axis (Uh). Gabor energy was calculated by 
using the parameters: S = 4, K = 6, Ul = 0.05, and Uh = 0.4 for the 
Gabor filter ( Subbiah, 2004). Images from all orientations were 
averaged to obtain rotation invariant results. For each PC image, 
four energy values from the scale images were computed. A total 
of  12 Gabor features were extracted (3 PC images × 4 Gabor fea-
tures per PC image).

2.5.3.5. Laws features (LF) — The algorithm developed by 
Laws (1980) was used to compute these features. This algorithm 
determines image texture by evaluating average gray level (L), 
edges (E), spots (S), ripples (R), and waves (W) in an image. These 
measures are derived from five simple vectors: L5 = [1, 4, 6, 4, 1], 
E5 = [–1, –2, 0, 2, 1], S5 = [–1, 0, 2, 0, –1], R5 = [1, –4, 6, –4, 1] 
and W5 = [–1, 2, 0, –2, –1]. Mutual multiplication of  these vec-
tors results in 25 matrices, each of  size 5 × 5, known as Laws 
masks. These masks form 10 pairs of  transposed masks such as 
E5L5 mask and L5E5 mask. The PC images were convolved with 
each of  the 25 Laws masks, and 25 different Laws or intermediate 
images were created. Because of  the non-zero mean characteristic, 
the L5L5 image was used to normalize the other 24 images. Also, 
the 10 transposed image pairs were added together to get 10 rota-
tion invariant images. The other 4 images were multiplied by 2 to 
have the same scale as the rotation invariant images. For each PC 
image, this analysis produced 14 different Laws images and energy 
values of  these images were computed. A total of  42 Laws features 
were extracted (3 PC images × 14 Laws features per PC image).

2.5.3.6. Local binary pattern features (LBPF) — The algo-
rithm described in Ojala et al. (1996) was used to extract local bi-
nary pattern features. These features are considered robust because 
they are not affected drastically by image variations caused by non-
uniform illumination, rotation, scaling, and viewing angle (Ojala 

et al., 1996). Three different neighborhood configurations, charac-
terized by three different radii (1, 2, and 3 pixels) and 8 sampling 
points, were used. Two intermediate images namely LBP image 
and contrast image, were created. First a binary code image was 
created by thresholding the neighborhood by the gray value of  its 
center. Then the binary code image was multiplied by a standard 
weight image to create an LBP code image. The gray level value of  
the center pixel in the LBP image was obtained by summing up the 
LBP code image. Similarly, the contrast image values were com-
puted by subtracting the average of  the gray levels below the cen-
ter pixel from that of  the gray levels above (or equal to) the cen-
ter pixel. For each PC image, three LBP images and three contrast 
images, one for each radius, and six descriptive statistical features 
were computed from each LBP and contrast images. A total of  108 
LBP features were extracted (3 PC images × 6 intermediate images 
per PC image × 6 LBP features per intermediate image).

2.6. Feature selection and fisher’s linear discriminant (FLD) models

Using each of  the feature sets mentioned above, seven different 
Fisher’s linear discriminant (FLD) models were developed (John-
son, 1998). In addition to these image features, marbling was also 
considered as one of  the features as it is shown to have a relation-
ship with tenderness (Jeremiah, 1996). Prior to FLD modeling, 
a stepwise feature selection (STEPDISC procedure in SAS) was 
followed to identify image features that have the most tenderness 
discrimination power. A p-value of  0.15 was used to test the sig-
nificance level of  a feature during both forward addition and back-
ward elimination. The developed FLD models were evaluated us-
ing leave-one-out cross-validation and third-party true validation.

2.7. Evaluation metrics

Overall accuracy (Equation (1)) is a traditional metric commonly 
used to evaluate classification models. Even though it is useful in 
other classification problems, it may not adequately explain the 
performance or usefulness of  a beef  tenderness prediction model 

Figure 4. First three principal component (PC) images.
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in imbalanced dataset such as the one collected in this study (more 
than 80% of  the samples were tender in this study). Therefore, a 
2 × 2 confusion matrix was first generated based on the actual 
and predicted tenderness classes or categories – tender and tough, 
and then four different accuracy values namely tender identifica-
tion accuracy, tough identification accuracy, tender certification 
accuracy, and tough certification accuracy (Equations (2–5)), were 
computed. Of these accuracy measures, the tender certification ac-
curacy is the most useful measure for the beef  industry for making 
tenderness marketing claims. The tough identification accuracy is 
also equally important because any misclassification tough sam-
ples as tender affects the tenderness marketing claim. Therefore, 
a new metric called accuracy index (Equation (6)) was developed 
by weighting the tender certification accuracy and tough identifi-
cation accuracy more (twice) than the other two accuracy mea-
sures. For comparing the tenderness prediction models, the tender 
certification accuracy, overall accuracy, and accuracy index val-
ues were used.

Overall Accuracy (OA) 

            
=

 Number of  correctly predicted tender and tough samples

Total number samples                                (1)

Tender Certification Accuracy (TECA) 

            
=

 Number of  correctly predicted tender samples

Total number of  predicted tender samples                        (2)

Tough Identification Accuracy (TOIA) 

            
=

 Number of  correctly predicted tough samples

Total number of  true tough samples                          (3)

Tough Certification Accuracy (TOCA) 

            
=

 Number of  correctly predicted tough samples

Total number of  predicted tough samples                          (4)    

Tender Identification Accuracy (TEIA) 

            
=

 Number of  correctly predicted tender samples

Total number of  tender samples                               (5)  

Accuracy Index (AI) 

= 1/6 [TEIA + 2 × TOIA + 2 × TECA + TOCA ] × 100  (6)

3. Results and discussions

3.1. Adaptability

The prototype on-line system successfully acquired images of  the 
ribeye muscle on hanging beef  carcasses in multiple commercial 
beef  packing plants. The periscope assembly of  the system fit well 
within the ribbed opening of  beef  carcasses (Figure 2). In this re-
spect, the system did not demand any change in the existing pro-
duction practices for image acquisition. In addition, the time re-
quired to acquire a hyperspectral image of  the ribeye muscle was 
four seconds, which is below the current rail speed (4–7 s) of  a 
beef  production facility. However, image acquisition was per-
formed on stationary beef  carcasses. In an ideal embodiment, im-
age acquisition needs to be performed on carcasses moving on rails 
with a lighter and compact system.

3.2. Samples

Of the 338 samples, there were 277 tender samples (82%) and 61 
tough samples (18%). Within the training set of  164 samples, 133 
samples (81.1%) were in the tender category and the remaining 31 
samples (18.9%) were in the tough category. Similarly, of  the 174 
samples in the validation set, 144 samples (82.8%) were in the ten-
der category and the remaining 30 samples (17.2%) were in the 
tough category.

A histogram showing the distribution of  SSF values or tender-
ness of  the beef  samples is provided in Figure 5. In addition, Table 
1 presents the SSF or tenderness distribution of  samples seques-
tered based on the USDA quality grades. The USDA Choice and 
Select samples represented 45.7% and 48.8%, respectively, of  the 
total sample population and together they occupied 94.5% of  the 
sample population. This distribution closely matched the one re-
ported in the National Beef  Quality Audit (McKenna et al., 2002). 
The percentage of  the tough samples in the USDA Choice and Se-
lect category were 10.7% and 26.3%, respectively. George et al. 
(1999) reported the odds of  obtaining a slightly tough or tougher 
rating for supermarket beef  was 20–25% for USDA Choice and 
Select-grade strip steaks, respectively. For the data collected in this 
study, the odds of  obtaining tough beef  remained almost the same 
in the USDA Select grade, and were reduced by half  in the USDA 
Choice grade. The USDA Select grade samples had higher SSF 
values compared to that of  Choice grade.

3.3. Performance of  the tenderness prediction models

The tenderness prediction results including the number of  cor-
rectly predicted samples, number of  misclassified samples, and 
evaluation metrics, for the various models are presented in Ta-
ble 2. The pooled feature model had the highest tender certifica-
tion accuracy, overall accuracy, and accuracy index value in both 
the cross-validation and third-party true validation. In cross-vali-
dation, the pooled feature model predicted a total of  112 samples 
as tender and out of  these samples, 104 samples were true tender 
based on the measured SSF values. Similarly, 115 of  the 131 pre-
dicted tender samples were true tender in third-party true valida-
tion. In other words, when the pooled feature model predicted a 
sample as tender, it was in fact tender for 92.9% and 87.8% accu-
rate as per cross-validation and third-party true validation, respec-
tively. The overall accuracy of  the pooled feature model was 77.4% 
and 74.1% in cross-validation and third-party true validation, re-
spectively. In cross-validation, it correctly identified 104 of  the 133 
true tender samples and 23 of  the 31 true tough samples. In the 
third-party true validation, it correctly identified 115 of  the 144 
true tender samples and 14 of  30 the true tough samples.

In a study funded by the National Cattlemen’s Beef  Associa-
tion (NCBA), Lorenzen et al. (2009) evaluated tenderness predic-
tion instruments including the BeefCam and a spectroscopic sys-
tem. For comparing the results of  the NCBA study with that of  
this study, the accuracy index values of  the BeefCam and spectro-
scopic systems were computed using the Equation (6) described 
earlier. In third-party true validation, the Beefcam and spectros-
copy systems yielded accuracy index values of  53.9% and 58.3%, 
respectively. The accuracy index of  the prototype on-line hyper-
spectral imaging system presented in this study was 76.1% in cross-
validation and 63.6% in third-party true validation based on the 
pooled feature model.

The Laws feature model followed by the wavelet feature model 
predicted tenderness accurately next to the pooled feature model. 
The other models also had comparable accuracy metrics. Only a 
modest improvement in AI value was obtained when using pooled 
features because the image features had a good correlation within 
and between feature sets. Also, pooling the features increased the 
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ratio of  number of  features to samples, which may have affected 
the performance of  the feature selection algorithm.

The number of  features used to build tenderness models ranged 
from three to eight. For example, the pooled feature model used a 
total of  eight features – seven image features and marbling – in the 
tenderness classification equation. The seven image features in-
cluded one descriptive statistical feature, one wavelet feature, three 

Laws features and two local binary pattern features. Also, three of  
the seven features were computed from PC1 images, whereas the 
remaining four image features were computed from the PC3 im-
ages. These feature values were slightly higher for tender samples 
compared to those of  tough samples. The performances of  these 
models in cross-validation and third-party true validation were 
similar, which confirmed that the models were robust and not over 

Figure 5. Distribution of  the slice shear force (SSF) values or tenderness of  the beef  samples.

Table 1. Distribution of  the measured slice shear force values or tenderness based on the USDA quality grade.

USDA quality	 No. of 	 No. of  true	 No. of  true	 Slice shear force (N)

grade	 samples	 tendera samples	 toughb samples	 Minimum	 Maximum	 Mean	 Median	 Standard deviation

Choice	 75	 67	 8	 118.7	 350.1	 193.4	 184.4	 42.4
Select	 80	 59	 21	 117.7	 393.2	 213.6	 206.9	 58.0
Standard	 9	 7	 2	 108.9	 338.3	 204.9	 185.3	 76.5
Total	 164	 133	 31	 108.9	 393.2	 203.9	 191.2	 53.2

a. Slice shear force (SSF) ≤ 245.2 N ; b. Slice shear force (SSF) > 245.2 N.

Table 2. Comparison of  beef  tenderness prediction models developed using different hyperspectral image feature sets.

			   Classification table					   

			   True tender	 True tender	 True tough 	 True tough	  
		  No. of	 predicted as	 predicted as	 predicted as	 predicted as  
Models	 Feature set	 features	 tender	 tough	 tender	 tough 	 TECA	 OA	 AI

Leave-one-out cross-validation
Model 1	 DSF	 7	 99	 34	 12	 19	 89.2	 72.0	 68.5
Model 2	 WF	 4	 90	 43	 10	 21	 90.0	 67.7	 69.3
Model 3	 GLCMF	 3	 95	 38	 10	 21	 90.5	 70.7	 70.6
Model 4	 GF	 5	 98	 35	 13	 18	 88.3	 70.7	 66.7
Model 5	 LF	 6	 100	 33	 10	 21	 90.9	 73.8	 71.9
Model 6	 LBPF	 7	 96	 37	 11	 20	 89.7	 70.7	 69.3
Model 7	 PF	 8	 104	 29	 8	 23	 92.9	 77.4	 76.1

Third-party true validation
Model 1	 DSF	 7	 109	 35	 21	 9	 83.8	 67.8	 54.0
Model 2	 WF	 4	 95	 49	 15	 15	 86.4	 63.2	 60.4
Model 3	 GLCMF	 3	 92	 52	 21	 9	 81.4	 58.0	 50.2
Model 4	 GF	 5	 99	 45	 17	 13	 85.3	 64.4	 58.1
Model 5	 LF	 6	 108	 36	 17	 13	 86.4	 69.5	 60.2
Model 6	 LBPF	 7	 103	 41	 19	 11	 84.4	 65.5	 55.8
Model 7	 PF	 8	 115	 29	 16	 14	 87.8	 74.1	 63.6

DSF – Descriptive statistical features; WF – Wavelet features; GLCMF – Gray level co-occurrence matrix features; GF – Gabor features; LF – Laws fea-
tures; LBPF – Local binary pattern features; PF – Pooled features; TECA – Tender certification accuracy (Equation (2)); OA – Overall accuracy (Equa-
tion (1)); AI – Accuracy index (Equation (6)).
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fitted. The feature selection algorithm identified a compact set of  
stable and useful features. Given the number of  features used in 
the prediction models and model performance, it was clear that the 
models were compact and robust.

3.4. Future work

Assigning a tenderness classification for a carcass using the AOTF 
HSI system is a two-step process: image acquisition and image 
analysis. A real-time system should implement both processes on-
line, and should be completed within 4–7 s. As mentioned earlier, 
our system acquired images on-line within 4 s and processed them 
off-line in about three minutes, to assign a tenderness classification 
for a carcass. To make the AOTF HSI system for real-time beef  
tenderness assessment, the image processing time needs to be re-
duced and implemented on-line.

Each hyperspectral image collected by our system had 91 wave-
length bands separated at 5 nm wavelength intervals. At this nar-
row interval, the bands tend to have redundant information. One 
way of  not collecting redundant information is to collect images at 
a few key wavelengths only. This type of  approach is called mul-
tispectral imaging (Subbiah et al., 2012, 2014). Fewer wavelength 
bands mean smaller data size, and faster processing. Also, it elimi-
nates the dimensionality reduction step. With fewer bands in mul-
tispectral images, a considerably smaller number of  features can 
be extracted in comparison to hyperspectral images. Therefore, the 
multivariate models developed using multispectral image features 
may be more robust. The concept of  multispectral imaging not 
only reduces the time required to process the images, but also re-
duces the image acquisition time (Subbiah et al., 2014). A multi-
spectral system cannot be developed without first identifying the 
key wavelengths. The algorithms used to analyze hyperspectral im-
ages may provide a way to determine key wavelengths. An advan-
tage of  the AOTF HSI system is that it can be programmed to ac-
quire images of  key wavelengths only. In this respect, the same 
system can be used as a multispectral system without any changes.

In addition, the following system improvements are recom-
mended: (1) use a stable DC power source for illumination to 
counter the power fluctuations, (2) use a larger white reference 
plate that covers the entire field of  view, and (3) add software func-
tionality to detect image artifacts such as image blurring during 
acquisition.

4. Conclusions

This study has demonstrated that hyperspectral images of  the ri-
beye muscle on hanging beef  carcasses could be acquired in com-
mercial beef  slaughter or packing plants. It has also been dem-
onstrated that the hyperspectral beef  images acquired at 2-day 
postmortem could reliably predict 14-day aged, cooked beef  ten-
derness. A novel prototype on-line acousto-optic tunable filter 
(AOTF) based hyperspectral image acquisition system was de-
signed, developed, and used to acquire 338 ribeye hyperspectral 
images in two different regional beef  slaughter or packing plants. 
On an average, this prototype on-line system needed 4 s to cap-
ture a hyperspectral image of  a ribeye. Hyperspectral image fea-
tures were extracted using six different feature extraction algo-
rithms and modeled with Fisher’s linear discriminant model to 
classify beef  samples into two tenderness categories, tender and 
tough. The pooled feature model performed better than the other 
models with an overall accuracy of  77.4% and 74.1% in cross-
validation and third-party true validation, respectively. The cor-
responding tender certification accuracies for the pooled feature 
model were higher (92.9% in cross-validation and 87.8% in third-
party true validation), which is more useful for the beef  industry to 

make tenderness marketing claims. The other models particularly 
the Laws and wavelet feature models, also had comparable accu-
racy measures. Only a modest improvement in model performance 
was achieved when combining feature sets because the image fea-
tures had a good correlation within and between feature sets. Fu-
ture work is needed to demonstrate image acquisition on moving 
carcasses and integrate the image analysis and tenderness predic-
tion equation with the image acquisition software. The prospect of  
converting this prototype on-line system to a commercial real-time 
system is high. This work will lead to labeling of  accurate qual-
ity factors on beef  products, which will add value to the products.
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