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Expression of a Dominant-Negative Mutant of p21ras Inhibits
Induction of Nitric Oxide Synthase and Activation of Nuclear

Factor-kB in Primary Astrocytes

Kalipada Pahan, Xiaojuan Liu, *Michael J. McKinney, †Charles Wood, ‡Faruk G. Sheikh,
and §John R. Raymond

Department of Oral Biology, University of Nebraska Medical Center;†Department of Biological Sciences, University of
Nebraska, Lincoln, Nebraska;*Mayo Clinic at Jacksonville, Florida;‡Department of Biology, Walter Reed Army Institute of

Research, Washington, D.C.; and§Department of Medicine, Medical University of South Carolina,
Charleston, South Carolina, U.S.A.

Abstract: The present study underlines the importance of
p21ras in regulating the inducible nitric oxide synthase
(iNOS) in primary astrocytes. Bacterial lipopolysaccha-
rides induced the GTP loading of p21ras, and the expres-
sion of a dominant-negative mutant of p21ras (Dp21ras)
inhibited lipopolysaccharide-induced GTP loading in rat
primary astrocytes. To delineate the role of p21ras in the
induction of iNOS, we examined the effect of Dp21ras on
the expression of iNOS and the production of nitric oxide.
It is interesting that expression of Dp21ras markedly in-
hibited the production of nitric oxide and the expression
of iNOS in lipopolysaccharide- and proinflammatory cy-
tokine (tumor necrosis factor-a, interleukin-1b; interfer-
on-g)-stimulated rat and human primary astrocytes. Inhi-
bition of iNOS promoter-derived chloramphenicol acetyl-
transferase activity by Dp21ras suggests that p21ras is
involved in the transcription of iNOS. As activation of
nuclear factor-kB (NF-kB) is necessary for the transcrip-
tion of iNOS, we examined the effect of Dp21ras on the
activation of NF-kB. Expression of Dp21ras inhibited the
DNA binding as well as the transcriptional activity of NF-kB
in activated astrocytes, suggesting that Dp21ras inhibits the
expression of iNOS by inhibiting the activation of NF-kB.
These studies also suggest that inhibitors of p21ras may be
used as therapeutics in nitric oxide- and cytokine-mediated
neuroinflammatory diseases. Key Words: Astrocytes—
Cytokines—Lipopolysaccharides—p21ras—Inducible nitric
oxide synthase—Nuclear factor-kB.
J. Neurochem. 74, 2288–2295 (2000).

Nitric oxide (NO), a vascular and neuronal messenger
and a cytotoxic and cytostatic agent, is synthesized from
L-arginine by the enzyme nitric oxide synthase (NOS)
(Nathan, 1992). Basically, NOS is classified into two
groups. One type, constitutively expressed (cNOS) in
several cell types (e.g., neurons, endothelial cells), is
regulated predominantly at the posttranscriptional level
by calmodulin in a calcium-dependent manner (Nathan,
1992; Jaffrey and Snyder, 1995). In contrast, the activity

of the inducible isoform (iNOS), expressed in response
to different stimuli in various cell types including mac-
rophages, hepatocytes, and neutrophils, is independent of
calcium (Xie et al., 1992; Vos et al., 1999). Glial cells in
the CNS like astrocytes and microglia have also been
shown to induce iNOS in response to a series of proin-
flammatory cytokines including interleukin-1b (IL-1b),
tumor necrosis factor-a (TNF-a), interferon-g (IFN-g),
and bacterial lipopolysaccharide (LPS) (Simmons and
Murphy, 1992; Zielasek et al., 1992; Lee et al., 1993;
Pahan et al., 1997b). NO derived from the activation of
iNOS in astrocytes and microglia under the influence of
proinflamatory cytokines is assumed to contribute to
oligodendrocyte degeneration in demyelinating diseases
and neuronal death during ischemic and traumatic brain
injury (Koprowski et al., 1993; Merrill et al., 1993; Cross
et al., 1994; Endoh et al., 1994).

Therefore, characterization of intracellular pathways
evoked to transduce the signal from the cell surface to the
nucleus for the induction of iNOS in activated glial cells
is an active area of investigation. Identification of the
DNA-binding site for nuclear factor-kB (NF-kB), a
proinflammatory transcription factor, in the promoter
region of iNOS (Xie et al., 1994), and inhibition of iNOS
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expression by inhibitors of NF-kB activation (Nishiya
et al., 1995; Pahan et al., 1997a,b, 1998a) have estab-
lished an essential role of NF-kB activation in the induc-
tion of iNOS. Suppression of NF-kB activation and
inhibition of iNOS expression by inhibitors of tyrosine
kinase in glial cells suggest the possible involvement of
tyrosine phosphorylation in the activation of NF-kB and
the induction of iNOS (Nishiya et al., 1995). Recently,
we have found that inhibitors of the mevalonate pathway
(lovastatin and sodium phenylacetate) inhibit the expres-
sion of iNOS and the activation of NF-kB in activated
glial cells (Pahan et al., 1997b). Inhibition of LPS-in-
duced expression of iNOS and activation of NF-kB in rat
primary astrocytes by sodium phenylacetate and its re-
versal by farnesyl pyrophosphate, but not by mevalonate
(Pahan et al., 1997b), indicate that the farnesylation
reaction is involved in the activation of NF-kB and the
induction of iNOS. As farnesylation is a necessary step
for the activation of p21ras, the inhibition of expression
of iNOS and activation of NF-kB by mevalonate inhib-
itors suggested a possible role of p21ras in these proin-
flammatory processes.

The present study was undertaken to investigate the
cellular regulation of the induction of iNOS and the
activation of NF-kB by p21ras in rat and human primary
astrocytes. We herein report that the activation of NF-kB
and the induction of iNOS in rat and human primary
astrocytes are uniquely sensitive to the knockdown of
p21ras by the expression of a dominant-negative mutant
of p21ras, suggesting that the activation of p21rasmay be
an important target for therapeutic intervention in neu-
roinflammatory diseases.

MATERIALS AND METHODS

Reagents
Fetal bovine serum (FBS), Dulbecco’s modified Eagle’s

medium (DMEM)/F-12, Hanks’ balanced salt solution (HBSS),
and NF-kB DNA binding protein detection kit were from Life
Technologies, Inc. (U.S.A.). LPS (Escherichia coli,serotype
(111:B4) was from Sigma. Antibodies against p21ras and anti-
bodies against mouse macrophage iNOS were obtained from
Transduction Laboratories (U.S.A.). Rat and human recombinant
TNF-a, IL-1b, and IFN-g were obtained from R&D (U.S.A.).
[g-32P]ATP (3,000 Ci/mmol) and trisodium [32P]orthophosphate
(200 mCi/mmol) were purchased from ICN (U.S.A.).

Preparation of rat astrocytes
Rat primary astrocytes were prepared from rat cerebral tis-

sue as described by McCarthy and de Vellis (1980). Cells were
maintained in DMEM/F-12 medium containing 10% FBS. Af-
ter 10 days of culture, astrocytes were separated from microglia
and oligodendrocytes by shaking for 24 h in an orbital shaker
at 240 rpm. To ensure the removal of oligodendrocytes and
microglia, the shaking was repeated twice after a gap of 1 or 2
days. By immunofluorescence assay, these cultures homoge-
neously expressed glial fibrillary acidic protein, the definitive
marker for astrocytes. Cells were trypsinized, subcultured, and
stimulated with LPS or different cytokines in serum-free
DMEM/F-12 medium.

Preparation of human astrocytes
Fetal CNS tissue was obtained from the Human Embryology

Laboratory (University of Washington, Seattle, WA, U.S.A.).
The CNS tissue from each fetal specimen was processed sep-
arately and independently, as were subsequent cell cultures;
there was no pooling of CNS tissue from distinct fetal speci-
mens. These cells were grown in a serum-free, defined medium
(B16) enriched with 5 ng/ml basic fibroblast growth factor for
optimal growth of astrocytes and for the suppression of fibro-
blast growth (McCarthy et al., 1995). By immunofluorescence
assay, these cultures homogeneously expressed glial fibrillary
acidic protein. Cells were trypsinized, subcultured, and stimu-
lated with LPS or different cytokines in serum-free DMEM/
F-12 medium.

Expression ofDp21ras in astrocytes
In the dominant-negative form of p21ras (Dp21ras), the Ser

residue at position 17 was changed to Asn (S17N mutant). This
mutant binds preferentially to GDP and acts as the dominant
inhibitor of p21ras function presumably by blocking access to
exchange factors (Qiu et al., 1995; Garnovskaya et al., 1996).
The engineering of the construct and description of the vector
driving the expression of the proteins have been published
previously (Garnovskaya et al., 1996). Rat and human primary
astrocytes were transiently transfected with eitherDp21rasor an
empty vector by Lipotaxi (Stratagene) following the manufac-
turer’s protocol. In brief, for transfection of each well of a
six-well plate, 2mg of DNA was allowed to form a complex
with 20 ml of Lipotaxi and serum-free DMEM/F-12 in a total
volume of 300ml by incubating at room temperature in a sterile
Eppendorf for 30 min. In the meantime, the cell monolayer
(50–60% confluent) was washed twice with HBSS and replen-
ished with 450ml of serum-free DMEM/F-12. Then the entire
mixture of Lipotaxi, DMEM/F-12, and DNA was added drop-
wise to the cells while swirling. After an incubation of 6 h, 750
ml of DMEM/F-12 containing 20% FBS was added to a total
volume of 1.5 ml and cells were incubated further for 24 h. For
transfection of cells in 60-mm dishes, 4mg of DNA was
complexed with 50ml of Lipotaxi, whereas for cells in 100-mm
dishes, 8mg of DNA was complexed with 150ml of Lipotaxi.
During cotransfection in six-well plates, 2mg of eitherDp21ras

or the empty vector and 1mg of the other DNA were com-
plexed together with 30ml of Lipotaxi. After transfection, cells
were stimulated with different stimuli for the indicated time
periods under serum-free conditions. To monitor the transfec-
tion efficiency, cells were cotransfected with a pCAT 3-control
plasmid (Promega, Madison, WI, U.S.A.). A radioisotopic
method was used to assay chloramphenicol acetyltransferase
(CAT) activity using a kit (Promega) as described by the
manufacturer’s protocol (Pahan et al., 1998b, 1999). As re-
vealed by the CAT assay, transfection efficiency ranged be-
tween 38 and 54%.

Assay of p21ras activation
Activation of p21ras was assayed by GTP loading as de-

scribed by Downward et al. (1990) with slight modifications. In
brief, cells were labeled with [32P]orthophosphate in phos-
phate-free medium for 16 h and incubated with different stimuli
under serum-free conditions. At various points of stimulation,
cells were lysed with ice-cold lysis buffer containing 1% (vol/
vol) Nonidet P-40, 100 mM NaCl, 20 mM Tris, pH 7.4, 10 mM
iodoacetamide, 10 mM NaF, 1 mM sodium orthovanadate, 1
mM phenylmethylsulfonyl fluoride (PMSF), 1mg/ml leupeptin,
1 mg/ml antipain, 1mg/ml aprotinin, and 1mg/ml pepstatin A.
Lysates were precleared with protein G-Sepharose beads (Phar-
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macia Biotech Inc.) for 1 h at4°C, followed by the addition of
2 mg/ml p21rasantibody. After 2 h of incubation at 4°C, protein
G-Sepharose beads were added and the resulting mixture was
further incubated for 1 h at4°C. The immunoprecipitates were
washed three times with 20 mM Tris, pH 7.4, 500 mM NaCl, 5
mM MgCl2, 0.1% Triton X-100, and 0.005% sodium dodecyl
sulfate (SDS). Nucleotides (GTP and GDP) associated with ras
were eluted with 2 mM EDTA, 2 mM dithiothreitol (DTT),
0.2% SDS, 0.5 mM GTP, 0.5 mM GDP at 68°C for 20 min
(Downward et al., 1990). The eluted nucleotides were separated
on polyethylenimine TLC plates using 0.75M KH2PO4, pH
3.4, as a solvent and exposed to x-ray film.

Assay for NO synthesis
Synthesis of NO was determined by assay of culture super-

natants for nitrite, a stable reaction product of NO with molec-
ular oxygen. In brief, 400ml of culture supernatant was allowed
to react with 200ml of Griess reagent (Green et al., 1982;
Pahan et al., 1997a) and incubated at room temperature for 15
min. The optical density of the assay samples was measured
spectrophotometrically at 570 nm. Fresh culture medium
served as the blank in all experiments. Nitrite concentrations
were calculated from a standard curve derived from the reac-
tion of NaNO2 in the assay. Protein was measured by the
procedure of Bradford (1976).

Immunoblot analysis for iNOS
Following 24 h of incubation in the presence or absence of

different stimuli, cells were scraped off, washed with HBSS,
and homogenized in 50 mM Tris-HCl, pH 7.4, containing
protease inhibitors (1 mM PMSF, 5mg/ml aprotinin, 5mg/ml
pepstatin A, and 5mg/ml leupeptin). After electrophoresis, the
proteins were transferred onto a nitrocellulose membrane, and
the iNOS band was visualized by immunoblotting with anti-
bodies against mouse macrophage iNOS and125I-labeled pro-
tein A (Pahan et al., 1997a, 1998a).

RNA isolation and northern blot analysis
Cells were taken out from culture dishes directly by adding

Ultraspec-II RNA reagent (Biotecx Laboratories Inc.), and total
RNA was isolated according to the manufacturer’s protocol.
For northern blot analyses, 20mg of total RNA was electro-
phoresed on 1.2% denaturing formaldehyde-agarose gels, elec-
trotransferred to Hybond-nylon membrane (Amersham), and
hybridized at 68°C with32P-labeled cDNA probe using Ex-
press Hyb hybridization solution (Clontech) as described by the
manufacturer. The cDNA fragment for iNOS was amplified by
PCR using two primers (forward primer: 59-CTC CTT CAA
AGA GGC AAA AAT A-3 9; reverse primer: 59-CAC TTC
CTC CAG GAT GTT GT-39) and cloned in pGEM-T vector
(Geller et al., 1993; Pahan et al., 1997a, 1998a). The clone was
confirmed by DNA sequencing, and the insert was used as
probe. After hybridization, filters were washed two or three
times in solution I (23 saline–sodium citrate, 0.05% SDS) for
1 h at room temperature, followed by solution II (0.13 saline–
sodium citrate, 0.1% SDS) at 50°C for another hour. The
membranes were then dried and exposed to x-ray films (Kodak).
The same filters were stripped and rehybridized with probes for
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), or the
same amount of RNA was electrophoresed and hybridized for
GAPDH.

Construction of reporter plasmid, transfection, and
assay of CAT activity

The CAT under the control of iNOS promoter was created
by subcloning the 1.5-kb promoter from pGEM-NOS atSphI

andSalI restriction sites of pCAT-basic vector (Promega) (Pa-
han et al., 1998b, 1999). Full-length promoter (Eberhardt et al.,
1996) was amplified by using two primers (forward: 59-GAG
AGT GTG CAA GTA TTT GTA GGA G-39; reverse: 59-AAG
GTG GCT GAG AAG TTT CA-39) from rat genomic DNA
and cloned in pGEM-T vector (Promega) to produce pGEM-
NOS. The clone was confirmed by restriction mapping and
sequencing. The cells were transfected with reporter plasmid by
using the Lipotaxi (Stratagene) method, as described in the
manufacturer’s protocol. Twenty-four hours after transfection,
cells were treated with different stimuli for 14 h and harvested.
A radioisotopic method was used to assay CAT activity using
a kit (Promega) as described by the manufacturer’s protocol.

Preparation of nuclear extracts and electrophoretic
mobility shift assay (EMSA)

Nuclear extracts from stimulated or unstimulated astrocytes
(1 3 107 cells) were prepared using the method of Dignam
et al. (1983) with slight modification. Cells were harvested,
washed twice with ice-cold phosphate-buffered saline, lysed in
400ml of buffer A (10 mM HEPES, pH 7.9, 10 mM KCl, 2 mM
MgCl2, 0.5 mM DTT, 1 mM PMSF, 5mg/ml aprotinin, 5mg/ml
pepstatin A, and 5mg/ml leupeptin) containing 0.1% Nonidet
P-40 for 15 min on ice, vortex-mixed vigorously for 15 s, and
centrifuged at 14,000 rpm for 30 s. The pelleted nuclei were
resuspended in 40ml of buffer B [20 mM HEPES, pH 7.9, 25%
(vol/vol) glycerol, 0.42M NaCl, 1.5 mM MgCl2, 0.2 mM
EDTA, 0.5 mM DTT, 1 mM PMSF, 5mg/ml aprotinin, 5mg/ml
pepstatin A, and 5mg/ml leupeptin]. After 30 min on ice,
lysates were centrifuged at 14,000 rpm for 10 min. Superna-
tants containing the nuclear proteins were diluted with 20ml of
modified buffer C [20 mM HEPES, pH 7.9, 20% (vol/vol)
glycerol, 0.05M KCl, 0.2 mM EDTA, 0.5 mM DTT, and 0.5
mM PMSF] and stored at270°C until use. Nuclear extracts
were used for the EMSA in 6% nondenaturing polyacrylamide
gel (Pahan et al., 1997a,b) using the NF-kB DNA binding
protein detection system kit (GibcoBRL), according to the
manufacturer’s protocol.

Assay of transcriptional activity of NF-kB
To assay the transcriptional activity of NF-kB, cells were

transfected with pNF-kB-Luc, an NF-kB-dependent reporter
construct (obtained from Stratagene), using the Lipotaxi
method. Twenty-four hours after transfection, cells were
treated with different stimuli for 5 h. Total cell extracts were
used to measure luciferase activity in a Turner Design lumi-
nometer (TD-20/20) using an assay kit from Stratagene (Pahan
et al., 1998b, 1999).

RESULTS

Knockdown of p21ras function by the expression of
Dp21ras inhibits the expression of iNOS in rat
primary astrocytes

To investigate the involvement of p21rasin the expres-
sion of iNOS in glial cells, we inhibited the function of
this small G protein in rat primary astrocytes by a dom-
inant-negative mutant of p21ras (Dp21ras) in which the
Ser residue at position 17 was changed to Asn (S17N
mutant) (Qiu et al., 1995; Garnovskaya et al., 1996).
First, we examined the effect of expression ofDp21rason
the function of p21rasas measured by GTP loading. LPS
induced GTP loading of p21ras within minutes in rat
primary astrocytes, whereas expression ofDp21rasmark-
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edly inhibited LPS-induced GTP loading (Fig. 1), sug-
gesting that, as in other cell types (Qiu et al., 1995;
Garnovskaya et al., 1996),Dp21ras is able to inhibit the
function of p21ras in astrocytes. Then we assessed the
effect of expression ofDp21ras on the induction of NO
production in rat primary astrocytes. Figure 2A shows
thatDp21ras markedly inhibited the production of NO in
LPS-stimulated primary astrocytes, whereas expression
of the empty vector “dummy” had no effect. To under-
stand the mechanism of this inhibitory effect ofDp21ras

on LPS-mediated nitrite production, we examined the
effect ofDp21ras on protein and mRNA levels of iNOS.
Western blot analysis with antibodies against murine
macrophage iNOS and northern blot analysis for iNOS
mRNA of LPS-stimulated astrocytes clearly show that
Dp21ras significantly inhibited the LPS-mediated induc-
tion of iNOS protein (Fig. 2B) and mRNA (Fig. 2C).
Farnesyltransferase (FTase) inhibitor I is known to pre-
vent farnesylation of p21ras, thus resulting in its inability
to associate with other signaling components in the cell
(Garcia et al., 1993). To confirm the involvement of
p21ras in the induction of iNOS from a different angle,
we examined the effect of FTase inhibitor I (Calbio-
chem) on LPS-induced production of NO. About 55%
inhibition of NO production was observed with 50mM
FTase inhibitor I (data not shown), suggesting again the
involvement of p21rasin the induction of NO production.
Similar to LPS, proinflammatory cytokines (TNF-a, IL-
1b, and IFN-g) are also known to induce the expression
of iNOS in rat primary astrocytes (Nishiya et al., 1995;
Pahan et al., 1997b, 1998a). To examine whether cyto-
kine-induced NO production is also inhibited by the
expression ofDp21ras, rat primary astrocytes were tran-
siently transfected withDp21ras, and 24 h after transfec-
tion cells were stimulated with different combinations of
TNF-a, IL-1b, and IFN-g. All the combinations of cy-
tokines induced the production of NO significantly; how-
ever, the expression ofDp21raspotently inhibited the NO
production (Fig. 3A) and the induction of iNOS protein

(Fig. 3B), suggesting that, similar to LPS, cytokine-
mediated expression of iNOS also requires the involve-
ment of p21ras.

Dp21ras inhibits iNOS promoter-derived CAT
activity in cytokine-stimulated rat primary
astrocytes

Inhibition of the induction of iNOS protein and
mRNA in astrocytes by the expression ofDp21ras sug-
gests that the knockdown of p21ras may inhibit the tran-
scription of iNOS gene. Therefore, to understand the
effect of Dp21ras on the transcription of iNOS gene,
astrocytes were cotransfected with eitherDp21ras or an
empty vector and piNOS-CAT, a construct containing
the iNOS promoter fused to the CAT gene, and activa-
tion of this promoter was measured after the cells were
stimulated with different cytokines. Consistent with the
effect of Dp21ras on the production of NO and the ex-
pression of endogenous iNOS protein and mRNA,

FIG. 1. Expression of Dp21ras inhibits LPS-induced GTP loading
in rat primary astrocytes. Cells plated at 50–60% confluence in
60-mm dishes were transfected with 4 mg of either an empty
vector (A) or Dp21ras (B) using Lipotaxi as described in Materials
and Methods. At 24 h after transfection, cells were labeled with
[32P]orthophosphate for 16 h in phosphate-free medium and
then stimulated with 1 mg/ml LPS. At different points of stimu-
lation, cells were lysed with the lysis buffer, lysates were immu-
noprecipitated with antibodies against p21ras, and nucleotides
(GTP and GDP) released from immunoprecipitates were ana-
lyzed by TLC as described in Materials and Methods.

FIG. 2. Expression of Dp21ras inhibits the expression of iNOS
and production of NO in LPS-stimulated rat primary astrocytes.
Cells plated at 50–60% confluence in six-well plates were trans-
fected with 2 mg of either Dp21ras or an empty vector using
Lipotaxi as described in Materials and Methods. At 24 h after
transfection, cells were stimulated with 1 mg/ml LPS. A: After
24 h of stimulation, the production of nitrite was measured in
supernatants using Griess reagent as mentioned in Materials
and Methods. Data are means 6 SD of three different experi-
ments. B: Cell homogenates were electrophoresed, transferred
onto nitrocellulose membrane, and immunoblotted with antibod-
ies against mouse macrophage iNOS as described in Materials
and Methods. C: Cells plated at 50–60% confluence in 100-mm
dishes were transfected with 8 mg of either Dp21ras or an empty
vector using Lipotaxi. At 24 h after transfection, cells were stim-
ulated with 1 mg/ml LPS for 5 h. Cells were taken out directly by
adding Ultraspec-II RNA reagent (Biotecx Laboratories Inc.) to
the plates for isolation of total RNA, and northern blot analysis
for iNOS mRNA was carried out as described in Materials and
Methods.
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Dp21ras markedly inhibited the induction of iNOS pro-
moter-derived CAT activity in cytokine-stimulated astro-
cytes (Fig. 4), suggesting the conclusion thatDp21ras

inhibits the transcription of iNOS gene in astrocytes.

Expression ofDp21ras inhibits the activation of
NF-kB in rat primary astrocytes

As the activation of NF-kB is necessary for the tran-
scription of iNOS gene (Xie et al., 1994; Nishiya et al.,
1995; Pahan et al., 1998a,b), to understand the basis of
Dp21ras-mediated inhibition of iNOS expression, we ex-
amined the effect ofDp21rason the activation of NF-kB.
Treatment of astrocytes with 1mg/ml LPS resulted in the
activation of DNA-binding activity of NF-kB (Fig. 5).
This gel shift assay detected a specific band in response
to LPS that was competed off by an unlabeled NF-kB
probe, but not by an unlabeled AP-1 probe (Fig. 5A).
Expression ofDp21rasor the empty vector alone failed to
induce the DNA-binding activity of NF-kB. However,
Dp21ras markedly inhibited LPS-induced DNA-binding
activity of NF-kB (Fig. 5B). We then tested the effect of
Dp21ras on NF-kB-dependent transcription of luciferase
in astrocytes in the presence or absence of different
cytokines, using the expression of luciferase from a
reporter construct, pNF-kB Luc (Stratagene), as an assay
(Pahan et al., 1998b, 1999). Consistent with the effect of
Dp21ras on the DNA-binding activity of NF-kB, Dp21ras

also inhibited NF-kB-dependent transcription of lucif-
erase in astrocytes, whereas expression of the empty
vector had no effect on the transcriptional activity of
NF-kB (Fig. 5C), suggesting that the inhibition of iNOS

expression byDp21ras is due to the inhibition of NF-kB
activation.

Involvement of p21ras in the expression of iNOS in
human primary astrocytes

As in rat primary astrocytes, proinflammatory cyto-
kines are also able to induce the production of nitrite, as
well as the expression of iNOS, in human primary as-
trocytes (Lee et al., 1993). To investigate whether p21ras

is also involved in the induction of iNOS in human
primary astrocytes, cells were transfected withDp21ras.
Different combinations of proinflammatory cytokines in-
duced the production of NO (Fig. 6A) and the expression
of iNOS protein (Fig. 6B), whereas the expression of
Dp21rasalone had no effect on NO production. However,
Dp21ras significantly inhibited cytokine-stimulated pro-
duction of NO (Fig. 6A) and expression of iNOS protein
(Fig. 6B), suggesting that in both rat and human primary
astrocytes, the induction of iNOS requires the involve-
ment of p21ras.

DISCUSSION

p21ras, a membrane-associated small guanine nucleo-
tide-binding protein, plays a central role in transmitting
extracellular signals within the cell and in controlling
cellular proliferation and differentiation (Gomez et al.,
1998). Here we present evidence that activation of p21ras

is involved in the activation of NF-kB and the induction
of iNOS in activated primary astrocytes. Our conclusion
is based on the following observations. First, LPS and

FIG. 3. Effect of Dp21ras-mediated knockdown of p21ras on the
expression of iNOS in cytokine-stimulated rat primary astro-
cytes. Cells plated at 50–60% confluence in six-well plates were
transfected with 2 mg of either Dp21ras or an empty vector using
Lipotaxi. At 24 h after transfection, cells were stimulated with
different combinations of proinflammatory cytokines for 24 h.
The production of nitrite was measured in supernatants (A). Data
are means 6 SD of three different experiments. Cell homoge-
nates were analyzed for iNOS protein by an immunoblotting
technique (B). Concentrations of different stimuli were as fol-
lows: TNF-a, 10 ng/ml; IL-1b, 10 ng/ml; IFN-g, 10 U/ml.

FIG. 4. Effect of Dp21ras-mediated knockdown of p21ras on
iNOS promoter-derived CAT activity in cytokine-stimulated rat
primary astrocytes. Cells plated at 50–60% confluence in six-
well plates were cotransfected with 1 mg of piNOS-CAT (the
construct containing the rat iNOS promoter fused to the CAT
gene) and 2 mg of either Dp21ras or an empty vector using
Lipotaxi. At 24 h after transfection, cells were stimulated with
LPS and proinflammatory cytokines for 14 h under serum-free
conditions. The activity of CAT was measured using the radio-
isotopic assay kit (Promega) following the manufacturer’s pro-
tocol. The concentrations of different stimuli were as follows:
LPS, 1.0 mg/ml; TNF-a, 10 ng/ml; IL-1b, 10 ng/ml; IFN-g, 10
U/ml.
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proinflammatory cytokines induced the GTP loading of
p21ras, the activation of NF-kB, and the expression of
iNOS. Second, expression of a dominant-inhibitory mu-
tant of p21ras (Dp21ras) knocked down LPS- and cyto-
kine-induced GTP loading of p21ras and inhibited LPS-
and cytokine-induced activation of NF-kB and the ex-
pression of iNOS. These studies demonstrate that p21ras

is involved in the activation of NF-kB and the induction
of iNOS in primary astrocytes. As NO synthesized from
iNOS has been implicated in the pathogenesis of demy-
elinating and neurodegenerative diseases (Koprowski
et al., 1993; Merrill et al., 1993; Cross et al., 1994;
Endoh et al., 1994; Schubert et al., 1998), our results
indicate that activation of p21ras may be a critical sig-
naling step in the regulation of neuroinflammatory and
neurodegenerative diseases, and pharmacological com-
pounds capable of counteracting the activation of p21ras

may ameliorate neural injury.
Signaling mechanisms for the induction of iNOS are

poorly understood. The presence of a consensus DNA-
binding site for NF-kB in the promoter of iNOS and
inhibition of the LPS-induced expression of iNOS by
inhibitors of NF-kB activation suggest that LPS induces
the expression of these inflammatory molecules via ac-
tivation of NF-kB (Xie et al., 1994; Nishiya et al., 1995;
Pahan et al., 1998a,b). Earlier studies of Pahan et al.
(1997b) demonstrating the inhibition of NF-kB activa-
tion and expression of iNOS by lovastatin and sodium
phenylacetate suggested a role of protein farnesylation in
the activation of NF-kB and induction of inflammatory
molecules. Consistent with this observation, we demon-
strate here the involvement of p21ras in the activation of

FIG. 5. Expression of Dp21ras inhibits the activation of NF-kB in
LPS- and cytokine-stimulated rat primary astrocytes. A: Cells
incubated in serum-free medium were treated with 1 mg/ml LPS.
After a 30-min incubation, cells were taken out to prepare nu-
clear extracts, and nuclear proteins were used for the EMSA as
described in Materials and Methods. Lane 1, nuclear extract of
control cells; lane 2, nuclear extract of LPS-treated cells; lane 3,
nuclear extract of LPS-treated cells incubated with a 100-fold
excess of unlabeled NF-kB probe; and lane 4, nuclear extract of
LPS-treated cells incubated with a 100-fold excess of unlabeled
AP-1 probe. The upper arrow indicates the induced NF-kB,
whereas the lower arrow indicates the unbound probe. B: Cells
plated at 50–60% confluence in six-well plates were transfected
with 2 mg of either Dp21ras or an empty vector using Lipotaxi. At
24 h after transfection, cells received 1 mg/ml LPS. After 30 min
of stimulation, EMSA for NF-kB was carried out in nuclear ex-
tracts as described. Lane 1, nuclear extract of vector-trans-
fected cells; lane 2, nuclear extract of Dp21ras-transfected cells;
lane 3, nuclear extract of vector-transfected cells treated with
LPS; and lane 4, nuclear extract of Dp21ras-transfected cells
treated with LPS. The upper arrow indicates the induced NF-kB,
whereas the lower arrow indicates the unbound probe. C: Cells
plated at 50–60% confluence in six-well plates were cotrans-
fected with 1 mg of pNF-kB-Luc (an NF-kB-dependent reporter
construct) and 2 mg of either Dp21ras or empty vector using
Lipotaxi. At 24 h after transfection, cells were stimulated with
LPS and cytokines for 4 h, and the expression of luciferase
reporter was quantified as described in Materials and Methods.
Data are means 6 SD of three different experiments. The con-
centrations of different stimuli were as follows: LPS, 1.0 mg/ml;
TNF-a, 10 ng/ml; IL-1b, 10 ng/ml; IFN-g, 10 U/ml.

FIG. 6. Dp21ras-mediated knockdown of p21ras inhibits the ex-
pression of iNOS and production of NO in human primary as-
trocytes. Cells plated at 50–60% confluence in six-well plates
were transfected with 2 mg of either Dp21ras or an empty vector
using Lipotaxi. At 24 h after transfection, cells were stimulated
with different combinations of proinflammatory cytokines for
48 h. The production of nitrite was measured in supernatants (A).
Data are means 6 SD of three different experiments. Cell ho-
mogenates were analyzed for iNOS protein by an immunoblot-
ting technique (B). The concentrations of different stimuli were
as follows: TNF-a, 10 ng/ml; IL-1b, 10 ng/ml; IFN-g, 10 U/ml.
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NF-kB and the induction of iNOS in LPS- and cytokine-
stimulated primary astrocytes. The Ras protooncogene
proteins, a family of GTP-binding proteins, function by
binding to the cytoplasmic surface of the plasma mem-
brane. This membrane localization of p21ras involves
prenylation of cysteine in CAAX motif present at the
C-terminus, proteolytic removal of AAX tripeptide, and
then carboxymethylation of C-terminal cysteine (Han-
cock et al., 1991). The activation of p21ras by receptor
tyrosine kinase occurs through conversion of the GDP-
bound inactive form to the GTP-bound active form by
Sos and Grb2 and then transduction of signal to down-
stream effector molecules (Kikuchi and Williams, 1994).
The GTP-bound form is converted to the inactive form
by the intrinsic GTPase activity, which is accelerated by
GTPase-activating proteins (Boguski and McCormick,
1993). The mutated p21ras protein translated from the
expression ofDp21ras binds preferentially to GDP and
acts as the dominant inhibitor of p21ras function presum-
ably by blocking access to exchange factors and, in turn,
inhibiting the signal transmission to the downstream
signaling molecules (Qiu et al., 1995; Garnovskaya et al.,
1996). One such downstream candidate is Raf-1 (serine-
threonine kinase). p21rasinteracts directly with Raf-1 and
is believed to function by positioning Raf-1 at the plasma
membrane in the vicinity of its activator, and tyrosine
phosphorylation of Raf-1 seems to be essential for
p21ras-induced activation of Raf-1 (Jelinek et al., 1996).
Raf-1, in turn, phosphorylates and activates MEKs and
ERKs (members of mitogen-activated protein kinase cas-
cade). Therefore, the observed inhibition of NF-kB ac-
tivation and induction of iNOS byDp21rasmay be due to
decrease or lack of signal transmission from receptor
tyrosine kinase to Raf/mitogen-activated protein kinase
cascade via p21ras.

NO, a diffusible free radical, plays many roles as a
signaling and as an effector molecule in diverse biolog-
ical systems, including neuronal messenger, vasodila-
tion, and antimicrobial and antitumor activities (Nathan,
1992; Jaffrey and Snyder, 1995). In the nervous system,
the NO appears to have both neurotoxic and neuropro-
tective effects and may have a role in the pathogenesis of
stroke and other neurodegenerative diseases (e.g., Alz-
heimer’s disease) and in demyelinating conditions (e.g.,
multiple sclerosis, experimental allergic encephalopathy,
X-adrenoleukodystrophy) associated with the activation
of glial cells and the production of proinflammatory
cytokines (Koprowski et al., 1993; Merrill et al., 1993;
Cross et al., 1994; Endoh et al., 1994; Schubert et al.,
1998). NO and peroxynitrite (reaction product of NO and
O2

2) are potentially toxic to neurons and oligodendro-
cytes that may mediate toxicity through the formation of
iron–NO complexes of iron-containing enzyme systems
(Drapier and Hibbs, 1988), oxidation of protein sulfhy-
dryl groups (Radi et al., 1991), nitration of proteins,
nitrosylation of nucleic acids, and DNA strand breaks
(Wink et al., 1991). Although monocytes/macrophages
are the primary source of iNOS in inflammation, LPS
and other cytokines induce a similar response in astro-

cytes and microglia (Simmons and Murphy, 1992;
Zielasek et al., 1992; Pahan et al., 1997b). NO derived
from activated microglia and astrocytes has been impli-
cated in the damage of myelin-producing oligodendro-
cytes in demyelinating disorders like multiple sclerosis
and neuronal death during neurodegenerating conditions,
including brain trauma and Alzheimer’s disease (Ko-
prowski et al., 1993; Merrill et al., 1993; Cross et al.,
1994; Endoh et al., 1994; Schubert et al., 1998). The
studies described in this article suggest that inhibition of
p21ras activation may represent a possible avenue of
research for therapeutics directed against cytokine- and
NO-mediated neuroinflammatory and neurodegenerative
disorders.

Acknowledgment: The authors would like to thank Prof.
David Shaw for reviewing the manuscript. This work was
supported by a grant from UNMC seed research fund (no.
00-58).

REFERENCES

Boguski M. S. and McCormick F. (1993) Proteins regulating Ras and
its relatives.Nature366,643–654.

Bradford M. M. (1976) A rapid and sensitive method for the quanti-
tation of microgram quantities of protein utilizing the principle of
protein–dye binding.Anal. Biochem.72, 248–254.

Cross A. H., Misko T. P., Lin R. F., Hickey W. F., Trotter J. L., and
Tilton R. G. (1994) Aminoguanidine, an inhibitor of inducible
nitric oxide synthase, ameliorates experimental autoimmune en-
cephalomyelitis in SJL mice.J. Clin. Invest.93, 2684–2690.

Dignam J. D., Lebovitz R. M., and Roeder R. G. (1983) Accurate
transcription initiation by RNA polymerase II in a soluble extract
from isolated mammalian nuclei.Nucleic Acids Res.11, 1475–
1489.

Downward J., Graves J. D., Warne P. H., Rayter S., and Cantrell D. A.
(1990) Stimulation of p21ras upon T-cell activation.Nature346,
719–723.

Drapier J.-C. and Hibbs J. B. (1988) Differentiation of murine macro-
phages to express nonspecific cytotoxicity for tumor cells results
in L-arginine-dependent inhibition of mitochondrial iron-sulfur
enzymes in the macrophages effector cells.J. Immunol. 140,
2829–2838.

Eberhardt W., Kunz D., Hummel R., and Pfeilschifter J. (1996) Mo-
lecular cloning of the rat inducible nitric oxide synthase gene
promoter.Biochem. Biophys. Res. Commun.223,752–756.

Endoh M., Maiese K., and Wagner J. (1994) Expression of the induc-
ible form of nitric oxide synthase by reactive astrocytes after
transient global ischemia.Brain Res.651,92–100.

Garcia A. M., Rowell C., Ackermann K., Kowalczyk J. J., and Lewis
M. D. (1993) Peptidomimetic inhibitors of Ras farnesylation and
function in whole cells.J. Biol. Chem.268,18415–18418.

Garnovskaya M. N., van Biesen T., Hawe B., Casanas Ramos S.,
Lefkowitz R. J., and Raymond J. R. (1996) Ras-dependent acti-
vation of fibroblast mitogen-activated protein kinase by 5-HT1A

receptor via a G proteinbg-subunit-initiated pathway.Biochem-
istry 35, 13716–13722.

Geller D. A., Lowenstein C. J., Shapiro R. A., Nussler A. K., Di Silvio
M., Wang S. C., Nakayama D. K., Simmons R. L., Snyder S. H.,
and Billiar T. R. (1993) Molecular cloning and expression of
inducible nitric oxide synthase from human hepatocytes.Proc.
Natl. Acad. Sci. USA90, 3491–3495.

Gomez J., Martinez C., Gonzalez A., and Rebollo A. (1998) Dual roles
of Ras and Rho proteins—at the cutting edge of life and death.
Immunol. Cell Biol.76, 125–134.

Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S.,
and Tannenbaum S. R. (1982) Analysis of nitrate, nitrite, and
[15N]nitrate in biological fluids.Anal. Biochem.126,131–138.

J. Neurochem., Vol. 74, No. 6, 2000

2294 K. PAHAN ET AL.



Hancock J. F., Cadwaller K., and Marshall C. J. (1991) Methylation
and proteolysis are essential for efficient membrane binding of
prenylated p21k-ras(B). EMBO J.10, 641–646.

Jaffrey S. R. and Snyder S. H. (1995) Nitric oxide: a neural messenger.
Annu. Rev. Cell Dev. Biol.11, 417–440.

Jelinek T., Dent P., Sturgill T. W., and Weber M. J. (1996) Ras-induced
activation of Raf-1 is dependent on tyrosine phosphorylation.Mol.
Cell. Biol. 16, 1027–1034.

Kikuchi A. and Williams L. T. (1994) The post-translational modifi-
cation of ras p21 is important for raf-1 activation.J. Biol. Chem.
269,20054–20059.

Koprowski H., Zhen Y. M., Heber-Katz G. E., Fraser N., Rorke L., Fu
Z. F., Hanlon C., and Dietzshold B. (1993) In vivo expression of
inducible nitric oxide synthase in experimentally induced neuro-
logic diseases.Proc. Natl. Acad. Sci. USA90, 3024–3027.

Lee S. C., Dickson, D. W., Liu W., and Brosnan C. F. (1993) Induction
of nitric oxide synthase activity in human astrocytes by interleu-
kin-1b and interferon-g. J. Neuroimmunol.46, 19–24.

McCarthy K. and de Vellis J. (1980) Preparation of separate astroglial
and oligodendroglial cultures from rat cerebral tissue.J. Cell Biol.
85, 890–902.

McCarthy M., Wood C., Fedoseyeva L., and Whitmore S. (1995)
Media components influence viral gene expression assays in hu-
man fetal astrocyte cultures.J. Neurovirol.1, 275–285.

Merrill J. E., Ignarro L. J., Sherman M. P., Melinek J., and Lane T. E.
(1993) Microglial cell cytotoxicity of oligodendrocytes is medi-
ated through nitric oxide.J. Immunol.151,2132–2141.

Nathan C. (1992) Nitric oxide as a secretory product of mammalian
cells.FASEB J.6, 3051–3064.

Nishiya T., Uehara T., and Nomura Y. (1995) Herbimycin A sup-
presses NF-kB activation and tyrosine phosphorylation of JAK2
and the subsequent induction of nitric oxide synthase in C6 glioma
cells.FEBS Lett.371,333–336.

Pahan K., Namboodiri A. M. S., Sheikh F. G., Smith B. T., and Singh
I. (1997a) Increasing cAMP attenuates induction of inducible
nitric oxide synthase in rat primary astrocytes.J. Biol. Chem.272,
7786–7791.

Pahan K., Sheikh F. G., Namboodiri A. M. S., and Singh I. (1997b)
Lovastatin and phenylacetate inhibit the induction of nitric oxide
synthase and cytokines in rat primary astrocytes, microglia and
macrophages.J. Clin. Invest.100,2671–2679.

Pahan K., Sheikh F. G., Khan M., Namboodiri A. M. S., and Singh I.
(1998a) Sphingomyelinase and ceramide stimulate the expression

of inducible nitric-oxide synthase in rat primary astrocytes.J. Biol.
Chem.273,2591–2600.

Pahan K., Sheikh F. G., Namboodiri A. M. S., and Singh I. (1998b)
Inhibitors of protein phosphatase 1 and 2A differentially regulate
the expression of inducible nitric-oxide synthase in rat astrocytes
and macrophages.J. Biol. Chem.273,12219–12226.

Pahan K., Raymond J. R., and Singh I. (1999) Inhibition of phospha-
tidylinositol 3-kinase induces nitric-oxide synthase in lipopolysac-
charide- or cytokine-stimulated C6 glial cells.J. Biol. Chem.274,
7528–7536.

Qiu R.-G., Chen J., Kirn D., McCormick F., and Symons M. (1995) An
essential role for Rac in Ras transformation.Nature 374, 457–
459.

Radi R., Beckman J. S., Bush K. M., and Freeman B. A. (1991)
Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of
superoxide and nitric oxide.J. Biol. Chem.266,4244–4250.

Schubert P., Ogata T., Miyazaki H., Marchini C., Ferroni S., and
Rudolphi K. (1998) Pathological immuno-reactions of glial cells
in Alzheimer’s disease and possible sites of interference.J. Neural
Transm.54, 167–174.

Simmons M. L. and Murphy S. (1992) Induction of nitric oxide
synthase in glial cells.J. Neurochem.59, 897–905.

Vos T. A., van Goor H., Tuyt L., de Jager-Krikken A., Leuvenink R.,
Kuipers F., Jansen P. L. M., and Moshage H. (1999) Expression of
inducible nitric oxide synthase in endotoxemic rat hepatocytes is
dependent on the cellular glutathione status.Hepatology29,421–
426.

Wink D. A., Kasprazak K. S., Maragos C. M., Elespuru R. K., Misra
M., Dunams T. M., Cebula T. A., Koch W. H., Andrews A. W.,
Allen J. S., et al. (1991) DNA deaminating ability and genotox-
icity of nitric oxide and its progenitors.Science254,1001–1003.

Xie Q. W., Cho H. J., Calaycay J., Mumford R. A., Swiderek K. M.,
Lee T. D., Ding A., Troso T., and Nathan C. (1992) Cloning and
characterization of inducible nitric oxide synthase from mouse
macrophages.Science256,225–228.

Xie Q. W., Kashiwabara Y., and Nathan C. (1994) Role of transcription
factor NF-kB/Rel in induction of nitric oxide synthase.J. Biol.
Chem.269,4705–4708.

Zielasek J., Tausch M., Toyka K. V., and Hartung H. P. (1992)
Production of nitrite by neonatal rat microglial cells/brain macro-
phages.Cell. Immunol.141,111–120.

J. Neurochem., Vol. 74, No. 6, 2000

2295RAS IS INVOLVED IN iNOS EXPRESSION/NF-kB ACTIVATION


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2000

	Expression of a Dominant-Negative Mutant of p21ras Inhibits Induction of Nitric Oxide Synthase and Activation of Nuclear Factor-kB in Primary Astrocytes
	Kalipada Pahan
	Xiaojuan Lu
	Michael J. McKinney
	Charles Wood
	Faruk G. Sheikh
	See next page for additional authors
	Authors


	

	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


