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Effects of refuges on the evolution of resistance
to transgenic corn by the western corn
rootworm, Diabrotica virgifera virgifera
LeConte
Jennifer Deitloff,a,b* Mike W Dunbar,a David A Ingber,a Bruce E Hibbardc

and Aaron J Gassmanna

Abstract

BACKGROUND: Diabrotica virgifera virgifera LeConte is a major pest of corn and causes over a billion dollars of economic loss
annually through yield reductions and management costs. Corn producing toxins derived from Bacillus thuringiensis (Bt) has
been developed to help manage D. v. virgifera. However, previous studies have demonstrated the ability of this species to evolve
resistance to Bt toxins in both laboratory and field settings.

RESULTS: We used an experimental evolution approach to test the refuge strategies for delaying resistance of D. v. virgifera
to corn producing Bt toxin Cry34/35Ab1. In the absence of refuges, D. v. virgifera developed resistance to Bt corn after three
generations of selection. In some cases, non-Bt refuges reduced the level of resistance compared with the strain selected in the
absence of refuges, but refuge strains did show reduced susceptibility to Bt corn compared with the unselected strain.

CONCLUSIONS: In this study, non-Bt refuges delayed resistance to Bt corn by D. v. virgifera in some cases but not others.
Combining the refuge strategy with pyramids of multiple Bt toxins and applying other pest management strategies will likely
be necessary to delay resistance of D. v. virgifera to Bt corn.
© 2015 Society of Chemical Industry
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1 INTRODUCTION
Genetically engineered crops that produce insecticidal toxins
derived from Bacillus thuringiensis (Bt) have been commercially
available since 1996.1 In 2013, 76% of the corn (Zea mays L.)
planted in the United States produced Bt toxins to manage poten-
tially damaging insect pests.2 The benefits of Bt crops include
effective management of pests and reduced reliance on conven-
tional insecticides.3,4 Diabrotica virgifera virgifera LeConte, western
corn rootworm, is a key pest of corn and is one of the pests targeted
by Bt corn. Over a billion dollars is lost annually to D. v. virgifera from
yield reductions and costs associated with management.5 Cur-
rently, four Bt toxins are commercially available for management
of D. v. virgifera (Cry3Bb1, Cry34/35Ab1, mCry3A and eCry3.1Ab),
and these are sold in corn hybrids either singly or as pyramids.6

D. v. virgifera has demonstrated its ability to adapt to several
management strategies, including chemical insecticides,7,8 crop
rotation9 and Bt corn.10 – 13 Rapid adoption of Bt crops by farmers
has led to concerns about the evolution of Bt resistance.14 – 17

Computer models of the evolution of resistance to Bt corn by D. v.
virgifera predicted resistance in as few as 3 years in some cases,15

and this is concordant with the evolution of Bt resistance in lab-
oratory selection experiments and among field populations.10,18

Thus far, D. v. virgifera has evolved resistance to each of the four

Bt toxins in the laboratory,18 – 21 and field-evolved resistance has
been documented to Cry3Bb1 and mCry3A.10 – 13

Several management strategies have been proposed to delay
the evolution of resistance to Bt crops by insect pests.1,22 – 24 One
tactic is the refuge strategy. This strategy uses refuges of non-Bt
plants to provide a habitat favorable for the development of
Bt-susceptible insects.1 Mating between susceptible adults emerg-
ing from the refuge and resistant adults emerging from Bt plants
produces heterozygous progeny. To the extent that these het-
erozygous progeny have reduced fitness on Bt crops compared
with their homozygous resistant parent, delays in resistance may
be achieved. For single Bt toxins, the refuge strategy is most effec-
tive when it is coupled with the high-dose strategy, in which
the crop produces sufficient Bt toxin to render survival on the
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Bt crop a functionally recessive trait.25 This occurs when the Bt
crop kills 99.99% of susceptible individuals or produces 25 times
the amount needed to kill a susceptible pest.25 However, none of
the Bt toxins commercialized to manage D. v. virgifera are consid-
ered high dose,11,26 – 31 and resistance to Bt toxin in D. v. virgifera
is not recessive,18,32 which increases the risk of this pest evolving
resistance to Bt corn and thereby raises concerns about the effec-
tiveness of refuges in delaying resistance.

Non-Bt refuge plants can be grown in either a structured refuge
(i.e. a block of non-Bt plants) or an integrated refuge (i.e. a seed
blend of Bt and non-Bt plants). In a block refuge, a section of
the field contains non-Bt host plants, while the remainder of
the field contains Bt plants. In a blended refuge, non-Bt seeds
are mixed with Bt seeds and planted throughout a field. Sev-
eral models have evaluated the efficacy of these two strategies
for delaying the evolution of resistance.22,23 Under most scenar-
ios examined, both refuge strategies delay resistance consider-
ably when compared with the absence of a refuge.23 However,
comparisons between block-refuge and blended-refuge strate-
gies with computer models have produced mixed results as to
which delays resistance longer, with outcomes depending on
aspects of pest biology and the Bt crops, including dose of the Bt
toxin, dispersal of adult insects and interplant movement of larval
insects.23,33

Here, we used an experimental evolution approach to test
whether delays in evolution of resistance may be achieved with
refuges when a Bt crop is not high dose. We compared four insect
treatments, each represented by one insect strain: two treatments
tested refuge strategies (a seed blend and a block refuge), a third
treatment was a strain selected in the absence of refuges and the
final treatment was an unselected strain, in which insects were
never exposed to Bt toxin. We tested these treatments using a
laboratory strain of D. v. virgifera and a transgenic corn hybrid that
produced Bt toxin Cry34/35Ab1 (event DAS-59122-7). To examine
the evolution of resistance to this toxin, we measured survival of
D. v. virgifera to adulthood and the delay in larval development
experienced by insects fed Cry34/35Ab1 corn. Measuring delays in
larval development is a relevant metric for quantifying resistance
to corn producing Bt toxin Cry34/35Ab1, because it is highly cor-
related with the capacity of D. v. virgifera to survive to adulthood
on Cry34/35Abl corn.19,34 Measurements of larval developmental
rate are currently used as a technique to monitor resistance to
Cry34/35Ab1 corn in field populations of D. v. virgifera.34 The
results of this study provide insights into the potential for refuges
to delay resistance for Bt crops that do not produce a high dose of
toxin.

2 METHODS
2.1 Strain development
Populations of D. v. virgifera were collected from Caledonia, Min-
nesota and Janesville, Wisconsin, in 2004 (see Meihls et al.35 for
additional details), and from Dodge City, Kansas, in 2002 (see
Meihls et al.18 for additional details). These populations were
crossed with a non-diapausing strain of D. v. virgifera36,37 obtained
from the USDA-ARS Northern Central Agricultural Research Labo-
ratory and then pooled into one strain, referred to as the pooled
strain hereafter. The development of this pooled strain occurred
at the USDA-ARS Plant Genetics Research Laboratory in Columbia,
Missouri, and was completed in November 2009. The pooled,
non-diapausing strain was transferred to Iowa State University in
February 2010.

2.2 Strain rearing
Insects were reared for two generations on small seedling mats
followed by large seedling mats of non-Bt corn (Pioneer hybrid
35 F38) using methods described by Jackson.38 Small seedling
mats were produced by soaking 40 mL of corn seeds in water for
24 h and placing these presoaked seeds in 0.95 L plastic deli con-
tainers with lids (Pactiv Showcase; Johnson Paper and Supply Co.,
Minneapolis, MN), adding 60 mL of water, and then covering the
seeds and water with 200 g of soil. Soil consisted of a 1:1 mix-
ture of potting soil (Sunshine Mix No. 1; Sungro, Bellevue, WA) and
thoroughly dried field soil collected from Iowa State University’s
Johnson Research Farm in Ames, Iowa. We then added 600 D. v.
virgifera eggs (1 week old) that were suspended in a 0.15% agar
solution. Eggs hatched approximately 1 week thereafter. Approx-
imately 1 week after eggs hatched, we transferred larvae to large
seedling mats by removing small seedling mats from containers,
inverting two small seedling mats and placing them on top of
a larger seedling mat. These larger seedling mats were made in
21× 27× 10 cm (L×W ×H) plastic containers (Rubbermaid, Fair-
lawn, OH) by adding 150 mL of presoaked corn seeds (soaked in
water for 24 h) to 150 mL of water, and then covering the water
and seeds with 2000 mL of soil. The entire contents of the container
(two inverted smaller seeding mats plus larger seedling mat) were
covered with mesh fabric and a lid.

We collected newly emerged adults from large seedling mats
5–6 times per week and placed adults in 18 cm× 18 cm× 18 cm
(L×W ×H) mesh cages (Megaview Science, Taiwan). Adults were
provided with 1.5% solid agar as a source of water, corn leaf tissue
and a complete adult diet (F976H8B-M; Bio-Serv, Flemington, NJ,
USA), and these were changed 4–5 times per week. We provided
adults with an ovipositional substrate that consisted of moistened
180 μm sieved soil placed in 10 cm petri dishes, referred to here-
after as oviposition dishes, and these were changed twice per
week. Eggs were collected from oviposition dishes by washing the
180 μm sieved soil and eggs in a 250 μm sieve. All mesh cages
and seedling mats were kept in environmental chambers (25 ∘C,
16:8 L:D).

2.3 Strain selection
Four treatments were compared: unselected, block refuge,
blended refuge and pure Bt. To accomplish this, the pooled
strain was divided into four separate strains in June 2010, with
each strain corresponding to one of the four treatments. When-
ever possible, population size was 1200–1600 adults per strain per
generation. The unselected strain was never exposed to Bt corn
during rearing. The three other strains were selected on seedling
mats that contained Bt corn. The Bt hybrid used was Pioneer
hybrid 35 F44, which expresses event DAS-59122-7 and produces
the Bt binary toxin Cry34Ab1/Cry35Ab1. The unselected strain
was reared on seedling mats of non-Bt corn, Pioneer hybrid 35 F38,
which is the near-isoline of the Bt hybrid used for the selected
strains. For both hybrids there was no insecticidal or fungicidal
seed treatment on seeds. These same corn hybrids were used
throughout this experiment and are referred to as Bt corn and
non-Bt corn respectively. To ensure that the Pioneer hybrid 35 F44
expressed DAS-59122-7 and produced Bt toxin Cry34/35Ab1,
we confirmed the presence of Cry34/35Ab1 in corn tissues each
generation with ELISA (QuickStix kit; Envirologix, Portland, Maine).
Each generation, a few seedlings from seven seedling mats were
selected at random and tested for Cry34/35Ab1, and in all cases
corn tissue contained this Bt toxin. Similarly, each generation we

wileyonlinelibrary.com/journal/ps © 2015 Society of Chemical Industry Pest Manag Sci (2015)
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randomly sampled seven seedling mats of Pioneer hybrid 35 F38
(non-Bt corn) and never found the presence of Bt toxin.

The unselected strain was reared on seedling mats of non-Bt
corn. The block-refuge strain was propagated on the basis of
field data for the number of insects emerging from Bt corn and
non-Bt corn (see below). Insects from the block-refuge strain were
reared on seedling mats composed entirely of Bt corn; however,
when newly emerging adults were placed in a mesh cage, they
were combined with newly emerging adults from the unselected
strain, which simulated the addition of adults from a non-Bt
refuge. Newly emerging adults from the block-refuge strain and
unselected strain were combined in a 1:9 ratio each day, which
is based on the ratio of adult survival observed in the field for
Cry34/35Ab1 corn and a 20% refuge of non-Bt corn.27 Specifically,
Storer et al.27 reported a ratio of 1:36 for survival on Cry34/35Ab1
corn compared with non-Bt corn; in a landscape that was 80% Bt
corn and 20% non-Bt corn (the current block-refuge requirement
single-trait Bt corn targeting rootworm6), this would translate to
a ratio of 1:9 for insects from Cry34/35Ab1 corn compared with
non-Bt corn. Because we were interested in effects of refuges
on resistance evolution, and not effects related to dispersal and
timing of emergence (even though these factors can have a
considerable impact on resistance evolution), this ratio of insects
was added to the mesh cage each day to remove any potential
differences in the timing of mating and emergence between
the two strains. The blended-refuge strain was propagated in a
blended refuge produced by using seedling mats composed of
90% Bt corn and 10% non-Bt corn (percentages measured by
volume of seeds). This is based on the 10% refuge currently used
in the field for Cry34/35Ab1 corn with a blended refuge.39 The
pure-Bt strain was a positive control and was reared on seedling
mats of only Bt corn. Except for the block-refuge strain as described
above, adult insects for each strain were added to mesh cages
directly from the seedling mats from which they emerged.

In order to ensure that a sufficient number of adults were avail-
able to maintain strains and to conduct bioassays, unselected
generations were reared intermittently throughout the experi-
ment. During these unselected generations, all four strains were
reared on non-Bt corn (hybrid 35 F44). The unselected strain was
reared on non-Bt corn during all generations. For the block-refuge,
blended-refuge and pure-Bt strains there were nine generations
of selection (i.e. larvae were reared on Bt corn as described above):
F1, F3, F4, F5, F8, F9, F10, F11 and F13; there were five generations
when these strains were not selected (i.e. larvae from all strains
were reared on non-Bt corn): F2, F6, F7, F12 and F14.

During rearing of these strains, we placed approximately 600
eggs on the small seedling mats of non-Bt corn and 1200–1800
eggs on small seedling mats containing Bt corn. This was done
to account for lower larval survival on Bt corn compared with
non-Bt corn. For each generation, we collected data on the pro-
portion of eggs that produced adults (survival) and the number of
days between oviposition and emergence of adults (days to emer-
gence).

2.4 Larval development bioassay
Seedling mats for the larval bioassay were produced in a manner
identical to that used to generate small seedling mats. A sub-
sample of eggs from each of the four strains was used for these
bioassays, and larvae from these bioassays were never returned
to the strains. Each strain was tested on seedling mats that were
composed completely of either Bt corn (hybrid 35 F44) or non-Bt
corn (hybrid 35 F38). The seedling mats were allowed to develop

for approximately 1 week in environmental chambers (25 ∘C,
16:8 L:D) before neonate larvae were placed in seedling mats.

For all four strains, we placed newly hatched neonate larvae
(less than 24 h old) on corn roots within seedling mats, and larvae
from each strain were placed onto paired Bt and non-Bt seedling
mats. We placed either 30 (F5–F7) or 25 (F10, F14) neonate larvae
on each seedling mat. Seedling mats with larvae were held in an
environmental chamber for 12 days (25 ∘C, 16:8 L:D), and 50 mL of
water was added after 7 days.

After 12 days in an environmental chamber, we removed
seedling mats with larvae and soil from the plastic containers
and placed them on Berlese funnels for 4 days to extract larvae.
Larvae were collected into 15 mL glass vials containing 85%
ethanol, which killed larvae and preserved larval cadavers. For
each seedling mat, we recorded the total number of larvae and
larval instars (based on Hammack et al.40). Bioassays were con-
ducted for F5, F6, F7, F10 and F14. Because no selection occurred
between F5, F6 and F7, we pooled the bioassay data for these
three generations to increase statistical power.

Sample sizes varied among strains because of differences in the
availability of neonate larvae for placement on seedling mats and
because ethanol evaporated from vials that held larvae from five
seedling mats (evaporation of ethanol and subsequent desiccation
of samples meant that larvae could not be counted accurately
and instars could not be determined). For bioassays of F5, F6
and F7, the sample sizes for pairs of Bt and non-Bt seedling mats
were as follows: unselected strain= 32, block-refuge strain= 27,
blended-refuge strain= 30, and pure-Bt strain= 29, for a total of
236 seedling mats. For F10, the sample sizes were as follows:
unselected strain= 19, block-refuge strain= 20, blended-refuge
strain= 18, and pure-Bt strain= 20, for a total of 154 seedling mats.
For F14, the sample sizes were as follows: unselected strain= 14,
block-refuge strain= 18, blended-refuge strain= 20, and pure-Bt
strain= 20, for a total of 144 seedling mats.

2.5 Adult survival bioassays
For F14, we conducted a bioassay measuring survival to adult-
hood. As above, a subsample of eggs from the four strains was used
for these bioassays, and adults from bioassays were never returned
to the strains. Each strain was tested on Bt corn and non-Bt corn.
We generated seedling mats in 500 mL cups (Placon Corporation,
Madison, WI), using 25 mL of presoaked corn seed (soaked in water
for 24 h), 40 mL of water and 200 mL of soil (the same composi-
tion as used for seedling mats) and allowing corn plants to grow
for 1 week in an environmental chamber (25 ∘C, 16:8 L:D). After 1
week, we added 15 newly hatched neonate larvae (less than 24 h
old) from one of the four experimental strains. Larvae from each
strain were placed on 20 pairs of Bt and non-Bt seedling mats.
After 6 days, we prepared larger seedling mats in 0.95 L plastic deli
trays (the same as those used for rearing and larval assays), com-
bining 40 mL of presoaked corn seeds, 60 mL of water and 300 mL
of soil. These seedling mats grew for 6 days, after which seedling
mats from 500 mL cups were removed from containers, inverted
and placed on seedling mats in 0.95 L trays. Each seedling mat
from 500 mL cups was added to a 0.95 L tray of the same type of
corn (Bt or non-Bt), and 500 mL cups were carefully inspected to
ensure that all larvae were transferred. Insects were then allowed
to develop to adulthood.

We collected newly emerging adults from each container 3
times per week. We recorded the total number of adults that
emerged and the day on which each adult was collected. Owing
to differences in available neonate larvae in some strains, sample
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Figure 1. Survival (a) and timing of adult emergence (b) for strains during
laboratory rearing. For pure-Bt, blended-refuge and block-refuge strains,
data are for larvae reared on either pure Bt corn (pure-Bt strain and
block-refuge strain) or a blend of 90% Bt corn and 10% non-Bt corn
(blended-refuge strain). For the unselected strain, larvae were reared on
non-Bt corn. Data are presented for generations in which selection was
imposed (F represents the absolute generation; S represents the numbers
of selected generations). Sample means are shown, and error bars are
the standard error of the mean. Letters indicate significant differences
among strains within a generation. For proportional survival to adulthood,
corrected survival for block-refuge, blended-refuge and pure-Bt strains
was calculated as the proportional survival for the selected strain on Bt
treatments divided by the proportional survival of the unselected strain on
non-Bt corn during each generation.

sizes among strains were not the same. The sample sizes for
pairs of Bt and non-Bt seedling mats were as follows: unselected
strain= 17, block-refuge strain= 20, blended-refuge strain= 20,
and pure-Bt strain= 19, for a total of 152 seedling mats tested.
Because several of the Bt seedling mats did not produce adult
insects, as expected given the level of larval mortality imposed
by Cry34/35Ab1 corn,27,41 measurements of developmental rate
on Bt corn were based on the following sample sizes: unselected
strain= 2, block-refuge strain= 15, blended-refuge strain= 18,
and pure-Bt strain= 18, for a total of 106 seedling mats.

2.6 Data analysis
All statistical analyses were performed in R 2.15.0,42 using aov for
analysis of variance (ANOVA) and pairwise.t.test for pairwise tests
with no adjustment method (which performs pairwise compar-
isons using t-tests with a pooled standard deviation); adjustments

Table 1. Analysis of variance for corrected survival of pure-Bt,
blended-refuge and block-refuge strains on Bt corn

Generation df F Pa

F4 2, 69 38.57 <0.0001*
F5 2, 50 13.44 <0.0001*
F8 2, 59 13.33 <0.0001*
F9 2, 19 5.95 0.00986
F10 2, 73 74.33 <0.0001*
F11 2, 69 25.74 <0.0001*
F13 2, 95 19.58 <0.0001*
F15 2, 90 43.94 <0.0001*

a * Indicates significant differences. See Figs 2 and 3 for differences
among strains.

for multiple comparisons were made by adjusting the alpha as
stated below for each set of comparisons.

For survival during strain selection, the variance of the unse-
lected strain was much greater than that of the other three strains.
Therefore, we calculated corrected survival of the block-refuge,
blended-refuge and pure-Bt strains in each generation as propor-
tional survival for each seedling mat (i.e. proportion of eggs that
yielded adult insects) divided by the average proportional sur-
vival of the unselected strain in that generation (results reported
in Fig. 1a). Then, we used ANOVA to compare corrected sur-
vival among the selected strains (block refuge, blended refuge
and pure Bt) within each generation during only the genera-
tions that underwent selection (Bonferroni correction was used
to adjust the alpha level for eight generations of selection,
adjusted alpha= 0.006). If strains were significantly different,
which occurred in seven of eight generations (Table 1), we per-
formed pairwise comparisons among strains within a generation
(after Bonferroni correction for 21 pairwise comparisons, adjusted
alpha= 0.002).

For days to adult emergence during strain selection, we used
ANOVA to compare all four strains within each generation during
only the generations that underwent selection (results reported
in Fig. 1b; after Bonferroni correction for eight generations of
selection, adjusted alpha= 0.006). If strains were significantly
different, which occurred in six of eight generations, we per-
formed pairwise comparisons among strains within a genera-
tion (after Bonferroni correction for 36 comparisons, adjusted
alpha= 0.001).

Because larvae from each of the four treatments were placed
onto paired Bt and non-Bt seedling mats for bioassays measuring
larval development and survival to adulthood, we standardized
measurements on Bt corn by measurements obtained for non-Bt
corn. For the larval development bioassay, we subtracted the
proportion of third-instar larvae on Bt corn from the proportion
of third-instar larval on non-Bt corn (results reported in Fig. 2). For
the adult survival bioassay, we subtracted proportional mortality
on Bt corn from proportional mortality on non-Bt corn, and for
measurements of days to adult emergence we subtracted days to
emergence on non-Bt corn from days to emergence on Bt corn
(results reported in Fig. 3). Data for all bioassays were compared
among all four strains (unselected, block refuge, blended refuge
and pure Bt) using ANOVA. If strains were significantly different,
we performed pairwise comparisons among the four strains, with
an adjusted alpha= 0.008 based on a Bonferroni correction for six
pairwise comparisons.

wileyonlinelibrary.com/journal/ps © 2015 Society of Chemical Industry Pest Manag Sci (2015)
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Figure 2. Developmental delay on Bt corn in larval bioassays. Develop-
mental delay (a) after four generations of selection (F5, F6 and F7), (b)
after seven generations of selection (F10) and (c) after nine generations
of selection (F14). Developmental delay was calculated as the proportion
of third-instar larvae on non-Bt corn minus the proportion of third instars
on Bt corn. Bar heights are sample means, and error bars are the standard
error of the mean. Letters indicate significant differences after Bonferroni
correction (P = 0.008).

3 RESULTS
3.1 Strain selection: survival and development time
When we compared survival within generations among the three
selected strains after correcting for survival in the unselected
strain, strains were significantly different in each generation except
F9 (Table 1, Fig. 1a). Survival of the block-refuge strain on Bt corn
was significantly lower than the survival of the blended-refuge

Figure 3. Corrected mortality (a) and developmental delay in days to adult-
hood (b) on Bt corn. Data collected from adult bioassays after nine genera-
tions of selection (F14). Corrected mortality was calculated as proportional
mortality on Bt corn minus proportional mortality on non-Bt corn. Develop-
mental delay was calculated as days to adult emergence on Bt corn minus
days to adult emergence on non-Bt corn. Bar heights are sample means,
and error bars are the standard error of the mean. Letters indicate signifi-
cant differences after Bonferroni correction (P = 0.008).

strain on a seed blend or the survival of the pure-Bt strain on Bt
corn in most generations throughout the experiment. By contrast,
survival for the blended-refuge strain was significantly lower than
for the pure-Bt strain in F4, did not differ from the pure-Bt strain
among F5 to F11 and was significantly greater than for the pure-Bt
strain in F13 and F15. This pattern suggests a lack of adaptation
to Bt corn by the block-refuge strain, but adaptation to the seed
blend by the blended-refuge strain.

Days to emergence differed among strains except during F8
and F9 (Table 2, Fig. 1b). In general, the block-refuge strain on
Bt corn required the longest time before adults emerged, while
no differences were observed among the unselected strain on
non-Bt corn, the pure-Bt strain on Bt corn and the blended-refuge
strain on the seed blend. This suggests a lack of adaptation in
the block-refuge strain, but adaptation to the seed blend by the
blended-refuge strain, and adaptation to Bt corn by the pure-Bt
strain.

3.2 Larval development bioassay
Developmental delay to third instar describes the difference in
the proportion of third-instar larvae found on Bt corn compared
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Table 2. Analysis of variance for time until adult emergence among
strains within a generation when strains experienced selection

Generation df F Pa

F4 3, 25 7.94 0.0007*
F5 3, 29 20.30 <0.0001*
F8 3, 26 3.20 0.04
F9 3, 21 1.37 0.279
F10 3, 23 7.64 0.001*
F11 3, 40 20.16 <0.0001*
F13 3, 40 7.08 0.0006*
F15 3, 35 14.87 <0.0001*

a * Indicates significant differences after Bonferroni correction
(adjusted alpha= 0.006). See Fig. 1b for differences among strains.

with non-Bt corn, with 0 indicating no difference in the propor-
tion of third-instar larvae found on Bt versus non-Bt seedling
mats. Significant differences were found among strains for devel-
opmental delays to third instar when testing strains after four
generations of selection (i.e. combining data from F5, F6 and F7
(Table 3, Fig. 2a). Development to third instar on Bt corn was
significantly delayed in the unselected strain compared with the
blended-refuge strain and the pure-Bt strain (Fig. 2a), indicating
statistically significant and similar adaptation to Bt corn in the
pure-Bt strain and blended-refuge strain, but a lack of adaptation
by the block-refuge strain.

Strains also differed after seven generations of selection (F10),
with the unselected and block-refuge strains having significantly
greater developmental delay compared with the blended-refuge
and pure-Bt strains (Table 3, Fig. 2b), suggesting a similar pattern
of adaptation to that observed after four generations of selection.

Following nine generations of selection (F14), developmental
delay was significantly greater for the unselected strain than for
the blended-refuge and pure-Bt strains. The block-refuge and
blended-refuge strains did not differ from each other and showed
a greater developmental delay than the pure-Bt strain (Table 3,
Fig. 2c). These results indicate similar levels of resistance after nine
generations of selection for the blended and block refuges, and
significantly lower levels of resistance in these strains than was
observed in the absence of a refuge.

3.3 Adult survival bioassays
We compared the difference in mortality from larva to adult
between Bt corn and non-Bt corn (i.e. mortality imposed by Bt
corn) among strains after nine generations of selection (F14)
and found significant differences (Table 3, Fig. 3a). Mortality
imposed by Bt corn was greatest for the unselected strain and
did not differ between the unselected strain and the block-refuge
strain. By contrast, mortality imposed by Bt corn for both the
blended-refuge strain and the pure-Bt strain did not differ signif-
icantly and was significantly less than for the unselected strain.
These results suggest that the block refuge delayed resistance
compared with an absence of refuges, and that some adaptation
to Bt corn occurred for the blended-refuge strain, although the
level of resistance did not differ from that of the block-refuge strain
(Fig. 3a).

Strains also differed in developmental delay to adulthood
(Table 3, Fig. 3b). Developmental delay was greater for the unse-
lected strain than for the blended-refuge strain and the pure-Bt
strain, but the block-refuge strain was intermediate and did not

differ from any of the other strains (Fig. 3b). This result indicates
that the block refuge delayed the development of resistance, but
resistance in the blended refuge was similar to that observed in
the absence of refuges.

4 DISCUSSION
In this study, we used an experimental evolution approach to
test whether refuges can delay resistance of D. v. virgifera to corn
producing Bt toxin Cry34/35Ab1 (event DAS-59122-7), which is a
non-high-dose Bt hybrid.11,32 Refuges are most effective for delay-
ing resistance when Bt crops produce a high dose of toxin, which
kills heterozygous resistant individuals.43 We found evidence that
refuges could delay resistance, and that under the parameters
studied here the block refuge was more effective than the blend
refuge at delaying resistance.

There were several important differences between our study
and conditions in the field that likely contributed to the results
observed here. Firstly, in the block-refuge treatment, refuge
individuals were added to adult population cages at the same
time as Bt-selected individuals. This enabled complete random
mating between refuge individuals and Bt-selected individuals.
By contrast, in the field (and shown in our data, Fig. 2), the delayed
emergence of individuals from Bt corn compared with non-Bt
corn27,29 and the limited dispersal of adults from refuges to Bt
fields44 would lead to non-random assortative mating among
Bt-selected individuals and accelerate resistance evolution. In our
selection experiment, these differences in space and time were
not present because we placed refuge insects and selected insects
into adult cages at the same time, making random mating more
likely than it might be in the field.

Secondly, with the block-refuge treatment, the refuge pop-
ulation was never exposed to Bt corn. In the field, resistance
evolves through dispersal of Bt-selected individuals into refuge
populations.45 Over time, the accumulation of resistance alleles
within refuge populations disrupts the dynamic of homozygous
susceptible refuge individuals mating with the Bt-selected indi-
viduals and leads to the evolution of resistance. Additionally,
the population starting each generation within the block-refuge
strain consisted of 10% adults emerging from Bt corn (presumably
possessing resistance traits) and 90% adults emerging from non-Bt
corn. This ratio is consistent with emergence of insects reported in
Storer et al.,27 assuming a landscape with 80% Cry34/35Ab1 corn
and 20% non-Bt corn. However, if survival on Bt corn in the field
is greater than this, as has been found elsewhere,32 the rate of
resistance evolution in a field setting may be greater than found
in this experiment.

Conversely, in the blended refuge studied here, the close prox-
imity of Bt to non-Bt corn in the blended refuge likely caused more
larvae to be exposed to Bt corn than would occur in a field setting.
Past studies of D. v. virgifera have determined that larvae can move
between Bt and non-Bt corn roots.46,47 In our blended-refuge
treatment, non-Bt and Bt corn seeds were mixed within small
containers. This experimental approach likely allowed for more
larval movement between non-Bt and Bt corn roots than would
be expected in the field because roots for both types of corn
were contained in close proximity within larval rearing seed mats.
This in turn likely increased the intensity of selection and the rate
of resistance evolution. Additionally, it is possible that, in some
cases, larvae may have consumed all of the non-Bt roots and then
were forced to feed on Bt roots, a situation that would only arise
at very high pest densities in the field. These factors may have
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Table 3. Analysis of variance for bioassays

Life stage Response factor Generation df F Pa

Larval Developmental delay F5, F6, F7 3, 114 10.67 <0.0001*
Larval Developmental delay F10 3, 73 22.46 <0.0001*
Larval Developmental delay F14 3, 68 26.96 <0.0001*

Adult Mortality F14 3, 72 9.25 <0.0001*
Adult Developmental delay F14 3, 49 5.66 0.002*

a * Indicates significant differences. See Figs 2 and 3 for differences among strains.

contributed to the similarity in resistance development between
our blended-refuge and pure-Bt strains in this study.

Diabrotica v. virgifera has exhibited evolution of resistance to
Bt toxins in both the laboratory and the field. Several stud-
ies have found that laboratory-selected strains of D. v. virgifera
evolved resistance to Cry3Bb1 in as few as three generations
of selection,18,48 and the discovery of field-evolved resistance to
Cry3Bb1 illustrated a similar pattern of resistance evolution.10 – 13

Furthermore, our study, as well as Lefko et al.,19 demonstrates
that D. v. virgifera has the potential to evolve resistance to the
Cry34/35Ab1 toxin. Nonetheless, we found evidence that refuges
of non-Bt corn can delay Bt resistance in D. v. virgifera, even though
Bt corn targeting D. v. virgifera is not high dose (unselected strain
versus block-refuge strain, Figs 2 and 3). However, this was asso-
ciated with large populations of susceptible (unselected) insects
that mated synchronously and randomly with Bt-selected individ-
uals. To the extent that these conditions are not met in the field,
more rapid resistance evolution is expected.

Refuges can delay the evolution of resistance in pest species, and
this strategy is most effective when resistance alleles are rare and
inherited recessively.23 The high-dose refuge strategy has been
effective for managing Bt resistance in O. nubilalis,4 likely in part
because resistance alleles enabling survival of O. nubilalis on Bt
plants appear to be rare.49,50 However, simulation studies show
that, when resistance is only partially recessive or additive, resis-
tance can develop at a faster rate than when resistance is function-
ally recessive.23 Bt corn used to manage D. v. virgifera does not pro-
duce a high dose of Bt toxin,18,26,27,31 and, as expected, resistance
to Bt corn by D. v. virgifera has been found to be non-recessive.18

Furthermore, the rate of resistance evolution increases as the ini-
tial resistance allele frequency becomes greater,1,16 and in D. v.
virgifera the resistance allele frequency has been estimated to be
2000 times greater than frequencies typically assumed to exist in a
pest population prior to commercialization of a Bt crop.16 Both the
lack of a high dose and the greater prevalence of resistance alleles
will increase the risk that populations of D. v. virgifera will evolve
resistance to Bt corn.

Another strategy to delay the evolution of resistance is pyramid-
ing of Bt toxins that target the same species.51 Delays in resistance
arise from pyramiding because one Bt toxin within a pyramid
(e.g. toxin A) should kill all individuals susceptible to that Bt toxin,
including those individuals that harbour resistance alleles to the
other Bt toxin (e.g. toxin B) present in the pyramid.51 The same
reciprocal effect of toxin B on resistance alleles for toxin A is
expected. Furthermore, most individuals targeted by the pyramid
are susceptible to each Bt toxin and are therefore killed by each
toxin, also known as ‘redundant killing’.52 Pyramids are currently
used in combination with refuges, although refuge requirements
are reduced from 20 to 5% for Bt corn pyramids.53 Successful

management of pests by pyramiding Bt toxins depends on how
effective each toxin is at killing the targeted species, and the
frequency of resistance alleles at the time a pyramid is deployed.13

The use of Bt corn is advantageous because it can reduce the
reliance on broad-spectrum conventional insecticides for manag-
ing pests.3 However, D. v. virgifera has demonstrated an ability to
evolve resistance to management practices including Bt corn.8 – 11

For cases where Bt toxins are not high dose, pyramiding multi-
ple Bt toxins can achieve greater delays in resistance than when
toxins are used individually.51 Additionally, the use of more diver-
sified management tactics, as part of an integrated approach to
pest management, may also help to reduce the risk of resistance
evolution.
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