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Abstract

Although Francisella tularensis is considered a monomorphic intracellular pathogen, molec-
ular genotyping and virulence studies have demonstrated important differences within the
tularensis subspecies (type A). To evaluate genetic variation within type A strains, sequenc-
ing and assembly of a new subtype A.Il genome was achieved for comparison to other com-
pleted F. tularensis type A genomes. In contrast with the F. tularensis A.l strains (SCHU S4,
FSC198, NE061598, and T10902), substantial genomic variation was observed between
the newly sequenced F. tularensis A.ll strain (WY-00W4114) and the only other publically
available A.Il strain (WY96-3418). Genome differences between WY-00W4114 and WY96-
3418 included three major chromosomal translocations, 1580 indels, and 286 nucleotide
substitutions of which 159 were observed in predicted open reading frames and 127 were
located in intergenic regions. The majority of WY-00W4114 nucleotide deletions occurred in
intergenic regions, whereas most of the insertions and substitutions occurred in predicted
genes. Of the nucleotide substitutions, 48 (30%) were synonymous and 111 (70%) were
nonsynonymous. WY-00W4114 and WY96-3418 nucleotide polymorphisms were predomi-
nantly G/C to A/T allelic mutations, with WY-00W4114 having more A+T enrichment. In ad-
dition, the A.ll genomes contained a considerably higher number of intact genes and longer
repetitive sequences, including transposon remnants than the A.l genomes. Together these
findings support the premise that F. tularensis A.ll may have a fitness advantage compared
to the A.l subtype due to the higher abundance of functional genes and repeated chromo-
somal sequences. A better understanding of the selective forces driving F. tularensis genet-
ic diversity and plasticity is needed.
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Introduction

The facultative intracellular pathogen Francisella tularensis is the etiologic agent of the zoonot-
ic disease tularemia and is considered a Tier 1 select agent by the Centers for Disease Control
and Prevention for several reasons: an extremely low infectious dose (10 organisms), prior use
as a biological weapon, and the mass casualties and economic impact that may result in the
event of a tularemia outbreak, all of which warrant the concern generated by this highly viru-
lent pathogen [1-3]. Although F. tularensis is most lethal when inhaled, transmission to hu-
mans and at least 250 other species can occur via direct contact with contaminated hosts,
water, and food (reviewed in [4]). Common reservoirs and vectors for this gram-negative
cocco-bacillus in the environment include lagomorphs (primarily rabbits and hares), rodents,
and arthropods (primarily ticks, deer flies, and mosquitoes) [3].

Within the F. tularensis species, there are three widely accepted subspecies that include F.
tularensis subsp. tularensis (type A), F. tularensis subsp. holarctica (type B), and F. tularensis
subsp. mediasiatica [5]. A fourth subspecies, specifically F. tularensis subsp. novicida, is consid-
erably less virulent than the other subspecies and the classification of this related bacterium re-
mains in contention [6,7]. Differences in genomic architecture and virulence observed for F.
tularensis type A isolates has prompted further subdivision of this subspecies into subtypes A.I
and A.IIL, with the A.I strains having the highest virulence [8-10]. However, the mechanisms
responsible for the genotypic and phenotypic differences associated with F. tularensis A.I and
A I strains are unknown. Infections by F. tularensis subtype A.I strains have been documented
to occur throughout North America, whereas A.II infections have predominately occurred in
western United States.

Although the complete and annotated genomic sequence is available for several wild-type F.
tularensis A.I strains (SCHU S4, NE061598, FSC198, and T10902), only the wild-type A.II
strain WY96-3418 (hereafter referred to as WY96) had been sequenced to completion [11-15].
As part of a large sequencing project, we previously detected a wild-type F. tularensis subsp.
tularensis A.Il variant using paired-end sequence mapping [16]. This isolate was identified as
F. tularensis WY-00W4114 (hereafter referred to as W4114) and further characterized by
pulsed-field gel electrophoresis (PFGE) and differential insertion sequence amplification
(DISA) [17]. Even though both the PFGE clustering algorithm and the PCR-based DISA assay
classified this isolate as an A.II strain, considerable chromosomal diversity existed in W4114
when compared to other strains within this subtype; in addition, the A.II subpopulation pos-
sessed greater diversity in PEFGE typing patterns than the A.I clade [17].

The isolation date of all F. tularensis strains under consideration is important for interpret-
ing the genetic information. F. tularensis A.I strains SCHU S$4 and NE061598 were obtained
from an infected human in Ohio (1941) and in Nebraska (1998), respectively, whereas FSC198
was acquired in 1986 from a mite in Slovakia [13,14,18]. The fourth sequenced A.I strain,
T10902, was isolated in 2004 from an infected cat in Virginia [15]. The F. tularensis A.II strain
WY96 was obtained in 1996 from an infected human [12], while W4114 was isolated in 2000
from an infected prairie dog, both of which were originally acquired from the Wyoming public
health laboratory.

Based on the literature and our previous findings, we hypothesized that F. tularensis A1l
strains would have greater genetic variation than the A.I strains, revealing molecular mecha-
nisms that correlate with less virulence and that provide a selective advantage in the environ-
ment. Therefore, to examine the differences within F. tularensis type A strains, we sequenced
the genome of wild-type All strain W4114 for comparison to the sequenced A.II strain WY96
and A.I chromosomes. We found that the A.II strains W4114 and WY96 possessed numerous
chromosomal polymorphisms and rearrangements, demonstrating genomic plasticity, whereas
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the A.I chromosome that contained remarkably high genomic conservation. Collectively, this
study reveals important genetic differences between the F. tularensis A.I and A.Il subtypes that
may contribute to disparities in virulence and fitness.

Materials and Methods
Bacterial strains and DNA isolation

F. tularensis subsp. tularensis strain W4114 was transferred to the University of Nebraska Med-
ical Center in Omaha following the requirements of the Select Agent Program as outlined in
the Animal and Plant Health Inspection Service/Centers for Disease Control and Prevention
(CDC) Form 2, Guidance Document for Request to Transfer Select Agents and Toxins [2]. Ma-
nipulation of viable culture material was performed by authorized individuals within a biosafe-
ty level 3 laboratory certified for select agent work by the United States Department of Health
and Human Services using laboratory biosafety criteria, according to requirements of the na-
tional Select Agent Program [19]. All Francisella isolates were grown on chocolate agar plates
(Remel, Lenexa, Kansas) and incubated at 37°C with 5% CO, for three days before processing.

Pulsed-field gel electrophoresis

Agarose embedded chromosomal DNA for PFGE was prepared and digested with the restric-
tion endonucleases Pmel and BamHI (Fermentas Inc., Glen Burnie, Maryland), as previously
described [17]. Cluster analysis was performed using the Dice correlation coefficient and the
unweighted pair group mathematical average (UPGMA) clustering algorithm. Restriction frag-
ment length polymorphism analysis was performed using Bionumerics software (Applied
Maths, Inc., Austin, Texas).

Differential insertion sequence amplification

The PCR-based DISA assay was performed using defined primer sets, as previously described
[17]. In brief, the unique spatial location of specific insertion sequence (IS) elements and the re-
sulting sizes of the amplified regions provided the ability to identify and distinguish the virulent
F. tularensis subsp. tularensis (subtypes A.I and A.II) and subsp. holarctica (type B) strains
from F. tularensis subsp. novicida and other near neighbors, including F. philomiragia and
Francisella-like endosymbionts found in ticks.

Genome sequencing and assembly

Genomic sequence data for F. tularensis W4114 was obtained using 454 pyrosequencing at the
Naval Medical Research Center with an average read length of 381 bases. At the end of the
draft sequence phase, 193,654,006 base pairs (bp) were produced, representing an estimated
108-fold coverage with a Q39 score of 0.03%. De novo assembly without using a reference se-
quence resulted in 82 total contiguous sequences. Primer walk reads using Sanger sequencing
were performed as needed to address low quality regions of the draft assembly and to obtain or
confirm nucleotide sequence content. After the assembly was completed and verified, the final
genome with no gaps was comprised of 1,899,252 bp. The total number of reads used in the
final assembly was 25,531. All polymorphisms noted in the newly sequenced W4114 genome
in comparison to the reference strain WY96 were validated by at least two independent meth-
ods. Further, to verify that these nucleotide differences were not due to errors in the database
for WY96, approximately 10% of the polymorphisms in this reference strain were confirmed
by PCR amplification of the region of interest and subsequent DNA sequencing.
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Whole genome mapping

High molecular weight genomic DNA from F. tularensis W4114 was prepared directly from
nonviable cell pellets containing approximately 10” cells using the Argus HMW DNA Isolation
Kit (OpGen, Inc., Gaithersburg, Maryland). In brief, cells were lysed as reccommended by the
manufacturer and diluted for direct use. To reduce DNA shearing, wide-bore pipette tips were
used and DNA samples were gently mixed without vortexing. DNA was visually inspected for
quality and concentration using the ArGus QCard, according to the manufacturer’s instruc-
tions. The software program Enzyme Chooser (OpGen, Inc.) was used to identify restriction
endonuclease cleavage sites in the reference genome that would result in fragments that average
6-12 kilobase pairs (kbp) in size and that would not produce any fragments larger than 80 kbp,
if digested with the respective enzyme. Based on the reference strain F. tularensis WY96, the
Arcus enzymes Ncol and Nhel were chosen and used to restriction map the genome of F. tular-
ensis W4114 with the Whole Genome Mapping System from OpGen, Inc.

Single genomic DNA molecules were captured onto an ArGUs surface within a MapCard
(OpGen, Inc.) and then digested with the selected ArGus restriction enzyme (OpGen, Inc.).
The digested DNA was stained with JOJO-1 (Invitrogen, Carlsbad, California) using the ArGus
MapCard Processor (OpGen, Inc.), and then analyzed by automated fluorescent microscopy
using the ArGus Whole Genome Mapper (OpGen, Inc.). This software records the size and
order of restriction fragments for each DNA molecule. The single molecule restriction map col-
lections were then assembled according to overlapping fragment patterns to produce a consen-
sus Whole Genome Map.

DNA sequence alignment using MapSolver

DNA sequence data for F. tularensis W4114 in FASTA formatted files were imported into
MapSolver software (OpGen, Inc.) and converted into in silico maps using the same restriction
enzyme that was used to generate the respective Whole Genome Map. The contiguous DNA
sequences and the final assembled genome sequence were then aligned to the Whole Genome
Map from F. tularensis W4114 using the sequence placement function of MapSolver. This dy-
namic alignment algorithm generates a final alignment score based on the fragment patterns
and sizes. In brief, MapSolver finds the optimal alignment of two restriction maps according to
a scoring model that incorporates fragment sizing errors, false and missing cuts, and missing
small fragments. The number of aligned fragments in an alignment depends on the nearness of
the match and the MapSolver alignment settings. By default, the initial minimum is determined
by the advanced option of “minimum aligned cuts”, which was set to 4 and corresponds to 3
fragments. The alignment score for every pair of matched fragments can be up to a score of 1 if
the fragments perfectly match in size. As the fragment sizes diverge in size, the scoring function
awards a lower score, whereas longer alignments between more similar restriction patterns
produce a higher score.

Annotation

For functional annotation, the complete chromosome of Francisella tularensis subsp. tularensis
W4114 was submitted to the National Center for Biotechnology Information (NCBI) Prokary-
otic Genomes Automatic Annotation Pipeline (http://www.ncbinlm.nih.gov/genomes/static/
Pipeline.html). The annotated genes were subsequently confirmed by comparing each open
reading frame (ORF) to the respective homolog in WY96 using the standard Smith-Waterman
algorithm [20]. Hits attaining higher than 98% identity were considered accurate annotations.
The genes predicted by the pipeline that were not annotated in WY96 were considered novel
genes. Annotated IS elements that are specific to F. tularensis were obtained from the Universal
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Protein Resource (UniProt) database (http://www.ebi.ac.uk/uniprot/) and located within the
W4114 chromosome using the NCBI Basic Local Alignment Search Tool (BLAST).

Genome alignments and rearrangements

Locally collinear blocks (LCBs) were determined using the progressiveMauve tool [21]. The pa-
rameters for the discovery of LCBs included setting the block search mode to reversals (inver-
sions) plus block interchange mode; the minimum Multiple-Maximal Unique Matches (multi-
MUMs) length equal to 21 bp (closest integer to log2, 1898 kbp), where 1,898 kbp is the average
genome length); the minimum length of the LCBs equal to 63 bp (3 x minimum multi-
MUMs); and the chromosome type as linear. The boundaries of the LCBs were refined by
aligning 5 kbp of the flanking regions using BLAST. Boundary changes were determined by an
exhaustive search of the change points that gave the maximum alignment score.

Nucleotide substitution and indel discovery

Nucleotide polymorphisms were discovered between W4114 and WY96 by global alignment of
the defined LCBs using the Needleman-Wunsch algorithm with the parameters of 1 mismatch
and -2 existence and linear gap costs [22]. All nucleotide polymorphisms in W4114 and 10% of
the nucleotide polymorphisms denoted in the NCBI database for WY96 (GenBank accession
number CP000608) were each confirmed independently by DNA sequencing. The resulting
nucleotide polymorphisms were annotated along with their nucleotide position, intergenic or
intragenic location, and predicted effect on the translated amino acid (synonymous versus
non-synonymous).

Identification of variable-number tandem repeats

Tandem repeats within the chromosome of W4114 were identified utilizing the Tandem Re-
peats Finder algorithm [23]. The number of adjacent tandem repeat motifs and composition
differences within the genomes of W4114 and WY96 were reported (see S10 Table).

Data availability

The complete genome sequence for F. tularensis subsp. tularensis (subtype A.II) strain WY-
00W4114 was deposited in GenBank, annotated, and assigned accession number CP009753.

Results

Sequencing and whole genome mapping of a novel F. tularensis A.ll
strain

Although PFGE typing of F. tularensis W4114 indicated that this strain belonged to the A.II
subtype [16,17], restriction fragment patterns revealed noteworthy differences compared to
other A.Il strains (S1 Fig). At least five restriction fragments differed between W4114 and two
other A.II strains, specifically WY96 and the unsequenced strain WY-06F12590. To examine
the apparent genomic plasticity within the F. tularensis A.Il clade in more detail, the chromo-
some of the unique W4114 strain was sequenced and assembled to completion for subsequent
comparison to other fully sequenced type A strains. Computational tools were used for the
analyses and the identified polymorphisms were each verified independently. The newly se-
quenced genome of F. tularensis A.II strain W4114 was assigned GenBank accession number
CP009753.

The nucleotide sequence of F. tularensis W4114 was acquired by 454 pyrosequencing in
which the only other available sequenced A.II strain, specifically WY96 (GenBank accession
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number CP000608) was used as a reference during the assembly process. Completing the chro-
mosomal sequence for W4114 was problematic due to: (i) the apparent dissimilarity between
these two A Il strains, (ii) the inherent limit in length of accurate sequencing reads, and (iii)
the high abundance of repeated sequences, particularly the IS elements ISFful and ISFtu2. To
address these challenges, whole genome mapping (OpGen, Inc) was used to produce a contigu-
ous restriction map of the actual W4114 chromosome for comparison to the newly assembled
in silico sequence. This methodology facilitated genome closure by identifying problem areas
and by validating the final genomic structure.

The initial whole genome mapping of F. tularensis W4114 DNA was performed with Ncol
(Fig 1A). However, since several chromosomal locations did not have a sufficient number of
Neol restriction sites, assembled sequences within these regions could not be confirmed. There-
fore, a second whole genome map of W4114 was acquired using Nhel (Fig 1B). When the
Ncol-digested and Nhel-digested whole genome maps for F. tularensis W4114 were compared
to the respective in silico restriction maps of F. tularensis WY96, several chromosomal rear-
rangements were apparent (Fig 1).

Size and topological comparison of F. tularensis A.ll genomes

The F. tularensis W4114 circular chromosome was 1,899,252 bp in size and 776 bp larger than
the WY96 genome (Table 1). Although numerous nucleotide polymorphisms were observed
between these two A.II strains, nucleotide insertions predominantly contributed to the size dif-
ference noted for the genome of W4114 relative to WY96 (Table 1). The majority of these

A
Francisella tularensis WY-00W4114 + Ncol

Francisella tularensis WY96-3418 + Ncol

B
Francisella tularensis WY-00W4114 + Nhel

Francisella tularensis WY96-3418 + Nhel

Fig 1. Whole genome mapping of F. tularensis subtype A.ll strains WY-00W4114 and WY96-3418. Ncol (A) and Nhel (B) whole genome maps of F.
tularensis WY-00W4114 (top linearized chromosome) compared to the corresponding theoretical in silico digestion of F. tularensis WY96-3418 (GenBank
accession number CP000608, bottom linearized chromosome). Vertical lines within the genome maps denote the restriction endonuclease sites for Ncol (A)
or Nhel (B). Lines connecting the chromosomal restriction maps of WY-00W4114 and WY96-3418 and the adjacent unshaded genomic areas denote
translocated regions.

doi:10.1371/journal.pone.0124906.g001
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Table 1. Nucleotide polymorphisms in genome of WY-00W4114 compared to WY96-3418 and overall base pair size increase in WY-00W4114.

Nucleotide Polymorphism Intergenic Intragenic Total No.
Insertions 374 804 1178
Deletions 265 137 402
Substitutions 127 159 286
Overall Size Increase 109 667 776

doi:10.1371/journal.pone.0124906.t001

nucleotide insertions were located within intragenic regions, whereas most of the nucleotide
deletions were present within intergenic regions. Further, many nucleotide substitutions were
also apparent in both intragenic and intergenic regions when comparing the A.Il chromosomes
(Table 1).

A total of six LCBs were identified in the genome of F. tularensis W4114 and WY96
(Table 2), with the W4114 chromosome showing the translocation of four LCBs (Fig 2A). Po-
tential recombination events with a two-step parsimonious molecular process were recon-
structed and are shown in Fig 2B. Alternatively, an intermediate strain could have given rise to
either W4114 or WY96. Inspection of the recombination breakpoints revealed the presence of
the two most abundant IS elements, specifically ISFtu1 and ISFtu2, on one or both sides of
these junctions. Therefore, the chromosomal translocations appeared to be IS element-mediat-
ed, as was previously noted when genome comparisons were made between other F. tularensis
strains [13,16,24,25].

Characterization of genomic polymorphisms within F. tularensis A.ll
strains

The larger chromosomal size for F. tularensis W4114 relative to WY96 was predominantly due
to an increase in A+T content (S1 Table). A direct comparison of the nucleotide composition
between these two A.II genomes showed that although the insertion of adenines and thymines
was more common in the W4114 chromosome, these two nucleotides were also more often de-
leted (S2 Table). Guanines and cytosines were also more often inserted than deleted, contribut-
ing to the overall size increase observed for the W4114 genome (S1 and S2 Tables). The
majority of allelic substitutions in both W4114 and WY96 were transitions in which a cytosine
was replaced with a thymine, with the second most frequent change being the exchange of an
adenine to a guanine (S3 Table).

Characterization of the genomic indels in F. tularensis W4114 relative to WY96 showed
that a single base pair indel occurred most frequently, and indels longer in length generally oc-
curred only one time (5S4 Table). Although the majority of the 44 single base pair indels were
within intergenic regions, six were within open reading frames (ORFs) encoding ISFtul and
five others occurred in ORFs annotated to encode proteins (S5 Table). Indels larger than a

Table 2. Description and nucleotide position of locally collinear blocks (LCBs) within A.ll strains WY-00W4114 and WY96-3418.

LCB Type WY-00W4114 Position WY96-3418 Position
1 Conserved 1-661043 1-660657

2 Inversion 661044-829377 1358861-1190506

3 Conserved 829378-1305560 714449-1190505

4 Rearrangement 1305561-1325296 694742-714448

5 Inversion 1325297-1359385 694741-660658

6 Conserved 1359386—-1899270 1358862—-1898476

doi:10.1371/journal.pone.0124906.1002
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Fig 2. Diagram depicting large rearrangements of locally collinear blocks (LCBs) within F. tularensis A.ll strains. F. tularensis A.ll strains WY-
00W4114 and WY96-3418 chromosomal comparison showing related LCBs (A) and potential recombination events with a two-step parsimonious molecular
process (B). Each LCB is represented with a different pattern and/or shading. Directionality of the LCBs is depicted with an arrow and is based on the
reference strain WY96-3418 (GenBank accession number CP000608). Nucleotide positions are denoted in kilobase pairs by the corresponding genome.

doi:10.1371/journal.pone.0124906.9002

single base pair occurred in 16 annotated genes, including eight hypothetical proteins, one 5S
ribosomal RNA (rRNA) ORF in duplicated region 2 (DR2), and one ISFful ORF (S5 and S6
Tables). A 28 bp indel represented the mode with 5 occurrences, all of which were in intergenic
regions, and a single 201 bp sequence in a gene encoding a hypothetical protein was the

largest indel.

Of the 286 nucleotide substitutions in the F. tularensis W4114 genome relative to WY96,
159 were observed in predicted intragenic regions and 127 were located in intergenic regions
(Table 1 and S7 Table). Forty-eight (30%) of the 159 intragenic substitutions were synonymous
and 111 (70%) substitutions were nonsynonymous. Of the 111 nonsynonymous substitutions,
only 16 were conservative. The majority of the intragenic nucleotide substitutions were located
within ISFful ORFs in which 16 of the 56 were synonymous and 40 were nonsynonymous mu-
tations (S7 Table). All 40 nonsynonymous substitutions in the ISFful ORFs were missense mu-
tations. The remaining 103 intragenic nucleotide substitutions produced 32 synonymous and
71 nonsynonymous mutations in 91 additional ORFs, including 17 hypothetical proteins (S7
Table). The 32 synonymous mutations occurred in 31 of these ORFs, five of which were pre-
dicted to encode a hypothetical protein. Nonsynonymous substitutions occurred in 62 genes
and 16 were conservative, including a mutation in the gene encoding the pathogenicity deter-
minant protein PdpC in DR2. In W4114, the nucleotide substitution in pdpC resulted in an iso-
leucine in DR2, and in WY96 DR2 this mutation produced a valine (S7 Table). One
nonsynonymous substitution produced a nonsense mutation that resulted in a stop codon
within one of the duplicated genes predicted to encode an anhydro-N-acetylmuramic acid ki-
nase in W4114 DR2. Structural RNA genes encoding 16S rRNA in DR2 of W4114 and a serine
transfer RNA (tRNA) also contained nucleotide substitutions (S7 Table). Although numerous
nucleotide polymorphisms were identified in the F. tularensis W4114 and WY96 chromosomal
comparisons, the effect of these mutations on regulation and/or protein function remains to be
determined. Nevertheless, these findings collectively illustrated genomic plasticity within the
A.II clade.

Gene content comparison in F. tularensis A.ll strains

The F. tularensis W4114 genome contained two additional ORFs relative to the F. tularensis
WY96 chromosome, one encoding a hypothetical protein and the other encoding a quinone-
oxidoreductase. In contrast, the WY96 chromosome did not have any ORFs that W4114 did
not contain. In both F. tularensis W4114 and WY96, 46 ORFs were disrupted by an IS element.
These interrupted genes were predicted to encode a glycosyl hydrolase, a restriction endonucle-
ase, a kinase, transporters, dehydrogenases, synthases, phosphatases, transferases, aminopepti-
dases, permeases, methylases, ATPases, and 14 hypothetical proteins (S8 and S9 Tables).
Variable-number tandem repeat (VNTR) markers are often used to study genetic diversity
and to distinguish strains of bacterial pathogens (e.g., multiple-locus VNTR analysis or
MLVA). A comparison of the VNTR markers within F. tularensis A.Il W4114 and WY96 re-
vealed that a six nucleotide sequence motif was most often repeated with two different 60-mer
sequences being the longest VN'TR in both strains (510 Table). However, the repeat copy num-
ber and the number of times the VNTR markers were in the A.IT genomes differed (S10 Table).
For example, in W4114 one of the 60 nucleotide motifs was sequentially repeated twice, but
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only located at one site in the genome. In comparison, the same VNTR in WY96 was not re-
peated successively, but was present in the genome at 48 different locations. Another 60 nucle-
otide VNTR marker was repeated twice in W4114 at a single location in the chromosome,
whereas in WY96 this sequence motif was not sequentially repeated, but was present at nine
different genomic sites. Additional VNTR differences in the F. tularensis A.II strains were ap-
parent and are shown in S10 Table.

The strikingly high intraclade abundance of polymorphisms within the F. tularensis A.Il
strains W4114 and WY96 was not apparent in the A.I strains [11,13-15]. Therefore, to provide
more insight on factors that may contribute to the virulence differences noted between these
two F. tularensis type A subpopulations, an interclade genome comparison was performed.

F. tularensis A.l and A.ll chromosomal topology and rearrangements

GC skew in the chromosome of F. tularensis subtype A.I strains SCHU S4 and NE610598 and
subtype A.II strains W4114 and WY96 was similar within members of the same subtype, but
differed between these two clades (Fig 3). However, the termination (fer) region within the A.II
strains differed considerably due to an apparent genomic rearrangement. The spatial location
of the ter region in W4114, which is depicted by the change in GC skew, correlated more with
the A.I strains than with the A.II strain WY96.

The spatial location of LCBs within the sequenced F. tularensis type A strains were com-
pared; these analyses included the A.I strains SCHU $4, NE061598, FSC198, and TI0902 with
WY96 and W4114 representing the A.II clade. Out of the four A.I genomes, only NE061598
differed in genomic organization due to one translocation and one inversion (Fig 4A). When
comparing the chromosome of the two A Il isolates, four translocations and two inversions
were apparent (Fig 4B). Additionally, a comparison between the F. tularensis A.I and A.II sub-
populations revealed numerous differences in the spatial location of LCBs (Fig 4C), supporting
the subdivision of these type A strains into at least two different clades.

Comparison of interclade genomic content in F. tularensis A.l and A.ll
strains

The genomes of these F. tularensis A.I and A.II strains had 99.6% nucleotide identity to other
members of their respective subpopulation, whereas a comparison between the A.I and A.II
subtypes revealed 99.0-99.2% nucleotide identity. The circular chromosome of the F. tularensis
A.Istrains SCHU S4 and NE061598 and the A.II strains W4114 and WY96 were all approxi-
mately 1,890 kbp in size with a G+C content of 32.3% (Table 3). Moreover, all the completed
A genomes (SCHU S4 GenBank accession number AJ749949, 1,892,775 bp; NE061598 Gen-
Bank accession number CP001633, 1,892,681 bp; FSC198 European Molecular Biology Labora-
tory accession number AM286280, 1,892,616 bp; and TI0902 GenBank accession number
NC_016937, 1,892,744 bp) differed by less than 160 bp, and were isolated during a 63 year
span from various geographical regions. The A.II strains were isolated within 4 years of each
other from infected hosts in Wyoming and differed in chromosomal size by 776 bp (Table 3).
Of note, the genomes of both A.II strains were approximately 6 kbp larger than the A.I clade,
due in part to the presence of more IS elements (Tables 3 and 4).

The chromosome in both the F. tularensis A.I and A Il strains contained three large dupli-
cated regions, in which DR1 and DR2 were considerably larger than DR3 due to the presence
of a Francisella pathogenicity island (FPI). The 38 tRNA genes and three rRNA operons pres-
ent in the sequenced A.I strains were also present in the genome of the A.II strains W4114 and
WY96. However, a substantially higher abundance of disrupted genes or pseudogenes were
present in the A.I subtype relative to the A.II subtype (Table 3).
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Fig 3. Diagram illustrating GC skew within chromosomal topology map for F. tularensis A.l and A.ll strains. The circular F. tularensis chromosome of
subtype A.l strains are represented by SCHU S4 (A) and NE061598 (B), and WY96-3418 (C) and WY-00W4114 (D) represent the subtype A.ll strains. The
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doi:10.1371/journal.pone.0124906.9003
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Fig 4. Genome alignment of F. tularensis A.l and A.ll strains. Chromosomal alignments of representative
F. tularensis A.l strains SCHU S4, NE061598, FSC198, and TI0902 (A); pairwise genome alignment of the F.
tularensis A.ll strains WY-00W4114 and WY96-3418 (B); and multiple chromosomal alignment of the F.
tularensis A.l and A.ll strains sequenced to completion and shown in panels A and B (C). The relative location
of the Francisella pathogenicity island (FPI) in duplicated region 1 (DR1) and duplicated region 2 (DR2) is
identified with a bar above the associated chromosomal region for each subtype. The progressiveMauve
software tool was used to align the genomes [21].

doi:10.1371/journal.pone.0124906.g004

The F. tularensis A.Il strains contained more IS elements relative to the A.I strains, but also
possessed a greater abundance of disrupted IS elements (Table 4). This disparity was predomi-
nantly due to the premature stop codon found in all ISFfu2 ORFs within the chromosome of
the A.II strains. Gene decay of ISFtu1, the most abundant transposase within both the A.I and
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Table 3. Overall genomic features of F. tularensis subtype A.l and A.ll strains.

Feature Al All

SCHU S4(1941)? NE061598 (1998)? WY96-3418 (1996)? WY-00W4114 (2000)°
Length (bp) 1892775 1892681 1898476 1899252
GC Content (%) 32.3 32.3 32.3 32.3
Total ORFs 1852 1850 1872 1864
Disrupted ORFs/Pseudogenes 201 201 115 112
Large Duplicated Regions (>5 kbp) B 3 B 3
Francisella Pathogenicity Island 2 2 2 2
Transposons (IS elements)® 66 66 71 71
Structural tRNA 38 38 38 38
Structural rRNA (3 operons) 10 10 10 10

&Year in parentheses denotes when the respective F. tularensis strain was isolated.
PIncludes only full-length ORFs.

doi:10.1371/journal.pone.0124906.t003

AII clade, was also more evident in the A.II strains (Table 4). The intact ISFtul genes in both
the A.I and A.II chromosome contained two consecutive overlapping ORFs in which a pro-
grammed ribosomal frameshift is predicted to occur at the heptanucleotide AAAAAA, pre-
sumably resulting in the translation of a single functional protein with transposase activity
[11,26]. One of the full-length ISFfu3 ORFs in the A.I subpopulation was apparently disrupted
in the A.II strains, producing two ISFtu3 remnants in the A.II clade. No difference in copy
number was observed between the A.I and A.II subtypes for ISFtu4, ISFtu5, ISFtu6, and
ISSod13.

Two of the three duplicated regions (DR1 and DR2) in the F. tularensis A.I and A.II strains
were approximately 33.9 kbp in size. The third duplicated region (DR3) was considerable
smaller in size (5.3 kbp) than DR1 and DR2, predominantly due to the absence of the FPI
genes. In both the A.I and A.II subtypes, DR3 encoded five RNA structural genes, specifically
16S rRNA, tRNA-Ile, tRNA-Ala, 23S rRNA, and 5S rRNA that were located at nucleotides
849,941-855,477 in W4114. Although both the A.I and A.II strains have a duplicated FPI in
DR1 and DR2, the spatial location of these regions differed between these two clades. In the A.

Table 4. Comparison of IS element content in F. tularensis A.l and A.ll strains.

IS Elements AP AR

SCHU S4 NE061598 WY96-3418 WY-00W4114
ISFtu1 (IS630 family) 47 (3) 47 (3) 48 (8) 48 (8)
ISFtu2 (1S5 family) 13 (3) 13 (3) 18° (18) 18° (18)
ISFtu3 (ISNCY family, ISHpal-IS1016) 2(1) 2(1) 1(3) 1(3)
ISFtu4 (1S982 family) 1 1 1 1
ISFtu5 (1S4 family) 1 1 1 1
ISFtu6 (1S1595 family) 1(1) 1(1) 1(1) 1(1)
ISSod13 (1S3 family) 1 1 1 1
Total 66 (8) 66 (8) 71 (30) 71 (30)

#The total number of genes encoding full-length IS elements are shown and the number of IS element remnants are denoted in parentheses.
b|S Ftu2 ORFs contain a premature stop codon.

doi:10.1371/journal.pone.0124906.1004
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II clade, DR1 and DR2 are located in reverse orientation on the chromosome relative to these
regions in the A.I subpopulation (Fig 4A and 4B). In SCHU $4, DR1 and DR2 are located at
nucleotide positions 1,374,371-1,408,281 and 1,767,715-1,801,625, respectively. In W4114,
DR1 and DR?2 are located at nucleotides 517,268-550,971 and 27,169-61,191, respectively,
similar to the location of these regions in WY96. ISFtu1, the most abundant IS element in both
the A.I and A.II clades, flanks one end of DR1 and DR2 in both subpopulations, implicating a
possible role in the initial acquisition of this pathogenicity island.

The F. tularensis A.Il genomes contained 26 VN'TR motifs of which 10 were absent in the A.
I chromosome (S10 Table) [13,27]. The A.I genomes contained two VNTR sequences that
were not in the A.IT chromosome. The longest of these repetitive sequences in the A.IT genomes
were 60 nucleotides in length, whereas the longest VN'TR in the A.I genomes was 23 nucleo-
tides. In general, the chromosome of the A.II subtype contained more and longer VNTR motifs
than the A.I genome.

When the sizes of DR1 and DR2 in the A.I strains SCHU S$4 and NE061598 and A.II strains
W4114 and WY96 were compared, DR2 in W4114 had multiple differences, whereas the
lengths of the other duplicated regions were very similar. More specifically, DR2 in W4114
contained a 200 bp insertion in pdpA that would result in a truncated 62 residue protein, a 28
bp deletion just prior to the 16S rRNA gene, and a 60 bp deletion in the beginning of the 55
rRNA gene. W4114 DR2 also contained five nucleotide substitutions in the 16S rRNA ORF
compared to the associated regions in the other A.II 16S rRNA genes. In DR1 and DR2 of the
A strains, the 16S rRNA gene contained one nucleotide deletion relative to this gene in the A.
IT strains, and both the 16S and 23S rRNA genes contained a nucleotide specific to either the A.
I or AII clade. No other nucleotide polymorphisms were observed within the RNA structural
ORFs in DRI or DR2 of the F. tularensis A.I and A.II strains.

The 18 FPI genes within DR1 and DR2 were present in both the F. tularensis A.I and A.II
strains, and included the intracellular growth locus igl genes and the pathogenicity determinant
protein pdp genes. Many of the FPI products, particularly those encoded by the igl and pdp
genes, have been determined to be critical for intramacrophage survival, replication, and viru-
lence ([28] and review in [29]). The gene encoding PdpA in W4114 DR2 had a 200 bp insert
that would result in a truncated 62 residue protein. This gene in DR1 of W4114, as well as the
other A.II strain and the A.I strains encoded an 820 amino acid protein. A premature stop
codon was previously reported for the WY96 pdpC genes in both DR1 and DR2 [12]. Our anal-
yses did not identify a stop codon and therefore, showed no difference in the length of the pre-
dicted protein encoded by the pdpC genes in DR1 or DR2 for WY96, W4114, or the A.I strains.
The anmK gene, which is predicted to encode an anhydro-N-acetylmuramic acid kinase within
the FPI, contained a premature stop codon in DR1 and DR2 of the A.I strains and W4114
DR2, resulting in a truncated protein; however, in W4114 DR1 and WY96 DR1 and DR2 a 327
amino acid protein was predicted to be encoded. The remaining FPI genes in both loci of the
AJand A.II strains shared considerable nucleotide identity and were predicted to encode pro-
teins that are identical in length.

Factors known to regulate the expression of the FPI genes were reported to be located else-
where on the chromosome; these FPI regulatory proteins include the transcription factors
MglA and SspA [30], as well as the orphan two-component members KdpD and PmrA
[31,32]. The composition of MglA and PmrA were identical in the A.I and A.II strains, whereas
comparison between the SspA and KdpD regulatory proteins revealed one and three residue
differences, respectively. Together these findings indicated that although the F. tularensis A.I
and A.II subtypes differ in virulence, the FPI gene products and the known regulatory factors
were highly conserved.
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Discussion

Considerable genomic plasticity exists in the F. tularensis A.ll subtype
compared to the A.l subtype

In this study, we sequenced and assembled the genome of F. tularensis subsp. tularensis subtype
A Il strain (W4114) for comparison to the only other sequenced A.II strain (WY96) and to the
tully sequenced genomes from subtype A.I. We have previously shown that IS elements provide
a means to differentiate F. tularensis subtypes and subspecies [17]. The abundance of these
ORFs along with other repetitive sequences, the numerous polymorphisms and rearrange-
ments, and the inherent limitations of the current DNA sequencing methodologies made ge-
nome closure difficult. Nonetheless, accurate assembly of the W4114 contiguous sequences
was achieved by a combination of whole genome mapping and application of computational
tools, allowing for an in depth analysis that revealed important intraclade and interclade differ-
ences and similarities between the F. tularensis subtype A.I and A.Il genomes.

A notable finding disclosed from this study was that the F. tularensis A.Il subtype contains
substantial genomic plasticity compared to the A.I subtype. The A.I strains collected over a 60
year period from different geographical regions shared considerable sequence conservation
and chromosomal synteny [11-15]. In contrast, numerous polymorphisms were discovered be-
tween the F. tularensis A.Il strains W4114 and WY96 isolated from infected hosts in Wyoming
with only a four year separation in their acquisition. F. tularensis A.Il strains have been isolated
from both humans and animals, and the distribution of this clade is west of the 100th meridian
in the United States [33]. Deletions and base pair substitutions appear to be a reliable means to
determine phylogenetic relationships in F. tularensis [5,9], and the findings in this study may
have application to forensic investigations in the future.

The genome of F. tularensis W4114 was determined to be 776 bp larger and have fewer dis-
rupted ORFs than F. tularensis WY96, indicating that either WY96 has undergone more ge-
nome reduction and decay or alternatively, W4114 has acquired nucleotide content. The
substantial number of polymorphisms observed between these A.IT genomes suggests that they
have been separately evolving. Numerous synonymous and nonsynonymous substitutions
were also discovered between the W4114 and WY96 chromosomes that may serve as an indica-
tor of selective pressure within a protein coding region. In addition, the intergenic mutations
may also affect the regulation of the associated gene(s) and/or small RNA production. Whether
these mutations were due to impaired DNA repair is unclear and will require additional study.

Mutational biases for C+G — A+T substitutions are common in bacteria [34]. These muta-
tions result in A+T enrichment and often occur in intracellular bacteria due to reduced purify-
ing selection [35]. A+T enrichment was observed in the F. tularensis A.Il strain W4114 relative
to the A.II strain WY96. Since the genome of Francisella has a high A+T content, codon usage
and the availability of the appropriate tRNA may have contributed to the apparent A+T in-
crease in the W4114 genome. Also of note, the majority of nucleotide substitutions in both of
the F. tularensis A1l strains were transitions, specifically C to T and A to G. Although there are
twice as many possible transversions, others have proposed that transitions occur more often
in genomes due to the molecular mechanisms that generate them, such as oxidative deamina-
tion and tautomerization [34]. In particular, 5-methylcytosine has a high propensity to under-
go spontaneous deamination to thymine and occurs about 10 times more often than other
transitions [36].
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F. tularensis genomes in the A.l clade have more gene decay than in the
A.ll strains

Comparisons between the F. tularensis A.I and A.II genomes revealed a plethora of transloca-
tions. The A.I chromosome was consistently smaller and had considerably more disrupted
ORFs than the genome of the A.II strains, indicating greater gene loss and decay within the A.I
clade. There is compelling evidence that deletional bias is a major force that shapes bacterial ge-
nomes, particularly in host-associated bacteria due to decreased selection to maintain gene
functionality [37]. The F. tularensis A.I subtype with considerably more disrupted genes than
the A.II subtype may have retained the minimal genetic content required for niche survival,
contributing to their apparent chromosomal stability.

Chromosomal features and GC skew in F. tularensis A.l and A.ll strains

In general, the size of the bacterial chromosome for a species remains moderately constant
[37]. Consistent with this notion, the F. tularensis genome size has remained approximately the
same, despite the genetic variation observed within the A.II clade and between the type A sub-
populations. Macrodomain organization appears to be a major factor restricting chromosome
plasticity [38]. Further, there is a general trend of C avoidance in the leading strand due to
strand-biased spontaneous mutations, particularly C to T mutations from deamination [39].
Based on GC skew, the location of the ter region in the WY96 chromosome differed compared
to W4114 and the A.I strains. This may be important since there is a strong tendency for the
circular bacterial chromosome to maintain the ori and ter regions opposite of each other for
physical balance during DNA replication [40]. The two replication forks need to reach the ter
region at approximately the same time for optimal and synchronized completion of the bidirec-
tional chromosomal replication. DNA rearrangements, as was found in the F. tularensis A.Il
strains (W4114 and WY96), may disrupt such a balance and promote additional chromosomal
rearrangements.

High number of repetitive sequences in F. tularensis A.ll strains may
promote additional genomic translocations

The presence of repeated sequences enhances the potential for homologous recombination that
can lead to deletions, duplications, and/or genomic rearrangements and is a common feature
of highly virulent pathogens such as F. tularensis, Yersinia pestis, Burkholderia pseudomallei,
and B. mallei. Homologous recombination does not depend on the distance between repeat se-
quences, whereas illegitimate recombination is dependent on both the distance and length of
the sequence [41]. In contrast to the F. tularensis A.I clade, the A.II subpopulation possesses a
higher number of IS element remnants, providing “hot spots” for further IS-mediated recombi-
nation. The inverted repeats that typically define the transposon boundaries have the tendency
to form secondary structures that can reduce DNA replication fidelity and increase genetic di-
versity [42,43]. Interestingly, although inverted repeats are more often deleted than amplified
[44], most of the IS elements in both F. tularensis W4114 and WY96 have retained these flank-
ing regions, which may promote more genomic translocations.

The presence of the numerous VNTR sequences in the F. tularensis chromosome also con-
tributed to the genomic differences observed within this species. The addition or deletion of
individual repeats to these repetitive elements is usually the result of a replication error or re-
combination event and leads to allelic variation. The presence of more and longer VNTR
motifs in the genome of the A.II subtype compared to A.I subtype increases the probability
for errors during DNA replication and could have contributed to the high number of
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polymorphisms observed between the A.II genomes. These repeated motifs along with the
many intact and disrupted IS elements in the A.II strains could provide templates for homolo-
gous recombination, contributing to additional genomic alterations. Further, polymerase or ri-
bosomal slippage can also occur at VNTR sequences, thereby reducing fidelity during the
associated process and could provide a selective advantage.

The virulent F. tularensis subspecies tularensis, holarctica, and mediasiatica contain dupli-
cated FPIs, unlike the opportunistic subspecies novicida and near neighbor F. philomiragia that
contain only one FPI. The lower G+C content in the FPI relative to the remainder of the ge-
nome in F. tularensis indicates that this region was acquired by horizontal transfer [28]. Fur-
ther, the presence of an ISFful ORF flanking one end of both DR1 and DR2 raises intriguing
questions as to the origin of these virulence genes. ISFfu1 belongs to the promiscuous
1S630-Tcl-mariner superfamily of transposons that is found in numerous organisms, including
arthropods, protozoans, animals, and humans [45,46]. Therefore, any of these possible hosts
for F. tularensis or co-habiting organisms are a plausible source for the initial acquisition of
this mobile element.

Chromosomal location of duplicated Francisella pathogenicity islands
differs between the A.l and A.ll strains

Other studies have provided evidence that some of the FPI genes encode components of the
type VI secretion system and that these gene products contribute to the ability of F. tularensis
to subvert the host immune response ([47] and reviewed in [29,48]). Many bacterial species
have been shown to utilize a type VI secretion system to translocate effectors into eukaryotic
cells and modulate host immunity (reviewed in [49,50]). In the current study, a comparison of
the duplicated FPI chromosomal location revealed that these loci were retained within mem-
bers of the F. tularensis A.I and A.II subpopulations, but differed between these clades. Howev-
er, the content of the FPI gene products and well-known regulatory factors in the A.I and A.II
subtypes were highly conserved, with the exception of pdpA in DR2 of W4114 and anmK.
These findings demonstrate that additional study is needed to elucidate the factors that con-
tribute to the virulence differences noted between and within the F. tularensis A.I and A.

II strains.

Pathogen evolution is influenced by abiotic and biotic environmental interactions, resulting
in either an increase or decrease in virulence [51]. Higher genomic plasticity may prime condi-
tions for the introduction or loss of virulence factors [52]. Genomic plasticity in the F. tularen-
sis A.II clade and the resulting polymorphisms have apparently resulted in a pathogen with less
virulence than the highly virulent A.I strains. We propose that pathoadaption, the retention of
beneficial features in the context of infection contributes to the chromosomal stability noted
for the A.I clade and favors a host-associated niche. The higher abundance of genes disrupted
in the F. tularensis A.I subtype compared to the A.II subtype also supports the notion that A.I
strains rely more heavily on host factors. In contrast, the A.II subpopulation appears to be
evolving at a faster rate, perhaps due to the variable and extreme environment that this clade is
exposed to and the impact this stress may have on the A.II strains and their hosts.

Conclusion

The findings shown in this study demonstrate that F. tularensis subtype A.II contains a higher
number of both intact genes and longer repetitive sequences than the A.I subtype. Considerable
genetic variation was also noted within the A.II strains in contrast to the A.I clade. Further
study is needed to determine the factors promoting F. tularensis genetic diversity and plasticity,
and whether these features provide a fitness advantage.
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