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a  b  s  t  r  a  c  t

Yield  gap  analysis,  which  evaluates  magnitude  and  variability  of  difference  between  crop  yield  potential
(Yp) or  water  limited  yield  potential  (Yw)  and  actual  farm  yields,  provides  a measure  of  untapped  food
production  capacity.  Reliable  location-specific  estimates  of  yield  gaps,  either  derived  from  research  plots
or simulation  models,  are  available  only  for  a limited  number  of  locations  and  crops  due  to cost  and  time
required  for  field  studies  or for obtaining  data on  long-term  weather,  crop  rotations  and  management
practices,  and  soil  properties.  Given  these  constraints,  we  compare  global  agro-climatic  zonation  schemes
for suitability  to  up-scale  location-specific  estimates  of  Yp and  Yw, which  are  the  basis  for  estimating
yield  gaps  at  regional,  national,  and  global  scales.  Six global  climate  zonation  schemes  were  evaluated
for  climatic  homogeneity  within  delineated  climate  zones  (CZs)  and  coverage  of  crop  area.  An  efficient
CZ  scheme  should  strike  an effective  balance  between  zone  size  and  number  of  zones  required  to cover  a
large  portion  of harvested  area  of  major  food  crops.  Climate  heterogeneity  was  very large  in  CZ schemes
with less  than  100  zones.  Of the  other  four  schemes,  the  Global  Yield  Gap  Atlas  Extrapolation  Domain
(GYGA-ED)  approach,  based  on a matrix  of  three  categorical  variables  (growing  degree  days,  aridity  index,
temperature  seasonality)  to delineate  CZs  for harvested  area  of all major  food  crops,  achieved  reasonable
balance  between  number  of  CZs  to cover  80%  of  global  crop  area  and  climate  homogeneity  within  zones.
While  CZ  schemes  derived  from  two  climate-related  categorical  variables  require  a  similar  number  of
zones to cover  80%  of  crop  area,  within-zone  heterogeneity  is substantially  greater  than  for  the  GYGA-ED
for most  weather  variables  that  are  sensitive  drivers  of crop  production.  Some  CZ  schemes  are  crop-
specific,  which  limits  utility  for  up-scaling  location-specific  evaluation  of  yield  gaps  in regions  with  crop
rotations  rather  than  single  crop  species.

© 2012  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Growing demand for food in coming decades will require sub-
stantial increase in crop production (Godfray et al., 2010). Given
disadvantages and limitations of massive expansion of existing
cropland, such as loss of biodiversity and increasing GHG emis-
sions, it is of critical importance to know where and how best to
increase crop yield on existing cropland area (Foley et al., 2005;
Tilman et al., 2002). Yield gap (Yg) analysis, an evaluation of the
difference between crop yield potential and actual farmers’ yields

∗ Corresponding author.
E-mail address: justin.vanwart@gmail.com (J. van Wart).

(Lobell et al., 2009), provides a quantitative estimate of possible
increase in food production capacity for a given location, which is
a critical component of strategic food security planning at regional,
national and global scales. For irrigated cropping systems, yield
potential (Yp) is defined as the yield of crop cultivar when grown
without limitations from water, nutrients, pests and diseases; in
rainfed cropping system, water-limited yield potential (Yw) is also
determined by water supply amount and distribution during the
cropping season (van Ittersum et al., 2013). At a given location, Yg
is the difference between Yp or Yw and actual yield.

Both Yp and Yw are site-specific because they are determined
by weather, management, length of growing season, and soil prop-
erties that affect root-zone water storage capacity (the latter for
Yw only). Both can be estimated from research plots, in which
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the crop is grown without limitations, or by simulation using crop
models (Lobell et al., 2009). In a recent comparison of these two
options across a range of cropping systems and environments, van
Ittersum et al. (2013) concluded that use of crop simulation with a
long-term weather database provides a more robust estimate of Yp
and Yw than research plots because simulation better accounts for
the impact of variation in temperature, solar radiation, and rainfall
over time. But use of crop models requires reliable location-specific
data on sowing date, cultivar maturity, plant population, soils and
weather and such data are not generally available for most locations
(Ramirez-Villegas and Challinor, 2012). Obtaining these data at a
large number of locations is time-consuming, costly, and often sim-
ply not feasible. Therefore, an upscaling method is needed to extend
coverage of estimates of Yp and Yw based on location-specific infor-
mation to an appropriate extrapolation domain using a protocol
that minimizes the number of location-specific simulations. Ideally,
extrapolation domains would be small enough to minimize varia-
tion in climate and crop management practices within the domain,
and large enough to minimize data collection requirements to esti-
mate Yg at regional and national scales. Likewise, relevance of a
zonation scheme for simulation of Yp and Yw is determined by the
quality, resolution, extent and choice of variables used to delineate
boundaries.

Previous studies have distinguished geographical space by cli-
mate and soil classification schemes as a basis for extrapolating
and applying agricultural information and research to broader
spatial scales (Wood and Pardey, 1998; Padbury et al., 2002). A
region can be divided into agro-climatic zones (CZs) based on
homogeneity in weather variables that have greatest influence
on crop growth and yield, while agro-ecological zones (AEZs) are
defined as geographic regions having similar climate and soils for
agriculture (FAO, 1978). Such zonation schemes have been used
to identify yield variability and limiting factors for crop growth
(Caldiz et al., 2002; Williams et al., 2008), to regionalize opti-
mal  crop management recommendations (Seppelt, 2000), compare
yield trends (Gallup and Sachs, 2000), to determine suitable loca-
tions for new crop production technologies (Geerts et al., 2006;
Araya et al., 2010), and to analyze impacts of climate change on
agriculture (Fischer et al., 2005). Table 1 includes a description of
previously published zonation schemes used to evaluate extrapola-
tion domains for agricultural technologies and in yield gap analysis.
Our review focuses on CZ schemes and the climatic components
of AEZ schemes with the goal of identifying an appropriate CZ
scheme for upscaling location-specific estimates of Yp or Yw to
regional and national levels. To our knowledge, no such review has
been previously published with this goal in mind. Specific objec-
tives of this review are to: (1) evaluate zonation schemes based on
the degree of variability in weather variables within zones, and (2)
evaluate the usefulness and limitations of these zonation schemes
for upscaling location-specific estimates of Yp and Yw to national
levels.

2. Agro-climatic and agro-ecological zonation schemes

Zonation schemes essentially fall into two categories: matrix
and cluster. In this section differences between matrix and clus-
ter methodologies are explained, and six global matrix and cluster
zonation schemes useful for extrapolation of estimates of Yp or Yw
are described.

2.1. Matrix methodologies

Perhaps the best known and earliest example of a matrix zona-
tion scheme is described by Köppen (1900).  Köppen developed a
climate classification system based on multiple variables related

to temperature and precipitation, and used his system to identify
the type of vegetation, including some crops, that could grow in
each zone. In a matrix zonation, each variable used to delineate
zones is divided into classes or class-ranges. Class cutoff values for
each variable can be based on expert opinion or frequency distri-
butions of the variable’s range of values. Zones are formed by the
matrix “cells” of intersecting classes. For example, a matrix zone
cell might be a geographic area in which mean annual temperature
is between 20 and 25 ◦C and mean annual precipitation is between
300 and 400 mm.

Matrix zonation schemes are advantageous in that the range of
input parameters for all zones is known and specifically defined
by the researchers. The size of the zones in a matrix zonation
results from the number of input variables used and the degree
of specificity in classes for each variable, i.e. more class variables
and more sub-divisions within each variable result in a larger num-
ber of zones with smaller area. Thus, matrix methodology allows
for high degree of control over the number the resulting zones
as determined by intended use of the zonation scheme. Robust
matrix schemes for uscaling Yp and Yw would use the most sensi-
tive weather variables for simulation of crop yields under irrigated
and rainfed conditions.

2.2. Cluster methodologies

Cluster methodologies [also referred to as statistical stratifica-
tion (Hazeu et al., 2011)] relies on multivariate statistical analyses
to separate cells into a researcher-specified number of distinct
zones. Clustering essentially involves assigning grid-cell values
derived from mathematical or statistical modeling of categori-
cal variables. Grouping or “clustering” grid-cells based on these
derived values is accomplished using a variety of techniques such
as assigning a certain value or range of values as a class or
cluster, minimizing the sum of the difference between grid-cells
within clusters, or more sophisticated Iterative Self-Organizing
Data Analysis (ISODATA). In the latter, the number of cluster cen-
ters is specified, randomly placed, and then clusters are divided
or merged based on standard deviation of grid-cells assigned to
each cluster (Tou and González, 1974). The process continues until
reassignment of grid cells no longer improves cluster standard
deviation. Due to the statistical nature of “clustering,” subjectiv-
ity is avoided in selection of class ranges for each variable. Though
class ranges may  be more objective in clustering compared to
matrix methodology, size of zones is partially dependent on num-
ber of zones specified by the researcher, which may  introduce
subjectivity. Unlike matrix zonation, the number of zones is not
determined by the number of weather variables that determine
the zonation. Therefore, a relatively large number of variables can
be considered without necessarily reducing the size of the resulting
zones.

One of the better known examples of a cluster zonation was
created through climate-based modeling of natural vegetation on
grid-cells, which were then grouped into regions based on domi-
nant plant types (Prentice et al., 1992). Cluster methodologies also
have been used to determine the applicability of farm management
research in different regions (Seppelt, 2000), to study potential
impacts of climate change on ecosystems and the environment
(Metzger et al., 2008), and to identify potential new production
areas for bio-energy crops (EEA, 2007).

2.3. Zonation schemes that can be used in estimation of yield
potential

2.3.1. The Global Agro-Ecological Zone modeling framework
The Global Agro-Ecological Zone modeling framework (GAEZ)

was developed to spatially analyze agricultural systems and
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Table 1
Previously published global zonation schemes (AEZ).

AEZ scheme Number of zones Type of AEZ Variables considered, methodology Reference

FAOa 14 Matrix Mean growing period temperature and length of growing period,
determined by annual precipitation, potential evapotranspiration and
the time required to evapotranspire 100 mm of water from the soil
profile

FAO (1978)

CGIAR-TACb 9 Matrix Mean annual and growing period temperature, and length of growing
period (determined the same as in the FAO zonation scheme)

Sivakumar and Valentin (1997)

Prentice  17 Cluster Soil texture based water-storage capacity, monthly precipitation,
sunshine hours, potential evapotranspiration, growing degree days,
minimum temperature, mean temperature. These variables were used
in  a model which calculated most likely vegetation type for the
environment of this gridcell and cells were grouped based on
vegetation type.

Prentice et al. (1992)

Pappadakis 74 Matrix Precipitation and temperature are used in calculations of a variety of
seasonal statistics. Ranges of variables for each zone are based on crop
requirements.

Papadakis (1966)

Köppen-Geiger 31 Matrix Mean annual temperature, minimum and maximum temperature of
warmest and coolest months, accumulated annual precipitation,
precipitation of driest month, lowest and highest monthly
precipitation for summer and winter half years, and a dryness
threshold based on seasonality of precipitation

Kottek et al. (2006)

Holdridge 100 Matrix Mean annual temperature, mean annual precipitation, elevation
(evaporative demand and frost were also considered in determining
climate ranges of zones).

Holdridge (1947)

GAEZ-LGPc 16 Matrix Temperature, precipitation, potential evapotranspiration and soil
characteristics are used to calculate length of growing season.

Fischer et al. (2012)

HCAEZd 21 Matrix Mean temperatures, elevation, and GAEZ-LGP are used to define
thermal regimes and temperature seasonality.

Wood et al. (2010)

SAGEe 100 Matrix Growing degree days (GDD;
∑

Tmean–crop-specific base
temperature) and soil moisture index (actual evapotranspiration
divided by potential evapotranspiration).

Licker et al. (2010)

GLIf 25 Matrix Harvested area of target crop, crop-specific GDD and soil moisture
index (actual evapotranspiration divided by potential
evapotranspiration).

Mueller et al. (2012)

GEnSg 115 Cluster 4 variables (GDD with base temperature of 0 ◦C, an aridity index,
evapotranspiration seasonality, temperature seasonality) used in
iso-cluster analysis to “cluster” grid-cells into zones of similarity.

Metzger et al. (in press)

a Food and Agricultural Organization.
b Consultative Group on International Agricultural Research – Technical Advisory Committee.
c Global Agro-Ecological Zone Length of Growing Period.
d HarvestChoice Agro-ecological Zone.
e Center for Sustainability and the Global Environment.
f Global Land Initiative.
g Global Environmental Stratification.

evaluate the impacts of agricultural policies at a global scale
(Fischer, 2009). Delineation of AEZs within GAEZ are determined
by monthly weather data with a resolution of 10′ (roughly
20 km × 20 km at the equator, or 400 km2). The weather data were
obtained from the Climate Research Unit (New et al., 2002) and the
Global Precipitation Climatology Centre (Rudolf et al., 2005). Cate-
gorical variables used, or derived, from these data to define an AEZ
include: (a) accumulated temperature sums for mean daily temper-
ature above a base temperature [growing degree days (GDD)], (b)
annual temperature profiles, based on mean annual temperature
and within-year temperature trends, (c) delineation of continuous,
discontinuous, sporadic and no permafrost zones, (d) quantification
of soil water balance and actual evapotranspiration for a reference
crop, (e) length of growing period (LGP), defined as the sum of days
when mean daily temperature exceeds 5 ◦C and evapotranspiration
for the reference crop exceeds half of potential evapotranspira-
tion, (f) multiple cropping classification, which indicates whether
annual single, double or triple cropping is possible in a given zone,
based on the LGP and assuming a growth duration per crop of
120 days (Fischer et al., 2012). This GAEZ framework has been
adapted to assess the potential production of all major bio-fuel
crops (Fischer and Schrattenholzer, 2001), to analyze the poten-
tial impact of accelerated biofuel production on food security to
2050, and to evaluate the resulting social, environmental and eco-
nomic impacts (Fischer et al., 2009). Additional assessments have

used a GAEZ framework to evaluate scenarios of future land use
and production of major crops at a global scale (Fischer et al., 2002,
2006). Of the various AEZ schemes used in the GAEZ framework, we
selected the one based on LGP in which LGP is derived from temper-
ature, precipitation, and soil water holding capacity as categorical
variables. The GAEZ-LGP was  selected because it utilizes the most
agronomically relevant categorical variables and has the smallest,
and presumably most climatically homogenous zones, within the
GAEZ-family of AEZ schemes (Figs. 1a–5a).

2.3.2. Center for Sustainability and Global Environment zonation
scheme

The Center for Sustainability and the Global Environment (SAGE)
zonation scheme was  generated using global, gridded data for two
variables known to be important drivers for crop development
and crop growth (Licker et al., 2010): growing degree-days (GDD)
and a crop soil moisture index, the latter calculated as the ratio
of actual to potential evapotranspiration following the approach
of Prentice et al. (1992) and Ramankutty et al. (2002).  Calcula-
tions utilized a 33-y monthly averaged weather database from
the Climate Research Unit (New et al., 2002) with a 10′ resolu-
tion. Soil texture data used to estimate the soil moisture index
were taken from the International Soil Reference and Informa-
tion Center with a 5′ resolution (Batjes, 2006). By downscaling
the weather data from a 10′ to a 5′ resolution, calculations were
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Fig. 1. Zonation of Africa for (a) Global Agro-Ecological Zone for length of growing season (GAEZ-LGP), (b) Center for Sustainability and the Global Environment (SAGE)
zonation scheme (crop-specific, derived using GDD with base temperature of 8 ◦C as used for maize), (c) HarvestChoice Agroecological Zone (HCAEZ, d) Global Landscapes
Initiative (crop-specific, derived using GDD with base temperature of 8 ◦C as used for maize), (e) Global Environmental Stratification (GEnS), (f) Global Yield Gap Atlas
Extrapolation Domain (GYGA-ED).

carried out on a 5′ grid basis (approximately 10 km × 10 km,  or
100 km2 at the equator). The global ranges of the two categorical
variables were each divided into ten classes, which were then used
to develop a matrix of 100 unique combinations of growing degree-
day and soil moisture conditions. Separate zonation schemes were
developed for each of 18 crop species using crop-specific base
temperatures for calculation of growing degree-days (e.g., 8 ◦C for
maize, 5 ◦C for rice). The zonation scheme for maize is shown in
Figs. 1b–5b.

This zonation scheme was  developed to determine within-zone
maximum yield achieved for a specific crop within each of the 100
zones. If the zonal-maximum yield was larger than observed yields
for a particular region within the zone the authors considered this a
Yg and identified the region as having an opportunity for increasing
yields (Licker et al., 2010). The SAGE zonation was also employed
by Johnston et al. (2011) to examine opportunities to expand global
biofuel production through agricultural intensification in regions
with similar growing conditions.
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Fig. 2. Zonation of Asia for (a) Global Agro-Ecological Zone for length of growing season (GAEZ-LGP), (b) Center for Sustainability and the Global Environment (SAGE) zonation
scheme  (crop-specific, derived using GDD with base temperature of 8 ◦C as used for maize), (c) HarvestChoice Agroecological Zone (HCAEZ, d) Global Landscapes Initiative
(crop-specific, derived using GDD with base temperature of 8 ◦C as used for maize), (e) Global Environmental Stratification (GEnS), (f) Global Yield Gap  Atlas Extrapolation
Domain (GYGA-ED).

2.3.3. Modifications of GAEZ and SAGE zonation schemes
Aspects of both the SAGE and GAEZ have been utilized or mod-

ified to develop improved AEZ schemes for yield gap analysis. The
HarvestChoice1 AEZ scheme (HCAEZ), developed for analysis in
sub-Saharan Africa, is an example (Wood et al., 2000, 2010). It is

1 HarvestChoice is a large collaborative effort to provide knowledge products
aimed at guiding investments to improve well-fare through more profitable agri-
culture in Sub-Saharan Africa led by scientists from the University of Minnesota and

a matrix with 21 zones based on GAEZ-LGP and thermal regime
classes for the tropics, sub-tropics, temperate, and boreal zones
distinguished by highland and lowland regions. Essentially, HCAEZ
is a combination, or intersection, of several distinct and indepen-
dent zonation schemes used in the GAEZ framework. Although it
uses data of more recent orgin, the HCAEZ resembles an earlier

the International Food Policy Research Institute (IFPRI). Several zonation schemes
have been used at HarvestChoice, based on the same underlying methodology.
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Fig. 3. Zonation of Europe for (a) Global Agro-Ecological Zone for length of growing season (GAEZ-LGP), (b) Center for Sustainability and the Global Environment (SAGE)
zonation  scheme (crop-specific, derived using GDD with base temperature of 8 ◦C as used for maize), (c) HarvestChoice Agroecological Zone (HCAEZ, d) Global Landscapes
Initiative (crop-specific, derived using GDD with base temperature of 8 ◦C as used for maize), (e) Global Environmental Stratification (GEnS), (f) Global Yield Gap Atlas
Extrapolation Domain (GYGA-ED).

AEZ scheme developed by the Technical Advisory Committee (TAC)
of the Consultative Group on International Agricultural Research
(CGIAR) (TAC/CGIAR, 1992; Sivakumar and Valentin, 1997).

The SAGE zonation scheme was modified by the Global Land-
scapes Initiative (GLI) group at the University of Minnesota, keeping
the classification based on crop-specific GDD but replacing the crop
soil moisture index by annual total precipitation. Another modifica-
tion was that only terrestrial surface covered by harvested area for a
specific crop was considered based on geospatial crop distribution

maps of Monfreda et al. (2008).  Climate zones were developed for
each crop by dividing GDD and precipitation each into ten classes,
the intersection of which formed a matrix of 100 individual CZs.
Instead of using equal ranges for the classes, zones were deter-
mined using an algorithm such that 1% of the global harvested area
of that specific crop was in each zone, a methodology known as
the ‘equal-area approach’ (Figs. 1d–5d). This revision of the SAGE
zonation scheme formed the basis of the yield gap estimates in
Foley et al. (2011) and Mueller et al. (2012).
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Fig. 4. Zonation of North America for (a) Global Agro-Ecological Zone for length of growing season (GAEZ-LGP), (b) Center for Sustainability and the Global Environment
(SAGE)  zonation scheme (crop-specific, derived using GDD with base temperature of 8 ◦C as used for maize), (c) HarvestChoice Agroecological Zone (HCAEZ, d) Global
Landscapes Initiative (crop-specific, derived using GDD with base temperature of 8 ◦C as used for maize), (e) Global Environmental Stratification (GEnS), (f) Global Yield Gap
Atlas  Extrapolation Domain (GYGA-ED).

2.3.4. The Global Environmental Stratification methodology
(GEnS)

The Global Environmental Stratification (GEnS) by Metzger et al.
(in press) is the first cluster methodology aiming at establishing
a global, climate-explicit zonation system. GEnS was  developed
within the Group on Earth Observations Biodiversity Observation
Network (GEOBON, Scholes et al., 2008) and will be available to
assist further research on global ecosystems. This cluster zonation

uses monthly gridded climate data from the WorldClim database
(Hijmans et al., 2005) and annual aridity and potential evapo-
transpiration seasonality derived from the CGIAR Consortium for
Spatial Information (CGIAR-CSI, Trabucco et al., 2008; Zomer et al.,
2008), with 30′ ′ resolution (approximately 1 km2 at the equa-
tor). GEnS was  constructed in three stages. In the first stage, 42
categorical variables were screened to remove those that were
auto-correlated. Among the variables with high auto-correlation,
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Fig. 5. Zonation of South America for (a) Global Agro-Ecological Zone for length of growing season (GAEZ-LGP), (b) Center for Sustainability and the Global Environment
(SAGE) zonation scheme (crop-specific, derived using GDD with base temperature of 8 ◦C as used for maize), (c) HarvestChoice Agroecological Zone (HCAEZ, d) Global
Landscapes Initiative (crop-specific, derived using GDD with base temperature of 8 ◦C as used for maize), (e) Global Environmental Stratification (GEnS), (f) Global Yield Gap
Atlas  Extrapolation Domain (GYGA-ED).

researchers selected the most sensitive parameters and eliminated
the others to prevent over-weighting the zonation by co-linear
variables. In the second step, statistical clustering analysis was
performed on remaining variables: annual cumulative GDD using
base temperature = 0 ◦C, temperature and potential evapotranspi-
ration seasonalities (month to month variation), and an annual
aridity index (calculated as the ratio of mean annual total pre-
cipitation to mean annual total potential evapotranspiration). The
statistical clustering was carried out using principle component
analysis and iterative self-organizing data analyses, resulting in 125
zones (Figs. 1e–5e). A climatic stratification of Europe (Metzger
et al., 2005) has been used in modeling efforts to quantify crop
production potential and yield gaps in Europe (Hazeu et al.,
2009).

2.3.5. The Global Yield Gap Atlas Extrapolation Domain
(GYGA-ED)

The goal of the Global Yield Gap Atlas (GYGA) project
(www.yieldgap.org) is to estimate the yield gap for major food
crops in all crop-producing countries based on locally observed
data. Unlike past efforts to estimate Yg that rely on gridded
weather data as described above, GYGA seeks to use a “bottom-
up” approach with location-specific observed weather data. To
extrapolate results from location-specific observed data, the GYGA
approach utilizes a hybrid zonation scheme, called the GYGA
Extrapolation Domain (GYGA-ED), which combines components
of other zonation schemes as reviewed in this paper. The chal-
lenge of using a bottom-up approach is the time, expense and
access to acquire observed weather data as well as associated

http://www.yieldgap.org/
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location-specific information about crop rotations, soil properties
and farm management, which are required for robust estimates of
Yp and Yw (van Ittersum et al., 2013). Therefore, the GYGA approach
strives for a zonation scheme that balances need to minimize the
number of location-specific sites requiring weather, soils, and crop
management data with the goal of minimizing climatic heterogene-
ity within the CZs.

GYGA-ED is constructed from three categorical variables also
used by the GEnS: (1) GDD with base temperature of 0 ◦C and (2)
temperature seasonality (quantified as the standard deviation of
monthly average temperatures), and (3) an aridity index (annual
total precipitation divided by annual total potential evapotranspi-
ration). Grid cell size for the underpinning weather data was the
same as for GLI based on the SAGE framework (5′ grid, or roughly
100 km2 at the equator). Both GDD and temperature seasona-
lity were calculated using climate data from WorldClim (Hijmans
et al., 2005); the aridity index values were taken from CGIAR-CSI
(Trabucco et al., 2008; Zomer et al., 2008). Following Mueller et al.
(2012), only terrestrial surface covered by at least one of the major
food crops (maize, rice, wheat, sorghum, millet, barley, soybean,
cassava, potato, yam, sweet potato, banana and plantain, ground-
nut, common bean and other pulses, sugarbeets, sugarcane) was
considered in this zonation scheme. To avoid inclusion of areas with
negligible crop production, only grid cells with sum of the harvested
area of major food crops > 0.5% of the grid cell area were accounted
for, based on HarvestChoice SPAM crop distribution maps (You
et al., 2006, 2009), which update geospatial crop distribution data
of Monfreda et al. (2008).  The resulting range in values for GDD and
aridity index were divided into 10 intervals, each with 10% of grid
cells with harvested area of the major food crops, and combined
in a grid matrix with 3 ranges of temperature seasonality to give a
total of 300 AEZ classes. Of these, only 265 occur in regions where
major food crops are grown.

3. Comparison of the agro-climatic and agro-ecological
zonation schemes

Zonation schemes vary widely in defining the size and bound-
aries of regions with similar climate (Figs. 1–5). For example, each
of the schemes recognizes the significance of the Sahara desert, but
they differ by as much as 2◦ or 3◦ (roughly 250–350 km)  in loca-
tion of the southern border in some areas. Differences among the
zonation schemes are considered in the following sections accord-
ing to relevance for assessing performance of crops and cropping
systems within a zone, and in the degree of homogeneity of the
underpinning weather variables.

3.1. Key variables used within the zonation schemes

All global zonation schemes analyzed in the present study are
associated with temperature and water availability but they dif-
fer in selection of specific weather variables to delineate zones
(Table 1). For example, to account for thermal conditions, GDD is
calculated within the SAGE and GLI schemes using crop-specific base
temperatures resulting in a different set of CZs for each crop while
GEnS and GYGA-ED use a single, non-crop-specific base tempera-
ture (0 ◦C) to calculate GDD, which gives a single set of CZs for all
crops. Creating a different zonation scheme for each crop, however,
limits opportunities to analyze Yg for crop rotations and much of
the world’s cropland produces more than one major food crop. For
example, crop-specific schemes make it difficult to reconcile per-
formance of crops within a specific cropping system (e.g. double or
triple rice or rice-wheat cropping systems in Asia). In addition to
GDD, GEnS and GYGA-ED include a measure of temperature varia-
tion during the year based on temperature seasonality.

Different indexes have been used to quantify the degree of water
limitation. Water supply in the GLI zonation is calculated as total
annual rainfall. However, this approach does not account for the
degree of water limitation to crop growth, which varies depend-
ing on the balance between crop water demand, hereafter called
potential evapotranspiration, and water supply. In contrast, GAEZ-
LGP, HCAEZ, and SAGE try to account for both water supply and
demand using actual and potential evapotranspiration. Specifically,
the number of days in which actual evapotranspiration is greater
than 50% of potential evapotranspiration are used by GAEZ-LGP
and HCAEZ to determine when crop growth is possible due to lack
of water stress. SAGE considers the ratio of actual evapotranspi-
ration to potential evapotranspiration as a soil moisture index.
Estimation of actual evapotranspiration is derived from data on
soil texture, bulk density, and depth of root zone (which defines
plant-available water-holding capacity), temperature, precipita-
tion, and leaf area. The soil components of this estimate are derived
from spatially explicit global databases and require a number of
assumptions in order to calculate hydraulic conductivity. Finally,
GEnS and GYGA-ED consider an aridity index calculated as the
ratio of annual total precipitation to annual total potential evapo-
transpiration. While not as sophisticated as the GAEZ-LGP or SAGE
schemes, this aridity index is derived directly from variables in the
weather database and does not require soil data and the associated
uncertainties of assumptions used to estimate soil water holding
capacity.

One of the most influential differences among zonation schemes
is whether they define zones over total terrestrial area or only the
fraction of that area in which crops are grown. For example, GEnS,
GAEZ-LGP, HCAEZ and SAGE all consider total terrestrial area in
constructing their zonation schemes. In contrast, GLI  considers only
harvested area of individual major food crop species to give sep-
arate zonation schemes for each crop while GYGA-ED considers
one scheme based on harvested area of all major food crops. As a
result the area over which zones are defined is therefore signifi-
cantly reduced for those AEZ schemes that only consider harvested
crop area (Figs. 1–5).

3.2. Climatic variability within the zones

Climate homogeneity for a given zonation scheme was  evalu-
ated by calculating frequency distributions of the range of grid-cell
values found within each zone for mean annual temperature,
cumulative annual water deficit (precipitation less evapotrans-
piration), temperature seasonality, and precipitation seasonality
(month to month coefficient of variation in precipitation) based on
WorldClim data at 5′ resolution (Hijmans et al., 2005). In addition to
calculating ranges of these variables for each zone in a given zona-
tion scheme, ranges of mean annual temperature and cumulative
annual water deficit were calculated only for those cells in which
wheat is grown based on spatial crop distribution of Portmann
et al. (2010), in order to minimize bias for those zonation schemes
that are not crop-specific. The geospatial distribution of Portmann
et al. (2010) was chosen for use in this analysis over the SPAM or
Monfreda et al. (2008) data because these two datasets were used
in the derivation of one or more of the zonation schemes examined.
However, it should be noted that climate data used for this analysis
are the same as those used in the GEnS, GYGA-ED, and HCAEZ.

3.2.1. Temperature variability
Zone size was  largest in GAEZ-LGP and HCAEZ (Table 2). Large

zone area with schemes that consider complete terrestrial cover-
age results in a wide range of within-zone temperature as indicated
by the cumulative frequency distribution of mean annual tem-
perature (Fig. 6a). For example, 50% of the GAEZ and HCAEZ
zones have a range of mean annual temperature > 29 ◦C and 24 ◦C,
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Table  2
AEZ scheme coverage of global, China and USA rainfed wheat and maize based on data from Portmann et al. (2010). Values in parenthesis indicate (±SD) of the mean.

AEZ scheme Number of zones Average zone area (Mkm2) Rainfed maize area per
zone (Mha)

Number of zones to cover 80% of
rainfed maize harvested area

Global China USA

GAEZ-LGPa 16 20.2 (18.2) 7.5 (7.2) 7 6 4
HCAEZb 21 15.3 (28.0) 5.8 (8.2) 6 3 2
SAGEc 100 2.7 (4.7) 1.2 (2.1) 28 11 5
GLId 100 2.9 (2.0) 1.2 (0.7) 66 37 25
GEnSe 125 2.6 (2.5) 1.0 (1.7) 30 13 5
GYGA-EDf 265 0.3 (0.3) 0.4 (0.7) 49 21 9

a Global Agro-Ecological Zone Length of Growing Period.
b HarvestChoice Agro-ecological Zone.
c Center for Sustainability and the Global Environment.
d Global Land Initiative.
e Global Environmental Stratification.
f Global Yield Gap Atlas Extrapolation Domain.

respectively. In contrast, zonation schemes with smaller zone
size have considerably less within-zone temperature variability.
For example, the range of mean annual temperature for 50% of
the GLI and GEnS zones is >4 ◦C. When only cropped terrestrial
area is evaluated (whether for a specific crop or multiple crops),
within-zone temperature variability decreases substantially. The
clustering methodology of Metzger et al. (in press) also resulted
in zones with small ranges in temperature variability despite
considering total terrestrial area within zones. Apparently the large
number of categorical variables considered in the GEnS cluster-
ing scheme results in relatively homogeneous temperature regime
despite complete terrestrial coverage. When only wheat harvested
area is considered in all zonation schemes, the frequency distribu-
tion narrows substantially (Fig. 6b).

3.2.2. Water availability
Similar to temperature variability within zones, schemes with

the largest zone area (GAEZ-LGP and HCAEZ) have greatest range
of cumulative water deficit (Fig. 6c). Likewise, crop-area zonation
schemes, such as GYGA-ED and GLI have greatest homogeneity
within zones. Considering only harvested wheat area within zona-
tion schemes that have complete terrestrial coverage decreases the
within-zone range of water deficit of the zonal schemes somewhat,
but the range is still relatively large (Fig. 6d).

3.2.3. Temperature and precipitation seasonality
The GYGA-ED, which considers three ranges of temperature

seasonality as categorical variables, and the GEnS scheme, for
which temperature seasonality is an explicit input parameter, have
smallest range in temperature seasonality within zones. While the
HCAEZ, which also accounts for temperature seasonality, has less
heterogeneity for this variable than zonation schemes that do not
explicitly consider it, its large zone size results in a greater range
than for GYGA-ED. The GAEZ-LGP has the largest within-zone range
of temperature seasonality because its delineation is based more on
water availability and many of its zones have relatively large north
to south extension, capturing a wide range of temperature regimes.
Range of precipitation seasonality was also smallest in the GYGA-
ED scheme even though this parameter is not explicitly considered
in its derivation.

3.3. Balancing number of zones and within-zone climatic
heterogeneity

An appropriate zonation scheme for extrapolating point-based
estimates of yield potential while limiting requirements for data
collection is one which optimizes the trade-off between achieving
climatic homogeneity within zones and minimizing the number of

zones necessary to capture large portions of harvested area of target
crop. While zonation schemes with few zones and large zone area,
such as GAEZ-LGP and HCAEZ, require <10 zones to cover 80% of
global rainfed maize harvested area (Table 2), they have large vari-
ability in weather variables that influence crop growth and yield
(Fig. 6). Among schemes with at least 100 zones and smaller zone
size, those schemes that use the clustering methodology (GEnS)
or a three-parameter matrix (GYGA-ED) appear to have the best
balance between number of zones for 80% coverage of harvested
area (Table 2) and homogeneity in weather variables within zones
(Fig. 6). While the crop-specific GLI zonation scheme has relatively
homogeneous weather within its zones, it requires the largest num-
ber of zones to achieve 80% coverage of rainfed maize area, and it
requires a separate zonation scheme for each crop species. In con-
trast, the SAGE scheme requires the smallest number of zones for
80% coverage of rainfed maize area but has high degree of variabil-
ity in weather variables within its zones despite use of crop-specific
base temperatures used to derive GDD.

4. Discussion

The GAEZ-LGP and HCAEZ schemes are simply too coarse for
use in estimating and extrapolating yield gap analyses because
climate heterogeneity within zones is too large. Both SAGE and
GLI schemes are crop-specific and use a two-parameter zonation
matrix. Of the two, the GLI approach gives much greater homo-
geneity of weather variables within zones, but it requires the
largest number of zones to cover crop area. Both schemes require
separate zonation schemes for each crop which would make it
cumbersome to estimate Yp, Yw, and yield gaps in regions where
more than one crop was grown in rotation. Both GYGA-ED and
GEnS approaches are not crop specific and achieve relatively low
within-zone heterogeneity in key weather variables. Whereas GEnS
requires fewer zones to achieve 80% coverage of rainfed maize area
and has slightly less heterogeneity in mean temperature, GYGA-
ED has substantially less within-zone heterogeneity in cumulative
water deficit and in seasonality of temperature and precipitation.
Both methods appear to be well-suited for up-scaling yield gap
analysis.

Several conclusions follow from this evaluation. Climate zones
used as extrapolation domains for yield gap analysis of current pro-
duction should focus on areas where crops are grown to minimize
within-zone weather variability. While the cluster methodology
also appears efficient at limiting the number of zones required to
cover crop area and minimizing within-zone heterogeneity, they
are less intuitive than matrix zonation schemes because of the
sophisticated mathematics and large number of weather variables
considered. However, for matrix-based zonation schemes it has not
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Fig. 6. Frequency distribution of within-zone range of mean annual temperature, annual water deficit (precipitation less evapotranspiration), temperature seasonality and
month to month coefficient of variation in precipitation based on WorldClim data at 5′ resolution (Hijmans et al., 2005) for 6 climate zonation schemes. All terrestrial area
covered by the zones are considered (panels a, c, e, f); mean annual temperatures and annual water deficit was also calculated considering only where zones overlap wheat
harvested area (b and d). The latter evaluation eliminates bias of generic zonation schemes that evaluate all terrestrial area (GAEZ-LGP, GEnS, SAGE, HCAEZ) and all major
crops  (GYGA-ED).

been tested how to best determine the range-boundaries, whether
by equal distributions (Licker et al., 2010), frequency distributions
(GYGA-ED), or another set of criteria such as quantity of harvested
area within zones (GLI). Beneficial future work would be validation
and comparison of zonation schemes using weather data from
different weather stations within a zone or by performing and com-
paring yield gap analysis for several sites within a zone.

All zonation schemes are limited by choice and quality of the
underpinning data used to derive them. This includes availability
and distribution of high-quality, location specific weather station

data. Using any zonation scheme to estimate Yp, Yw and yield gaps
at larger scales also requires data on soils and management varia-
tion within zones (van Ittersum et al., 2013), and quality of those
data will also affect the accuracy and uncertainty in such large scale
estimates (van Wart et al., 2013).
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