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Using novel spatial mark–resight techniques to monitor
resident Canada geese in a suburban environment

M. Elizabeth RutledgeA,C, Rahel SollmannA, Brian E. WashburnB, Christopher E. MoormanA

and Christopher S. DePernoA

AFisheries, Wildlife, and Conservation Biology Program, Department of Forestry and Environmental Resources,
Campus Box 7646, North Carolina State University, Raleigh, North Carolina 27695, USA.

BU.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Sandusky, Ohio, USA.
CCorresponding author. Email: merutled@ncsu.edu

Abstract
Context. Over the past two decades, an increase in the number of resident (non-migratory) Canada geese (Branta

canadensis) in the United States has heightened the awareness of human–goose interactions.
Aims. Accordingly, baseline demographic estimates for goose populations are needed to help better understand the

ecology of Canada geese in suburban areas.
Methods. As a basis for monitoring efforts, we estimated densities of adult resident Canada geese in a suburban

environment by using a novel spatial mark–resight method. We resighted 763 neck- and leg-banded resident Canada geese
two to three times per week in and around Greensboro, North Carolina, over an 18-month period (June 2008 – December
2009).We estimated the density, detection probabilities, proportion ofmale geese in the population, and themovements and
home-range radii of the geese by season ((post-molt I 2008 (16 July – 31October), post-molt II 2008/2009 (1November – 31
January), breeding and nesting 2009 (1 February – 31 May), and post-molt I 2009). Additionally, we used estimates of the
number of marked individuals to quantify apparent monthly survival.

Key results.Goose densities varied by season, ranging from 11.10 individuals per km2 (s.e. = 0.23) in breeding/nesting to
16.02 individuals per km2 (s.e. = 0.34) in post-molt II. The 95% bivariate normal home-range radii ranged from 2.60 to
3.86 km formales and from1.90 to 3.15 km for females and female home rangeswere smaller than those ofmale geese during
the breeding/nesting and post-molt II seasons. Apparent monthly survival across the study was high, ranging from 0.972
(s.e. = 0.005) to 0.995 (s.e. = 0.002).

Conclusions. By using spatial mark–resight models, we determined that Canada goose density estimates varied
seasonally. Nevertheless, the seasonal changes in density are reflective of the seasonal changes in behaviour and
physiological requirements of geese.

Implications. Although defining the state–space of spatial mark–resight models requires careful consideration, the
technique represents a promising new tool to estimate andmonitor the density of free-ranging wildlife. Spatial mark–resight
methods provide managers with statistically robust population estimates and allow insight into animal space use without the
need to employ more costly methods (e.g. telemetry). Also, when repeated across seasons or other biologically important
time periods, spatial mark–resight modelling techniques allow for inference about apparent survival.

Additional keywords: Branta canadensis, density estimation, goose movements, home range, survival, urbanisation.
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Introduction

Canada geese (Branta canadensis) have become year-round
residents in suburban areas across the United States, raising
concern for human health and safety. Non-migratory geese
have high survival rates and attain large numbers as a result of
adequate habitat and decreased predation and hunting in urban
and suburban environments (Balkcom 2010; Rutledge 2013).
Consequently, between 1990 and 2009, the number of resident
Canada geese in the United States increased from an estimated

two and a half million to more than five million birds (Dolbeer
2011). The presence and movement of Canada geese across
landscapes may contribute to disease transmission (Graczyk
et al. 1998; Kullas et al. 2002; Rutledge et al. 2013),
contamination of water sources (Manny et al. 1994; Allan
et al. 1995), habitat degradation (Smith et al. 1999) and the
risk for goose–aircraft collisions (Dolbeer et al. 2013), leading to
the need for a better understanding of resident goose population
ecology.
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Mark–resight models (White and Shenk 2001; McClintock
et al. 2009) might be an appropriate alternative to estimate
resident goose population sizes and movement characteristics
when telemetry studies are unavailable as a result of financial
or logistical constraints. Mark–resight models account for
imperfect detection of individuals and are less invasive than
are traditional capture–recapture methods. In mark–resight
studies, researchers mark a random subset of individuals from
the population and, subsequently, obtain non-invasive resighting
data. The detection of marked individuals, in combination with
the number of unmarked individuals sighted, can be used to
make inferences about population abundance. Once the geese
have been marked, resighting using paid observers or volunteer
citizens can be employed to collect the data needed for model
analysis.

Previous studies have used mark–resight and band-recovery
techniques to estimate themovement, survival, sitefidelity, home
range and brood ecology of Canada geese (Hestbeck et al. 1991;
Kendall et al. 2006;Groepper et al. 2008;Balkcom2010;Dunton
and Combs 2010). However, traditional mark–resight models
are limited when it comes to density estimation because the
abundance estimate is not linked to a specific area. Hence, ad
hoc methods need to be applied to effectively estimate the size
of the sample area, much like traditional capture–recapture
modelling (Karanth and Nichols 1998). Recent efforts to
overcome this limitation have led to the development of spatial
capture–recapture (Efford 2004; Royle and Young 2008) and
spatial mark–resight models (Chandler and Royle 2013;
Sollmann et al. 2013a, 2013b). Spatial mark–resight models
estimate the number of individuals living within a clearly
defined area and incorporate where, relative to the array of
resighting locations, individuals live and how far they move
within the time frame of the study.

Here, we used novel spatial mark–resight (SMR) methods
to estimate the densities, detection rates, proportion of male
geese in the population, apparent survival, movements, and
home-range radii of resident Canada geese during four seasons
across 18 months, in and around Greensboro, North Carolina.
The study areawas representative of a typical suburban landscape
(e.g. airport, golf courses, retention ponds, recreational parks
and corporate lawns) where geese and humans interact daily and
hunting opportunities are limited. To our knowledge, this is the
first study to use the SMR technique with an avian species of
relatively high abundance and flocking behaviour, which could
be a promising approach for monitoring Canada geese in
suburban environments.

Materials and methods

The study was conducted in and around the city of
Greensboro, which is located in Guilford County, North
Carolina. Greensboro encompassed nearly 344 km2 and had
~277 000 human residents in 2012 (City of Greensboro North
Carolina Demographics 2013). Our study area contained a
suburban airport (Piedmont Triad International Airport) and
numerous retention ponds and open-grass areas frequented by
resident Canada geese. The study site centre was located at
36�0601600N, 79�5600700W.

Marking and resighting Canada geese
From June 2008 until December 2009, we resighted neck- and
leg-banded resident Canada geese in the Greensboro, North
Carolina, area (Fig. 1). The geese were marked over a 3-day
period (16–18 June 2008) at 14 sites, including airport property,
corporate landscapes, golf courses, lakes, parks, residential areas
and a rock quarry. The banding sites were distributed randomly
throughout the study area and the geese were considered resident
because they were present in North Carolina between the months
of April and August (US Fish and Wildlife Service (USFWS)
2012). We corralled geese fromwater and/or nearby grassy areas
during the molt (flightless period) using walk-in panel traps,
and recorded the sex (cloacal examination), age (plumage) and
weight of each goose at the time of banding. For identification
during resighting events, we attached a neck band (Spinner
Plastics, 1108 North First Street, Springfield, IL 62702, USA)
with a distinctive four-character a-numeric code and a US Fish
and Wildlife Service aluminum band (size 8; US Geological
Survey Bird Banding Laboratory, Laurel, Maryland, USA) to
the right leg of each captured goose. All trapping and banding
was conducted in accordance with the Institutional Animal
Care and Use Committee protocol (ID#08-038-O). We released
each goose immediately after banding and resighted the geese
with a spotting scope two to three times per week in and around
the Greensboro area from June 2008 until December 2009,
resulting in 81 resighting surveys across 87 resighting
locations (Fig. 1). In addition to recording marked individuals,
we recorded the number of unmarked geese during each
sampling event.

Closed population spatial capture–recapture model
We analysed goose resighting data using a SMRmodel, which is
closely related to spatial capture–recapture (SCR)models (Efford
2004; Royle and Young 2008; Borchers 2012). In these models,
we assume that each individual i has an activity centre, si, and
that all si are independently distributed across the state space (S)
according to a random uniform distribution. The state space is
an area that includes the resighting grid and is sizable enough
to include all individuals potentially exposed to sampling.
Resighting locations included but were not limited to parks,
golf courses and corporate and residential ponds. When each
individual can be recorded only once at a given site on a given
occasion, the observed data (0 or 1) of individual i at resighting
location j and occasion k, yijk, are Bernoulli random variables
with the encounter probability pij. We model pij as a decreasing
function of the distance from resighting location j to the
individual’s activity centre si, dij,. Under a Gaussian (or half-
normal) encounter model, pij= p0� exp (–dij

2/2s2), where p0 is
the baseline resighting probability at dij = 0 and s is the scale
parameter of the half-normal function, which is related to the
home-range radius of the sampled individuals (Reppucci et al.
2011, see also below). Because of this relationship, we
colloquially refer to s as the ‘movement parameter’.

To estimate N, the number of activity centres in S, we
employ data augmentation (Royle et al. 2007; Royle and
Dorazio 2012). Let n be the number of observed individuals.
Hence, this approach is equivalent to augmenting the observed
dataset withM – n ‘all-zero’ encounter histories or ‘hypothetical
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individuals’ that were never observed. Then,N is estimated as the
sum of an individual auxiliary variable, zi,

zi � Bernoulli ðYÞ;

where i= 1,2,3 . . .M and zi= 1 if the individual is part of the
population, and 0 otherwise. The prior probability of Y is
uniform (0,1), which corresponds to a discrete uniform (0,M)
prior probability for N. M is an arbitrary value set sufficiently
large enough as not to truncate estimates of N, and density, D,
can be derived by dividing N by the area of S.

Extension of the SCR model to a mark–resight situation

This model has recently been extended to a mark–resight
situation, where only part of the population can be
individually identified (Chandler and Royle 2013; Sollmann
et al. 2013a, 2013b). Under these circumstances, only yijk
for the m marked animals are observed. For the unmarked
individuals, we observe only the accumulated counts
hjk=

P
yujk, where u= {m + 1,., N} is an index vector of the

N�m=U unmarked individuals. Unobserved encounter
histories are essentially missing data. By adopting a Bayesian
framework and using Metropolis-within-Gibbs (MwG) Markov
chain Monte Carlo sampling, we can update missing data using
their full conditional distribution (Gelman et al. 2004). Under
the Bernoulli observation model, the full conditional for the yijk

from unmarked animals is multivariate hypergeometric with
sample size hjk, as follows:

yujk � Multivariate Hypergeometric hjk; puj=
X

puj
� �

The remaining model parameters are then updated depending
on the full set of encounter histories.

When the number of marked individuals, m, is unknown, we
need to estimate bothm and the number of unmarked individuals,
U, and we do so by applying data augmentation to the dataset
of marked and unmarked individuals separately (Royle et al.
2014a). This means that we estimate the number of marked
individuals we never observed and the number of unmarked
individuals. The total population size N can then be derived as
m+U.

An important model assumption in non-spatial mark–resight
models is that marked individuals represent a random subset of
the population (Otis et al. 1978). In spatial mark–resight
situations, the marked individuals must represent a spatially
random sample of individuals in the state–space S. Here, to
describe the state–space, we buffered the resighting locations
by 4.5 km. We assumed that marked geese were a random
sample from the resulting state–space because (1) marking
took place across the extent of the resighting array (Fig. 1),
and (2) marking was undertaken during the molt when geese
were fairly immobile. Therefore, it was reasonable to assume

Lakes

N

Greensboro

High Point

Guilford County

0 3 9 12 km6

Fig. 1. Fourteen Canada goose banding sites (&) and 87 resighting locations (*) distributed in and around Greensboro,
North Carolina, 2008/2009.
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that once the molt was complete, the marked geese redistributed
themselves across the state–space.

Model application to Canada goose resighting data

The above model is a closed population model and assumes no
gains or losses of individuals during the study. To account for
changes in biological processes thatmay affect goosemovements
and abundance during their annual cycle, we divided the total
study period into the following four seasons: post-molt I 2008
(16 July – 31October), post-molt II 2008/2009 (1November – 31
January), breeding/nesting 2009 (1 February – 31 May) and
post-molt I 2009 (16 July – 31 October) and analysed seasons
separately. We divided post-molt into two seasons to detect
changes in density caused by the potential presence of
migratory geese during the winter months. We did not analyse
data from the molt (1 June – 15 July) because geese were largely
immobile and because a controlled removal experiment was
conducted during the molt in 2009 (Rutledge 2013), thus
violating the assumption of population closure.

We allowed the parameters of the detection function (s and
p0) to differ between males and females. We were unable to
confirm with certainty whether a marked goose was still alive
and available for resighting at any given period, so we treated
the number of marked individuals as unknown and estimated
this parameter as part of the model. We originally marked 763
geese but 12 were removed from the model analysis because of
insufficient data. Therefore, the total number of marked geese
(n = 751) was used as the upper limit for the augmented marked
dataset and we augmented each unmarked dataset to the
following sizes: post-molt I (2008): 7000; post-molt II: 7500;
breeding/nesting: 5500; and post-molt I (2009): 5500. We
implemented the model using a custom-made MwG sampler
(see Supplementary Material to this paper) in the software
R 2.13.0 (R Development Core Team 2011). For each survey
period, we ran a single chain with 50 000 iterations and
discarded 5000 iterations as burn-in. We reported the posterior
mean (�standard error) and 95% Bayesian credible intervals
(95BCI) for all parameters.

The half-normal detection function we assumed in our model
implies a bivariate normal model of space use, which allowed us
to translate the scale parameters into a 95%home-range radius, r,
using the formula r=s�H5.99 (Royle et al. 2014b).

Finally, we used the estimated number ofmarked geese across
the four seasons to obtain estimates of apparent survival. We let
seasons be denoted by t and estimated the survival rate asmt/mt–1,
where mt–1 was the total number of geese marked before the first
resighting period. Because the resighting periods had different
lengths, we scaled the estimates to monthly apparent survival
using the number of months between the mid-points of each two
subsequent seasons.

Results

Of the marked geese, 44% were determined to be male and 56%
were determined to be female. The model estimates of the
proportion of males within the study area ranged from 0.36 to
0.55, depending on the season. Additionally, 89% of the marked
geese were adults (after-hatch-year), whereas the remaining 11%
were juveniles (hatch-year). We did not remove the juveniles

from the sample because we would not have been able to
exclude the geese from the unmarked counts, because age
cannot be determined reliably on resighting. We accumulated
a total of 8676 resightings of marked geese and 13 610
resightings of unmarked geese across the 81 sampling days.
The total number of sites visited at least once ranged from 57
during the post-molt I (2008) to 65 during breeding/nesting,
whereas the number of marked geese resighted decreased
steadily over time (Table 1).

The SMR models indicated that geese were present at
densities ranging from 11.10 individuals per km2 (s.e. = 0.23)
in breeding/nesting to 16.02 individuals per km2 (s.e. = 0.34) in
post-molt II. Estimates of s ranged from 1.06 km (s.e. = 0.02) to
1.58 km (s.e. = 0.03) for males and from 0.78 km (s.e. = 0.02) to
1.29 km (s.e. = 0.02) for females (Table 2), and were greatest for
males during post-molt I 2009, whereas estimates were greatest
for females during post-molt I 2008. The corresponding 95%
bivariate normal home-range radii ranged from 2.60 to 3.86 km
for males and from 1.90 to 3.15 km for females (Table 3). Last,
the estimates of apparent monthly survival taken from the
mid-points of each two consecutive seasons (banding to post-
molt I 2008: 0.995 (s.e. = 0.002), post-molt I 2008 to post-molt
II: 0.995 (s.e. = 0.004), post-molt II to breeding/nesting: 0.972
(s.e. = 0.005), and breeding/nesting to post-molt I 2009: 0.994
(s.e. = 0.005)) were relatively high within the sample population.

Discussion

Using the SMR methods, we determined that the estimates of
Canada goose density varied seasonally. During our study,
Canada goose populations increased during the winter months,
likely because of the presence of migratory Canada geese
wintering in North Carolina. Goose density then decreased as
breeding/nesting began and estimates were relatively similar
across years for the post-molt I season. These seasonal
changes in density are likely to be reflective of the seasonal
changes in behaviour and physiological requirements of geese.

Estimates from the SMR analysis were largely similar to
values determined during a concurrent study of 16 geese fitted
with satellite telemetry harnesses. Goose home ranges, as
determined by using both SMR and satellite telemetry,
consistently spanned larger areas during the post-molt I season
(Rutledge 2013). Themean home-range radii fromSMR analysis
were smaller for females than males during the post-molt II and

Table 1. The number of sites visited, individual marked geese
resighted, and marked (m) and unmarked (U) resightings used in the
analysis for each season (post-molt I 2008 (16 July – 31 October), post-
molt II (1 November – 31 January), breeding/nesting (1 February – 31

May), and post-molt I 2009)
All data were collected in and around Greensboro, North Carolina, 2008/

2009

Season No. of
sites

No. of geese
resighted

Resightings
(m)

Resightings
(U)

Post-molt I 2008 57 654 3994 3950
Post-molt II 61 465 1613 3184
Breeding/nesting 65 424 1548 2585
Post-molt I 2009 58 351 1521 3891
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breeding/nesting seasons (November–May), when female geese
were likely to be preparing for and engaging in reproduction.
Female resident Canada geese near Lincoln, Nebraska, had a
mean home range of 25.3 km2 and the mean maximum distance

moved between areas of use was 13 km (Groepper et al. 2008).
In the present study, the mean home-range size for female geese
was between 11.34 and 31.16 km2, depending on the season.
However, the mean home-range estimate of the telemetered
geese (9.92 km2; Rutledge 2013) was smaller, probably
because the SMR estimates are based on the assumption that
the home range is bivariate normal.

Sex of the birds and season influenced the movements of
resident Canada geese. Fluctuations in density estimates, home
ranges and goose movements across the landscape were likely
to be related to changes in habitat quality and food availability.
Interestingly, localised goose movements were concentrated
around wetland areas, which are known waterfowl attractants
where breeding/nesting and molting activities occur. Many of
the geese in our study flew short distances to access multiple
small retention ponds on a regular basis, implying that these
concentrated areas of goose-use are ideal for monitoring and
managing changes in goose density and movement across the
landscape.

Survival rates of resident Canada geese were high in this
suburban environment. The marked geese were continuously
resighted within the study area throughout the entirety of the
study period, as indicated by the high estimates of
apparent monthly survival within the sample population.
A year after the initial marking, we estimated that 557 of 751
geese were still alive and within the study area and the annual
survival of resident Canada geese in the Greensboro area was
0.93, which is indicative of adequate goose habitat with little
predation and hunting (Rutledge 2013). Similarly, a monthly
survival rate of 0.94 (female geese only) and a study survival
rate of 0.96 have been reported for resident Canada geese in
other portions of their range (Groepper et al. 2008; Balkcom
2010).

When estimating relatively accurate survival, home-range
and density estimates of resident geese, use of the current
SMR model requires some knowledge of the distribution of
geese across the study area. One caveat of the SMR method
is the assumption that marked individuals represent a random
sample, both demographically and spatially, from the
state–space S. Ideally, S would be defined before individuals
are marked so that marking can take place across all of S (Royle
et al. 2014a). In the present application, we set S a posteriori.
Hence, estimates of density became sensitive to the choice of S
and generally go down as S is increased. We believe that for our
study, defining S as the resighting area plus a 4.5-km buffer was
adequate because geese were marked throughout most of the
resighting area (Fig. 1) and during molt, when they are mostly
immobile, giving them the chance to redistribute throughout
S after marking. Although absolute density estimates could be
influenced by the specific choice of S, relative changes in
density across survey periods, as well as other estimates
obtained from the SMR model (movement, apparent survival),
should not suffer from this sensitivity to S. Ongoing development
of SMR models is focusing on relaxing the assumption of
marked individuals being a random spatial sample from S.

Although defining the state–space of SMR models requires
careful consideration, the technique represents a promising
new tool to estimate and monitor the density and movement of
free-ranging wildlife. SMR methods provide managers with

Table 2. Movement estimates (km) for females (s (f)) andmales (s (m)),
estimated proportion of male population (f), baseline encounter
probability (p0), estimated number of marked geese in the state–space
(m), total abundance (N; marked and unmarked), and total density (D,
individualsperkm2) forpost-molt I 2008 (16July–31October),post-molt
II (1 November – 31 January), breeding/nesting (1 February – 31 May)

and post-molt I 2009
Bayesian confidence intervals are the 2.5% and 97.5% quantiles of the
posterior distributions. All data were collected in and around Greensboro,

North Carolina, 2008/2009

Parameter Mean s.e. 2.50% 97.50%

Post-molt I (2008)
s (f) 1.29 0.02 1.26 1.32
s (m) 1.06 0.02 1.02 1.11
f 0.36 0.02 0.32 0.39
p0 0.19 0.00 0.18 0.19
m 740 3.24 733 746
N 5756 90.68 5577 5932
D 13.76 0.19 13.38 14.14

Post-molt II
s (f) 0.78 0.02 0.74 0.82
s (m) 1.30 0.02 1.26 1.34
f 0.53 0.02 0.49 0.57
p0 0.18 0.00 0.17 0.19
m 729 8.79 711 745
N 6833 157.80 6532 7150
D 16.02 0.34 15.37 16.70

Breeding/nesting
s (f) 0.92 0.02 0.88 0.97
s (m) 1.31 0.02 1.27 1.35
f 0.55 0.02 0.51 0.59
p0 0.16 0.00 0.15 0.17
m 660 10.16 639 679
N 4579 106.54 4371 4787
D 11.10 0.23 10.64 11.55

Post-molt I (2009)
s (f) 0.89 0.02 0.85 0.93
s (m) 1.58 0.03 1.53 1.63
f 0.51 0.02 0.47 0.55
p0 0.15 0.00 0.15 0.16
m 639 14.51 610 667
N 4613 117.36 4388 4845
D 11.13 0.26 10.63 11.64

Table 3. Estimates of mean home-range radii (km) derived from the
movement parameter s of the spatial mark–resight model

Theestimatesare categorisedby sexandseason (post-molt I 2008 (16July–31
October), post-molt II (1 November – 31 January), breeding/nesting
(1 February – 31 May), and post-molt I 2009). All data were collected in

and around Greensboro, North Carolina, 2008/2009

Sex Post-molt I
(2008)

Post-molt II Breeding/nesting Post-molt I
(2009)

Female 3.15 1.90 2.26 2.18
Male 2.60 3.18 3.20 3.86
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statistically robust estimates of population numbers and allow
insight into animal movements, without the need to employmore
costly methods (e.g. telemetry). Also, when repeated across
seasons or other biologically important time periods, SMR
modelling techniques allow for inference about apparent
survival. Because ample and accurate resighting data must be
obtained, the approach would be most effective where proactive
volunteers and citizen science programs can be incorporated
into wildlife-related projects.
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