
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Spring 4-2015

Visual Analytics for Large Communication Trace
Data
Jieting Wu
University of Nebraska-Lincoln, jtwu1986@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Graphics and Human Computer
Interfaces Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Wu, Jieting, "Visual Analytics for Large Communication Trace Data" (2015). Computer Science and Engineering: Theses, Dissertations,
and Student Research. 85.
http://digitalcommons.unl.edu/computerscidiss/85

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/85?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages

VISUAL ANALYTICS FOR LARGE COMMUNICATION TRACE DATA

by

Jieting Wu

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Hongfeng Yu

Lincoln, Nebraska

May, 2015

VISUAL ANALYTICS FOR LARGE COMMUNICATION TRACE DATA

Jieting Wu, M.S.

University of Nebraska, 2015

Adviser: Hongfeng Yu

Executions of modern parallel programs often yield complex communications among

compute nodes of large-scale clusters of workstations or supercomputers. Analyzing

communication patterns is becoming increasingly critical to performance optimiza-

tion. As the scale and complexity of parallel applications drastically increases, visu-

alization has become a feasible means to conduct analysis of massive communication

patterns. However, most visualization tools fall short in showing comprehensive dy-

namic communication graph and addressing the scalability issue. Our solution for

analyzing dynamic communication patterns is based on an analytics framework cou-

pled with a new visualization technique, named CommGram [29], that provides a

flexible solution to the scalability issue. We can explore large communication data at

different levels of detail, and detect potential communication bottlenecks of massive

parallel programs. The conclusion of our studies is based on large-scale scientific ap-

plications that include end-to-end simulation pipelines and AMR-based simulations.

iii

ACKNOWLEDGMENTS

Professor Hongfeng, my advisor, is on top of my appreciation and acknowledgement

list. Through his endless support, guidance, feedback and critique throughout my

graduate work, I have achieved many of my goals and also developed a broad set of

skills ranging from scientific thinking, to programming and data analysis.

I would appreciate the constructive comments and valuable guidance from our

colleauges: Jianping Zeng, Lina Yu, Shruti Daggumati, Yanfu Zhou. In addition, I

would also thank Jianping Zeng for helping me with implementations in this research.

I would also like to thank Professor David Swanson and Professor Ying Lu for their

time, guidance, patience and insights on my graduate study as committee members.

I would like to thank the one who I love. This love goes beyond words, distance,

and time.

At the last, I would also like to thank all my friends and my family for their

encouragement and support whenever I faced challenges.

This research has been sponsored by the Department of Energy through the Ex-

aCT Center for Exascale Simulation of Combustion in Turbulence.

iv

Contents

Contents iv

List of Figures vi

1 Introduction 1

2 Related work 4

3 Visual Analytics Framework 7

3.1 DUMPI: Communication Trace Data Collection 7

3.2 CommGram: Communication Trace Data Visualization 8

3.2.1 Characterization of Communication Graph 9

3.2.2 Equivalent Transformation of Communication Graph 10

3.2.3 Visualization of Bipartite Graphs 12

3.2.4 Temporal Clustering . 13

3.2.5 Processor Clustering . 15

3.2.6 CommGram Curve Generation 17

3.3 Visual Exploration . 18

4 Case Studies 21

4.1 An End-to-end Simulation Pipeline 21

v

4.2 AMR-based Simulations . 26

5 Conclusion 33

Bibliography 35

vi

List of Figures

1.1 Einthoven’s electrocardiogram . 2

3.1 The overview of the framework . 8

3.2 Equivalent Transformation of Communication Graph 9

3.3 Visualization result of binary swap algorithm 13

3.4 Visualization result of time clustering . 15

3.5 Visualization result of processors clustering 17

3.6 CommGram Curve . 19

3.7 GUI . 20

4.1 In-situ simulation and visualization . 22

4.2 CommGram result of the end-to-end simulation pipeline 23

4.3 Zoom-in view of the CommGram . 25

4.4 Zoom-in view of the CommGram . 25

4.5 Visualization of 2-3 swap with asynchronized communication 26

4.6 Zoom-in view of the asynchronized communication 26

4.7 CommGram result for AMR simulations 27

4.8 CommGram result for advection-diffusion simulation 28

4.9 The polygon-base visualization for advection-diffusion simulation 28

4.10 Detail view of the advection-diffusion simulation 29

vii

4.11 Detail view of the advection-diffusion simulation 30

4.12 The CommGram result for the polytropic simulation 31

4.13 The polygon-base visualization for the polytropic gas simulation 31

4.14 Detail view of the polytropic gas simulation 32

1

Chapter 1

Introduction

As the scale and complexity of modern high performance computing (HPC) systems

increases, performance analysis has become ever more crucial to ensure the efficiency

and scalability of parallel programs. The nature of parallel programs affirms that

communication among compute nodes is the key in performance analysis. While

there exist several HPC-based tools to collect communication trace data, interpreting

such large data is very challenging mainly because of three reasons:

First, the sheer size of trace data simply becomes a challenge. A supercomputer

can consist of hundreds of thousands of compute nodes, each of which is made up of

several cores, introducing exponential growth in explicit parallelism. Thus, tracking

comprehensive communication at different details from a large application (such as a

tera- or peta-scale scientific simulation) can generate trace data with a size possibly

comparable to the data generated by the application itself.

Second, mining dynamic distributed communication patterns and their variations

is challenging. For most parallel data-dependent problems, the communication is

heavily affected by the dynamic distribution of data and thus is less predictable using

prior knowledge. Even for the programs that have static communication patterns, the

2

real trace data may exhibit completely different patterns due to dynamic run-time

factors, such as node failure, job scheduling, and so on, which makes it difficult to

understand the program behaviors from the trace data. Even though some prior work

uses logical order to proceed the event ordering, they only conduct their experiment

on a modest data set. As the number of computing nodes increases, the effectiveness

of a visual result decreases. We attribute this phenomenon to the scalability issue.

Third, fundamentally, communication events can be represented as communica-

tion graphs. However, large time-varying graph analysis remains an open and chal-

lenging problem, and there is still a lack of scalable solutions.

Visualization can help interpret trace data and identify communication patterns.

Several sophisticated analysis tools, such as Vampir [18] and TAU [23], are equipped

with visualization algorithms to exhibit the process of each compute node and the

communication among nodes. However, these tools cannot avoid visual clutter result-

ing from edge crossing as the number of nodes increases, and fail to comprehensively

present time-based dynamic communication graphs. Coping with visual clutter, tem-

poral coherence, and scalability issue is becoming a severe barrier for analysts and

developers.

Figure 1.1: Einthoven’s electrocardiogram recordings [6].

This research presents the design of a visual analytics framework for large com-

munication data generated from massive parallel applications. Our work is inspired

3

by the electrocardiogram that shows the heart’s electrical activity in various curves.

Figure 1.1 shows the first electrocardiogram recorded by Einthoven, which can re-

flect possible diseases resulting in changes in heart muscle, and has been widely used

as a diagnostic test in today’s clinical medicine. This method facilities immediate

practical monitoring and analyzing of heart diseases in a simple and concise way [6].

Our framework incorporates a new visualization technique CommGram [29] that,

like electrocardiogram, generates curves to visually convey communication activity

of a massive parallel program. In addition, our framework uses a MPI trace li-

brary, named DUMPI, to intercept communication activity from a massive parallel

program. Our framework has the following major advantages. First, DUMPI can in-

tercept detailed communication activity from applications. Second, CommGram can

concisely and coherently display dynamic communication activity, mitigating visual

clutter and scalability issues. Third, CommGram accentuates visual foci and can fa-

cilitate the detection of potential communication abnormalities. Finally, CommGram

is generated from a hierarchical abstract, and can capture communication activity at

various levels of detail (LODs). We have used real-world large-scale applications to

verify the effectiveness and comprehensiveness of our framework. The applications in-

clude end-to-end simulation pipelines and AMR-based simulations. We show that our

framework provides informative depictions of communication in a coarse-to-fine man-

ner, and is helpful for us to monitor and diagnose complex communication activity

in parallel processing, and gain an insight of communication characterization.

4

Chapter 2

Related work

There is a substantial amount of techniques and tools that aid parallel program

analysis. Some early studies ParaProf [3], Umpire [27] and MPI-Check [15] worked

on MPI programming. To detect processing deadlock, Hilbrich et al. [9] developed a

graph-based approach visualization tool named MUST. Llort at al. [14] clustered and

summarized the performance information to convey evolution of a parallel application

along multiple execution scenarios. The framework uses object tracking techniques

for performance analysis.

Besides these general techniques, researchers and developers also conducted stud-

ies on analysis techniques in order to make performance improvements for large ap-

plications. Sun et al. [26] leverage a Projections method to examine and optimize

fine-grained communication in a biomolecular simulation application and make a re-

markable improvement on a Cray XK6 system. A binary tree structure is utilized

by Bhatele et al. [4] to visualize communication topology which establishes moni-

toring of workload distribution and communication. They showed the performance

improvement for a large AMR application on an IBM Blue Gene/P system.

Analysts and researchers often utilize visualization for performance analysis. The

5

typical visualization includes Gantt chart, node-link diagram, adjacency matrix, Kiviat

diagram. Some of these designs are sometimes combined to provide an insight from

multiple perspectives. ParaGraph [7], an early work of performance visualization, has

incorporated multiple types of typical visualizations. Particularly, the tool represents

a parallel system by a graph, where the nodes represent processors, and the arcs rep-

resent communication between processors. The dynamic status of communication is

showed by an animation of the graph presentation.

Jumpshot [31] and Vampir [18] use a sophisticated HPC library to collect the

MPI communication events and display an overview of system activities. MPI com-

munication events are presented as a Gantt chart. Different colors are equipped to

show different types of MPI calls, while arrows implies the communication direction

between two corresponding processes. An analog of these two tools is TAU [23]. It

also uses a similar Gantt chart. In addition, TAU employs an adjacency matrix-based

visualization to depict the complete communication between every pair of nodes.

These conventional visualizations can intuitively depict a communication graph.

But they all have inherent disadvantages. Node-link diagrams and matrix based vi-

sualizations are not flexible to show the dynamic change of the communication graph

over time. Considering temporality is a significant attribute of communication graph

in parallel processing analysis, node-link diagrams and matrix based visualizations

are less competitive in this aspect. On the other hand, Gantt chart based techniques

suffer from the scalability problem. The drastically increasing size of computing

nodes in parallel system incurred severe visual clutter. Such visual clutter can inter-

fere with the resulting output that may affect the human perception of the pattern

appearance. To address this issue, Muelder et al. [17] utilized high-precision alpha

blending and opacity techniques to optimize the visual representations of communi-

cation event. The resulting output forms a clear pattern with low visual clutter, but

6

some detailed information can be absent. Sigovan et al. [24] made great effort to

extend the overplotting method for large communication graph visualization. They

invented a particle animation technique that can display every event in trace data

while maintaining an overview of system activity. Also, Sigovan et al. [25] introduced

a visual analysis framework for the trace data from large parallel I/O system. In the

perspective of infrastructure, Landge et al. [13] applied a cube shaped torus to the

network traffic of a supercomputer. It provides a combination of 2D and 3D view in

support with large-scale underlying network simulations.

7

Chapter 3

Visual Analytics Framework

We present a visual analytics framework that provides a new perspective to HPC

communication analysis. Figure 3.1 sketches the overall software architecture, which

consists of three main components: DUMPI, CommGram, and Exploration. We

use DUMPI to capture detailed communication data from parallel programs at run-

time, and develop CommGram to generate a concise and informative visualization

of communication data based on a novel graph transformation. The new visualiza-

tion enables an interactive exploration of complex communication patterns at various

LODs. In the following, we describe these components in detail.

3.1 DUMPI: Communication Trace Data

Collection

DUMPI is a MPI trace library of the Structural Simulation Toolkit (SST) [8], which

facilitates the collection and accessing of communication trace data of MPI applica-

tions. DUMPI uses the PMPI interface to intercept MPI calls, which is similar to

the method for Open Trace Format (OTF) [11]. Moreover, it also monitors the start

8

Figure 3.1: The architecture of our visual analytics framework.

and end value of MPI functions and MPI requests at runtime. The output of DUMPI

involves exhaustive information of all MPI function calls, such as sender, receiver,

message size, time stamps, and so on. We can filter the DUMPI output to capture

the specific peer-to-peer communication functions (MPI-Send, MPI-Recv, MPI-Isend,

MPI-Irecv, etc.) and the particular collective functions (MPI-Gather, MPI-Reduce,

etc.). With DUMPI, the communication activity from a MPI application can be

faithfully captured.

3.2 CommGram: Communication Trace Data

Visualization

Communication events are typically represented as graphs. Traditional visualization

techniques, such as node-like diagrams, adjacency matrixes, and Gantt charts, rou-

tinely suffer from temporal incoherence and/or visual clutter in coping with dynamic

and scalability issue. CommGram advocates a design that is formally tailored to the

characteristics of communication graphs.

9

Figure 3.2: (a) shows the traditional node-link diagrams for two consecutive time steps. (b)
shows the bipartite graph equivalent to the communication graph of ti in (a). (c) shows that
we can concatenate the bipartite graphs over the time steps to represent the time-varying
communication graph.

3.2.1 Characterization of Communication Graph

In a communication graph, each vertex denotes a processor and each directed edge

represents a message sent from one processor (sender) to another (receiver). Com-

pared to a general graph, a communication graph possesses a set of exclusive charac-

teristics. First, a communication graph is typically modeled as directed acyclic graph

(DAG) [22], or more particularly, communication directed graph (cDAG) [10]. Sec-

ond, a communication graph is not directly related to the network flow problem [2],

in that, the amount of messages received by a processor has no necessary relationship

to the amount messages sent by this processor.

However, these characteristics have been overlooked in existing visualization stud-

ies. For instance, with the popular node-link diagram, a visualization may show an

artifact of circles in the communication graph and cause potential misunderstanding,

as shown in Figure 3.2 (a). Moreover, most prevalent graph visualization techniques

are developed based on network flows (e.g. [28]), which are not suitable for commu-

nication graphs.

10

3.2.2 Equivalent Transformation of Communication Graph

The design of CommGram is based on an equivalent transformation where a sequence

of bipartite graphs are used to represent a time-varying communication graph. As-

sume we have a time-varying communication graph G over a total of T time steps

with n processors. The processors can be described as a set P of nodes, and the

edges are regarded as communication among them. We use Cti(u, v) to represent an

edge corresponding to a communication that a message is sent from a processor u to

a processor v at the time step ti:

Cti(u, v) = {−→uv | u ∈ P, v ∈ P, ti ∈ T} (3.1)

The set of senders at ti is represented as:

Sti = {u | u ∈ P, ti ∈ T} (3.2)

The set of receivers at ti is represented as:

Rti = {v | v ∈ P, ti ∈ T} (3.3)

Given each directed edge Cti(u, v), we have the set of communications in ti:

Mti = {Cti(u, v) | u ∈ P, v ∈ P ti ∈ T} (3.4)

Therefore, the communication graph at ti is

Gti = (P,Mti). (3.5)

11

We construct a new graph G′
ti

to represent the original graph Gti . We let X and Y

be the copies of the node set of Gti , and X is regarded as sender while Y is receiver.

For each edge Cti(u, v) in Gti , we construct a corresponding edge C ′
ti

(u′, v′) in the

new graph, where u′ is the copy of u in X, and v′ is the copy of v in Y . We denote

the union of C ′
ti

(u′, v′) as M ′
ti

. Thus, we obtain a new graph G′
ti

:

G′
ti

= (X
⋃

Y,M ′
ti

). (3.6)

Lemma. G′
ti
is a bipartite graph that exhibits the same communication informa-

tion in Gti.

Proof. There is a one-to-one mapping between Cti(u, v) and C ′
ti

(u′, v′) C ′
ti

(u′, v′) cor-

responds to the communication represented by Cti(u, v) in Gti . In G′
ti

, all the senders

are in X, and all the receivers are in Y , that is Sti ⊂ X and Rti ⊂ Y . This means

every edge of G′
ti

connects a node in X to one in Y , and X and Y are two disjoint

sets, which satisfies the definition of bipartite graph.

Figure 3.2 (b) shows the bipartite graph constructed from the graph of one time

step in (a). For a time-varying communication graph, it is possible to construct

a bipartite graph for each time step. Alternatively, because X and Y essentially

represent the same set of nodes, we can concatenate the bipartite graphs of the

consecutive time steps by reusing Y at one time step as X at the next time step.

Figure 3.2 (c) shows an example of the combination of the bipartite graphs at the time

steps ti and ti+1 corresponding to Figure 3.2 (a) and (b). Therefore, we equivalently

transform a time-varying communication graph into a sequence of bipartite graphs.

12

3.2.3 Visualization of Bipartite Graphs

The conceptual bipartite graph structure provides us a new way to possibly reduce vi-

sual clutter and appropriately show dynamic communication patterns. We introduce

several visual properties and metaphors to visualize bipartite graphs. In our design,

every graph node is represented as a bar. To mitigate visual clutter resulted from edge

crossing, we render each edge as a B-spline curve such that the directions of edges

can be artificially bent to become more visually coherent. A polygon is constructed

along a B-spline curve, where the width of polygon is proportional to the message

size between the processors. Moreover, we also apply a color and opacity map to

different message sizes. A darker color and a higher alpha value of a polygon indicate

a larger amount of message exchanged and vice versa. Alpha value also helps make a

coherent visual result that the polygons overlapping at the vicinity of the processor

can still be distinguished. It implies this processor is sendering or receiving muli-

ple messages simultaneously. Naturally, the overlapping area also implies a potential

communication contention of the incident processor.

Figure 3.3 shows a butterfly communication pattern widely used in many paral-

lel programs [20]. A representative example is the binary-swap image compositing

algorithm for parallel rendering [16]. Figure 3.3 (a) shows the bipartite graph repre-

sentation of the communication on 4 processors, where we can clearly see that each

processor exchanges the message exactly with another processor at each step in a

binary tree manner. The dynamic communication patterns are aligned concisely over

time steps. Figure 3.3 (b) shows our visualization result. The edges are rendered

using the B-spline curve based polygons with the coherent orientations. In this vi-

sualization, we can also observe that the message size exchanged by a processor is

reduced by half over every step. This is a key property of binary swap, which is not

13

Figure 3.3: (a) shows the bipartite graph representation of the communication of the binary
swap algorithm on 4 processors. (b) shows our visualization result.

displayed in Figure 3.3 (a). Therefore, our visualization can provide an informative

and precise description of the communication.

3.2.4 Temporal Clustering

In a real-world communication trace data, the communication events or steps may not

be clearly distinguished and perfectly aligned over time, compared to the ideal case

shown in Figure 3.3. To address this issue, we cluster communication events according

to a similarity evaluation. We note that each communication event is represented as

an edge ei which has a pair of sending time and receiving time. We then compute the

representative time mi of the edge ei using the mean of the receiving time and sending

time. The similarity between two edges ei and ej is thus defined as the difference of

the representative time between two edges:

d(ei, ej) =| mi −mj | . (3.7)

14

In practice, we do not need to compute the difference between all pairs of edges. This

is because we can first sort the edges according to their representative times, and

then for an edge, its most similar edge only can be one of its immediate neighbors.

We use an agglomerative hierarchical clustering method to cluster the edges in

a binary tree manner. Initially, each edge is a distinct cluster. We then iteratively

merge two most similar clusters, where the representative time of the new cluster is

the average time of the two merged clusters. An attribute, step, is associated with

the cluster and records the step of iteration at which this cluster is generated. The

iteration stops when only one cluster is left. By default, step = 0 for all leaves and

step = Q− 1 for the root, where Q is the total number of edges.

After we generate the clustering tree, we can select the number of clusters accord-

ing to the step order in the binary tree. If we want q clusters, we can partition the

binary clustering tree into q sub-trees. The root r of a sub-tree satisfying:

stepr ≤ q and stepp(r) > q, (3.8)

where stepr is the step order of r, and p(r) is the parent of r. By choosing different

number of clusters, we can explore the communication graph at different LODs. We

can begin with a small number of cluster at a relatively coarser LOD, which depicts a

higher-level overview of communication. Then we can select a finer LOD to generate

a more detailed view for analysis if some intriguing pattern shows up. Figure 3.4

shows an example of binary swap on 8 processors, where we conduct a continuous

zoom-in along time.

15

Figure 3.4: By leveraging the clustering tree, we can incrementally increase the number of
clusters along time. The top image shows all communication of binary swap on 8 processors
in one time step. The middle and bottom images show two and three time steps, respectively.
The bottom image clearly depicts the communication pattern of binary swap.

3.2.5 Processor Clustering

Solving the temporal alignment problem is still not sufficient to generate an appro-

priate view of communication pattern as the ideal result in Figure 3.3. There remains

two key problems.

First, the ideal result in Figure 3.3 is generated based on an assumption that we

already know a butterfly-style communication has been used in programming, and

thus arrange the processors in pairs at each stage. However, in a real-world case, we

may have no prior knowledge about how the processors exchange messages.

Second, the complexity of communication also escalates with the increasing num-

ber of processors that participate in message exchanges. Visual clutter cannot be

avoided with a direct visualization of communication. It is paramount that visu-

16

alization should reduce the complexity of the visual result in order to increase the

effectiveness of exploring the patterns inherent in a large amount of processors.

Our solution to these two problems is also based on clustering. We observe that

within a time step the processors can be grouped based on their connections in com-

munication. This problem is similar to the well-known community detection problem

in networks [19]. The form of network communities is the gathering of vertices into

groups such that there is a higher density of edges within groups than between them.

This concept can be applicable to our problem: if we can detect such communities

that the processors have a higher amount of messages exchanged within communities

than between them, we can place the processors of the same community closer in

the visualization, and thus distinguish different communities. In this way, we can

minimize the crossings of edges between the communities, and thus reduce visual

clutter.

We use an agglomerative hierarchical clustering algorithm to detect communi-

ties [21], which is based on modularity [19]. Processors are treated as graph nodes

while communications are considered as edges. At first, one processor is in one com-

munity. Then we measure the modularity gain [5] to iteratively cluster distinct com-

munities until only one community is left. Similar to temporal clustering, a clustering

tree is generated and used to select the desired clusters. The processors in one com-

munity have more communication than between communities. Using the hierarchical

structure enables the zoom-in functionality into a community. We can have a flexible

and adjustable overview to the communication result, and dive into the communities

to explore the detailed message exchanges if interesting patterns are perceived.

Figure 3.5 demonstrates our clustering result for binary swap on 8 processors.

The results are generated using our clustering-based community detection method

without any prior knowledge of the underneath algorithm. It clearly shows that this

17

Figure 3.5: Processor clustering for binary swap on 8 processors. After the bottom-up
clustering of processors, we can incrementally increase the number of communication com-
munities. The image shows the LOD results with 1, 2, 3, 4, 5, and 8 clusters, respectively.
Our method can automatically group the processors into the communication communities,
and show the coherent patterns without visual clutter. Our method can achieve the ideal
results matching the ground truth of communication pattern without any prior knowledge.

method can perfectly identify the communication pattern matching the ground truth.

In addition, even with a smaller number of processors, the communication pattern can

be abstracted in a coherent fashion to facilitate our understanding. This mechanism

is also very useful when the number of processors is large with respect to the available

display space.

3.2.6 CommGram Curve Generation

We use temporal clustering and processor clustering to generate a visualization with

LOD controls for time and processors respectively. To further detect communication

abnormality, monitoring the communication over time is necessary. In this work, we

focus on the variation of communication patterns. Inspired by the electrocardiogram,

we construct a curve that provides the description of pattern variation. The intuition

is that the curve section is relatively flat if the pattern has been stable over time while

18

the highly wavy section of the curve implies the communication pattern has changed

drastically. Performance analysis can benefit from this representation such that ana-

lysts can have an intuitive and concise description of the changes of communication

over time in a highly complex and dynamic parallel system. Generally, the highly

wavy sections are more likely to be the abnormality that could visually intrigue the

analysts. Then the LOD based visualization control can provide the analysts more

details for diagnosis, which is an analog to electrocardiogram.

The curve of CommGram is constructed in a phase-wise fashion. Recall that,

with temporal clustering and processor clustering, we obtain a time-varying commu-

nication graph consisting of a set of consecutive bipartite graphs. To measure the

difference between two bipartite graphs in distinct time steps, we use the Hungarian

algorithm [12]. We treat the neighboring time step as a perfect matching bipartite

graph where the vertex denotes community, and the edge with a weight represents

the difference of the two incident communities. Then we apply the Hungarian algo-

rithm to find the perfect matching of minimum difference. The result is the sum of

minimum difference in this bipartite graph. Visually, we adjust the relative height

of two consecutive bipartite graphs according to the maximum difference. It can be

interpreted that the two identical clustering results have the same height in the rep-

resentation and vice versa. In general, a time-varying graph has a certain fluctuation

if the communication pattern changes, as shown in Figure 3.6.

3.3 Visual Exploration

We develop a graphical user interface (GUI) to support a visual exploration of com-

munication data. A set of interaction methods can be utilized to show the different

insights of communication patterns. We first provide a user controller to adjust the

19

Figure 3.6: (a) shows the relationship between the CommGram curve (in red) and the
bipartite graphs. (b) only shows the CommGram curve that gives an overview of variation
of communication patterns over time in a simple and concise way.

polygon with respect to the message size. When a user moves a mouse over or

touches a polygon, the detailed information of communication (such as MPI opera-

tions, senders/recievers, message sizes, etc.) will be popped up. We also allow users

to control the relative hight between two consecutive bipartite graphs, and adjust the

wavy degree of the CommGram curve, which can help users detect more interest-

ing patterns. More importantly, users can select the number of processor clusters to

examine different details across all time steps. It provides a natural mechanism for

investigating different aspects of the general graph. Besides, a sub-window is imple-

mented to show one specific cluster communication result with the zoom in and out

functionality along the vertical directions, which enables us to implement touch-based

interaction, as shown in Figure 3.7.

20

Figure 3.7: A GUI overview shows an interactive exploration of communication data on a
touch screen using our CommGram tool.

21

Chapter 4

Case Studies

We first apply our framework to analyze the communication data generated from

large-scale applications including an end-to-end simulation pipeline and AMR simu-

lations. The applications are performed on Hopper, a Cray XE6 supercomputer at the

Lawrence Berkeley National Laboratory. The system contains 53,216 compute cores,

217 Terabytes of memory, and 2 Petabytes of disk. The nodes are interconnected by

the Cray Gemini Network. We use DUMPI to collect detailed MPI communication

trace data, and employ CommGram to visualize data for analysis.

4.1 An End-to-end Simulation Pipeline

We first apply our framework on an end-to-end simulation pipeline. The pipeline

tightly couples combustion simulation and in-situ visualization that are executed on

the same set of processors. Each iteration or time step of simulation requires an

exchange of boundary data among the neighboring processors. In-situ visualization

is called after each time step of simulation to render the selected variables. The

main communication of visualization is required for the 2-3 swap image compositing

22

Figure 4.1: (a) shows the framework of an end-to-end pipeline that integrates simulation
and visualization. (b) shows the images of two time steps generated by visualization during
a simulation run.

algorithm [30] in support of massively parallel rendering. This image compositing

algorithm exchanges the messages among the processors in a 2-3 tree manner, and the

message number is bounded by O(N logN) for N processors. Binary swap is a special

case of 2-3 swap when N is power-of-two. Figure 4.1 (a) shows the framework of the

end-to-end simulation pipeline, and (b) shows the images of two time steps generated

by in-situ visualization. This simulation pipeline allows scientists to monitor the

simulation at runtime with a high frequency and possibly capture highly intermittent

transient phenomena.

We run the integrated simulation and visualization on 4320 processors, and use

DUMPI to collect MPI communication trace data. The size of trace data is about

216 gigabytes for one iteration of simulation and visualization. The data contains

detailed information about communication events, such as senders, receivers, message

23

(a)

(b)

Figure 4.2: (a) shows the CommGram curve of the end-to-end simulation pipeline on 4,320
processors. We can clearly see two completely different periodic communication patterns,
corresponding to simulation and visualization, respectively. (b) shows our polygon based
visualization of bipartite graphs.

sizes, communication categories, walltimes and CPU times that a processor starts and

finishes a communication event.

We use our visual analytics framework to process this large communication data.

Figure 4.2 (a) shows the CommGram curve that provides an overview of communica-

tion captured within 3 iterations of simulation and visualization. We can clearly see

repetitive patterns from the curve: there are 3 long flat sections and 3 short flat sec-

tions, where each section corresponds to a constant communication pattern. A jump

between these two types of sections implies a dramatic change of communication

pattern. We can intuitively know that these two sections correspond to the commu-

nication of simulation and visualization, respectively. This curve clearly summarizes

the program communication activity and enables an effective monitoring.

Our framework also provides more detailed visualization of communication by

24

overlapping polygon-based visualization with the CommGram curve, as shown in

Figure 4.2 (b). As described in Section 3.2.3, each polygon represents a communica-

tion event, where light blue indicates a relatively smaller message size, and dark red

implies a larger message size or more message exchanges. We use the temporal and

processor clustering methods to group the compute node into 18 communities within

27 phases. We can clearly see the patterns between t0 to t8 is repeated at the intervals

of t9 to t17 and t18 to t26. Within t0 to t8, the patterns between t0 to t7 are nearly

identical, implying a similar communication routine. However, there is a complete

difference between t7 and t8, where t8 shows an intensive message exchanged among

the processors, which matches the big jump between the long flat section and the

short section in Figure 4.2 (a).

We can further investigate the communication in each phase. We first zoom into

t8 and unfold it into 12 phases with 18 communities, as shown in Figure 4.3. We

can clearly see that the message size is decreasing approximately by half over phases.

Recall that 2-3 swap takes blog2Nc stages to complete image compositing, where N =

4320 in this case, and the message size is approximately halved in each stage of image

compositing, which is reflected in Figure 4.3. To verify the communication pattern

of 2-3 swap, we further zoom into t8 0 and t8 1 by displaying all 4320 processors, as

shown in Figure 4.4. They show an analogy to the binary swap pattern as shown in

Figure 3.3 (b), thus verifying the correctness of our visualization of 2-3 swap.

In real-world parallel programming, the communication of image compositing can

be either synchronized or asynchronized among the processors: with synchronized

communication, the synchronization function of MPI is called after each stage of

image compositing, while this function is deprecated in asynchronized communication.

Figure 4.3 shows the result of synchronized communication. We also collect and

visualize the data of asynchronized communication, as show in Figure 4.5. We can

25

Figure 4.3: A zoom-in view of t8 in Figure 4.2 (b), unfolding it into 12 phases with 18
communities.

Figure 4.4: A zoom-in view of t8 0 and t8 1 in Figure 4.3 by displaying all 4320 processors.

see that the message size is still reducing over the stages, and the trend complies with

2-3 swap. However, compared to Figure 4.3, the message size of each community

is not even in each stage of Figure 4.5. In particular, four intensive communication

events have be spotted in t8 0, while communication is relatively sparse in t8 1, t8 2,

and t8 3. This implies that some message exchanges of a later stage may occur in

the first stage due to a lack of synchronization. Figure 4.6 shows a zoom-in view of

t8 0 in Figure 4.5, and display the roughly same communication pattern as Figure 4.4.

However, compared to t8 0 in Figure 4.4, Figure 4.6 shows more communication events

in green, indicating that more communication events with smaller message sizes have

26

Figure 4.5: Visualization of 2-3 swap with asynchronized communication.

Figure 4.6: A zoom-in view of t8 0 in Figure 4.5 by displaying all 4320 processors.

occurred in the first stage. This justifies our understanding of the asynchronized

communication behaviors of 2-3 swap.

4.2 AMR-based Simulations

We also apply our framework to Adaptive Mesh Refinement (AMR) based simulations.

During the runtime of such a simulation, the block structured grids are adaptively

refined over time, exhibiting dynamic and complex data exchanges across processors.

To illustrate different communication activities, we consider two AMR-based appli-

27

(a) (b)

Figure 4.7: (a) and (b) show the renderings of the scalar data generated from the first and
second AMR simulations on 4096 processors, respectively.

cations from the Chombo package [1] developed by the Lawrence Berkeley National

Laboratory. The first application solves the advection-diffusion equation. The grid

refinement of this application is relatively marginal over time, implying a possible

stable communication among the processors. The second application solves the Eu-

ler equations of polytropic gas dynamics using integrating systems of conservation

laws, incurring a higher level of grid refinement with an uneven spatial distribution

and imbalanced data communication among the processors. Figure 4.7 shows the

visualizations of the scalar data generated from these two simulations on 4096 pro-

cessors. We can clearly see that the data set of polytropic gas simulation conveys

more complex structures.

Figure 4.8 (a) shows the CommGram curve of the advection-diffusion simulation.

The curve exhibits three main different communication patterns, pa1, pa2, and pa3,

as shown in Figure 4.8 (b). They periodically occur during the execution of the

simulation. To examine the detailed communication activity of pa1, pa2, and pa3, we

28

(a)

(b)

Figure 4.8: (a) shows the CommGram curve of the advection-diffusion simulation on 4,096
processors. (b) shows three different communication patterns, pa1, pa2, and pa3, identified
from the CommGram curve.

Figure 4.9: The polygon-base visualization of bipartite graphs shows the message flow of
each pattern throughout the advection-diffusion simulation.

superimpose the polygon-based visualization of bipartite graphs over the CommGram

curve, as shown in Figure 4.9, where message sizes are mapped from light blue to pink

with light blue being the smallest size and pink being the largest size. The temporal

and processor clustering methods are used to extract the communication phases and

processor communities.

Figure 4.10 shows a view that magnifies the first four phases in Figure 4.9, cor-

responding to two instances of pa1. In t0, there is only one communication occurring

29

Figure 4.10: Magnifying the interval from t0 to t3 in Figure 4.9.

within one community, and there is no any inter-community communication. Then,

in t1, one community broadcasts messages to all other communities. The communi-

cation activity in t0 and t1 constitute pa1. We can observe that the nearly identical

activity is also repeated in t2 and t3, corresponding to another instance of pa1.

Figure 4.11 magnifies the interval from t5 to t7 in Figure 4.9, corresponding to one

instance of pa2. Within this pattern, there is first a broadcast from one community in

t5, followed by an intra-community communication with a considerable large amount

of message in t6, and another intra-community communication with a less amount

of message in t7. This communication pattern also happens in the intervals from t25

to t27, and from t28 to t30. Similarly, we can also observe that pa3 corresponds to a

nearly constant communication activity across several intervals.

Compared to the advection-diffusion simulation, the polytropic gas simulation has

more complex structures and dynamic communication activity. Figure 4.12 (a) shows

its CommGram curve. The beginning of the curve corresponds to the initialization

stage of this simulation where the level of grid refinement is relatively high with an

involvement of significant data exchanges. The communication exhibits more repet-

30

Figure 4.11: Magnifying the interval from t5 to t7 in Figure 4.9.

itive patterns when the grid refinement becomes more stable through the execution.

Two major patterns, pb1 and pb2, can be spotted in the CommGram curve, as shown

in Figure 4.12 (b). Figure 4.13 shows more details using the polygon-based visu-

alization. We can see that there are intensive intra-community communications in

the beginning of the simulation, implying that grid refinement may be mainly con-

ducted within a set of processors. From t14, the communication activity tends to be

more stable, and two patterns dominate the overall communication. We magnify the

interval from t17 to t19. In order to gain more precise information, our tool allows

us to further zoom into one of the overlapping polygons incident to the first com-

munity of t19 and investigate the communication details. By leveraging the cluster

tree generated from the processor clustering, the visualization displays more detailed

communications within the selected polygon by choosing a finer LOD. As shown in

Figure 4.13, an ALL REDUCE communication is clearly depicted in the zoom-in

31

(a)

(b)

Figure 4.12: (a) shows the CommGram curve of the polytropic gas simulation on 4,096
processors. (b) shows two different communication patterns, pb1 and pb2, identified from
the CommGram curve.

Figure 4.13: The polygon-base visualization of bipartite graphs shows the message flow of
each pattern of the polytropic gas simulation.

view. We can continuously use zoom-in functionality on the selected polygon until

reaching the finest LOD.

32

Figure 4.14: The left image shows a magnified view of the interval from t17 to t19 in
Figure 4.13. The right image shows the detailed communication of the selected polygon.
We can clearly see an operation of ALL REDUCE.

33

Chapter 5

Conclusion

In this thesis, I present a novel visualization framework CommGram for communica-

tion analysis of parallel applications, and apply it to the end-to-end in-situ processing

pipeline and AMR simulations. The result of my study provides an example illustrat-

ing the usage of CommGram. The CommGram fundamentally addresses the visual

clutter and scalability issue by leveraging the hierarchical clustering methods. It can

effectively characterize communication activity of large-scale parallel programs and

provide a simple and concise representation that facilitates the monitoring and diag-

nosis of complex communication activity. Representative patterns and possible ab-

normalities can be identified through CommGram in an intuitive fashion. Besides the

demonstrated studies, my framework can also work on other real-world applications

and offer a feasible solution for analysts and researchers to explore communication

behaviors and derive optimization strategies for large parallel programs.

In the future, I will continue to improve the framework and ensure its effective-

ness to satisfy the increasing demand of performance analysis. The framework can

be extended to visualize more run-time phenomena, such as bandwidth and network

contention. I plan to add more visualization techniques, such as illustrative visualiza-

34

tion, to enhance CommGram. I also intend to use the framework to study the data

movement patterns within CPU cores and GPUs, and gain a deeper understanding

of intra-node communication and its impacts on parallel processing.

35

Bibliography

[1] M. Adams, P. Colella, D. T. Graves, J.N. Johnson, N.D. Keen, T. J. Ligocki,

D. F. Martin, P.W. McCorquodale, D. Modiano, P.O. Schwartz, T.D. Sternberg,

and B. Van Straalen. Chombo software package for AMR applications - design

document. Technical report, Lawrence Berkeley National Laboratory Technical

Report LBNL-6616E.

[2] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:

Theory, Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 1993.

[3] Robert Bell, AllenD. Malony, and Sameer Shende. ParaProf: A portable, ex-

tensible, and scalable tool for parallel performance profile analysis. In Euro-Par

2003 Parallel Processing, volume 2790 of Lecture Notes in Computer Science,

pages 17–26. Springer Berlin Heidelberg, 2003.

[4] Abhinav Bhatele, Todd Gamblin, Katherine E. Isaacs, Brian T. N. Gunney,

Martin Schulz, Peer-Timo Bremer, and Bernd Hamann. Novel views of perfor-

mance data to analyze large-scale adaptive applications. In Proceedings of the

International Conference on High Performance Computing, Networking, Storage

and Analysis, SC ’12, pages 31:1–31:11, Los Alamitos, CA, USA, 2012. IEEE

Computer Society Press.

36

[5] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community

structure in very large networks. Phys. Rev. E, 70:066111, Dec 2004.

[6] Antoni Bayes de Luna. Clinical Electrocardiography: A Textbook, 4th Edition.

Wiley, 2012.

[7] Michael T. Heath and Jennifer Etheridge Finger. Paragraph: A tool for visual-

izing performance of parallel programs. Technical report, 1993.

[8] Gilbert Hendry and Arun Rodrigues. Sst: A simulator for exascale co-design. In

ASCR/ASC Exascale Research Conference, 2012.

[9] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski, and

Matthias S. Müller. Mpi runtime error detection with must: Advances in dead-

lock detection. In Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis, SC ’12, pages 30:1–30:11,

Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[10] Torsten Hoefler and Timo Schneider. Runtime detection and optimization of

collective communication patterns. In Proceedings of the 21st International Con-

ference on Parallel Architectures and Compilation Techniques, PACT ’12, pages

263–272, New York, NY, USA, 2012. ACM.

[11] Andreas Knüpfer, Ronny Brendel, Holger Brunst, Hartmut Mix, and WolfgangE.

Nagel. Introducing the Open Trace Format (OTF). In VassilN. Alexandrov,

GeertDick van Albada, PeterM.A. Sloot, and Jack Dongarra, editors, Computa-

tional Science - ICCS 2006, volume 3992 of Lecture Notes in Computer Science,

pages 526–533. Springer Berlin Heidelberg, 2006.

37

[12] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research

Logistic Quarterly, 2:83–97, 1955.

[13] A.G. Landge, J.A. Levine, A. Bhatele, K.E. Isaacs, T. Gamblin, M. Schulz, S.H.

Langer, P.-T. Bremer, and V. Pascucci. Visualizing network traffic to understand

the performance of massively parallel simulations. Visualization and Computer

Graphics, IEEE Transactions on, 18(12):2467–2476, Dec 2012.

[14] Germán Llort, Harald Servat, Juan González, Judit Giménez, and Jesús Labarta.

On the usefulness of object tracking techniques in performance analysis. In

Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis, SC ’13, pages 29:1–29:11, New York, NY,

USA, 2013. ACM.

[15] Glenn Luecke, Hua Chen, James Coyle, Jim Hoekstra, Marina Kraeva, and Yan

Zou. MPI-CHECK: a tool for checking fortran 90 MPI programs. Concurrency

and Computation: Practice and Experience, 15(2):93–100, 2003.

[16] Kwan-Liu Ma, James S. Painter, Charles D. Hansen, and Michael F. Krogh.

Parallel volume rendering using binary-swap compositing. IEEE Comput. Graph.

Appl., 14(4):59–68, July 1994.

[17] Chris Muelder, Francois Gygi, and Kwan-Liu Ma. Visual analysis of inter-process

communication for large-scale parallel computing. IEEE Transactions on Visu-

alization and Computer Graphics, 15(6):1129–1136, November 2009.

[18] W. E. Nagel, A. Arnold, M. Weber, H.-Ch. Hoppe, and K. Solchenbach. VAM-

PIR: Visualization and analysis of MPI resources. Supercomputer, 12:69–80,

1996.

38

[19] M.E.J. Newman. Detecting community structure in networks. The European

Physical Journal B - Condensed Matter and Complex Systems, 38(2):321–330,

2004.

[20] Jorge Luis Ortega-Arjona. Architectural Patterns for Parallel Programming:

Models for Performance Estimation. VDM Verlag, Germany, 2009.

[21] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time

algorithm to detect community structures in large-scale networks. Phys. Rev. E,

76:036106, Sep 2007.

[22] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors.

MIT Press, Cambridge, MA, USA, 1989.

[23] Sameer S. Shende and Allen D. Malony. The tau parallel performance system.

Int. J. High Perform. Comput. Appl., 20(2):287–311, May 2006.

[24] Carmen Sigovan, Chris Muelder, and Kwan-Liu Ma. Visualizing large-scale par-

allel communication traces using a particle animation technique. Comput. Graph.

Forum, 32(3):141–150, 2013.

[25] Carmen Sigovan, Chris Muelder, Kwan-Liu Ma, Jason Cope, Kamil Iskra, and

Robert Ross. A visual network analysis method for large-scale parallel i/o sys-

tems. In Proceedings of the 2013 IEEE 27th International Symposium on Parallel

and Distributed Processing, IPDPS ’13, pages 308–319, Washington, DC, USA,

2013. IEEE Computer Society.

[26] Yanhua Sun, Gengbin Zheng, Chao Mei, Eric J. Bohm, James C. Phillips, Lax-

imant V. Kalé, and Terry R. Jones. Optimizing fine-grained communication in

39

a biomolecular simulation application on cray xk6. In Proceedings of the In-

ternational Conference on High Performance Computing, Networking, Storage

and Analysis, SC ’12, pages 55:1–55:11, Los Alamitos, CA, USA, 2012. IEEE

Computer Society Press.

[27] Jeffrey S. Vetter and Bronis R. de Supinski. Dynamic software testing of MPI

applications with Umpire. In Proceedings of the 2000 ACM/IEEE Conference on

Supercomputing, SC ’00, Washington, DC, USA, 2000. IEEE Computer Society.

[28] Zuchao Wang, Min Lu, Xiaoru Yuan, Junping Zhang, and Huub van de Wetering.

Visual traffic jam analysis based on trajectory data. IEEE Transactions on

Visualization and Computer Graphics, 19(12):2159–2168, December 2013.

[29] Jieting Wu, Jianping Zeng, Hongfeng Yu, and Joseph P. Kenny. Commgram:

A new visual analytics tool for large communication trace data. In Proceedings

of the First Workshop on Visual Performance Analysis, VPA ’14, pages 28–35,

Piscataway, NJ, USA, 2014. IEEE Press.

[30] Hongfeng Yu, Chaoli Wang, and Kwan-Liu Ma. Massively parallel volume ren-

dering using 2-3 swap image compositing. In Proceedings of the 2008 ACM/IEEE

Conference on Supercomputing, SC ’08, pages 48:1–48:11, Piscataway, NJ, USA,

2008. IEEE Press.

[31] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward scalable

performance visualization with jumpshot. Int. J. High Perform. Comput. Appl.,

13(3):277–288, August 1999.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Spring 4-2015

	Visual Analytics for Large Communication Trace Data
	Jieting Wu

	tmp.1429282261.pdf.WIJrd

