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A Chimeric Plasmodium falciparum Merozoite Surface Protein
Vaccine Induces High Titers of Parasite Growth Inhibitory Antibodies

James R. Alaro,a,b Andrea Partridge,a Kazutoyo Miura,b Ababacar Diouf,b Ana M. Lopez,a Evelina Angov,c Carole A. Long,a,b

James M. Burns, Jr.a

Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USAa; Malaria
Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland,
USAb; U.S. Military Malaria Research Program, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USAc

The C-terminal 19-kDa domain of Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is an established target of
protective antibodies. However, clinical trials of PfMSP142, a leading blood-stage vaccine candidate which contains the protec-
tive epitopes of PfMSP119, revealed suboptimal immunogenicity and efficacy. Based on proof-of-concept studies in the Plasmo-
dium yoelii murine model, we produced a chimeric vaccine antigen containing recombinant PfMSP119 (rPfMSP119) fused to the
N terminus of P. falciparum merozoite surface protein 8 that lacked its low-complexity Asn/Asp-rich domain, rPfMSP8 (�Asn/
Asp). Immunization of mice with the chimeric rPfMSP1/8 vaccine elicited strong T cell responses to conserved epitopes associ-
ated with the rPfMSP8 (�Asn/Asp) fusion partner. While specific for PfMSP8, this T cell response was adequate to provide help
for the production of high titers of antibodies to both PfMSP119 and rPfMSP8 (�Asn/Asp) components. This occurred with for-
mulations adjuvanted with either Quil A or with Montanide ISA 720 plus CpG oligodeoxynucleotide (ODN) and was observed in
both inbred and outbred strains of mice. PfMSP1/8-induced antibodies were highly reactive with two major alleles of PfMSP119

(FVO and 3D7). Of particular interest, immunization with PfMSP1/8 elicited higher titers of PfMSP119-specific antibodies than a
combined formulation of rPfMSP142 and rPfMSP8 (�Asn/Asp). As a measure of functionality, PfMSP1/8-specific rabbit IgG was
shown to potently inhibit the in vitro growth of blood-stage parasites of the FVO and 3D7 strains of P. falciparum. These data
support the further testing and evaluation of this chimeric PfMSP1/8 antigen as a component of a multivalent vaccine for P. fal-
ciparum malaria.

In recent years, there has been an increased international effort to
reduce the burden of malaria through the implementation and

integration of multiple control programs to provide high coverage
of affected populations. These efforts have included the use of
insecticide-treated bednets, indoor residual spraying, intermittent
preventative treatment, rapid diagnostic tests, and artemisinin-
based combination therapies. Some reduction in malaria morbid-
ity and mortality has been achieved, such that in 2010, the number
of clinical cases of malaria worldwide was estimated to be 219
million, with approximately 660,000 deaths (1). The development
of an effective malaria vaccine could bolster these efforts further,
but success has been limited. There has been increased interest and
emphasis on development and testing of preerythrocytic and
transmission-blocking malaria vaccines (2, 3). RTS,S, the most
advanced preerythrocytic vaccine for Plasmodium falciparum,
is currently being tested in a large, multicenter phase 3 clinical
trial in Africa. Initial reports suggest that vaccine efficacy is
only around 30% in the most vulnerable target population of
infants (4), with a higher efficacy of approximately 50% in
young children (5).

The development and testing of blood-stage malaria vaccines
have been challenging, and only a limited number of candidate
antigens have progressed to evaluation in phase 1 and 2 clinical
trials (reviewed in reference 6). Such vaccines are unlikely to pre-
vent infection but may be able to reduce parasite burden, the
duration of clinical disease, and/or the severe consequences of
malaria associated with mortality. P. falciparum merozoite surface
protein-1 (PfMSP1) and apical membrane antigen-1 (PfAMA1)
are two of the leading blood-stage vaccine candidates (6). In clin-
ical trials in human subjects, the efficacy of PfMSP1- and

PfAMA1-based vaccines has been low, with problems associated
with inadequate immunogenicity, the polymorphism of both B
and T cell epitopes, and the short duration of protection (6–10).
As the ability to evaluate the protective efficacy of blood-stage
vaccines requires large and expensive field trials, pursuit of such
vaccines appears to be declining in recent years. Nevertheless, an
effective blood-stage malaria vaccine could have a very significant
impact on reducing the burden of malaria in settings in which it is
endemic, even if such a vaccine does not completely prevent in-
fection.

Merozoite surface protein 8 (MSP8) is a target of protective,
vaccine-induced antibody responses in the Plasmodium yoelii ro-
dent model of malaria (11–13). Proof-of-concept studies showed
that a high level of vaccine efficacy against challenge infection with
lethal P. yoelii 17XL could be achieved by immunization of mice
with a multicomponent vaccine including both P. yoelii MSP1
(PyMSP1) and PyMSP8 (14, 15). Of interest, this potency was not
achieved by immunization with an adjuvanted mixture of recom-
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binant PyMSP1 and PyMSP8 vaccines. To achieve maximum pro-
tection, it was necessary to fuse PyMSP119, a target of neutralizing
antibodies, to the N terminus of full-length PyMSP8. Upon im-
munization, a strong T cell response to epitopes within the
PyMSP8 portion of the chimeric antigen was elicited. This T cell
response provided help for the production of high and sustained
levels of IgG that recognized conformational, protective B cell
epitopes of both PyMSP119 and PyMSP8 (15).

MSP8 is well conserved among the species of plasmodial par-
asites which infect a range of hosts, including rodents, nonhuman
primates, and human subjects (16, 17). Full-length P. falciparum
MSP8 contains �600 amino acids, slightly larger than its or-
thologs in other plasmodial species due to the presence of an as-
paragine and aspartic acid (Asn/Asp)-rich domain of �170 amino
acids near its N terminus. Sequence conservation of PfMSP8
among diverse strains of P. falciparum is very high, with variability
mainly restricted to small insertions and/or deletions in the Asn/
Asp-rich domain (16). In assessing the immunogenicity of full-
length recombinant PfMSP8 (rPfMSP8) and rPfMSP8 (�Asn/
Asp), we mapped immunogenic T cell epitopes to highly
conserved regions of the protein outside the Asn/Asp-rich domain
(18). The Asn/Asp-rich domain was somewhat immunogenic for
B cells, but the majority of immunization-induced antibodies rec-
ognized conformational epitopes of PfMSP8 located outside the
Asn/Asp-rich region. These antibodies did not exhibit significant
functional activity in vitro as measured in a standard parasite
growth inhibition assay. The functional activity of these antibod-
ies against P. falciparum blood-stage parasites in vivo has not been
evaluated.

Based on the P. yoelii MSP1/8 studies in mice and information
gained from immunogenicity studies of rPfMSP8 vaccines in mice
and rabbits, we have now produced a chimeric PfMSP1/8 vaccine
antigen. In this study, we evaluated the immunogenicity of
rPfMSP1/8 for both T cells and B cells, assessed the specificity of
the responses for PfMSP1 and PfMSP8 epitopes, and determined
the ability of PfMSP1/8-specific IgG to inhibit the in vitro growth
of homologous and heterologous strains of P. falciparum blood-
stage parasites. In mice and rabbits, we also compared PfMSP1/8
to PfMSP142 vaccines to assess differences in the immunogenicity
of PfMSP19 and the induction of cross-strain growth inhibitory
antibodies. The results indicate that the chimeric rPfMSP1/8 vac-
cine antigen has clear vaccine potential, and its further develop-
ment and testing should be pursued.

MATERIALS AND METHODS
Production and purification of chimeric rPfMSP1/8. To generate the
expression construct for the chimeric PfMSP1/8 vaccine, the codon-har-
monized gene sequence of PfMSP119 (19) was fused to the 5= end of the
codon-harmonized gene sequence of rPfMSP8 (�Asn/Asp) (18) via a gly-
cine-serine linker (GGSGSG). The sequences of PfMSP119 and PfMSP8
from the FVO strain of P. falciparum were utilized. The algorithm for
codon harmonization for recombinant antigen expression in Escherichia
coli has been previously described (19) and was used effectively to enhance
production of full-length rPfMSP8 and rPfMSP8 (�Asn/Asp) (18),
rPfMSP142 (19), rPfLSA1 (20), and rPfs48/45 (21). A leader sequence that
includes a histidine tag, MAHHHHHHPGGSGSGT, was incorporated at
the N terminus, and two stop codons (TGA and TAA) were added at the 3=
end of the chimeric gene. The codon-harmonized synthetic gene was
commercially prepared by Blue Heron Biotechnology, Inc. (Bothell, WA),
and the DNA was sequence verified. The gene insert was then subcloned
into the NcoI and NotI sites of the pET-28 expression vector (EMD Bio-

sciences, San Diego, CA). The PfMSP1/8 expression plasmid was trans-
formed into Shuffle T7 express lysY competent E. coli cells (New England
BioLabs, Ipswich, MA). This strain was previously used successfully for
the production of full-length, properly folded rPfMSP8 (18).

Production of rPfMSP1/8 was accomplished in 3-liter bacterial cul-
tures using a BioFLo115 benchtop bioreactor (New Brunswick Scientific,
Edison, NJ) as previously described (18). rPfMSP1/8 expression was in-
duced by the addition of �-D-1-thiogalactopyranoside (IPTG; Fisher Sci-
entific, Pittsburg, PA) to a final concentration of 1 mM. Three hours
postinduction, cells were harvested by centrifugation at 8,000 � g for 20
min at 4°C, and cell paste was stored frozen at �80°C. Purification of
rPfMSP1/8 followed protocols previously established for both rPfMSP8
and rPfMSP8 (�Asn/Asp). Briefly, bacterial cells were lysed using the
BugBuster HT protein extraction reagent (EMD Biosciences) in the pres-
ence of benzonase nuclease (EMD Biosciences) and recombinant ly-
sozyme (EMD Biosciences). The lysate was clarified by centrifugation, and
the resulting pellet was solubilized in column binding buffer (20 mM
Tris-HCl, pH 7.9, 5 mM imidazole, 0.5 M NaCl) containing 0.2% N-
lauroylsarcosine sodium salt (Sarkosyl; Sigma-Aldrich, St. Louis, MO).
rPfMSP1/8 was purified from the detergent-soluble fractions by nickel-
chelate affinity chromatography on nickel-nitrilotriacetic acid (Ni-NTA)
agarose (Qiagen, Valencia, CA) under nondenaturing conditions as de-
scribed previously (18). The eluted rPfMSP1/8 was dialyzed overnight at
4°C against 4 liters of binding buffer containing 0.2% Sarkosyl. The final
protein concentration was determined by bicinchoninic acid protein as-
say (BCA; Thermo Scientific, Rockford, IL). Protein purity and confor-
mation were assessed by Coomassie blue staining following SDS-PAGE on
10% gels, run under both reduced and nonreduced conditions. Corre-
sponding immunoblots were probed with a PfMSP119 (FVO)-specific
monoclonal antibody (MAb 5.2) (MRA-94; Malaria Research and
Reference Reagent Resource Center, MR4, Manassas, VA), rabbit anti-
rPfMSP119 (FVO) (MR4 and MRA-33), rabbit anti-rPfMSP8 (18), or rab-
bit anti-rPfMSP8 (�Asn/Asp) (18). Additional antigens used in this study,
including rPfMSP8 (�Asn/Asp), rPfMSP142, recombinant glutathione S-
transferase-PfMSP119 (rGST-PfMSP119) (FVO), and rGST-PfMSP119

(3D7), were expressed and purified as previously reported (14, 18, 19,
22–24).

Mice and immunization protocols. Male CB6F1/J (BALB/cJ �
C57BL/6J) mice or outbred CD1 mice, 5 to 6 weeks of age, were purchased
from The Jackson Laboratory and housed in the Animal Care Facility of
Drexel University College of Medicine under specific-pathogen-free con-
ditions. All animal studies were reviewed, approved, and conducted in
compliance with the Institutional Animal Care and Use Committee
(IACUC) of Drexel University College of Medicine. Three immunogenic-
ity experiments were completed. In each experiment, serum and/or
splenocytes were recovered from each animal approximately 2 weeks fol-
lowing the last immunization.

Experiment 1. Groups of CB6F1/J or outbred CD1 mice (n � 10) were
immunized subcutaneously with 10 �g/dose of purified rPfMSP1/8 for-
mulated with either (i) 25 �g/dose of Quil A as the adjuvant (Accurate
Chemical and Scientific Corporation, Westbury, NY) or (ii) combined
with 25 �g/dose of CpG oligodeoxynucleotide (ODN) 1826 (Eurofins
MWG Operon, Huntsville, AL) emulsified in Montanide ISA 720 VG
(Seppic Inc., Paris, France) at a ratio of 70:30 (vol/vol) (termed M plus
CpG). For all mouse immunizations, rPfMSP1/8 was diluted in saline,
resulting in a final Sarkosyl concentration of �0.004%, which did not
interfere with emulsification. Control mice were immunized with the cor-
responding adjuvants alone. All mice were boosted twice at 3-week inter-
vals with the same antigen/adjuvant formulation as that used in the prim-
ing immunization.

Experiment 2. Groups of CB6F1/J mice (n � 5) were immunized and
boosted 3 weeks later with the following prime-boost antigen combina-
tions: (i) PfMSP1/8 (primary immunization [1°])-PfMSP1/8 (secondary
immunization [2°]), (ii) PfMSP1/8 (1°)-PfRBC lysate (2°), (iii) adjuvant
(1°)-PfRBC lysate (2°), or (iv) adjuvant (1°)-adjuvant (2°). PfMSP1/8 (10
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�g/dose) and P. falciparum red blood cell (PfRBC) lysate (100 �g/dose)
were administered as subcutaneous formulations with 25 �g/dose Quil A
as the adjuvant (Accurate Chemical and Scientific). P. falciparum FVO
strain (ATCC, Manassas, VA) blood-stage parasites were grown in vitro as
asynchronous cultures in O� human RBCs as previously described (25).
P. falciparum parasites were recovered by centrifugation following treat-
ment of infected RBCs with 0.15% saponin, and the PfRBC lysate was
prepared following 10 freeze/thaw cycles.

Experiment 3. Groups of CB6F1/J mice (n � 5) were immunized
subcutaneously with (i) rPfMSP1/8, (ii) rPfMSP8 (�Asn/Asp), (iii)
rPfMSP142, (iv) rPfMSP8 (�Asn/Asp) plus rPfMSP142, or (v) adjuvant
alone. Antigens (10 �g/dose) were formulated with either 25 �g/dose Quil
A as the adjuvant (Accurate Chemical and Scientific Corporation) or
combined with 25 �g/dose CpG ODN 1826 (Eurofins MWG Operon) and
emulsified in Montanide ISA 720 VG (Seppic Inc.) at a ratio of 70:30
(vol/vol). For the rPfMSP8 (�Asn/Asp) plus rPfMSP142 group, recombi-
nant antigens were combined, formulated with adjuvant, and injected at
the same site. Control mice were immunized with the corresponding ad-
juvants alone. All mice were boosted twice at 3-week intervals with the
same antigen/adjuvant formulation as that used in the priming immuni-
zation.

T cell proliferation assay. Fifty-one peptides (see Table S1 in the sup-
plemental material) spanning the length of the chimeric rPfMSP1/8 se-
quence were custom synthesized and purified (GenScript USA Inc., Pis-
cataway, NJ). These peptides overlapped by 9 amino acids and were
	90% pure. Peptides 1 to 11 were based on the PfMSP119 (FVO) se-
quence; peptides 12 and 13 were based on the linker and flanking sequence
where PfMSP119 and rPfMSP8 (�Asn/Asp) were joined; peptides 23 to 60
were based on the rPfMSP8 (�Asn/Asp) sequence with peptide number-
ing consistent with that used in the original publication (18). The lyoph-
ilized peptides were reconstituted to a working concentration of 1 mg/ml
as recommended by the manufacturer. T cell proliferation induced by
recombinant antigens (5 �g/ml) or peptides (15 �g/ml) was measured by
[3H]thymidine incorporation as previously described (15, 18). An addi-
tional set of cells was stimulated with 1 �g/ml of concanavalin A (ConA;
Sigma-Aldrich) or left unstimulated to serve as positive and negative con-
trols. The stimulation index was calculated as the mean counts per minute
of stimulated wells divided by the mean counts per minute of unstimu-
lated wells.

Measurement of antigen-specific antibody responses by ELISA.
The antigen-specific antibody responses induced by immunization with
rPfMSP1/8, rPfMSP8 (�Asn/Asp), or rPfMSP142 were measured by direct
binding enzyme-linked immunosorbent assay (ELISA) as previously de-
scribed (18). Briefly, ELISA plates were coated with 0.25 �g per well of
purified rPfMSP1/8, rPfMSP8 (�Asn/Asp), rPfMSP142, rGST-PfMSP119

(FVO), or rGST-PfMSP119 (3D7). Plates were incubated with 2-fold serial
dilutions of mouse or rabbit sera starting at 1:2,500. Corresponding adju-
vant control sera were used as negative controls and subtracted as back-
ground. Bound antibodies were detected by horseradish peroxidase-con-
jugated rabbit anti-mouse IgG (Thermo Scientific) or goat anti-rabbit IgG
(Invitrogen) with ABTS [2,2=-azinobis(3-ethylbenzthiazolinesulfonic
acid)] as the substrate. A405 values between 1.0 and 0.1 were plotted, and
titers were calculated as the reciprocal of the dilution that yielded an A405

of 0.5. A high-titer pool of serum obtained from rPfMSP1/8-immunized
mice (n � 5) was included on each assay plate as an internal reference to
normalize the data between assays.

Production of polyclonal rabbit antisera. Polyclonal rabbit antisera
were generated by Lampire Biological Laboratories (Pipersville, PA) by
following their “classic-line basic” protocol. Briefly, adult New Zealand
White rabbits (three/antigen) were immunized once with 200 �g of either
rPfMSP1/8 or rPfMSP142 formulated with complete Freund’s adjuvant
(CFA), followed by 4 booster immunizations (200 �g each) with the
same antigen formulated in incomplete Freund’s adjuvant (IFA). For
rPfMSP1/8, a final concentration of �0.01% Sarkosyl did not interfere

with emulsification. Approximately 2 weeks after the final immuniza-
tion, antisera were recovered.

P. falciparum growth inhibition assays. The growth inhibitory activ-
ity (GIA) of purified rabbit anti-rPfMSP1/8 IgG and anti-rPfMSP142 IgG
was assessed in vitro by the measurement of parasite lactate dehydroge-
nase activity (26) using standard protocols. Prebleed and adjuvant control
IgG served as negative controls. Each rabbit IgG was tested at final con-
centrations ranging between 1.25 and 5 mg/ml as indicated. Growth in-
hibitory activity was calculated relative to P. falciparum blood-stage par-
asites growing in complete media in the absence of any added rabbit IgG.

Statistical analysis. When comparing data from two groups, the sta-
tistical significance of the differences in antigen-specific IgG titers and T
cell proliferation stimulation indices was determined by the Mann-Whit-
ney test. The statistical significance of increases in antigen-specific titers
between paired primary and secondary immunization sera was deter-
mined using the Wilcoxon signed-rank test. Nonparametric tests were
utilized considering the limited ability to ensure normality of the data sets
due to sample size. Probability (P) values of �0.05 were considered sig-
nificant.

RESULTS
Expression and purification of chimeric rPfMSP1/8. Based on
earlier supporting studies in the P. yoelii rodent model (14, 15), an
effort was initiated to produce and characterize a chimeric MSP1/
8-based vaccine for P. falciparum. Comparative immunogenicity
studies with full-length rPfMSP8 and rPfMSP8 (�Asn/Asp) iden-
tified the shorter rPfMSP8 (�Asn/Asp) as the appropriate fusion
partner for PfMSP119 (18). The Asn/Asp-rich domain lacked T cell
epitopes and was only weakly immunogenic for B cells, and dele-
tion of the domain did not alter the display of conformational B
cell epitopes of PfMSP8. A schematic for the chimeric PfMSP1/8
vaccine is shown in Fig. 1A with the double-EGF-like domains of
PfMSP119 and PfMSP8 indicated at the N and C termini, respec-
tively. A codon-harmonized gene sequence for the chimeric
PfMSP1/8 was synthesized and cloned into the pET28 plasmid.
Shuffle T7 express lysY E. coli cells were used as the expression
host. rPfMSP1/8 was successfully purified under nondenaturing
conditions by nickel-chelate affinity chromatography with a final
yield of �2.4 mg/g (wet weight) cells. The quality of the purified
product was assessed by SDS-PAGE. In the absence of reducing
agent, purified rPfMSP1/8 migrates as a prominent doublet of
�48 to 50 kDa with a second higher-molecular-mass band mi-
grating at �100 kDa (Fig. 1B). This pattern is consistent with that
observed previously with rPfMSP8 (�Asn/Asp), which contained
a single intrachain disulfide bond resulting in a 1:1 mixture of
monomers and dimers. Under reducing conditions, rPfMSP1/8
migrated as a single prominent band of �58 kDa, close to its
predicted molecular mass. As shown in Fig. 1C, immunoblot anal-
ysis performed under nonreducing conditions revealed strong se-
roreactivity of the 48- to 50-kDa band with MAb 5.2, rabbit anti-
PfMSP119, and rabbit anti-PfMSP8 antibodies. MAb 5.2
recognizes a conformation-dependent epitope within PfMSP119

(27). The results indicate that the chimeric rPfMSP1/8, displaying
correct disulfide-dependent epitopes, could be produced in E. coli
and purified in reasonable quantities.

Immunization with rPfMSP1/8 elicits robust T cell re-
sponses toward PfMSP8-associated epitopes. Previously, immu-
nization with full-length rPfMSP8 was shown to elicit strong T cell
responses to epitopes also present within the shorter rPfMSP8
(�Asn/Asp) (18). PfMSP119 has been reported to be poorly im-
munogenic for T cells due to the difficulty in processing this highly
disulfide bond-constrained domain (28–30). CB6F1/J mice were
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immunized three times with rPfMSP1/8 formulated with Quil A
as the adjuvant. After a period of rest following the third immu-
nization, splenocytes were harvested and stimulated in vitro with
rPfMSP1/8, rPfMSP8 (�Asn/Asp), rGST-PfMSP119, or GST
alone. Antigen-specific proliferation of T cells was measured in a
standard [3H]thymidine incorporation assay. As shown in Fig. 2A,
stimulation with rPfMSP1/8 or rPfMSP8 (�Asn/Asp) elicited high
proliferative responses of cells from rPfMSP1/8-immunized mice
that were significantly greater than the responses of splenocytes
from adjuvant control mice (P 
 0.01). In contrast, no significant
proliferation of cells from rPfMSP1/8-immunized or adjuvant
control mice was noted upon stimulation with rGST-PfMSP119 or
GST alone (P 	 0.1).

The restriction of the rPfMSP1/8-elicited T cell response to
epitopes present within the PfMSP8 (�Asn/Asp) domain was con-
firmed. Splenocytes from rPfMSP1/8-immunized and adjuvant
control mice were stimulated with a panel of overlapping peptides
covering the complete sequence of the chimeric rPfMSP1/8 anti-
gen. Relative to adjuvant controls, T cells from rPfMSP1/8-immu-
nized mice showed significantly higher proliferation in response
to 4 dominant peptides (P � 0.05) (Fig. 2B) that mapped to the
PfMSP8 (�Asn/Asp) region of the chimeric vaccine antigen. Nei-
ther PfMSP119-associated epitopes (peptides 1 to 11) nor epitopes
present at the linker/junction of the PfMSP119 and PfMSP8
(�Asn/Asp) sequences (peptides 12 and 13) were immunogenic.

Immunization with rPfMSP1/8 elicits high-titer antibodies
to both PfMSP119 and PfMSP8. The ability of the PfMSP8-re-
stricted T cell response to provide help for production of antibod-
ies specific for PfMSP119 and PfMSP8 B cell epitopes was evalu-
ated. CB6F1/J mice were immunized three times with rPfMSP1/8
formulated with either Quil A adjuvant or with a combination of

Montanide ISA 720 and CpG ODN (M plus CpG) as the adjuvant.
Sera were collected 2 weeks following the last immunization, and
antibody titers to rPfMSP1/8, rPfMSP8 (�Asn/Asp), rGST-
PfMSP119 (FVO), and rGST-PfMSP119 (3D7) were determined by
ELISA. As shown in Fig. 3A, immunization with the chimeric
rPfMSP1/8 elicited high titers of IgG that recognized rPfMSP1/8 as
well as epitopes present within the rPfMSP8 (�Asn/Asp) domain.
Just as important, immunization with rPfMSP1/8 also elicited a
very strong antibody response to the homologous rPfMSP119

(FVO) domain, which was highly cross-reactive with the heterol-
ogous rPfMSP119 (3D7) antigen. The use of Quil A as the adjuvant
induced somewhat higher titers of antibodies to rPfMSP8 (�Asn/
Asp) epitopes than formulations with M plus CpG (P � 0.03).
However, titers of antibodies to PfMSP119-specific epitopes were
comparable to Quil A and M plus CpG formulations (P 	 0.2).

To determine if the broad specificity of the antibody responses
elicited by rPfMSP1/8 was generalizable to genetically diverse
populations, outbred CD-1 mice were immunized as described
above with rPfMSP1/8 formulated with either Quil A or M plus
CpG as the adjuvant. Sera collected 2 weeks following the last
immunizations were analyzed by ELISA as described above to de-
termine the response to PfMSP119 and PfMSP8 domains. As with
inbred CB6F1/J mice, immunization of outbred CD-1 mice with
the chimeric rPfMSP1/8 elicited high titers of antigen-specific
IgG, and rPfMSP8 (�Asn/Asp) epitopes were highly immuno-
genic (Fig. 3B). Most importantly, immunization with rPfMSP1/8
also elicited a very strong antibody response to the rPfMSP119

(FVO) domain, which again was cross-reactive with the heterolo-
gous rPfMSP119 (3D7) allele. In contrast to the data from immu-
nization of CB6F1/J mice, differences in mean antibody titers to
rPfMSP8 (�Asn/Asp) epitopes elicited by immunization of out-

FIG 1 Design, production, and analysis of a chimeric rPfMSP1/8 (FVO) vaccine antigen. (A) Cartoon of the chimeric PfMSP1/8 expression construct with
sequences encoding the double EGF-like domains of PfMSP119 (stippled box), followed by a Gly-Ser spacer (filled box) and PfMSP8 (�Asn/Asp) including the
C-terminal EGF-like domains (open and hatched boxes). Cysteine residues are indicated by vertical lines. (B) Coomassie blue-stained 10% SDS-polyacrylamide
gel containing lysates of E. coli (reduced) expressing rPfMSP1/8 at the time of induction (T0) or 3 h postinduction (T3) and nickel-chelate affinity-purified
rPfMSP1/8 (3 �g per lane) under reducing (R) and nonreducing (NR) conditions. (C) Immunoblot analysis of purified rPfMSP1/8 (0.1 �g per lane) under
reducing (R) and nonreducing (NR) conditions probed with rabbit anti-rPfMSP119 (FVO), PfMSP119 (FVO)-specific monoclonal antibody (MAb 5.2), rabbit
anti-rPfMSP8, or rabbit anti-rPfMSP8 (�Asn/Asp). Molecular weight markers (MW; in thousands) are indicated.
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bred CD1 mice with rPfMSP1/8 formulated in Quil A versus M
plus CpG were not statistically significant (P 	 0.3).

Native P. falciparum blood-stage antigens boost rPfMSP1/8-
primed responses. The restriction of the T cell response to
PfMSP8 epitopes raised the question of whether or not antibody
responses to both PfMSP119 and PfMSP8 would be boosted upon

exposure to native, noncoupled antigens during natural infection.
To test this, CB6F1/J mice were immunized once with rPfMSP1/8
formulated with Quil A as the adjuvant. Three weeks later, mice
were boosted with either rPfMSP1/8 or a total antigen lysate pre-
pared from in vitro-cultured P. falciparum (FVO) blood-stage par-
asites. Antibody titers specific for rPfMSP1/8, rPfMSP8 (�Asn/

FIG 2 T cells induced by immunization with rPfMSP1/8 recognize epitopes within rPfMSP8 (�Asn/Asp). CB6F1/J mice (5 mice/group) were immunized three
times with rPfMSP1/8 with Quil A as the adjuvant (black bars) or with Quil A alone (gray bars). Following the third immunization, splenocytes were harvested
and stimulated with rPfMSP1/8, rPfMSP8 (�Asn/Asp), GST-PfMSP119 (FVO), GST, or ConA (A) or with overlapping synthetic peptides spanning the entire
length of rPfMSP1/8 (B), as indicated on the x axes. See Table S1 in the supplemental material for sequence of individual peptides. After 4 days of culture,
proliferation was quantitated by [3H]thymidine incorporation. The stimulation index was calculated as mean counts per minute in stimulated cultures/mean
counts per minute in unstimulated cultures. Mean values � standard deviations (SD) are shown with significant responses elicited by 4 peptides marked by an
asterisk on the y axis (*, P 
 0.05; **, P 
 0.01).

FIG 3 Immunization of inbred CB6F1/J mice and outbred CD1 mice with rPfMSP1/8 elicits high-titer antibodies to both PfMSP119 and PfMSP8 (�Asn/Asp).
Antigen-specific IgG titers (means � standard deviations) in sera collected from CB6F1/J (A) and CD-1 (B) mice (10 mice/group) immunized with rPfMSP1/8
formulated with Quil A or M plus CpG were determined by ELISA on plates coated with either rPfMSP1/8, rPfMSP8 (�Asn/Asp), rGST-PfMSP119 (FVO), or
rGST-PfMSP119 (3D7) as indicated. For each dilution, the mean absorbance values at A405 of the pooled sera from adjuvant control mice (n � 5) was subtracted
as the background.
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Asp), rGST-PfMSP119 (FVO), and rGST-PfMSP119 (3D7) were
measured by ELISA following primary and secondary immuniza-
tions. As expected, boosting with rPfMSP1/8 led to a sharp and
significant increase (40 to 50-fold) (P 
 0.05) in antibody titers to
both PfMSP119 and PfMSP8 epitopes (Fig. 4). A single immuniza-
tion with PfRBC lysate formulated with Quil A as the adjuvant
elicited low titers of antibodies to PfMSP119 with little or no re-
sponse to rPfMSP8 (�Asn/Asp)-associated epitopes. Of impor-
tance, boosting of rPfMSP1/8-primed mice with PfRBC lysate also
led to a significant increase in antibody titers (6- to 10-fold; P 

0.05) to both PfMSP119 and PfMSP8 epitopes (Fig. 4). Not unex-
pectedly, the antibody titers to both rPfMSP8 (�Asn/Asp) and
PfMSP119 epitopes following secondary immunization with a het-
erogeneous mixture of native P. falciparum blood-stage antigens
were significantly lower than that observed upon a secondary im-
munization with rPfMSP1/8 (P 
 0.01). Nonetheless, the data
suggest that upon exposure to native, parasite-associated antigen
during natural infection, there is the potential for boosting of both
PfMSP119- and PfMSP8-specific antibody responses primed by
immunization with the chimeric rPfMSP1/8 vaccine.

Comparative immunogenicity of rPfMSP1/8 and constitu-
ent single-antigen vaccines. Data from studies of the chimeric
MSP1/8 vaccine in the P. yoelii model indicated superiority of
rPyMSP1/8 in eliciting strong PyMSP119-specific antibody re-
sponses compared to an admixture of two recombinant antigens,
rPyMSP142 and rPyMSP8 (14). To evaluate this with the chimeric
P. falciparum vaccine, CB6F1/J mice were immunized with
rPfMSP1/8, rPfMSP8 (�Asn/Asp), rPfMSP142, or a combination
of rPfMSP142 and rPfMSP8 (�Asn/Asp) formulated with Quil A
or M plus CpG as the adjuvant. Two weeks following the last
immunization, sera were collected and the specificity and titer
of elicited antibodies analyzed by ELISA. The antibody re-
sponses to rPfMSP1/8 (Fig. 5A) and rPfMSP8 (�Asn/Asp) (Fig.
5B) elicited by immunization with rPfMSP1/8 or rPfMSP8
(�Asn/Asp) alone or the combination of rPfMSP142 and
rPfMSP8 (�Asn/Asp) were consistently strong. Immunization

with rPfMSP1/8 elicited high titers of antibodies to PfMSP119,
which were highly cross-reactive with FVO and 3D7 alleles of
PfMSP119 (Fig. 5C to E), confirming the data presented in Fig.
3. The titers of PfMSP119-specific antibodies elicited by immu-
nization with rPfMSP142 plus Quil A were also comparable to
those elicited by immunization with rPfMSP1/8 plus Quil A
(P 	 0.30) (Fig. 5D and E). Most importantly, immunization
with a mixture of rPfMSP142 and rPfMSP8 (�Asn/Asp) re-
sulted in production of high titers of antibodies specific for
rPfMSP8 (�Asn/Asp) epitopes (Fig. 5B) but markedly inhib-
ited the response to PfMSP119 epitopes with the use of Quil A
(P 
 0.01) or M plus CpG (P 
 0.01) as the adjuvant relative to
that observed with the rPfMSP1/8 vaccine (Fig. 5D and E).
Consistent with the previous P. yoelii studies, the data indicate
that immunization with the rPfMSP1/8 chimeric vaccine pro-
motes superior antibody responses to PfMSP119 epitopes rela-
tive to immunization with a combined formulation of rP-
fMSP142 and rPfMSP8 (�Asn/Asp).

Immunization with rPfMSP1/8 elicits potent, growth inhib-
itory antibodies against homologous and heterologous strains
of P. falciparum. High-titer polyclonal rabbit sera were raised
against rPfMSP1/8 and rPfMSP142. As with inbred and outbred
strains of mice, immunization of rabbits with rPfMSP1/8 elicited
high titers of IgG specific for both PfMSP8 and PfMSP119 epitopes
(Table 1). Elicited antibodies were highly cross-reactive between
the two major alleles (FVO and 3D7) of PfMSP119. Consistent
with previous reports (22, 31, 32), immunization with rPfMSP142

also elicited high titers of antibodies to PfMSP119 epitopes, and these
were comparable in magnitude to those elicited by rPfMSP1/8 im-
munization. The functionality of these antibodies was measured by
the ability to inhibit the in vitro growth of P. falciparum blood-stage
parasites. As shown in Table 2, rPfMSP1/8-specific antibodies inhib-
ited the growth of homologous (FVO) and heterologous (3D7)
strains of P. falciparum by 	90 and 	70%, respectively, when tested
at a final concentration of 2.5 mg/ml of IgG. While rabbit sera elicited
by immunization with rPfMSP142 contained equally high titers of
rPfMSP119-specific antibodies, their ability to inhibit the in vitro
growth of P. falciparum blood-stage parasites was somewhat less ef-
fective and variable, with growth inhibition ranging from 30 to 80%
when tested at a final concentration of 2.5 mg/ml IgG (Table 2). Test-
ing of higher concentrations of rabbit anti-rPfMSP1/8 and anti-
rPfMSP142 IgG (5 mg/ml) resulted in modest increases in growth
inhibitory activity (Table 2). Background inhibition with prebleed
pools and adjuvant control IgG were generally below 10%, with the
exception of one sample. Previous studies indicated that rPfMSP8
(�Asn/Asp) antibodies do not inhibit the in vitro growth of P. falcip-
arum blood-stage parasites. This was confirmed. As shown in Fig. 6,
the growth inhibitory activity of rPfMSP1/8-specific IgG could be
reversed by preincubation of rPfMSP1/8-specific IgG with either
rPfMSP1/8 or with GST-PfMSP119 (FVO) but not with rPfMSP8
(�Asn/Asp).

DISCUSSION

The ability of antibodies to conformational epitopes of MSP119 to
suppress the growth of blood-stage parasites in vitro and in vivo is
well established (24, 33–40). This has laid the foundation for the
effort to include MSP119 as a key component of a blood-stage
malaria vaccine. The leading MSP1-based vaccine candidate that
has progressed to testing in clinical trials is PfMSP142. This is com-
prised of the C-terminal PfMSP133 and PfMSP119 domains of the

FIG 4 Native P. falciparum blood-stage antigens boost PfMSP119- and
PfMSP8 (�Asn/Asp)-specific antibody responses primed by rPfMSP1/8 im-
munization. CB6F1/J mice (5 mice per group) received a primary immuniza-
tion with rPfMSP1/8 or adjuvant and then were boosted with either rPfMSP1/8
or a total antigen lysate (PfRBC) prepared from in vitro-cultured P. falciparum
(FVO) blood-stage parasites. Antigens were formulated with Quil A as the
adjuvant. Antibody titers specific for rPfMSP1/8, rPfMSP8 (�Asn/Asp), rGST-
PfMSP119 (FVO), and rGST-PfMSP119 (3D7) were measured by ELISA fol-
lowing primary and secondary immunizations. Immunization groups are in-
dicated on the x axis. *, P 
 0.05.
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larger 200-kDa merozoite protein. Two challenges facing the de-
velopment of this subunit vaccine remain to be addressed. The
first relates to the immunogenicity of PfMSP142 and the induction
of growth inhibitory antibodies which have been suboptimal in
phase 1 and 2 trials that utilized either AS01, AS02A, or Alhydrogel
(with or without CpG ODN) as the adjuvant (41–46). The second
relates to the polymorphism of PfMSP142 (47, 48). In one phase 2
trial completed in Kenyan children, the overall efficacy of an

rPfMSP142 (3D7) vaccine was limited (10). In this trial, the possi-
bility that some level of allele-specific protection was elicited is
being considered. One approach being considered to address this
issue of polymorphism involves immunization with a combined
formulation containing multiple alleles of PfMSP142 (42, 49).

Many successful P. yoelii MSP-1 efficacy studies utilized
PyMSP-119 fused to the glutathione S-transferase of Schistosoma
japonicum formulated with a variety of adjuvants (24, 50, 51). Use

FIG 5 Enhanced immunogenicity of the chimeric rPfMSP1/8 vaccine relative to rPfMSP142 vaccine formulations. CB6F1/J mice (5 mice per group) were
immunized with rPfMSP1/8, PfMSP8 (�Asn/Asp), rPfMSP142, or a mixture of PfMSP8 (�Asn/Asp) and rPfMSP142, formulated with either Quil A or M plus CpG
as the adjuvant. Antigen-specific IgG titers (means � standard deviations) in sera collected following the third immunization were determined by ELISA on plates
coated with either rPfMSP1/8, rPfMSP8 (�Asn/Asp), rGST-PfMSP119 (FVO), or rGST-PfMSP119 (3D7) as indicated. For each dilution, the mean absorbance
values at A405 of the pooled sera from adjuvant control mice (n � 5) was subtracted as the background. **, P 
 0.01.
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of GST as a heterologous carrier could be eliminated by inclusion
of other heterologous T cell epitopes (52, 53) or by 4 to 5 immu-
nizations with nonfused PyMSP-119 emulsified in potent adju-
vants, including CFA/IFA (37, 54) or M plus CpG ODN (55–57).
We are unaware of any studies where immunization with non-
fused, recombinant PyMSP-142 demonstrated comparable pro-
tective efficacy. Our efficacy studies with rPyMSP142 formulated
with Quil A as the adjuvant revealed only partial protection
against P. yoelii 17XL malaria (14). Working with the P. yoelii
model, however, we produced and tested a chimeric MSP-based
vaccine containing PyMSP119 fused to the N terminus of full-
length PyMSP8 (14, 15). Fusion of PyMSP119 to PyMSP8 signifi-
cantly increased the immunogenicity of PyMSP119 over that ob-
served with PyMSP142, with rPyMSP1/8 immunization resulting
in the production of high and sustained levels of PyMSP119-spe-
cific antibodies. Most importantly, immunization with the chime-
ric rPyMSP1/8 vaccine formulated with Quil A as the adjuvant
elicited nearly complete protection against lethal P. yoelii 17XL.
rPyMSP1/8-induced protection was markedly improved over that
of vaccines based on single or combined antigen formulations of
PyMSP142 and PyMSP8. Enhanced protection was attributed to an
improved antibody response to PyMSP119 and the concurrent tar-
geting of protective, conformation-dependent epitopes present
on both PyMSP119 and PyMSP8.

We applied our findings in the P. yoelii model to the design and
testing of a comparable MSP-based vaccine for P. falciparum. We
successfully produced a chimeric recombinant vaccine by fusing
rPfMSP119 (FVO) to the N terminus of rPfMSP8 (�Asn/Asp).
Specific selection of rPfMSP8 (�Asn/Asp) as the fusion partner
was based on comparative T and B cell immunogenicity studies of
full-length rPfMSP8 and of rPfMSP8 (�Asn/Asp) (18). We chose
two very distinct adjuvants for comparative immunogenicity
studies to reduce the possibility that any enhancement in the
quantity and/or quality of PfMSP1/8 vaccine-induced responses
was unique to a specific formulation. Quil A is a nontoxic, aque-
ous adjuvant, and its derivative, QS21, has been tested in vaccine
trials in human subjects (3, 6). Montanide is a very different oil-
based adjuvant combined with a CpG DNA-based adjuvant de-
signed to promote a Th1-biased response. Our immunogenicity
studies with the chimeric rPfMSP1/8 showed remarkable concor-
dance with the earlier data on the P. yoelii MSP1/8 vaccine. Im-
munization with rPfMSP1/8 induced high titers of antibodies to
both PfMSP1 and PfMSP8 epitopes. As anticipated, the T cell re-
sponse was restricted to epitopes within the PfMSP8 domain but
clearly provided adequate help for the activation and differentia-
tion of both MSP1- and MSP8-specific B cells. Immunization with
rPfMSP1/8 was superior to immunization with a mixture of
rPfMSP142 and rPfMSP8 (�Asn/Asp) with respect to the produc-
tion of high titers of PfMSP119-specific antibodies. As a measure of
functionality, the rPfMSP1/8-elicited antibodies showed a high
level of in vitro growth inhibitory activity against both homolo-
gous (FVO) and heterologous (3D7) strains of P. falciparum
blood-stage parasites.

Both P. yoelii and P. falciparum MSP8 sequences are highly
immunogenic. Our studies show that this is true in both inbred
and outbred strains of mice and is not adjuvant dependent. This
makes the use of rPfMSP8 (�Asn/Asp) as a carrier protein for
MSP119 very attractive. With the rPfMSP1/8 vaccine, the PfMSP1-
specific antibody response is directly focused on the most protec-
tive epitopes of the PfMSP119 domain. In contrast, immunization
with PfMSP142 elicits competing antibody responses directed
against PfMSP133-associated epitopes which are not clearly linked
with protection (54, 58). T cell responses to epitopes within the
PfMSP133 domain can provide help for the production of
PfMSP119-specific antibodies (29, 59, 60), but this region of MSP1
is only semiconserved among P. falciparum isolates (47) and can
lead to allele-specific responses. Furthermore, there is some evi-
dence that the presence of certain T cell epitopes within PfMSP133

impedes the development of memory T cells (61) and/or protec-
tive antibody responses to PfMSP119 (62). In the P. yoelii model,
improved vaccine efficacy has been demonstrated by replacement
of PyMSP133 with promiscuous CD4� T cell epitopes from the

TABLE 1 Rabbit MSP-specific antibody response induced by immunization with PfMSP1/8 and PfMSP142 vaccines

Rabbit antiserum
(animal no.)

Antigen-specific IgG titer (�106) induced by vaccine:

rPfMSP1/8 rPfMSP8 rPfMSP142 GST-PfMSP119 (FVO) GST-PfMSP119 (3D7)

PfMSP1/8 (1) 3.19 1.37 1.39 1.95 1.30
PfMSP1/8 (2) 10.72 4.64 4.85 6.46 5.94
PfMSP1/8 (3) 6.50 2.87 2.57 3.96 2.32
PfMSP142 (1) 3.28 0.01 3.83 3.60 3.22
PfMSP142 (2) 1.66 0.01 1.88 1.71 1.52
PfMSP142 (3) 3.79 0.01 4.46 4.11 2.95

TABLE 2 In vitro inhibition of P. falciparum growth by rabbit MSP-
specific antibodiesa

Assay no. and
rabbit antiserum
(animal no.)

% growth inhibition of:

P. falciparum (FVO) P. falciparum (3D7)

5 mg/ml
IgG

2.5 mg/ml
IgG

5 mg/ml
IgG

2.5 mg/ml
IgG

1
PfMSP1/8 (1) 93 91 87 74
PfMSP1/8 (2) 95 94 90 79
PfMSP1/8 (3) 94 92 88 75

Prebleed pool ND 25 ND ND
Adjuvant control ND 9 ND ND

2
PfMSP142 (1) 58 33 62 30
PfMSP142 (2) 63 47 59 35
PfMSP142 (3) 91 75 92 82
Prebleed pool 2 ND -4 ND

a In vitro growth inhibitory activity of rabbit anti-MSP IgG for P. falciparum FVO
blood-stage parasites was based on measurement of parasite lactate dehydrogenase
levels. Percent growth inhibition in the presence or rabbit IgG relative to controls in the
absence of IgG is shown. ND, not determined.
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N-terminal regions of PyMSP1 (63). In addition to its high immu-
nogenicity for T cells, the sequence of rPfMSP8 (�Asn/Asp) is
highly conserved among P. falciparum isolates, effectively elimi-
nating the problem associated with the strain specificity of T cell
responses. While our efforts have focused on improving immu-
nogenicity through vaccine design, other efforts in the field have
enjoyed recent success in developing and testing new, potent ad-
juvants for use in human subjects (64, 65). We are excited about
the possibility of further enhancing the immunogenicity of
rPfMSP1/8 with the use of adjuvants other than Quil A.

Protective antibodies to MSP1 are believed to function by sev-
eral mechanisms, including blocking merozoite invasion, inhibit-
ing the processing of MSP142, and impairing the intracellular
growth of parasites that were opsonized prior to erythrocyte inva-
sion (26, 66–70). In vivo, contributing effector mechanisms may
also involve other cells and soluble mediators. In vitro, antibodies
elicited by immunization with rPfMSP1/8 are highly neutralizing,
as measured by GIA against P. falciparum. The rPfMSP1/8 vac-
cine-elicited antibodies that are functional in the inhibition of P.
falciparum growth appear to be specific for PfMSP119 exclusively.
High titers of PfMSP119-specific antibodies can also be elicited in
rabbits by immunization with PfMSP142. However, PfMSP142-
elicited antibodies are less effective in inhibiting P. falciparum
growth than those elicited by immunization with rPfMSP1/8
when tested at comparable concentrations. This suggests that the
fine specificity of PfMSP119-specific antibodies is important for
parasite neutralization. Alternatively, immunization with the
larger PfMSP142 may also elicit the production of blocking anti-
bodies which have been recognized for their ability to hinder the
activity of otherwise neutralizing antibodies (66–68). As a first
step to test this, it will be informative to determine the 50% growth
inhibitory concentration of PfMSP119-specific antibodies affinity
purified from sera from PfMSP142- versus PfMSP1/8-immunized
animals when tested individually and in combination.

The present study indicates that PfMSP8-specific antibodies
are not active in the GIA, and this is consistent with our prior
report (18). Previously we showed that antibodies induced by
rPfMSP8 (�Asn/Asp) immunization predominantly recognized
conformation epitopes of the full-length and processed products
of native PfMSP8 by immunoblotting (nonreducing conditions)
and yielded strong binding in immunofluorescence assays to na-
tive PfMSP8 expressed by ring-, trophozoite-, and schizont-stage

parasites. However, these PfMSP8-specific antibodies do not in-
hibit the growth of P. falciparum blood-stage parasites in vitro. As
such, we feel it unlikely that the lack of PfMSP8-dependent GIA
activity in the present study is due to altered conformation of
PfMSP8 in the chimeric PfMSP1/8 antigen. Importantly, we do
not know the in vivo mechanism of action of protective MSP8-
specific antibodies in the P. yoelii model system. As with MSP1, it
is possible that in vivo, anti-MSP8 antibodies could function in
cooperation with other components of the immune system, such
as complement or FcR-bearing cells. However, it also appears that
P. falciparum MSP8 differs to some degree from P. yoelii MSP8
with respect to the timing and extent of proteolytic processing and
subcellular localization (18, 71, 72). The low and/or transient ex-
pression of MSP8 epitopes on the surface of extracellular P. falcip-
arum merozoites may limit the ability of PfMSP8-specific anti-
bodies to inhibit the in vitro growth of blood-stage parasites.

Supporting data clearly demonstrate the ability of rPfMSP8
(�Asn/Asp) to function as an effective carrier for PfMSP119, lead-
ing to the production of high titers of antibodies that effectively
inhibit the growth of P. falciparum blood-stage parasites. Upon
immunization of human subjects, we anticipate similarly strong
CD4� T cell responses for B cell help, as rPfMSP8 (�Asn/Asp) is
predicted to contain epitopes that will bind with high affinity to
multiple HLA-DR, HLA-DP, and HLA-DQ alleles (73). From a
broader perspective then, it may be worthwhile to consider the use
of rPfMSP8 (�Asn/Asp) as a carrier for domains of other vaccine
candidates that are targets of neutralizing antibodies but are
poorly immunogenic. The results presented here also extend our
work to specifically develop a chimeric rPfMSP1/8 vaccine. Based
on the encouraging data obtained, further testing of this vaccine in
immunization and challenge studies in an Aotus monkey model of
P. falciparum malaria is being pursued. From such studies, we will
also be able to determine if immunization with rPfMSP8 (�Asn/
Asp) alone contributes to protection against challenge infection in
vivo. These nonhuman primate studies will be important for es-
tablishing clear correlates of rPfMSP1/8-induced protection and a
foundation to guide further testing.
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