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Population viability analysis of Lower Missouri River shovelnose sturgeon with initial

application to the pallid sturgeon

By P. G. Bajer and M. L. Wildhaber

U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA

Summary

Demographic models for the shovelnose (Scaphirhynchus

platorynchus) and pallid (S. albus) sturgeons in the Lower
Missouri River were developed to conduct sensitivity analyses
for both populations. Potential effects of increased fishing

mortality on the shovelnose sturgeon were also evaluated.
Populations of shovelnose and pallid sturgeon were most
sensitive to age-0 mortality rates as well as mortality rates of

juveniles and young adults. Overall, fecundity was a less
sensitive parameter. However, increased fecundity effectively
balanced higher mortality among sensitive age classes in both
populations. Management that increases population-level

fecundity and improves survival of age-0, juveniles, and young
adults should most effectively benefit both populations.
Evaluation of reproductive values indicated that populations

of pallid sturgeon dominated by ages ‡35 could rapidly lose
their potential for growth, particularly if recruitment remains
low. Under the initial parameter values portraying current

conditions the population of shovelnose sturgeon was predic-
ted to decline by 1.65% annually, causing the commercial yield
to also decline. Modeling indicated that the commercial yield
could increase substantially if exploitation of females in ages

£12 was highly restricted.

Introduction

Shovelnose sturgeon (Scaphirhynchus platorynchus) and pallid
sturgeon (S. albus) are endemic to the Missouri and Mississippi

River drainage (Keenlyne, 1997). Populations of these histor-
ically abundant fishes have declined markedly over the last 100
years due to overexploitation and anthropogenic degradation

of the Mississippi and Missouri rivers (Keenlyne, 1997;
Mayden and Kuhajda, 1997). In response to dramatic decline
in abundance and sporadic recruitment, the pallid sturgeon
was listed as endangered in 1990 (Mayden and Kuhajda, 1997).

In addition to establishing federal protection, annual stocking
with juvenile pallid sturgeon reared from wild broodstock has
continued since the early 1990s to enhance recovery of the

species (R. Holm, U.S. Fish and Wildlife Service-USFWS,
Garrison Dam NFH, ND). Also, habitat restoration in the
Lower Missouri River has been initiated by periodic flow

modifications and specific hydro-engineering to potentially
improve spawning success of adults and survival of juvenile
pallid sturgeon (USFWS, 2003).

Shovelnose sturgeon are considered extirpated, threatened,
or of special concern in 15 out of 24 states within their
natural range (Keenlyne, 1997). Populations in remaining
states are either declining or of unknown status (Keenlyne,

1997). Despite these alarming trends in population decline,

the shovelnose sturgeon is still being harvested commercially

or as a sport fish in nine states. In fact, commercial demand
for the shovelnose sturgeon has recently increased because of
the rising demand for caviar exacerbated by the recent

collapse of sturgeon fisheries in Europe and Asia (Birstein,
1993).
Understanding population dynamics is essential in effect-

ive recovery of rare or declining species, and also in
determining sustainable exploitation schemes of commer-
cially exploited species. Population viability analysis (PVA),
which allows for identification of the most sensitive demo-

graphic parameters, has been successfully applied to estab-
lish biologically sound protection plans (Crouse et al., 1987).
To date, such analyses have not been developed for

shovelnose and pallid sturgeon.
In this paper we developed deterministic age-based popula-

tion dynamics models for the shovelnose and pallid sturgeon in

the Lower Missouri River (from Gavins Point Dam, South
Dakota to the confluence of the Missouri and Mississippi
rivers in St Louis, Missouri). The population models are used
to conduct a PVA for both sturgeon species in the Lower

Missouri River and elucidate the combinations of most
sensitive demographic processes and age classes that largely
determine the status of both populations. The shovelnose

sturgeon population dynamics model is also used to evaluate
commercial fishing regulations that could potentially lead to
more sustainable yields by recognizing sensitive population

parameters and age classes. Identifying the most sensitive
population parameters and calculating age-specific reproduc-
tive values should also enhance pallid sturgeon recovery

efforts.

Materials and methods

We developed age-structured models for shovelnose and pallid
sturgeon populations in the Lower Missouri River. Modeling
of both populations was restricted to females (Donovan and

Welden, 2002), under the assumption that male abundance
was sufficient to fertilize eggs (Quinn and Deriso, 1999).
Changes predicted for the female portion of the populations

were assumed to reflect trends in whole populations; we
applied equal sex ratios and the same age-specific survival rates
for both females and males.

Shovelnose sturgeon population model

The model for shovelnose sturgeon included age classes from 0

(starting from eggs) to 31, the oldest fish collected in the Lower
Missouri River (Wildhaber et al., 2005). Number of females in
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each age class during the current year (Ni,t; i indicates age
class, t indicates year of simulation) was determined as

Ni;t ¼ Ni�1;t�1Pi�1;i; ð1Þ

Ni)1,t)1 is the number of females in age class i ) 1 in the
previous year (t-1), and Pi)1,i is the probability that a female in
age i ) 1 will survive to age i. Egg to age-1 survival rate is

notoriously variable in highly fecund broadcasting fishes and
typically ranges from zero to 0.001 (Rose and Cowan, 1993;
Bulak et al., 1997; Houde, 1997). We initially assumed 0.0004

survival probability from egg to age-1, a value reported for the
Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) (Pine
et al., 2001).

Annual survival rate of young juveniles (ages 1 and 2) was
initially set at 0.75, an estimate determined for the Gulf
sturgeon of the same age (Pine et al., 2001). Annual survival
rate of ages ‡3 were also initially set at 0.75 based on total

mortality estimates for shovelnose sturgeon in the Lower
Missouri River (Quist et al., 2002). Total annual mortality rate
of age ‡3 shovelnose sturgeon in the Lower Missouri River

was initially set at Z ¼ 0.25 (Quist et al., 2002). This mortality
was assumed to be comprised of fishing mortality (F ¼ 0.18)
and natural mortality (M ¼ 0.07) after Quist et al. (2002) who

reported 0.07 average natural mortality rate for the commer-
cially unexploited population of shovelnose sturgeon in the
Middle Missouri River.

A von Bertalanffy growth equation was used to predict fork
length (FL) at age for the Lower Missouri River shovelnose
sturgeon,

FLi ¼ L1 1� e�Kði�t0Þ
h i

;

where FLi is FL at age i (mm), L¥ is asymptotic FL, t0 is a
theoretical age at length zero, and K is a growth coefficient that

determines how rapidly FL increases to L¥. Parameters of the
von Bertalanffy equation for the shovelnose sturgeon in the
Lower Missouri River were determined by Quist et al. (2002)

FLi ¼ 660�ð1� e�0:191�ðiþ 0:269ÞÞ ð2Þ

Equation 2 was originally developed by Quist et al. (2002)

for fish of less than 18 years of age. However, using data from
Wildhaber et al. (2005) for 74 shovelnose sturgeon ages 10 to
31, we determined that the Quist et al. (2002) equation

accurately predicted average FL for shovelnose sturgeon of
up to 31 years of age (results not presented). Therefore, the
Quist et al. (2002) equation was incorporated into the shov-
elnose sturgeon model without modification.

To develop a relationship between shovelnose sturgeon FL
(mm) and number of eggs produced by an average female (E),
individual data of the same 74 shovelnose sturgeon females 542

mm to 760 mm FL were used (Bryan et al., 2006). To expand
the range of relationship for smaller shovelnose sturgeon
females, an additional data set comprised of 30 females 428

mm to 615 mm FL was also incorporated (Zweiacker, 1967). A
single exponential relationship was fit to the combined data
sets (r2 ¼ 0.69; P < 0.0001) (Fig. 1):

E ¼ �288463þ 110056 log (FL): ð3Þ

Fork lengths at age i (FLi; mm) predicted by Equation 2
were entered in Equation 3 to predict age-specific egg
production (Ei). Because only the female portion of the

population was modeled, fecundity during a year t (Ft) was
defined as the total number of eggs produced by all spawning
females that could result in female offspring

Ft ¼
Xn

i¼r

ðEiNi;tÞkz: ð4Þ

The product in the parentheses summed over ages from r
[age of the first reproduction of females; r ¼ 7 (Keenlyne,

1997)] to n (age of the last reproduction; n ¼ 31) is the number
of eggs produced by all mature females during year t, k is the
proportion of females in the population (k ¼ 0.5; Moss, 1978),
and z represents average probability that a female of repro-

ductive age will spawn during a given year. Initially, z was set
at 0.4 to reflect a 2.5-year average interval between consecutive
spawns (Moss, 1978). We assumed that the population of

shovelnose sturgeon in the Lower Missouri River could not
exceed a carrying capacity of 3 250 000 individuals (combined
males and females in ages 1 through 31). The carrying capacity

was estimated by multiplying the total length of the Lower
Missouri River (1303 km) by the average density of shovelnose
sturgeon for periods before commercial exploitation began
(2500 fish per kilometer; Schmulbach et al., 1974). To prevent

the population from exceeding its carrying capacity, a maxi-
mum level of annual egg deposition by the population was
iteratively determined (Fmax ¼ 539 000 000).

Modeling of shovelnose sturgeon population dynamics was
initiated by seeding age classes 1–31 with a value of 5000
individuals each (equivalent to 240 fish km)1; approximately

10% of the carrying capacity). We determined that the initial
number of individuals in the population had no effect on
predicted finite rate of population change (k; see below).

Numbers of females in each age class were modeled over a
100-year period. For each year the total number of females in
the population (Nt) (excluding eggs) was compared to the
number during the previous year (Nt)1) to determine finite rate

of population change (k ¼ Nt/Nt)1). Values of k were
averaged over the last 80 years of simulations (by then the
population reached equilibrium regardless of the initial pop-

ulation vector) to determine the long-term rate of population
change.

Pallid sturgeon population model

The population of female pallid sturgeon in the Lower

Missouri River was modeled using the same approach as
described above for the shovelnose sturgeon, except for

Fig. 1. Relationships (solid line) between shovelnose sturgeon (Scaph-
irhynchus platorynchus) fork length and fecundity fitted to combined
data sets collected by Bryan et al. (2006) (open symbols) and Zweiacker
(1967) (closed symbols). A separate relationship fitted solely to
Zweiacker’s data (closed symbols; broken line) is also presented
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differences in model parameters. Because the pallid sturgeon is
a longer-lived species (Keenlyne et al., 1992), the model for

their population included age classes from 0 to 41.
To estimate pallid sturgeon fecundity, the mass of ovaries

was determined as a constant proportion (11.4%) of fish mass

and divided by the average egg mass (0.01149 g) (Keenlyne
et al., 1992). Initially, females were assumed to mature at age
15 (Keenlyne and Jenkins, 1993) and spawn every 5 years [a
mid-range value reported by Mayden and Kuhajda (1997)].

We initially assumed 50% females in the population.
The von Bertalanffy growth equation for the pallid sturgeon

was developed from FL (mm) at age data reported for a total

of 31 pallid sturgeon by Swain et al. (1980); Keenlyne and
Jenkins (1993), and the pallid sturgeon data base (S. Krentz,
pers. comm.)

FL ¼ 1471:991�½1� e�0:06539ðt�0:2018Þ�: ð5Þ

A relationship between pallid sturgeon FL and weight (g)
(W ¼ 10)7.64 FL3.758; Keenlyne and Maxwell, 1993) was used

to convert FL at age predicted by the von Bertalanffy model to
weights at age that were needed to estimate fecundity.
Probabilities of survival for ages £2 were assumed the same

as for the shovelnose sturgeon. We initially assumed 93%

survival of ages ‡3, which is similar to the survival of the
shovelnose sturgeon >5 years in the commercially unexploited
Middle Missouri River (Quist et al., 2002).

No reliable estimates of pallid sturgeon density in the Lower
Missouri River exist. The population of adults in the Missouri
River between Garrison Dam and Fort Peck Dam has been

estimated at 89–236 individuals (0.12–0.34 individuals km)1;
Kapuscinski, 2003). Density of adult pallid sturgeon in the
Lower Missouri River is believed to be lower than that in the

Upper Missouri River (USFWS, 2003), possibly below 0.1
individual km)1. Therefore, we assumed that a total of 130
adult pallid sturgeon (including 65 females; 0.05 adult female
km)1) exist in the 1300-km reach of the Lower Missouri River.

We initiated the modeling by seeding 3 females into age classes
between 15 and 25 and 2 females in each of the age classes
between 26 and 41.

Sensitivity analysis

Initial probabilities of survival of each age class, estimates of
egg production per female, and fraction of the population that
is female were increased or decreased by 5% from their
nominal values one at a time. Changes in a population’s k that

resulted from each individual parameter’s increase or decrease
were recorded to evaluate relative sensitivity of model param-
eters. Parameters t0, K, and Linf used in the von Bertalanffy

equations were also increased and deceased by 5% to evaluate
their sensitivity. In addition to the ±5% change, we also
evaluated the effects of ±10% and ±20% change in each

parameter value on k. However, the results will not be
presented here because they showed that the relative parameter
sensitivity was not affected by the magnitude of induced

change in a parameter’s nominal value (change in k was a
linear function of parameter change).
Because intervals between consecutive spawns can vary from

2–4 years for the female shovelnose sturgeon (Keenlyne, 1997)

and from 3 to 10 years for the female pallid sturgeon (Mayden
and Kuhajda, 1997), we evaluated the effect of the time
interval between spawns on k. To do so, we generated separate

modeling results for each possible interval between consecutive

spawns (in annual increments) by adjusting the value of annual
probability of spawning (z) that ranged from 0.1 (spawning

every 10 years) to 0.5 (spawning every 2 years).
Similarly, the effect of the age of first female reproduction

(r; Equation 4) on each population’s k was evaluated by

allowing the value of r to decrease to 6 or increase to 8
years from the nominal value of 7 years for shovelnose
sturgeon females (Keenlyne, 1997) and range from 9 to 20
years for the pallid sturgeon females (Mayden and Kuhajda,

1997).

Pallid sturgeon reproductive values

Age-specific reproductive potentials were considered useful in
relation to the pallid sturgeon propagation effort because they

can indicate potential benefits that would result from stocking
with equal numbers of different age classes of pallid sturgeon.
Reproductive values of each age class of pallid sturgeon were
calculated using the inoculation method (Donovan and Wel-

den, 2002). The population model for pallid sturgeon (using
initial parameter values) was inoculated with 1000 individuals
of a given age class while setting numbers in other age classes

to zero. The model was run over the 100-year period and the
total number of individuals in the population at the end of the
model run was recorded. This procedure was repeated sepa-

rately for each age class.

Commercial fishing effect on shovelnose sturgeon

Commercial harvest of shovelnose sturgeon in the Missis-
sippi and Missouri rivers has recently increased at a rapid
rate (USFWS, 2003) and stimulated evaluations of sustain-

able fishing rates (Quist et al., 2002). We evaluated com-
bined effect of fishing exploitation rate (F; modeled as a
percentage of each age class harvested annually) and age of

first harvest (tc) on a long term annual yield (average over
the 100-year modeling period). Three levels of fishing
exploitation were evaluated: F ¼ 15% (similar to the

current exploitation rate), F ¼ 30%, and F ¼ 45%. In
each case, the number of fish in each exploited age class (age
‡ tc) was reduced immediately before spawning by the
specified percentage (15%, 30% or 45%). Because sturgeon

as small as 406 mm FL may be harvested (Quist et al.,
2002), the youngest age of first harvest was initially set at tc
¼ 4 years. The upper evaluated tc was 20 years. In addition

to imposed annual mortality due to commercial exploitation
rates, a 7% natural mortality rate was applied to all age
classes ‡3 (Quist et al., 2002), as explained before. All other

population parameters were maintained at their initial
values.

Results

Shovelnose sturgeon

Under the initial parameter values, the population of shovel-

nose sturgeon in the Lower Missouri River was predicted to be
declining at 1.65% annually (k ¼ 0.9835). At this rate of
decline, the population would fall to �90 000 individuals (69

fish km)1) over the 100-year modeling period.
Finite rate of population growth was most sensitive to

annual survival rates (Fig. 2a). For example, improving

survival of all age classes by 5% improved the annual rate of
population growth by 4.96%. This shows that a 5% improve-
ment in the overall survival would change the population

Missouri River sturgeon population viability 459



status from a 1.65% decline predicted under the initial
parameter values to a 3.31% annual increase.

Finite rate of population growth was most sensitive to
survival of early life stages (egg to age 1) and survival of
juveniles (ages 1 through 6) (Fig. 3). Increasing survival of

each of these age classes by 5% improved population growth
by 0.45% annually. A 5% increase in survival of all of these
age groups increased population growth rate by 3%, which
was sufficient to reverse the projected declining trend and cause

the population to increase by 1.35% annually. Rate of
population growth was also highly sensitive to survival rates
of young adults, particularly ages 7–10 (Fig. 3). Survival of

females in ages 11–15 had a moderate effect on population
growth, whereas survival of older females had only a marginal
effect on the growth rate of the population (Fig. 3).

Rate of population growth was 10 times less sensitive to
changes in fecundity than it was to changes in survival rates
(Fig. 2a). A 5% increase in fecundity caused the finite rate of
population growth to increase by 0.45%. Predicted rate of

population growth was also sensitive to the Linf parameter
included in the von Bertalanffy growth model (Fig. 2a). A 5%
increase in the Linf value increased the annual rate of

population growth by 1.7% (Fig. 2a).
Reducing intervals between consecutive spawns from 2.5 to

2 years improved the population growth rate by 2%. Increas-

ing intervals between consecutive spawns to 3 and 4 years
caused the population growth rate to decline by 1.6% and 4%,
respectively (Fig. 4). At a 3-year interval between consecutive

spawns, the population was predicted to decline by 3.8% each

year and fall to 8,900 individuals by the end of the 100-year
modeling period. Increasing intervals between consecutive
spawn to 4 years caused the population to decline by 7%
annually (k ¼ 0.93) and reach <1000 individuals within 100

years.

Commercial fishing

At the low fishing mortality rate (F ¼ 15%) and the natural
mortality rate of 7% the average annual yield increased rapidly

as tc increased from 6 to 8 years (544 mm) and gradually
declined at higher tcs (Fig. 5). This pattern in yield indicated
that a minimum FL limit of 544 mm would produce the

highest yields at F ¼ 15% under conditions defined by the
model parameter values used.

At the higher fishing mortality rates (F ¼ 30% and 45%)
the annual yields increased rapidly at tc > 9 and 10,

respectively, peaked at tc ¼ 11 and 12, respectively, and
gradually declined at higher tc. However, yields declined
almost to zero if the tc decreased below 9 and 10 at F ¼ 30%

and F ¼ 45%, respectively (Fig. 5). In both cases, the sharp
decline in yield observed at lower tc values was caused by
overharvesting older juveniles and young adults, which caused

the population to decline rapidly over time. The predicted
pattern in yield indicates that harvesting individuals <584 mm
FL (age 10) at rates exceeding 15% annually can cause rapid
decline of the population. It also suggests that high annual

yield could be achieved despite a high fishing mortality rate (F
¼ 45%) if a minimum FL limit of 598–610 mm (ages 11 and
12, respectively) was established. The predicted yields are

Fig. 2. Sensitivity of parameters included in population models
developed for (a) shovelnose (Scaphirhynchus platorynchus) and (b)
pallid sturgeon (S. albus) in Lower Missouri River; t0, Linf and K are
parameters included in von Bertalanffy growth models for both
populations; F/M defines proportion of females in populations. Each
parameter’s value was increased and decreased by 5%; resulting
changes in finite rate of population growth (k) were recorded. For
clarity, only results of 5% increase in parameter values presented.
A 5% decrease in parameter values caused identical but negative
change in k

Fig. 3. Changes in finite rate of population growth rate (k) of
(a) shovelnose (Scaphirhynchus platorynchus) and (b) pallid sturgeon
(S. albus) that resulted from increasing survival probability of each age
class by 5%
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applicable under the adopted parameter values in the shovel-
nose sturgeon population model.

Pallid sturgeon

The population of pallid sturgeon appeared to be most
sensitive to survival rates. Increasing survival of all age groups

by 5% caused population growth rate to increase by 5.5%.
Population growth rate was most sensitive to survival of early
life stages (i.e. juveniles ages 1 to 15 and young adults ages 15

to 20). Survival of adults in ages 20–25 had lower effect on
population growth rate whereas survival of older adults had
only a marginal effect (Fig. 2b).

The population growth rate was much less sensitive to
changes in fish fecundity. For example, a 5% increase in
fecundity due to increased egg production per each female,
reduced maturation age, or reduced spawning interval

improved population growth rate by only 0.25%. Rate of

population growth was relatively insensitive to changes in male
to female ratio. Among the parameters in the von Bertalanffy
growth equation, the Linf appeared to be of high sensitivity
whereas t0 and K were relatively insensitive.

Age 25–33 pallid sturgeon females had the highest repro-
ductive values (Fig. 6), showing that populations where these
age classes are abundant should have high reproductive

potential. Reproductive values decreased rapidly as fish age
increased >35 years, which indicates that populations dom-
inated by senescent individuals (>35 years) will rapidly lose

their reproductive abilities if recruitment of younger age
classes remains poor.

Discussion

Results of sensitivity analysis were quite similar for both
shovelnose and pallid sturgeon populations, indicating that

similar demographic processes are key in determining status of
both populations. Growth rates of both populations were most
sensitive to survival of early life stages, survival of juveniles,

and survival of young adult females. High sensitivity of egg to
age-1 survival rates has been shown for other sturgeon species
(Pine et al., 2001). We predict that relatively slight improve-

ments in survival rates of larvae, juvenile, and young adults
have a potential to substantially increase population growth

Fig. 4. Effect of increasing or decrea-
sing average spawning interval and
initial maturation age on finite rate of
population growth rate (k) of shov-
elnose sturgeon (Scaphirhynchus plato-
rynchus) (upper panels) and pallid
sturgeon (S. albus) (lower panels) in
Lower Missouri River

Fig. 5. Effects of commercial fishing exploitation rate (15%, 30%, and
45%) and age of first harvest (tc) on annual yield of shovelnose
sturgeon (Scaphirhynchus platorynchus) population in Lower Missouri
River. Example, at tc ¼ 6 and exploitation rate ¼ 30%, 30% of
individuals in all age classes ‡6 harvested annually. Harvest occurred
immediately before spawning

Fig. 6. Age specific reproductive values of pallid sturgeon (Scaph-
irhynchus albus) in Lower Missouri River

Missouri River sturgeon population viability 461



rate. Particularly beneficial should be management practices
that would simultaneously increase survival of several age

classes of juveniles or young adults by, for example, creating
more habitats that improve foraging abilities and/or provide
shelter from predators and harsh abiotic conditions. In such a

case, the overall increase in k would be proportional to the
number of age classes that benefited from the habitat
improvement. A protection strategy that allows for simulta-
neous improvement of survival among several age classes of

juveniles (including larvae) and young adults would also be
most cost effective.
Reduced survival rates of sturgeon larvae, juveniles, and

young adults due to, for example, scarcity of suitable habitats,
could result in rapid population decline. The decline would
increase if survival of several age classes is negatively affected.

It should be noted that if improving survival of some of the
sensitive ages is not possible (or practical), a strong effort
should be made to substantially increase survival of other
sensitive age classes as a compensatory measure.

The population growth rate was less sensitive to changes in
fecundity than it was to changes in survival rates. However, this
effect was partially a modeling artifact, for example, increased

fecundity directly increased the number of age 0 individuals
only, whereas increased overall survival affected all age classes.
Still, a 5%change in fecundity had the same effect on population

growth rate as a 5%change in age 0 to 1 survival rates,whichwas
a highly sensitive parameter. Increase in fecundity has a
potential to substantially improve population growth rate, and

could offset increases inmortality of sensitive age classes. Efforts
to increase egg deposition, for example, by creating more
optimum spawning condition should be of particular import-
ance if means of increasing survival of juveniles are limited.

Substantial decreases in fecundity due to, for example, poor
spawning habitat, decreased frequency of spawning, or
targeting gravid females by commercial fishermen, can sub-

stantially reduce population growth rate, or accelerate the rate
of decline. In particular, harvesting young females (ages 7–12)
should be limited or eliminated, because it greatly increases the

risk of further population decline.

Pallid sturgeon propagation

Since 1994, over 73 000 age-1 pallid sturgeon have been stocked
to the Lower Missouri River (S. Krentz, USFWS, North
Dakota). Observed increasing recapture rates of stocked pallid

sturgeon in the LowerMissouri River indicate that stocking has
a potential for enhancing recovery of the pallid sturgeon
population. Stocking effectiveness could potentially be im-

proved if older, for example, age-2 fish were used instead of the
age-1 fish. Reproductive value of age-1 pallid sturgeon was 66%
of that determined for age-2 individuals, indicating that stocking

with the same number of age-2 fish could result in 50%more fish
added to the population as compared to stocking with an equal
number of age-1 pallid sturgeon. Therefore, if the survival rates
of age-1 pallid sturgeon in the hatchery would be substantially

higher than 66%, holding the age-1 fish for an additional year at
the hatchery could be justified. However, our model does not
include potential domestication effects that could arise due to

extended holding at the hatchery.

Need for more accurate parameters

Even small changes in egg deposition and, following, larval
and juvenile survival had a strong effect on shovelnose and

pallid sturgeon populations. However, despite recent efforts
(Bratten and Fuller, 2002; Hrabik, 2002), these parameters

remain poorly evaluated. To increase our ability to predict
future trends in shovelnose and pallid sturgeon populations in
the Lower Missouri River, more accurate estimates of egg

deposition as well as larval and juvenile survival are needed.
Despite uncertainties in specific parameter values, we believe
that our model generated realistic and biologically relevant
predictions. For example, the predicted slow rate of decline of

the shovelnose sturgeon population under the initial parameter
values is in agreement with recent evaluations of the shovel-
nose sturgeon status in the Lower Missouri River and across

its geographic distribution (Keenlyne, 1997; Herzog, 2002).
Parameters Linf and K in the von Bertalanffy growth models

appeared to be of relatively high sensitivity. These parameters

are relatively well known for shovelnose sturgeon in the Lower
Missouri River (Quist et al., 2002; Wildhaber et al., 2005).
However, they are rather unknown for pallid sturgeon in the
Lower Missouri River. We propose that more research should

be directed to determine a robust length at age relationship for
pallid sturgeon in the Lower Missouri River.

Predicting future trends in populations of endangered (rare)

species is challenging because of relatively poorly understood
complex processes that can occur at low densities of individ-
uals in the population. For example, slower than expected

recovery rates of overexploited fish stocks have been attributed
to the presence of depensatory mechanisms that reduce
reproductive success at low individual densities (Myers et al.,

1995). In fishes that form spawning aggregations (such as
pallid sturgeon), egg fertilization rates can decline by 40% if
the number of males per female declines below some optimum
level (Rowe et al., 2004). Increased hybridization rates with

congeneric species can also result from inabilities to form
sufficient spawning aggregations or from competition for
suitable spawning habitat with other species (Carlson et al.,

1985; Grady et al., 2001). Both depensation and hybridization
are likely to play an important role in reducing recovery rates
of the pallid sturgeon, despite established protection. If so, our

results should be interpreted as a conservative estimate of the
population decline at low individual densities, for example, the
true rate of decline would be faster than the one predicted here
due to the depensation or hybridization effects. Further

research is needed to better evaluate magnitudes of depensa-
tion or rates of hybridization so that these effects could be
incorporated into population dynamics models developed to

more accurately evaluate future trends of the pallid and
shovelnose sturgeon in the Lower Missouri River.

Many parameters of the population dynamics model are

temporarily variable. For example, survival rates during the
first year of life have been known to vary dramatically, leading
to inconsistent and hard-to-predict recruitment. Instead of

allowing the annual egg to age-1 survival rates to vary on an
annual basis (either randomly or following a certain probab-
ility distribution), our model uses a fixed value that would
result from averaging the highly variable annual egg to age-1

survival rates over longer intervals. We have determined that
over the 100-year modeling interval, the estimates of k were
very similar when the value of egg-to-age-1 survival was held

constant or when it was allowed to oscillate around a certain
mean value (e.g. 0.0004). Fixed values of model parameters
were used because the main goal of the paper was to evaluate

relative sensitivities of model parameters and for that purpose
using average values for model parameters was justified (e.g.
Crouse et al., 1987). In addition, we are unaware of any data
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that could be used to describe the nature (e.g. statistical
distribution) of annual variability of the model parameters.

Commercial fishing effects on shovelnose sturgeon

Shovelnose sturgeon is among the last of the commercially
harvested sturgeon species in North America (Keenlyne,
1997). The fishing pressure on shovelnose sturgeon has
increased rapidly during the last decade (USFWS, 2003;

Williamson, 2003) due to the growing market demand for
caviar (sturgeon roe) caused partially by the collapse of
sturgeon fisheries worldwide. For example, the commercial

shovelnose sturgeon catch in Missouri increased from 5482 kg
in 1999 to 29 307 kg in 2001 in the Mississippi River and
from 3372 kg in 1999 to 5566 kg in 2001 in the Missouri

River (USFWS, 2003). The observed increase in commercial
fishing, however, caused some concerns related to potential
overfishing of shovelnose sturgeon stocks. Substantial de-
clines in catch rates per unit of effort have already been

documented in the Lower Missouri River (Herzog, 2002). We
predict that, under the initial parameter values including the
estimated current rates of natural and fishing mortality, the

population of shovelnose sturgeon in the Lower Missouri
River would be declining by �3% annually. At that rate of
decline, the population would reach 160 000 individuals (123

fish km)1) within the next 50 years, 5% of the historical
densities (Schmulbach et al., 1974). Obviously, annual yield
would decline as well. Potential increases in fishing activity to

compensate for the declining catch rates would only exacer-
bate the rate of population decline, especially if young adult
females (<12) are targeted.
Our simulations indicate that annual commercial yield

could be substantially improved if fishing efforts are adapted
to better reflect key demographic processes that allow the
shovelnose sturgeon population to increase and remain at a

high level. For example, we predict that annual yields could
increase substantially (up to 48 000 kg), despite maintaining
high exploitation rates (e.g. 40% annually), if harvesting of

age classes <12 years is restricted or eliminated. This could
be achieved by establishing a minimum FL limit of
approximately 610 mm. On the other hand, harvesting young
adult females and older juveniles should be limited because it

can easily lead to rapid population decline if in excess of 15%
annually as predicted by the model. Restricting harvest to
individuals ‡12 years (>610 mm FL) should result in a

substantial population increase, allowing for higher commer-
cial yields. Also, targeting individuals 12 years or older
should optimize roe harvest because the number of eggs

produced by a female reaches a near-maximum level at age
12.
The predictions of commercial yields and abundance of the

shovelnose sturgeon population presented in this paper reflect
the specific values of model parameters derived from the best
data available to date. We recognize the need to further assess
the accuracy of model parameters used in this study as well as

to evaluate major model assumptions. Efforts aiming to
develop an even more accurate shovelnose sturgeon popula-
tion dynamics model should be expedited by focusing on the

most sensitive parameters indicated by the sensitivity analysis.
The minimum FL limit proposed in this study (610 mm) is

substantially higher than those previously evaluated. Quist

et al. (2002) evaluated effects of 406-mm and 508-mm FL
limits on harvest rates of the shovelnose sturgeon population
in the Missouri River. Establishing a 406-mm minimum FL

limit would allow for harvesting fish ages 5 and older whereas
the 508-mm FL limit would allow for harvest of fish in age

classes ‡7. Our analysis indicated that even a slight increase in
mortality of fish in ages as low as 5 could lead to rapid
population decline. Therefore we caution against harvesting

older juveniles and young adults. Also, harvesting fish in ages
5–11 would be suboptimal if roe harvest is to be optimized
because egg production by females in these age classes is
substantially below the maximum level observed for females in

ages ‡12 (egg production is zero for ages <7).
Contrary to our evaluations, Quist et al. (2002) did not see a

substantial difference in predicted annual yield at the 508 mm

minimum FL limit in the Lower Missouri River, despite
increasing exploitation rate from 10% to 90% (natural
mortality rate was held constant at 5% annually). We find

their results surprising, considering that the estimated matur-
ation size of the shovelnose sturgeon female is 517 mm FL,
meaning that all reproductive females would be vulnerable to
harvest (majority would be harvested at the 90% exploitation

rate) if the 508 mm minimum FL limit is applied. We predicted
that moderate yields could be sustained if females in ages as
young as 5 are harvested at low rates (15% annually).

However, increasing exploitation rates of ages ‡5 above 15%
was predicted to cause rapid population decline and drastic
reduction in commercial yields.

Yields predicted by Quist et al. (2002) under low exploita-
tion rates (e.g. 10%) and low natural mortality rates (e.g. 5%)
were 8-fold lower than those predicted in this study under

similar conditions. Some of the discrepancies between the two
studies could result from differences in the fecundity equations
used. The equation developed by Zweiacker (1967) and used
by Quist et al. (2002) was based on data collected for relatively

small shovelnose surgeon females (428–615 mm FL) and
appeared to be inaccurate if extrapolated to predict fecundities
of larger females (Fig. 1). The fecundity equation used in this

study is likely more accurate because it covered the full range
of shovelnose sturgeon lengths in the Lower Missouri River
(up to 760 mm FL).
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