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Abstract

Recent shifts in water quality and food web characteristics driven by anthropogenic impacts on the Laurentian Great Lakes
warranted an examination of pelagic primary producers as tracers of environmental change. The distributions of the 263
common phytoplankton taxa were related to water quality variables to determine taxon-specific responses that may be
useful in indicator models. A detailed checklist of taxa and their environmental optima are provided. Multivariate analyses
indicated a strong relationship between total phosphorus (TP) and patterns in the diatom assemblages across the Great
Lakes. Of the 118 common diatom taxa, 90 (76%) had a directional response along the TP gradient. We further evaluated a
diatom-based transfer function for TP based on the weighted-average abundance of taxa, assuming unimodal distributions
along the TP gradient. The r2 between observed and inferred TP in the training dataset was 0.79. Substantial spatial and
environmental autocorrelation within the training set of samples justified the need for further model validation. A
randomization procedure indicated that the actual transfer function consistently performed better than functions based on
reshuffled environmental data. Further, TP was minimally confounded by other environmental variables, as indicated by the
relatively large amount of unique variance in the diatoms explained by TP. We demonstrated the effectiveness of the
transfer function by hindcasting TP concentrations using fossil diatom assemblages in a Lake Superior sediment core.
Passive, multivariate analysis of the fossil samples against the training set indicated that phosphorus was a strong
determinant of historical diatom assemblages, verifying that the transfer function was suited to reconstruct past TP in Lake
Superior. Collectively, these results showed that phytoplankton coefficients for water quality can be robust indicators of
Great Lakes pelagic condition. The diatom-based transfer function can be used in lake management when retrospective
data are needed for tracking long-term degradation, remediation and trajectories.
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Introduction

Recent trends from monitoring data demonstrate rapid changes

in the Laurentian Great Lakes system associated with anthropo-

genic drivers. Most notably, changes in the water quality [1],

phytoplankton (unpublished data), zooplankton [2] and benthos

[3] collectively confirm or suggest detriments associated with

invasive species, nutrient imbalances and climate. While algal

abundances have been inordinately low in some regions (e.g., Lake

Huron; unpublished data), new eutrophication problems have also

manifested as substantial algal blooms (e.g., [4]). Such quantitative

assessments of environmental problems have been valuable to

support lake management [5] because they provide information on

the abundance of various organisms, traits that are critical to

understanding and managing food webs. However, taxon-specific

evaluations of pelagic indicators in the Great Lakes are lacking. In

addition to these more intuitive evaluations of organism numbers

and biomass, taxon-specific ecological data can provide additional

tools to inform management [6].

Developing effective indicators of ecological condition requires

that they be calibrated to identify their responses to important

environmental stressors [7]. The main goals of calibration are to

identify environmental characteristics of potential indicator taxa so

that they may be subsequently used to infer condition. Assem-

blages of algae, which are physiologically subject to water quality,

have the potential to provide time-integrated inferences of

limnological conditions. Such bioindicators are particularly

needed to monitor the impacts of human activities that are

increasing nutrient supplies to water bodies, introducing non-

native species, and changing climate. Great Lakes coastal algae,

particularly diatoms, have been shown to provide a more

temporally integrated assessment of water quality conditions than

discrete water quality measurements [8], but similar indicators
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have not been developed for the pelagic ecosystem. Diatoms are

particularly advantageous as indicators in paleolimnological

studies because their diagnostic cell walls (frustules) remain

archived in lake sedimentary records [9]. Hence, the fossil diatom

assemblages may be used to reconstruct historical degradation and

recovery and estimate future trajectories of condition.

The characteristics of the Great Lakes phytoplankton commu-

nity as indicators of the prevailing eutrophication that was noted in

the 1960s and 1970s was well described by Stoermer [10]. At that

time little taxonomic treatment of the phytoplankton had been

accomplished, so Stoermer advocated the indicator potential that

would result from better taxonomic assessment of the flora and

species autecology. Significant collections of phytoplankton have

occurred since that time, such as the United States Environmental

Protection Agency’s (USEPA) biological monitoring program that

has been active since 1983 [11], among other monitoring data

(e.g., [12]). We aimed to provide the tools to develop species- and

assemblage-based indicators from Great Lakes phytoplankton

data.

Modern datasets (also known as training sets) provide the basis

for developing indicator transfer functions by relating contempo-

rary assemblages with their corresponding environmental mea-

surements [13]. Algal assemblages, in particular, are proven robust

indicators of stressors such as nutrients ([14],[15]), water clarity

[16] and acidification [17], as well as a suite of other water quality

problems in freshwater ecosystems [18]. Training sets using

diatoms have been developed for lakes, rivers and the coastlines of

the Great Lakes [8]. Algae are known to have definable optima

along gradients of environmental conditions. Species tend to be

taxonomically distinct and abundant, and they respond rapidly to

changing conditions. Hence, by using training set data to calibrate

the environmental characteristics of algae, researchers can use

changes in community composition to classify and quantify long-

term environmental changes that result from anthropogenic

activities. This is particularly needed because few pelagic

monitoring data were collected prior to the 1970s; existing data

provide a spatially and temporally incomplete picture of environ-

mental conditions in the lakes. Species-environmental coefficients

should allow reconstructions of past conditions based on

sedimentary assemblages.

A transfer function is derived by relating taxa assemblages

(usually diatoms) in a training set of samples (in this case, pelagic

samples collected throughout the Great Lakes) to an environmen-

tal variable of interest [19]. The transfer function consists of taxa

coefficients (environmental optima and, optionally, tolerances) that

can be used to infer quantitative information about the variable of

interest based on the abundance of each taxon in a sample

assemblage. These assemblages are usually characterized from

recently accumulated surface sediments [20]; to our knowledge, a

transfer function based on diatom phytoplankton samples has not

been attempted.

For the current assessment, modeling approaches were applied

to characterize the environmental coefficients of the Great Lakes

phytoplankton taxa. A checklist of the common taxa and their

ecological indicator values for a suite of water quality variables is

presented. To illustrate one way these coefficients may be used, a

diatom-based transfer function was developed for paleolimnologi-

cal applications. Transfer function evaluation and testing typically

involve the comparison of algal-inferred water quality to measured

water quality to evaluate function robustness, which is usually

characterized by a coefficient of determination (r2) and a

prediction error. It is well-known that adjacent phytoplankton

samples (e.g. 5–100 km apart) from the Great Lakes tend to have

similar species assemblages and environmental conditions, and this

lack of independence among sites can violate statistical assump-

tions. Such autocorrelation may result in misleading estimates of

transfer function performance [21], and with new analyses

revealing previously undocumented weaknesses with diatom-based

nutrient models [22], it is imperative that transfer functions

undergo thorough testing. So, we evaluated how (1) autocorrela-

tion, (2) relationships between taxon abundance and phosphorus

and (3) redundancies among environmental variables affected our

training set and its predictive power. We further tested the model

by applying it to fossil diatom assemblages from Lake Superior to

determine whether pelagic diatom-inferred phosphorus serves as

an effective paleoecological tool in the Great Lakes.

Materials and Methods

We evaluated phytoplankton data collected as part of the

USEPA’s biological monitoring program for the Great Lakes. The

standard operating procedure for phytoplankton collection and

analysis is described in detail in the published procedures [11], but

abbreviated details were as follows. The EPA data were based on

twice-annual synoptic sampling (‘‘spring’’ = typically the month of

April, ‘‘summer’’ = typically the month of August) from standard

stations throughout the Great Lakes basin. Our analyses focused

on phytoplankton and water quality samples collected from 2007

through 2011, a total of 717 unique sampling events. No specific

permissions were required for these locations or activities; namely,

sample locations in the pelagic Great Lakes. Field studies did not

involve endangered or protected species.

Whole water samples were collected from the rosette sampler

on-board the Research Vessel Lake Guardian. Phytoplankton

samples were composites of water sampled at discrete depths from

the euphotic zone of the water column. For isothermal spring

samples, the sample integrated equal volumes of water from 1, 5,

10 and 20 m. In shallower locations in Lake Erie the 20-m sample

was replaced by an above-bottom collection. If the total depth was

less than 15 m, equal volumes were integrated from surface, mid-

depth and above-bottom samples. For the stratified (summer)

water column, equal volumes were taken from 1 m, 5 m, 10 m

and the lower epilimnion and integrated. If the epilimnion was

very shallow, equal volumes were integrated from a maximum of

four and a minimum of two sampling depths. Samples were split

and analyzed separately for the whole phytoplankton assemblage

(i.e., ‘‘soft’’ algae) and diatoms. Analysis of soft algae used the

quantitative Utermöhl method of counting preserved specimens in

a settling chamber on an inverted microscope [23]). During soft

algal analyses, diatoms containing cytoplasm were identified as

centric or pennate forms. The second split sample was digested in

nitric acid and subsequently in peroxide to isolate the diatom

valves which were then plated on slides and counted using oil

immersion (10006 or higher) to identify taxa. All counting

included measurements of cell dimensions so that algal biovolumes

could be calculated. Ultimately, analyses afforded detailed

taxonomic resolution, and data were available in quantitative

data formats (cell density [cells/ml] and biovolume [mm3/ml]).

A 30-cm sediment core from eastern Lake Superior was used as

a test subject for a diatom-based phosphorus transfer function.

Details of sediment coring and sample preparation are provided by

Shaw Chraı̈bi et al. [24]. The stratigraphic record of diatom

assemblages dating back to the early 1700s was the subject of

testing in the present assessment.

Algal associations with 11 environmental variables (Table 1),

collected simultaneously with phytoplankton, were explored.

Additional variables were considered but were redundant (specific

conductivity with chloride, beam attenuation with turbidity) or

Great Lakes Phytoplankton Indicators Support Paleolimnology
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poorly represented in the dataset (dissolved oxygen, irradiance,

total nitrogen). Geophysical variables (e.g., depth, latitude,

longitude) were not used in multivariate analyses in order to

better describe relationships with water quality, although the

importance of ‘‘lake’’ as a nominal variable was explored in terms

of species specificity. Collection and analysis of environmental data

is described in detail in the USEPA (2010) standard operating

procedures. Three additional molar ratio variables (N:P, N:Si,

P:Si) were calculated from other variables in the list so that they

may be used in the evaluation of algal responses across nutrient

ratio gradients. Because of substantial correlation among these

variables (Figure 1), multivariate approaches were deemed neces-

sary to determine species-environmental relationships.

All analyses were performed using the R statistical software [25]

and associated packages. All scripts and datasets are available from

the authors on request. Phytoplankton and water quality data are

archived in the Great Lakes Environmental Database (http://

www.epa.gov/greatlakes/monitoring/data_proj/glenda), and the

paleoecological data are provided electronically in Shaw Chraı̈bi

[26].

Ordination
Multivariate ordinations were performed using the R package

‘‘vegan’’ [27]. An initial principal components analysis (PCA) was

used to characterize the major environmental gradients in the

water quality data. All environmental variables were scaled to zero

mean and unit variance. The first two principal components (axes),

which are a linear combination of the greatest variation in

environmental condition across sites, were used as new environ-

mental variables (Figure 1) in the exploration of algal species

autecologies.

For diatom-environmental analyses, redundancy analysis

(RDA), the constrained form of PCA, was performed to condense

the complex dataset into summary variables (axes) that capture the

majority of environmental variation (Juggins and Birks [28]). An

RDA with a Monte Carlo permutation test was used to identify the

environmental variables with significant (P,0.05) relationships

with the diatom data. The subset of significant variables was then

selected to generate a new RDA to identify species-environmental

relationships and orthogonal gradients that capture variation in

the diatom data. Explained variation from this RDA was

compared to a partial RDA that partitioned variation in the

diatom data by characterizing the total and unique contributions

Figure 1. Correlation matrix of Great Lakes water quality variables. Correlation matrix of Great Lakes water quality data, using Pearson
product-moment correlation coefficients. Ellipses summarize positive or negative correlations, with narrower, darker ellipses indicating stronger
correlations. Variable pairs containing an 6 were not significant (P = 0.05 with Bonferroni correction for multiple comparisons). All variables were
transformed as necessary to minimize skew and approximate or achieve normality (Table 1). Scores from the first two axes of a principal components
analysis are included to indicate important variables for these gradients.
doi:10.1371/journal.pone.0104705.g001
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that can be attributed to TP. This was further applied to the

variables alkalinity (Alk), chloride (Cl) and nitrates + nitrites (NOx)

to examine similar characteristics for variables that may be

confounded with TP (e.g., Alk, NOx) or have strong independent

controls on diatom autecology (e.g, Cl).

Species-environmental relationships
Algae-based inference models typically assume the taxa respond

unimodally across the environmental gradient of interest [29];

however, based on many possible factors (e.g., narrow gradients,

multivariate controls, inadequate sampling or unique ecological

distributions) taxa may vary in their responses, or have no

apparent response. It is important to characterize the goodness of

fit of species to the environmental variable, as well as to consider

linear, Gaussian or skewed responses along gradients in order to

validate the assumption that diatom species responses actually

reflect the environmental variable of interest.

Responses of algae taxa along environmental gradients were

evaluated using linear, Gaussian and weighted-average (WA)

assumptions. First, environmental variables were transformed as

necessary to minimize skew and achieve normality in their

frequency distribution, if possible. Taxa that were observed in

more than five samples were evaluated. Responses were evaluated

using four measures of algal abundance: cell densities (cells/ml),

biovolume (mm3/ml), relative cell density and relative biovolume.

Using the ‘‘stats’’ (version 3.0.0) package [25] the function ‘‘lm’’

was used to generate a linear model, then the function ‘‘cor.test’’

was used to determine linear model relationships between taxon

abundance and each environmental variable. Significance

(P = 0.05) was tested based on Pearson’s product moment

correlation coefficient.

Using the ‘‘gam’’ (version 1.08) package [30], the ‘‘gam’’

function was used to fit Gaussian model relationships between

taxon abundance and each environmental variable. Based on a

comparison of residuals, a paired t-test (P = 0.05) was applied to

determine whether a Gaussian fit was better than a linear fit. The

point on the environmental gradient where a Gaussian fit was

maximized was considered a taxon’s optimum. The environmental

weighted-average optimum for a taxon was calculated based on

the average of environmental values where the taxon occurred,

weighted by taxon abundance. Taxon optima based on Gaussian

and WA calculations were rescaled to a range of 0 to 10, which

was based on the range of the transformed (if applied)

environmental variable. This rescaling resulted in more user-

friendly coefficients (i.e. ‘‘environmental indicator values’’), but

coefficients based on actual variable units are available from the

authors.

To support the utility of taxa included in the diatom-based

transfer function, generalized additive models (GAMs [31]) were

used to test the significance of the response of each diatom taxon

to the measured TP gradient using the R package ‘‘mgcv’’ [32].

The additive models test several response forms (linear, unimodal,

skewed) across the selected gradient. We further tested the

significance of the unique explanatory power of TP once the

effect of alkalinity (another important water quality variable in the

Great lakes) was removed. GAMs were tested on the relative

density data for taxa with 10 or more occurrences in samples and

significance of fitted models was assessed using 199 Monte Carlo

permutations of the deviance explained by TP for each species

response GAM. (Although a less stringent criterion for occurrence

[five samples] was used in the development of indicator values,

here we use 10 samples to ensure sufficient abundance to identify

responses along the TP gradient.) Data were evaluated based on

relative density and relative biovolume as these are the data types

that may be used in diatom-based paleoecological studies.

Diatom-based transfer functions
Transfer functions for Great Lakes total phosphorus (TP) were

derived using the diatom components of the algal assemblages. As

such a function is most likely to be used for down-core analyses in

paleolimnological assessments [29], the soft algae that are less

likely to preserve in the sedimentary record were not used.

Transfer functions were developed using weighted averaging (WA)

regression with inverse de-shrinking with log-normal taxa trans-

formation (‘‘rioja’’ package [33]). Diatom-inferred estimates of TP

(DI-TP) for each sample were calculated by taking the optimum of

each taxon to that variable, weighting it by its abundance in that

sample, and calculating the average of the combined weighted

taxa optima ([34], [35]). The apparent strengths of the transfer

functions were evaluated by calculating the squared correlation

coefficient (r2) and the root mean square error of prediction

(RMSEP) between measured TP and transfer function estimates of

those values for all samples. The predictive error was estimated by

jackknifing [36] which corrects for under-estimation of root-mean

squared error due to predicting values only from samples that were

included in the model. As above, variations of these functions were

tested using two possible representations of the algal data, relative

cell density and relative biovolume. Developing such functions

based on absolute abundances was not deemed useful for future

applications because species abundances in sedimentary assem-

blages (e.g., cells per g dry sediment) cannot be assumed to be

comparable to prevailing phytoplankton concentrations (e.g., cells

per mL in the water column).

Transfer function testing
We evaluated redundancy in the training set using the modern

analog technique (MAT; [37]) with five analogs. Instead of using

the weighted abundance of taxa, a reconstructed value was based

on the five most taxonomically similar samples in the training set.

The effect of autocorrelation on transfer function performance was

evaluated using the ‘‘rne’’ function in the R package ‘‘palaeoSig’’

[38]. The rne function compares the performance (r2) of the

transfer function during cross-validation as sites are deleted (1)

randomly, (2) that are geographically close to the test site, and (3)

that are environmentally similar to the test site [21]. Reducing the

number of sites will worsen the performance as the number of

potential analogues decreases [39]. In the case of autocorrelation,

deleting the nearest sites would remove the best analogues, and

should be more detrimental to performance than random deletion.

Such degradation would also be expected when sites in close

environmental proximity (e.g., with similar TP) are selectively

deleted. If performance deteriorates more by deletion of close sites

than by deletion of environmental neighbors, the performance loss

relative to the random deletion must in part be due to spatial

autocorrelation between diatom assemblages.

We further checked the diatom-TP transfer function perfor-

mance against several randomized simulations using multiple

iterations of the ‘‘multi.mat’’ function in palaeoSig [21]. This

method simulates the environmental variable across sites using the

same autocorrelation structure as the measured data and

recalculates performance (r2). Creating simulated environmental

data requires many geographical considerations, including devel-

opment of an empirical variogram to determine the spatial

structure of TP in the Great Lakes, fitting a theoretical variogram

model, and a simulation to generate a spatially structured random

variable with the same spatial structure as the original data. We

employed the gstat package [40] in R to support these calculations,
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and the method is detailed by Telford and Birks [21]. A transfer

function is considered to have statistically significant predictive

power (p,0.05) if the real value of r2 for the transfer function

exceeds 95% of the simulations.

Application to paleolimnology
Reconstructed estimates of past TP concentrations were

obtained from sedimentary samples collected as part of a recent

paleolimnological analysis of eastern Lake Superior (Shaw Chraı̈bi

et al. [24]). Despite the training set samples representing seasonal

snapshots of modern diatom assemblages as opposed to sedimen-

tary assemblages containing year-round integrations of settling

diatoms, paleo-assemblages had several good modern analogues in

the training set, thus providing preliminary evidence that the

training set may be applicable (Shaw Chraı̈bi [26]). Diatom-

inferred TP from the uppermost sediment samples matched well

with contemporary TP monitoring data (Shaw Chraı̈bi et al. [24]).

Downcore TP estimates were calculated using WA with inverse

de-shrinking (Juggins and Birks [28]). To track the historical

trajectory in relation to historical diatom conditions, sedimentary

assemblages were projected on the RDA containing the suite of

training set diatom data and significant environmental variables.

We then calculated the ratio of two values: (1) lR, the variance

in sedimentary diatom assemblages captured by the first axis of a

RDA constrained to DI-TP; (2) lP, the variance explained by the

first axis of an unconstrained PCA of the diatom data. The lR/lP

ratio expresses the proportion of variation explained by DI-TP as a

fraction of the maximum explainable variance in the sedimentary

samples. We also calculated the correlation coefficient for past DI-

TP versus corresponding axis 1 sample scores from the uncon-

strained PCA of the sedimentary diatom assemblages. We would

expect both of these values to be high (i.e. close to a proportion of

1.0) if downcore assemblages were strongly related to changes in

TP [22].

Results and Discussion

Taxon-specific results
263 taxa were sufficiently abundant (i.e. in more than five

samples) to be considered for evaluation along environmental

gradients. The common taxa comprised centric diatoms (42 taxa),

pennate diatoms (103 taxa), chrysophytes (37 taxa), green algae (45

taxa), cryptomonads (8 taxa), blue-green algae (17 taxa), eugle-

noids (2 taxa), dinoflagellates (6 taxa) and some unknown entities

(3 taxonomic categories). Some were unknown species or genera

not identifiable to the species level (a genus followed by ‘‘spp.’’)

and others were members of known divisions but with few

diagnostic characteristics (e.g., ‘‘unidentifiable chrysophyte

ovoid’’). Although these less specific taxonomic categories are

difficult to understand ecologically due to the likelihood of multiple

species comprising a category, we present them as possible

inference tools because several of them had significant relation-

ships with environmental variables.

Table 2 presents environmental characteristics for select taxa

relative to nine variables, as well as their lake and seasonal

specificity, based on observed algal biovolumes and relative cell

densities in phytoplankton samples. It is beyond the scope of this

article to characterize the numerous species-specific mechanisms

for these environmental relationships, but some of these taxa are

recognized as important components of the Great Lakes phyto-

plankton community. The full suite of species coefficients are

provided in supplementary appendices that detail species coeffi-

cients based on cell densities (Table S1), relative cell density (Table

S2) biovolume (Table S3) and relative biovolume (Table S4).

These tables further characterize within-lake conditions and may

serve as a set of coefficients suited to further indicator development

and monitoring assessments.

Several taxa have high (e.g., Aulacoseira distans) or low (e.g.,

Cyclotella michiganiana) optima for TP. However, it is interesting

that all of the significant linear species relationships with TP are

positive (Table 2, Table S3). A similar negative effect occurred for

silica. This appears to be due to the dominating effect of summer

in Lake Erie, a time when TP is high, silica is low, and several algal

taxa are highly abundant, thus driving positive slopes in the

biovolume-TP relationship. A comparative examination of relative

densities (Table S2) indicates a greater diversity in species

responses to TP because relative abundances were more evenly

distributed across lakes and environmental gradients.

Based on weighted abundance across all samples, the centric

diatom Aulacoseira islandica is the most abundant alga in the

Great Lakes phytoplankton ([41]). However, it has a very specific

spring bloom period in Lake Erie, with very low occurrence across

the other lakes. Its distribution reflects high chlorophyll a and

fluorescence, which is not surprising as it comprises most of Lake

Erie’s spring algal bloom. A. islandica has a significantly negative

relationship with silica, which seemingly counters its very high

silica requirement in the formation of its heavily silicified cell walls.

This may imply that by the time spring sampling occurs in April of

each year diatoms have exhausted the dissolved silica in the water

that is available to incorporate into their cell walls.

While structurally similar to A. islandica, Aulacoseira granulata
is a distinctly summer diatom in Lake Erie. A. granulata has an

apparent tolerance for warmer, late-summer conditions when it

coexists with green and blue-green algae [42] that account for high

chlorophyll concentrations. Fragilaria crotonensis is a pennate

diatom that also occurs in the summer in Lake Erie, with lower

abundances in Ontario and Michigan. It has high optima for pH

and temperature and appears to be associated with a low N:P

ratio.

The cyanophyte Microcystis aeruginosa is a well-known coastal

bloom species in Lake Erie [43], and it has been observed

abundantly in recent offshore phytoplankton samples [42]. Our

assessment confirms its fairly strict occurrence in the summer in

Lake Erie, as well as its occurrence at times of high chlorophyll a,

temperature and pH, as well as low nitrates and N:P.

Three cryptomonad algae were abundant: Cryptomonas ros-
tratiformis, C. reflexa and C. erosa. These species occurred year-

round in all of the lakes. While seemingly cosmopolitan, there

were clear distinctions within this genus, such as C. reflexa being

tolerant of high chloride and temperature while C. rostratiformis
occurred under conditions of low chloride and temperature.

The diatom-based model
Under the full diatom-inferred TP model, optimal model

parameters included use of WA with tolerance down-weighting,

which offered minimal improvement. The model was developed

using log-transformation of the TP data and it was cross-validated

using the jackknifing procedure [35]. There were no transforma-

tions of the taxonomic data or removal of taxa or samples as these

procedures did not improve apparent model performance. We

tested removal of benthic and rare taxa (i.e., occurring in fewer

than 5 samples) but such considerations also degraded model

performance. Comparisons between observed TP and DI-TP

resulted in a jackknifed r2 of 0.79 and RMSEP of 0.38 (log-TP

units) using relative density data and an r2 of 0.77 and RMSEP of

0.36 using relative biovolumes (Table 3).

Based on GAM analyses of relative density data for each

common diatom taxon, 90 out of 118 taxa (76%) taxa had a
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significant response across the TP gradient. After removing the

effects of alkalinity, 65 out of 118 (55%) had a significant response

to TP, indicating that 25 of the taxa with significant relationships

with TP had a signal that was confounded with alkalinity.

Comparable results using relative biovolumes revealed 89 taxa

with significant responses to phosphorus, 67 after accounting for

alkalinity. Basing the model on diatom densities or biovolumes

appeared to have little effect on model performance. It is more

typical in paleolimnological studies to use count data without the

additional benefit of cell measurements to calculate biovolumes, so

subsequent figures focus on the use of relative diatom valve

densities.

In a check of the effects of sample removal in the training set,

random removal of samples had a small effect on apparent model

performance (Figure 2). For instance, the observed-inferred r2

decreased from 0.77 for the full model to 0.66 after removal of

80% of samples. However, removal of spatially and environmen-

tally similar sites had a more substantial impact on performance,

indicating autocorrelation among sites. Removal of sites that were

geographically close to the test site in cross-validation resulted in a

sudden drop in the r2, as low as 0.13 after sites within 300 km were

removed. This result is not surprising given the known uniqueness

of the phytoplankton assemblages in each lake [44], so removal of

training set samples in the same lake as the test site undoubtedly

had a substantial effect on assemblage analogs. A similarly

precipitous drop in performance occurred due to removal of sites

that were environmentally similar to the test site, but model

degradation was not noticeably different from that due to spatial

removal. The relative importance of geographical and environ-

mental neighbors shows how important adjacent sites are for the

performance of the transfer function. As explained by Telford and

Birks [21], the occurrence of autocorrelation indicates potential

problems in a transfer function, and so the modern analog

technique (MAT [37]) of inference is not recommended for this

model. However, the model may still have predictive power under

weighted-averaging scenarios. Based on models derived by

random re-mapping of the environmental data over the species

map, the actual model performed better 99.8% of the time

(Table 3; Figure S1), indicating that the diatom-TP WA transfer

function is statistically significant, suggesting that TP can be

reconstructed from this training set.

An RDA of the diatom assemblages constrained by the 11

significant environmental variables indicated that these variables

account for a major part (16.7% on the first axis; Table 3,

Figure 3) of the underlying gradients in the diatom relative density

data. Axis 1 of an unconstrained PCA captured 20.6% of the

variation in the diatom data, indicating that the significant

environmental variables accounted for a large portion of the

underlying species gradients. Environmental data accounted for a

larger portion of the variance in diatom relative biovolume data

(20.0%; Table 3). TP (and the related TDP) were strongly

correlated to axis 1, the main gradient of species turnover. There

is also a clear alkalinity/chloride gradient that diagonally

represents axes 1 and 2. Axis 2 captures a smaller proportion of

variance (6.4%), although it is closely correlated to the NOx

gradient. These proportions of explained variance are typical and

informative in multivariate analyses of biological abundance data

that tend to be noisy (Gauch [45]).

Figure 4 illustrates variance partitioning of the diatom relative

density data by selected environmental variables. The total and

unique effects of TP were 6.8% and 4.8% respectively (Table 3), a

29% reduction in explained variance. Based on relative biovo-

lumes the total and unique effects were 9.1% and 6.0%, indicating

a closer linkage between TP and diatom biovolumes than

densities. That the unique TP effect is lower than total is due to

redundancies, such as correlation to variables like chlorophyll a
and turbidity (Figure 1). While it is difficult to confirm the relative

importance of these variance partitioning values, the unique

variance explained by TP surpasses that observed for TP training

sets developed in Europe [46] and Minnesota [47], [48]; 3.9% and

2.5% respectively, as presented by Juggins et al. [22]. Of the

selected variables, TP independently explained the most variation

in the assemblage data, in contrast to alkalinity and chloride which

had more than 70% reduction from total to uniquely explained

variance. NOx explained the least variation but was minimally

confounded by other variables. For TP to be confounded with

other correlated variables is not surprising, but these results suggest

that changes in the diatom assemblages across the Great Lakes are

meaningfully related to TP.

Downcore testing of the diatom-based model
Figure 5 presents the common diatom taxa (.5% in any

sample) in a sediment core from eastern Lake Superior (unpub-

lished data). The stratigraphy is based on relative diatom density,

including the DI-TP results which indicate a temporary enrich-

ment event. This inference was largely driven by a short-term

abundance of A. islandica which temporarily replaces lower-

nutrient Cyclotella and Discostella species through much of the

20th century. Passively plotting the Lake Superior fossil samples on

the RDA traces the path of historical changes in the diatom

Table 3. Results of DI-TP model testing using diatom data based on relative cell densities and biovolumes.

Density Biovolume

Model r2
jackknife 0.79 0.77

Model RMSEP (log-TP units) 0.38 0.36

Number of taxa with significant GAM relationship to TP (out of 118) 90 89

Number of taxa with significant relationship to TP after factoring out Alk (out of 118) 65 67

Percentile of actual model in simulated remapping of training set 99.8% 99.8%

RDA 1 eigenvalue 16.7% 20.0%

RDA 2 eigenvalue 6.4% 7.4%

Total variance explained by TP 6.8% 9.1%

Unique variance explained by TP 4.8% 6.0%

Downcore DI-TP versus PCA 1 r 0.98 0.68

doi:10.1371/journal.pone.0104705.t003
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assemblages (Figure 3). The long-term trend indicates a temporary

movement of the scores in the direction of the TP vector from

1922 through 1970, a period that reflects nutrient enrichment in

Lake Superior in association with the increased abundance of

Aulacoseira islandica (unpublished data; [49]). Subsequent to 1970

the sample scores revert to locations close to pre-Euro-American

samples, indicating TP reductions as the diatom assemblage

shifted to a greater dominance by Cyclotella (unpublished data).

There was a high correlation (r = 0.98; N = 26) between DI-TP

and the main gradient in the Lake Superior sedimentary diatom

data (Figure S2), indicating TP was a strong driver of Superior’s

assemblages. The fraction of variance explained by DI-TP,

represented as a fraction of the maximum explainable variance,

was also high (lR/lP = 0.97). These results suggest that phospho-

rus has been an important determinant of diatom assemblages in

Lake Superior, and that the TP transfer function was well-suited to

reconstructing the nutrient history of the lake.

General Discussion

We provide a suite of environmental coefficients for the

dominant phytoplankton taxa in the Laurentian Great Lakes.

We hope that these data increase understanding of taxon-specific

ecology, and expect these data will be used to develop inference

models such as the diatom-based model tested herein. We endorse

using these species coefficient tables (Table 2, Tables S1, S2, S3,

S4) as checklists for future indicator studies. For instance, Kelly

and Whitton [50] provided a checklist of trophic coefficients for

diatom specimens, calibrated to nutrient and organic pollution

variables, from rivers in the United Kingdom. Their coefficients

have been used repeatedly in ecological assessments intended to

manage river ecosystems [51]. Model-specific coefficients (linear,

Gaussian, WA) and their statistical significance may also be used

selectively in development of an indicator.

We recommend some cautions in using these data to infer

environmental conditions. The coefficients are taxon-environmen-

tal relationships based on simultaneous sampling of algae and

water quality. A phytoplankton assemblage may be a product of

water quality conditions prior to sampling. For instance, despite

the low silica optimum for Aulacoseira islandica, we know this

taxon requires high silica concentrations for cell wall development

[52], and so the Lake Erie spring diatom assemblages are

undoubtedly a product of high silica concentrations prior to

spring sampling. So, while high densities of A. islandica may infer

low dissolved silica, the taxon may not represent a prevailing

condition of low silica. We expect coefficients based on water

quality variables that were not limiting at the time of sampling

(e.g., spring nutrients [53]) are more reliable.

Figure 2. Effect of deleting sites on diatom-TP model performance. The effect on transfer function r2 of deleting sites at random (open
circles), from the geographical neighborhood of the test site (filled circles), and those that are environmentally similar (crosses) during cross-
validation of the Great Lakes diatom training set. The radius of each distance is labelled.
doi:10.1371/journal.pone.0104705.g002
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Figure 3. Redundancy analysis of the diatom training set constrained to significant water quality variables. Eigenvalues indicate
variance explained by each axis. Passive plotting of the Lake Superior sedimentary assemblages is indicated by the black line set in a thicker gray line.
The lower panel is a zoomed-in plot of the passive ordination of Lake Superior sedimentary diatom assemblages. The core top (2010) and bottom
(,1707) are indicated and the date of each interval (based on 210Pb dating) is provided for each interval.
doi:10.1371/journal.pone.0104705.g003
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The provided transfer function, a diatom-based total phospho-

rus model, shows promise for future applications in the Great

Lakes. Although internal testing of the model showed substantial

spatial and environmental autocorrelation among sample loca-

tions, which is to be expected in large lakes that are likely

homogeneous across vast areas, further testing indicates that

phosphorus is an important driver of diatom assemblages in the

Great Lakes, and that paleolimnological studies may benefit from

this indicator model.

Unlike the snapshot approach of phytoplankton sampling,

diatom assemblages retrieved from sediment cores reflect year-

round integration of valves. For our Lake Superior example we

confirm good analogues between fossil and training set assem-

blages, as well as a credible long-term TP reconstruction. Past

assemblages, which included relatively high abundances of A.
islandica during the mid-20th century, differ greatly from the

phytoplankton in Lake Superior today, so the TP reconstruction

relied on taxon coefficients that were largely derived from other

lakes that presently contain abundant A. islandica (e.g., Lake Erie).

It is unknown whether we may assume similar performance from

cores collected elsewhere in the Great Lakes system, so we

recommend thorough downcore validation of the model as we

have done here, and as others recommend [22], before making

conclusions about paleoecological nutrient trends. Also, the

reconstructed range of TP for Lake Superior was on the low

end of the range for the Great Lakes as a whole, so future testing

should consider whether reconstructions in more nutrient-rich

lakes are possible.

Lake Superior has encountered substantial diatom assemblage

reorganization in the last 200 years, and as speculated by others

[49] these changes were largely driven by anthropogenic nutrients

(i.e. the rise and fall of pollutant flux to the lake). A sedimentary

record containing similarly strong historical revisions in assem-

Figure 4. Histograms show percentage of variation in data
explained by four water quality gradients. Total height indicates
the total variation explained while gray height indicates the unique
fraction of variance captured by that variable.
doi:10.1371/journal.pone.0104705.g004

Figure 5. Dominant diatom species (.5% relative abundance) for the eastern core of Lake Superior. A plot of corresponding DI-TP for
the fossil assemblages is shown on the right. Black line indicates inferred TP and grey lines indicate the range of model error (RMSEP).
doi:10.1371/journal.pone.0104705.g005
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blages should have a strong assemblage-DI relationship as we

observed for TP in Lake Superior, otherwise an investigator must

explore other variables as the cause of historical shifts. However,

monotonous stratigraphic records of diatoms will have narrow

ecological breadth, and a probable narrow range of DI-TP. Such

cases may result in a weak correlation between assemblage

patterns and DI data, so other means would be necessary to

confirm the importance of TP to the sedimentary record.

In conclusion, the taxon-specific autecological information

provided herein may be used to inform future observations of

these species within the Great Lakes and elsewhere. More

importantly, Great Lakes phytoplankton assemblages can make

a contribution to indicator studies as suggested by Stoermer [10].

We present one of many indicator possibilities; the transfer

function presented here appears to be suitable for downcore

reconstructions. Using similar rule-based models with clear

validation protocols should lead to refined, defensible environ-

mental predictions and reconstructions.

Supporting Information

Figure S1 Performance of 1000 transfer functions with
simulated environmental variables based on re-map-
ping of the TP dataset. 998 simulated transfer functions had

poorer performance than the actual model r2 based on the

observed-inferred TP relationship, as indicated by the dotted line.

(TIF)

Figure S2 Relationship between Lake Superior down-
core DI-TP and PCA axis 1 for diatom data.
(TIF)

Table S1 Environmental indicator values for the com-
mon algae taxa (.5%) in the Great Lakes based on

distribution of cell densities across the environmental
gradients.

(XLSM)

Table S2 Environmental indicator values for the com-
mon algae taxa (.5%) in the Great Lakes based on
distribution of relative cell densities across the environ-
mental gradients.

(XLSM)

Table S3 Environmental indicator values for the com-
mon algae taxa (.5%) in the Great Lakes based on
biovolume distribution across the environmental gradi-
ents.

(XLSM)

Table S4 Environmental indicator values for the com-
mon algae taxa (.5%) in the Great Lakes based on
distribution of relative biovolume across the environ-
mental gradients.

(XLSM)
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Jyväsjärvi, Finland. J Paleolim 30:387–406.

16. Dixit SS, Smol JP (1994) Diatoms as indicators in the Environmental Monitoring

and Assessment Program–Surface Waters. Environ Monit Assess 31: 275–306.

17. Siver PA, Ricard R, Goodwin R, Giblin AE (2003) Estimating historical in–lake

alkalinity generation from sulfate reduction and its relationship to lake chemistry

as inferred from algal microfossils. J Paleolim 29: 179–197.

18. Smol JP (2002) Pollution of Lakes and Rivers: A Paleoenvironmental Perspec-

tive. London, UK: Arnold Publishers.

19. Charles DF (1990) A checklist for describing and documenting diatom and
chrysophyte calibration data sets and equations for inferring water chemistry.

J Paleolim 3: 175–178.

20. Last WM, Smol JP, Birks HJ, editors (2001) Tracking environmental change
using lake sediments, vol 3: Terrestrial, algal, and siliceous indicators. Springer.

21. Telford RJ, Birks HJB (2009) Evaluation of transfer functions in spatially
structured environments. Quat Sci Rev 28: 1309–1316.

22. Juggins S, Anderson NJ, Hobbs JMR, Heathcote AJ (2013) Reconstructing

epilimnetic total phosphorus using diatoms: statistical and ecological constraints.
J Paleolim 49: 373–390.
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