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Abstract

We recently reported that Acanthamoeba castellanii (ACA), an opportunistic pathogen of the central nervous system (CNS)
possesses mimicry epitopes for proteolipid protein (PLP) 139–151 and myelin basic protein 89–101, and that the epitopes
induce experimental autoimmune encephalomyelitis (EAE) in SJL mice reminiscent of the diseases induced with their
corresponding cognate peptides. We now demonstrate that mice infected with ACA also show the generation of cross-
reactive T cells, predominantly for PLP 139–151, as evaluated by T cell proliferation and IAs/dextramer staining. We verified
that PLP 139–151-sensitized lymphocytes generated in infected mice contained a high proportion of T helper 1 cytokine-
producing cells, and they can transfer disease to naı̈ve animals. Likewise, the animals first primed with suboptimal dose of
PLP 139–151 and later infected with ACA, developed EAE, suggesting that ACA infection can trigger CNS autoimmunity in
the presence of preexisting repertoire of autoreactive T cells. Taken together, the data provide novel insights into the
pathogenesis of Acanthamoeba infections, and the potential role of infectious agents with mimicry epitopes to self-antigens
in the pathogenesis of CNS diseases such as multiple sclerosis.
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Introduction

Multiple sclerosis (MS) is a chronic demyelinating inflammatory

disease in which mononuclear cells (MNC) infiltrate the central

nervous system (CNS) leading to the loss of oligodendrocytes and

axonal degeneration [1]. There are no known etiological agents

identified as triggers of MS nor is there permanent cure. It is

widely believed that MS pathogenesis involves generation of

autoimmune responses to myelin antigens requiring the mediation

of T cells and B cells, but the underlying mechanisms are not well-

understood [1,2]. Two factors have been implicated in the

predisposition to MS: a) genetic susceptibility and b) environmen-

tal microbes. The latter proposal has been supported by the

observations that exacerbations of MS attacks or temporal

alterations in the disease course occur after viral or bacterial

infections, such as, with Epstein Barr virus, Human Herpes virus-6

and Clostridium perfringens type B. These associations have been

made based on detection of microbial genomic material, and

antibodies in the brains or CSF of MS patients [3–6]. In addition,

peripheral blood MNC from MS patient subjects can also react to

viral- and myelin basic protein (MBP)-specific peptide fragments

[7,8], but the direct causal links between these virus infections and

predisposition to MS have not been proved clinically in a large

number of cases [9–12]. A theme that has also being emerged

suggests that MS trigger may involve exposure to multiple

microbes [1], and their disease-mediation may involve more than

one mechanism, such as bystander activation, release of cryptic

epitopes, molecular mimicry and epitope spreading [13–15].

In our efforts to identify the disease-inducing microbial mimics

for CNS myelin antigens, we recently identified two novel epitopes

from Acanthamoeba castellanii (ACA) [16–18]. These are derived

respectively from rhodanese-related sulfur transferase (RST), and

nicotinamide adenine dinucleotide dehydrogenase subunit 2

(NAD) of Acanthamoeba. The corresponding mimics, designated

ACA 83–95 and NAD 108–120, bear identical residues, respec-

tively, for proteolipid protein (PLP) 139–151 and MBP 89–101.

We showed that ACA 83–95 and NAD 108–120 induce

experimental autoimmune encephalomyelitis (EAE) reminiscent

of the diseases induced respectively with their cognate peptides

through the generation of cross-reactive T cells [16–18]. We
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report here that SJL mice infected with trophozoites of ACA show

the generation of myelin-reactive T cells. Furthermore, lympho-

cytes obtained from ACA-infected mice contained high frequen-

cies of T helper (Th) 1 cytokine-producing cells that have the

ability to transfer disease to naı̈ve recipients.

Materials and Methods

Ethics Statement
Three-to-four-week-old female SJL/J (H-2s) mice were obtained

from the Jackson Laboratory (Bar Harbor, ME). The mice were

maintained in accordance with the animal protocol guidelines of

the University of Nebraska-Lincoln, Lincoln, NE. The study was

conducted in accordance with National Institutes of Health

guidelines for the use of experimental animals, and the protocols

were specifically approved by the University of Nebraska-Lincoln

Institutional Animal Care and Use Committee (permit number:

A3459-01; protocol # 454 and 659).

Propagation of ACA, Infection Procedure, and Clinical
Assessment

Human brain-isolate of ACA (strain 50494; ATCC, Manassas,

VA) was grown in peptone-yeast extract-glucose medium (PYG

medium, ATCC) in 75 cm2 flask at 25uC for four days. After

replacing the medium, the trophozoites were grown for three

additional days, and the adhered trophozoites were then harvested

by gentle tapping and pipetting and subcultured for two days.

Trophozoites were collected as above, and after washing twice, the

pellet was resuspended in 16Page’s saline that was warmed to

room temperature (RT), and viability was confirmed [19]. For

infection studies, mice were anesthetized using isoflurane and the

indicated number of trophozoites was administered in 20 ml

volume by instilling 10 ml into each nostril [20–22]. The animals

that received only Page’s saline served as controls.

Histopathology
Animals were euthanized on indicated days, and brain and

spinal cords were collected in 10% phosphate buffered formalin

for histology [17,23]. After fixation, brain and spinal cord sections

were processed routinely for paraffin embedment and sections

stained with hematoxylin and eosin (H and E). The slides were

evaluated by a neuropathologist who was blinded to treatment.

The sections were scored for lesion type, and severity, and counts

of inflammatory foci were determined in parenchyma and

leptomeninges [17]. Total scores were obtained by adding counts

of inflammatory foci in both meninges and parenchyma.

Inflammation was primarily classified as lymphocytic, suppurative,

or mixed [17]. All histological evaluations were performed by

board-certified pathologists.

Immunophenotyping
Two groups of mice were infected with ACA (16103), and the

animals showing neurological signs were sacrificed to harvest

brains and spinal cords. The tissues were processed to obtain

MNC by percoll density-gradient separation [24], and the cells

were stained with cocktails of antibodies for various immune cell

markers, specifically, T cells (CD3, CD4 and CD8) and non-T

cells (B220, CD11b, CD11c, GR1 and CD49b) (all antibodies

from eBioscience, San Diego, CA), and 7-aminoactinomycin-D (7-

AAD; Invitrogen, Carlsbad, CA). After acquiring by flow

cytometry (FC) (FACSCalibur, BD Biosciences, San Diego, CA),

percentages of cells positive for each marker were determined in

the live (7-AAD2) population using Flow Jo software (Tree Star,

Ashland, OR).

Peptides
Myelin and mimicry peptide pairs (PLP 139–151,

HSLGKWLGHPDKF; ACA 83–95, YFLLKWLGHPNVS:

53.18% similarity; and MBP 89–101, VHFFKNIVTPRTP;

NAD 108–120, VVFFKNIILIGFL: 46.15% similarity; identical

residues are underlined between peptide pairs); and Theiler’s

murine encephalomyelitis virus (TMEV) 70–86 (WTTSQEAF-

SHIRIPLP) were synthesized on 9-fluorenylmethyloxycarbonyl

chemistry (Neopeptide, Cambridge, MA). All peptides were

HPLC-purified (.90%), identity was confirmed by mass spectros-

copy, and the peptides were dissolved in 16PBS as described

previously [16–18].

Proliferation Assay
Seven groups of mice were infected with ACA (56103), and T

cell proliferative responses were measured using cells obtained

from a pool of spleens and the draining lymph nodes (LN: cervical,

mandibular axillary, and inguinal), hereafter designated ‘lympho-

cytes’, from ACA-infected animals. Where indicated, CD4 or CD8

T cells were purified from lymphocytes harvested from infected

mice using CD4 or CD8 T lymphocyte enrichment kits (BD

Biosciences, San Jose, CA). Cells were stimulated with PLP 139–

151, ACA 83–95, MBP 89–101, NAD 108–120 or TMEV 70–86

(control) at a cell density of 56106 cells/ml for two days in growth

medium containing 16RPMI medium supplemented with 10%

fetal calf serum, 1 mM sodium pyruvate, 4 mM L-glutamine,

16each of non-essential amino acids and vitamin mixture, and

100 U/ml penicillin-streptomycin (Lonza, Walkersville, MD). In

experiments involving CD4 T cells or CD8 T cells, splenocytes

harvested from naı̈ve SJL mice were irradiated (3000 rads; Rad

Source, Suwanee, GA); loaded with peptides, and used as antigen

presenting cells (APCs). After pulsing with tritiated 3[H] thymidine

(1 mCi/well; MP Biomedicals, Santa Ana, CA) for 16 hours,

proliferative responses were measured as counts per minute (cpm)

using the Wallac liquid scintillation counter (Perkin Elmer,

Waltham, MA). In some experiments, infected mice were injected

with lipopolysaccharide (LPS) on day 20 and day 31 postinfection

(25, 10 mg/mouse respectively) and the animals were euthanized

on day 64 postinfection to purify CD4 T cells for proliferation

assay.

Creation of IAs/Dextramers, and Enumeration of the
Frequencies of Antigen-specific T cells by Flow
Cytometry

To determine the frequency of antigen-specific T cells, IAs/PLP

139–151, ACA 83–95 and TMEV 70–86 dextramers were created

as described [17]. Briefly, the soluble IAs monomers expressed in

baculovirus were biotinylated using biotin protein ligase at a

concentration of 25 mg/10 nmol of substrate (Avidity, Denver,

CO). To prepare dextramers, biotinylated IAs monomers were

coupled to activated dextran backbones (kindly provided by

Immudex, Copenhagen, Denmark) at 1:20 molar ratio in 16Tris

Hcl 0.05 M, pH 7.2 for 30 minutes at RT as described previously

[24]. Lymphocytes obtained from nine groups of ACA-infected

(16103) mice were stimulated with PLP 139–151 or ACA 83–95

(50 mg/ml) for two days. Viable cells harvested on day 8 were

incubated with allophycocyanin-conjugated IAs dextramers at RT

for two hours [24]. After washing twice, cells were stained with

anti-CD4 and 7-AAD and acquired by FC. The frequency of

dextramer-positive cells was then enumerated in live (7-AAD2)

CD4+ population.

Acanthamoeba castellanii-Induced CNS Autoimmunity
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Intracellular Cytokine Analysis
We determined the frequencies of Th1 (interferon [IFN]- c),

Th2 (interleukin [IL]-4, and IL-10), and Th17 (IL-17A, IL-17F,

and IL-22) cytokine-producing cells based on intracellular staining

by FC [17,25]. Briefly, lymphocytes harvested from five groups of

ACA-infected (16103) animals were stimulated with peptides

(20 mg/ml) for two days, and the cultures were maintained in IL-2

medium. Viable cells harvested on day 5 or lymphocytes obtained

from naı̈ve mice, were stimulated for five hours with phorbol 12-

myristate 13-acetate (PMA) (20 ng/ml) and ionomycin (300 ng/

ml) (Sigma-Aldrich, St. Louis, MO) in the presence of monensin

2 mM (Golgi stop, BD Pharmingen, San Diego, CA). After

staining with anti-CD4 and 7-AAD, cells were fixed, permeabi-

lized and stained with cytokine antibodies or isotype controls

(eBioscience). The frequency of cytokine-secreting cells was then

determined in the live (7-AAD2) CD4+ subset by FC [17].

Adoptive Transfer Experiments
Three groups of mice were infected with ACA (16103) and after

15 days, the animals were sacrificed and cell suspensions were

prepared from lymphoid tissues as above. We used two protocols

to generate primary T cell cultures: (i) cells were stimulated with

concanavalin-A (con-A, 1 mg/ml) for two days. After 48 hours,

viable cells harvested by ficoll density-gradient centrifugation

(1006106/mouse) were administered i.p. into groups of naı̈ve SJL

mice; and (ii) cells were stimulated with PLP 139–151 (20 mg/ml)

for two days, and the cells were maintained in growth medium

containing IL-2 for three more days. On day 5 poststimulation,

viable cells (506106/mouse) were administered i.p. into groups of

naı̈ve SJL mice. Pertussis toxin (PT; 100 ng; List Biological

laboratories, Campbell, CA) was administered i.p. on days 0 and 2

posttransfer, and the animals were monitored for clinical disease.

At termination, animals were euthanized, and CNS tissues were

collected for histology [16–18].

Induction of EAE by ACA Infection in Animals Primed
with PLP 139–151

Three groups of SJL mice were primed with suboptimal doses of

PLP 139–151 (2.5 or 10 mg/mouse) in complete Freund’s adjuvant

(CFA). Seven days later, one group of mice from each group were

infected with ACA (16103 trophozoites) by intranasal adminis-

tration as described above, while the other, uninfected group,

served as control. We also used two other control groups namely,

saline (16 Page’s saline)- and CFA-recipients (uninfected and

infected). The animals were monitored for clinical signs of EAE or

encephalitis and scored until day 60, and at termination, brains

and spinal cords were collected for histology. The scoring scale

used to evaluate clinical signs of EAE was as described previously

[17,26]: 0 - healthy; 1 - limp tail or hind limb weakness but not

both; 2 - limp tail and hind limb weakness; 3 - partial paralysis of

hind limbs; 4 - complete paralysis of hind limbs; and 5 - moribund

or dead.

Detection of ACA Genomic DNA by PCR
Total DNA was extracted from the brains of mice that received

Con-A- or PLP 139–151-stimulated cells, and the DNA was

subjected for PCR analysis using ACA-specific primers (forward,

59-GGCCCAGATCGTTTACCGTGAA-39); reverse, 59-

TCTCACAAGCTGCTAG GGAGTCA-39) to yield an

,500 bp amplicon of the small subunit of 18S rDNA as previously

described [27,28]. The PCR products were resolved in 1%

ethidium bromide-stained agarose gel electrophoresis.

Statistics
Wilcoxon rank sum test was used to compare differences in the

severity of clinical and histological EAE in animals infected with or

without PLP 139–151 priming. Differences in T cell proliferation

and frequencies of cytokine-producing cells were analyzed by

student’s t. p#0.05 values were considered significant.

Results

Establishment of ACA-induced CNS Disease in SJL Mice
To delineate autoimmune events in ACA infection, we used

human-isolate of Acanthamoeba, which has been previously shown to

induce granulomatous encephalitis in mice [20,22]. In a dose-

response study, we noted that high doses (16105 and above)

resulted in more than 66% mortalities within 10 days postinfec-

tion, while the animals that received low doses (16104 and below)

tolerated well and the mortalities were low (4/28, 14.3% with

16103; 2/12, 16.6% with 16104). Nonetheless, regardless of dose,

most of the infected animals showed general weakness, loss of body

weight, and respiratory distress during the initial acute attack

within approximately seven days postinfection, followed by

neurological signs. These include, circling, trunk ataxia or paresis

of the hind limbs with or without hyperactivity, dog-sitting posture

with laterally extended hind limbs, twirling of neck (head-tilt), and

loss of balance. Some of these signs such as, circling, ataxia,

paresis, and twirling of neck have also been described in EAE mice

[29].

We next evaluated CNS tissues for inflammatory changes. As

shown in figure 1A, both meninges and parenchyma in the brains

of majority of infected animals (60%) contained wide-spread

perivascular lymphocytic cuffs. The animals affected with acute

disease showed lesions mainly in the olfactory/frontal lobes; the

infiltrates consisted of macrophages and lymphocytes, suggestive of

granulomatous inflammation (Figure 1A). In contrast, only a few

mice (10.7%) showed inflammation in the spinal cords. Likewise,

staining with luxol fast blue did not reveal changes indicative of

demyelination, although occasional myelin-disruption was evident

(data not shown). Since most of the animals (more than 80%) that

received a dose of up to 16104 survived the acute phase and

showed histological evidence of inflammation, we chose the dose

to be less than 16104 to determine autoreactive T cell responses

during the course of ACA infection.

We then characterized the inflammatory cells using MNCs

purified from the brains and spinal cords of ACA-infected mice. As

shown in figure 1B, the infiltrates were comprised of both T cells

and non-T cells, with T cells accounting for ,51%, whereas non-

T cells were represented by macrophages, dendritic cells,

neutrophils, B cells and natural killer (NK) cells. Notably, the

proportion of both CD4 and CD8 T cells were similar (26% vs.

25.6% respectively) suggesting that they may have a role in

disease-mediation.

SJL Mice Infected with ACA show the Generation of
Myelin-reactive CD4+ T cells

Based on our previous data with ACA 83–95- and NAD 108–

120-induced EAE, we hypothesized that ACA infection leads to

the generation of cross-reactive cells for PLP 139–151 and MBP

89–101. To test this hypothesis, groups of mice were infected with

ACA, and on day 30 postinfection, splenocytes were used to

measure proliferative responses to myelin and ACA antigens. The

respective peptide pairs were: PLP 139–151 vs. ACA 83–95 and

MBP 89–101 vs. NAD 108–120. Expectedly, cells from ACA-

infected mice responded in a dose dependent manner to both the

amoebic peptides, ACA 83–95 (Figure 2, top left panel) and NAD

Acanthamoeba castellanii-Induced CNS Autoimmunity
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108–120 (Figure 2, top right panel) with a difference of , two-fold

higher than that was observed with the control peptide (TMEV

70–86). Similarly, cells also responded to the myelin peptide, PLP

139–151 (Figure 2, top left panel) with a 1.6-fold difference, but

such a response was lacking for MBP 89–101 (Figure 2, top right

panel). These findings suggest that RST and NAD, the respective

protein sources for ACA 83–95 and NAD 108–120 are naturally

processed, and the peptides are presented to the immune system.

Of note, aged SJL mice have a tendency to carry PLP-reactive T

cells in their naı̈ve periphery [30]. Our studies involved young

mice of 3 to 4 weeks old, in which, we did not observe the presence

of endogenously-derived PLP-reactive T cells (figure S1). Thus,

our data suggest that ACA infection has led to the appearance of

PLP-reactive T cells.

Further, we verified whether the reactivity to myelin antigens

lies in CD4 or CD8 T cell compartment, since the CNS tissues

from ACA-infected mice had similar proportions of CD4 and CD8

T cells (Figure 1B), and infiltrations were predominantly seen in

the brains, and not in the spinal cords similar to those reported in

MBP-specific CD8 T cell-mediated EAE in C3HeB/FeJ mice

[31,32]. To verify this, CD4 or CD8 T cells were purified from

ACA-infected mice, and their proliferative responses to myelin and

amoebic antigens were tested as above. We noted that the antigen-

reactivity was confined only to CD4 T cells (Figure 2, middle

panels) but not CD8 T cells (Figure 2, bottom panels), although, in

some experiments, low-grade responses were noted for MBP 89–

101, but the results were not consistent (data not shown).

Expectedly, CD4 T cells reacted to the amoebic peptides, ACA

83–95 (four-fold; Figure 2, middle left panel) and NAD 108–120

(three-fold; Figure 2, middle right panel), and a proportion of

ACA-sensitized CD4 T cells also responded to PLP 139–151 (2.5-

fold; Figure 2, middle left panel), but the response to MBP 89–101

was absent (Figure 2, middle right panel) leading us to determine

their antigen-specificity.

Figure 1. Evaluation of CNS inflammation in mice infected with ACA. (A) Histological evaluation. SJL mice were infected intranasally with
ACA trophozoites (16103) under isoflurane anesthesia. Brains and spinal cords were harvested upon termination of the experiment, and the tissues
were processed for CNS inflammation by H and E staining. Brain: Perivascular cuffing of lymphocytes (arrows) and granuloma-like lesions
(arrowheads) composed of macrophages and lymphocytes. Spinal cord: Perivascular cuffing of lymphocytes in the leptomeninges (arrows). Original
magnification,6400 (bar = 20 mm). (B) Immunophenotyping. Groups of mice were infected with ACA as above, and animals showing neurological
signs were killed on day 10 to harvest brains and spinal cords. The tissues were processed to obtain MNC by Percoll density-gradient separation, and
the cells were stained with cocktails of antibodies for the indicated immune cell markers and 7-AAD. After acquiring the cells by flow cytometry (FC),
percentages of various cell types were determined in the live (7-AAD2) cell population. Mean 6 SEM values from two individual experiments
involving two to three mice in each are shown.
doi:10.1371/journal.pone.0098506.g001
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Cross-reactive T cell Responses Induced with ACA are
Antigen-specific

To determine the antigen-specificity of cells that react with

ACA and myelin antigens, we created major histocompatibility

complex class II/IAs dextramers for ACA 83–95 and PLP 139–

151 as described previously [24]. Lymphocytes were harvested

from ACA-infected animals, and the cells were stimulated with

ACA 83–95 or PLP 139–151, in which, frequencies of antigen-

specific cells were enumerated by FC. As depicted in figure 3, we

noted that the mean frequency of ACA-specific cells in ACA 83–

95-sensitized cultures was found to be 0.2860.06% as opposed to

0.4660.03% for PLP 139–151. Conversely, when the cells were

stimulated with PLP 139–151, the mean frequencies of PLP-

specific cells were estimated to be higher (0.7860.09%) than that

of ACA 83–95 (0.2060.03%). The dextramer staining was

specific, since the binding with control (TMEV 70–86) dextramers

was negligible. The data suggest that ACA infection leads to the

generation of T cells that cross-react with both amoebic and

myelin antigens.

Myelin-reactive T cells Generated in ACA-infected Mice
Contain High Frequencies of Th1 Cytokine-producing
Cells

We used cytokines as readouts to evaluate the pathogenic

potential of PLP 139–151-reactive T cells generated in ACA-

infected mice. We assessed the frequencies of cytokine-producing

CD4 T cells by intracellular staining [16–18]. These analyses

included a panel of cytokines for Th1 (IFN-c), Th2 (IL-4 and IL-

10), and Th17 (IL-17A, IL-17F, and IL-22) cells. In both PLP

139–151- and ACA 83–95-sensitized cultures, cells capable of

producing all the cytokines tested were present (Figure 4), but their

frequencies differed in the order of Th1 (IFN-c).Th2 (IL-4+ IL-

10) or Th17 (IL-17A+IL-17F+IL-22) cells (Figure 4; see inset). By

deriving the ratios between the three Th cell subsets (Th1/Th2

and Th1/Th17), it was evident that the frequencies of IFN-c-

producing cells were higher by three-to-four-fold than Th2- or

Th17-cytokine-producing cells (p,0.02). The cytokine responses

are attributable to antigen-stimulations because lymphocytes

obtained from naive SJL mice contained a negligible proportion

of cytokine-producing cells (IFN-c: 0.2%, Figure 4). The data

suggest that ACA infection results in the generation of predom-

inantly Th1-, but to a lesser extent, Th17 cytokine-producing cells,

which are generally implicated in the development of organ-

specific autoimmunity.

Myelin Antigen-reactive Lymphocytes Generated in ACA-
infected Mice Induce CNS Autoimmunity in Naı̈ve
Recipients

Based on the finding that antigen-sensitized lymphocytes

generated in ACA-infected animals contained cells capable of

producing Th1 and Th17 cytokines, we hypothesized that they

Figure 2. ACA infection leads to the generation of PLP 139–151-reactive T cells. Top panels: Groups of SJL mice were infected intranasally
with ACA trophozoites (56103) and after 30 days, the mice were killed and spleens were harvested to prepare single cell suspensions. Cells were
stimulated with PLP 139–151 or ACA 83–95 (top left panel), MBP 89–101 or NAD 108–120 (top right panel) for two days followed by pulsing with 3[H]
thymidine, the incorporation of which was measured as cpm 16 hours later. TMEV 70–86, control. Mean 6 SEM values from three individual
experiments involving one mouse in each are shown. Middle and bottom panels: Lymphocytes were obtained from infected animals on day 10 post-
infection and CD4 or CD8 T cells were then purified. Cells were stimulated with PLP 139–151 or ACA 83–95 (middle- and bottom left panels), MBP 89–
101 or NAD 108–120 (middle- and bottom right panels) in the presence of irradiated APCs, and proliferative responses were measured as above.
TMEV 70–86, control. Mean 6 SEM values from one of the four individual experiments involving a group of five mice in each are shown.
doi:10.1371/journal.pone.0098506.g002
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Figure 3. Cross-reactive T cell responses induced by ACA infection are antigen-specific. SJL mice were infected with ACA (16103) and
after 21 days, the animals were killed; lymphocytes were prepared. Cells were stimulated with PLP 139–151 or ACA 83–95 for two days and the
cultures were maintained in IL-2 medium. Cells were harvested on day 8 poststimulation with peptides, and stained with IAs/dextramers followed by
anti-CD4 and 7-AAD. After acquiring the cells by FC, frequencies of dextramer-positive cells were determined in the live (7-AAD2) CD4 subset. Mean
6 SEM values obtained from nine independent experiments involving three to five mice in each are shown.
doi:10.1371/journal.pone.0098506.g003

Figure 4. Antigen-sensitized lymphocytes from ACA-infected mice contain predominantly Th1 cytokine-producing cells. Groups of
SJL mice were infected with ACA (16103). After 21 days, mice were killed, and lymphocytes were prepared. Cells were stimulated with PLP 139–151 or
ACA 83–95 for two days and the cultures were maintained in IL-2 medium. Cells harvested on day 5 from the above cultures or those obtained from
naı̈ve mice were stimulated with PMA (20 ng/ml) and ionomycin (300 ng/ml) for ,5 hours in the presence of 2 mM monensin followed by staining
with anti-CD4 and 7-AAD. After fixation and permeabilization, cells were stained with cytokine antibodies and acquired by FC. Frequencies of
cytokine-producing cells were then analyzed in the live (7-AAD2) CD4 subset. Inset: The combined frequencies of Th1 (IFN-c), Th2 (IL-4+ IL-10) and
Th17 (IL-17A+IL-17F+IL-22) cytokine-producing cells were calculated and compared between groups. Mean 6 SEM values obtained from five
independent experiments involving two mice in each are shown.
doi:10.1371/journal.pone.0098506.g004
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can transfer disease into naı̈ve recipients. To test this hypothesis,

we isolated lymphocytes from ACA-infected mice and after

expanding with con-A, cells were transferred into naı̈ve SJL mice.

Clinically, the recipients did not show clinical signs of EAE, but

histologically, both brains and spinal cords showed inflammatory

infiltrates. Although, immunophenotyping was not performed,

inflammatory cells were deemed to be primarily lymphocytes and

macrophages based upon morphology (Figure 5A, Table 1).

Similar results were also noted in mice that received PLP 139–151-

stimulated lymphocytes (Figure 5B, Table 1). These inflammatory

changes were not due to the presence of ACA, if any, in the

transfused cells, as the CNS tissues did not reveal the presence of

ACA genomic DNA as evaluated by PCR analysis [27,28] (figure

S2). We thus, demonstrated that the myelin-reactive T cells

generated in ACA-infected mice share the functional features of

encephalitogenic T cells, and contribute to CNS disease.

ACA Infection can Alter Susceptibility to CNS
Autoimmunity in Animals Primed with Suboptimal Doses
of PLP 139–151

To determine whether exposure to ACA can alter susceptibility

to CNS autoimmunity in the presence of preexisting repertoire of

autoreactive T cells, we immunized groups of mice with

suboptimal doses of PLP 139–151 (2.5 or 10 mg/mouse) and the

animals were monitored for EAE-signs after infecting them with

ACA (16103/mouse). Figure 6 shows that animals that were

primed with PLP 139–151, and later infected with ACA,

developed clinical EAE with a greater severity as compared to

the animals primed with PLP 139–151 alone, and the differences

were clear in animals that received 10 mg peptide/CFA emulsion.

We noted that the animals that received peptide/CFA emulsions

alone did not develop EAE even up to day 16 postimmunization

compared to those exposed to ACA (7.6%; 1/13 vs. 38.4%; 5/13)

(Figure 6, lower panel). The daily median EAE scores for the

group that received peptide/CFA alone remained less throughout

the course of the study compared to the mice that were primed

and infected with ACA (p = 0.037). The animals in control groups

(saline or CFA) that were infected with or without ACA did not

show EAE-signs (data not shown). Consistent with the clinical

EAE, brains and spinal cords also showed a tendency for

inflammatory foci to be increased in primed and infected mice

compared to the mice that received peptide emulsions alone

(Table 2). The data suggest that exposure to ACA can potentiate

susceptibility to CNS autoimmunity in the presence of preexisting

repertoire of autoreactive T cells.

Administration of LPS into ACA-infected Mice Leads to
the Generation of MBP 89–101-Reactive T cells

Microbial products such as LPS, bacterial DNA and unmethy-

lated CpG’s have been shown to trigger autoimmunity by inducing

the generation of effector Th1 cells under certain conditions [33].

We asked whether LPS-administration into animals that were

recovered from ACA infection can promote the induction of EAE.

ACA-infected mice were injected with LPS on day 21 and day 30

postinfection, and the animals were monitored for clinical signs of

EAE. Contrary to our expectations, LPS-treatment did not lead to

EAE during the observation period of ,30 days. To verify

whether this lack of disease induction is due to the absence of

myelin-reactive T cells, we purified CD4 T cells from LPS-treated

animals, and evaluated their responses to amoebic and myelin

antigens using two peptide pairs (ACA 83–95/PLP 139–151 and

NAD 108–120/MBP 89–101). We observed dose-dependent

responses to both ACA 83–95 and PLP 139–151 as expected

(Figure 7: left panel). Importantly, we also noted reactivity to MBP

89–101 in conjunction with the appearance of NAD 108–120-

reactive T cells (Figure 7, right panel). Such reactivity to MBP 89–

101 was absent in the infected animals that did not receive LPS

(figure S3). Thus, our data support the notion that exposure to

microbial infections irrelevant to CNS can lead to nonspecific

activation of autoreactive T cells through the mechanism of

bystander activation.

Discussion

In this study, we provide four lines of evidence to demonstrate

that ACA infection can predispose to CNS autoimmunity in SJL

mice: a) mice infected with ACA show clinical and histological

evidence of CNS inflammation by generating cross-reactive T cells

for PLP139–151, b) ACA-sensitized lymphocytes have the ability

to produce Th1 cytokines but to a low degree, Th17 cytokines that

are known to be critical for induction of organ-specific autoim-

mune diseases [34], c) antigen-sensitized lymphocytes harvested

from infected mice can transfer disease to naı̈ve recipients, and d)

ACA infection can alter susceptibility to EAE in animals primed

with suboptimal doses of PLP 139–151.

EAE models generally have a limitation in that the disease is

induced artificially with peptide-CFA emulsions. Hence, the

immune events do not necessarily reflect those that can occur

under natural conditions within the CNS. It has been proposed

that exposure to environmental microbes can break self-tolerance

leading to the recognition of myelin antigens as foreign. To test

this hypothesis, it is critical to develop models that faithfully

replicate the events of an infectious agent that primarily infects

CNS, leading to the generation of autoimmunity secondarily, as

might occur in ACA infection.

Acanthamoeba are free-living amoebae that are ubiquitous in the

environment. Most healthy individuals carry Acanthamoeba-reactive

antibodies, suggesting constant exposure to amoebae [21,35,36].

In spite of the high prevalence of the amoebae, the incidence of

diseases caused by Acanthamoeba is very low. Non-opportunistically,

Acanthamoebae can induce keratitis in healthy humans, but as an

opportunistic pathogen, the amoebae can cause fatal encephalitis,

especially, in immunocompromised individuals and treatments are

Table 1. Histologic evaluation of EAE in mice that received lymphocytes from ACA-infected mice.

No. of inflammatory foci{

Treatment Incidence{ (%) Meninges Parenchyma Total

Con-A 6/6 (100) 6.762.9 2.861.5 9.564.0

PLP 139–151 2/3 (66) 5.062.0 2.062.0 7.064.0

{represents mice that showed histological disease.
doi:10.1371/journal.pone.0098506.t001
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often ineffective [21,36–39]. We had recently reported that ACA

contains mimicry epitopes for PLP 139–151 and MBP 89–101,

and they induce EAE by generating corresponding cross-reactive

T cells in SJL mice [16–18,36]. These data prompted us to

establish ACA infection in SJL mice to study the autoimmune

events of Acanthamoeba infections.

Histological evaluation of CNS tissues obtained from ACA-

infected mice revealed that brains but not spinal cords were

consistently affected, and the inflammatory foci predominantly

contained macrophages and lymphocytes. ACA is known to

induce granulomatous encephalitis accompanied with hemorrhag-

ic necrosis, but most studies used ‘death’ as the end-point to

Figure 5. Lymphocytes from ACA-infected mice induce CNS inflammation in naı̈ve mice. (A) Con-A-stimulated cells. Groups of SJL
mice were infected with ACA (16103) and the animals were killed 15 days postinfection, and lymphocytes were prepared. Cells were stimulated with
Con-A (1 mg/ml) for two days; viable cells were harvested and 1006106 cells were injected i.p. into naı̈ve mice. Brains and spinal cords were harvested
on day 30 posttransfer, and the tissues were processed for CNS inflammation by H and E staining. Arrows indicate perivascular cuffing. Original
magnification, 6400 (bar = 20 mm). (B) PLP 139–151-stimulated cells. Lymphocytes harvested as above were stimulated with PLP 139–151
(20 mg/ml) for two days and the cultures were maintained in IL-2 medium. Viable cells were harvested on day 5 poststimulation and 506106 cells
were injected i.p. into naı̈ve mice. Brains and spinal cords were harvested on day 45 posttransfer and processed for evaluation of CNS inflammation
by H and E staining. Arrows indicate perivascular cuffing. Original magnification, 6400 (bar = 20 mm).
doi:10.1371/journal.pone.0098506.g005

Table 2. Histological evaluation of CNS tissues obtained at termination from ACA-infected mice primed with or without PLP 139–
151.

Treatment groups No. of inflammatory foci{

PLP 139–151 priming (mg) Infection Incidence (%) Meninges Parenchyma Total

2.5 2 4/5 (80) 16.562.9 3.861.3 20.364.1

2.5 + 4/4 (100) 21.364.1 11.865.8 33.069.6

10 2 8/8 (100) 62.3629.7 71.1630.3 133.5650.8

10 + 7/8 (87.5) 85.0627.6 92.4634.9 176.0649.6

{represents mice that showed histological disease.
doi:10.1371/journal.pone.0098506.t002
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determine the pathogenicity [22,40–43]. The dose used in our

studies (16103) is ,1000-fold less than that in other studies

[22,43]; and this amount of amoebae also led to fewer deaths but

with no necrotic changes in the CNS. This suggests that the

severity of the CNS pathology is directly proportional to the dose

used to infect the mice. This notion is consistent with the finding

that trophozoites were detected in less than 15% (4/28) of mice

infected with 16103 ACA.

In EAE, there is a linear relationship between disease severity

and permeability of the blood brain barrier (BBB), such that loss of

BBB-integrity allows circulating immune cells and also soluble

factors into CNS, and vice versa, for CNS products [44,45].

Acanthamoeba can enter CNS by migrating through the olfactory

neuroepithelium and/or blood [36]. Regardless of route however,

the amoebae have to cross BBB paracellularly or transcellularly,

where BBB-disruption is believed to be mediated by contact-

dependent (via attachment) and contact-independent (via prote-

ases) mechanisms [21,36,46–48]. Since, the inflammatory foci

were commonly noted in the brains (especially, olfactory/frontal

lobes), the tissue destruction most likely resulted from the damage

directly caused by ACA.

On the contrary, the presence of inflammatory changes in the

brains of infected mice, but in the absence of ACA trophozoites in

most of them (24/28:85.7%), indicates that the pathogenesis may

involve the mediation of cellular events. Based on our previous

data with ACA 83–95- and NAD 108–120 in EAE studies [16–

18,36], we reasoned that autoreactive T cells generated in

response to ACA infection can contribute to CNS pathology in

infected animals.

First, we verified that lymphocytes from infected animals

reacted to both ACA 83–95 and NAD 108–120, suggesting that

amoebic peptides are naturally processed and presented to the

immune system. However, we noted that PLP-reactive- but not

MBP-reactive T cells to be detected in the infected mice.

Nonetheless, when MBP-reactive T cells were verified at various

time points, day 5, 10, 15, 21, 30, and 82 postinfection, we noted

low magnitude of responses to MBP 89–101, but the responses

were not consistent. However, LPS-treatment of animals that

recovered from ACA infection led to the appearance of MBP 89–

101-reactive T cells but not EAE. We did not investigate whether

this lack of disease is due to the inability of MBP-reactive T cells to

infiltrate into the brains as intact BBB might have prevented their

migration into the CNS. Reports indicate dual role for LPS in

EAE pathogenesis in that the disease-severity could be suppressed

or augmented depending on the stage of disease. For example,

administration of LPS prior to EAE-induction led to the

amelioration of EAE [49,50]. Conversely, PLP 139–151-specific

T cell receptor transgenic EAE-resistant B10.S mice, developed

EAE spontaneously with LPS-treatment [51]. The disease-

inducing abilities of LPS have been ascribed to its effects on

APCs to upregulate costimulatory molecules, and secretion of

soluble factors like IL-12, independent of T cell receptor-

stimulation [33,52].

We next determined whether myelin-reactive T cells that

appear in ACA-infected animals are pathogenic, based on

cytokine analysis and adoptive transfer experiments. We noted

that lymphocytes from ACA-infected mice that are sensitized with

PLP 139–151 were comprised of predominantly Th1- and to a

lesser degree, Th17- and Th2 cytokine-producing cells. Although

antigen-sensitized lymphocytes harvested from infected mice

induced CNS inflammation in naı̈ve recipients, clinical EAE was

absent. Accumulated literature suggests that, while, both Th1 and

Th17 cytokines can mediate CNS autoimmunity, Th17 cytokines

appear to be indispensable, since IL-17- but not IFN- c-deficient

mice resist development of EAE [53,54]. Additionally, sequential

entry of Th cells may determine the outcome of EAE in that, Th1

cells migrate into the CNS prior to Th17 cells, which, then

promote chemotaxis, inflammation and demyelination [55,56].

Thus, the lack of typical EAE signs in animals that received

antigen-stimulated cells may be due to insufficient production of

Th17 cytokines. However, the observation that, ACA infection led

Figure 6. ACA infection alters susceptibility to EAE in mice
primed with suboptimal doses of PLP 139–151. Groups of SJL
mice were immunized with or without PLP 139–151 (2.5 or 10 mg/
mouse) in CFA. On day 7 post-immunization, the animals were infected
with ACA (16103) and the animals were monitored for clinical signs of
EAE and scored. Data represent mean EAE scores for a group of mice
pooled from two to three individual experiments.
doi:10.1371/journal.pone.0098506.g006

Figure 7. LPS-treatment of animals recovered from ACA
infection leads to the generation of MBP 89–101-reactive T
cells. Groups of SJL mice were infected intranasally with ACA
trophozoites (7.56103) and on day 20 and day 31 postinfection, LPS
was administered. Animals were killed on day 64 postinfection and
lymphocytes were prepared to purify CD4 T cells. Cells were stimulated
for two days with irradiated APCs loaded with peptides: PLP 139–151 or
ACA 83–95 (left panel); and MBP 89–101 or NAD 108–120 (right panel).
After pulsing with 3[H]-thymidine for 16 hours, proliferation was
measured as cpm. TMEV 70–86 (control). Mean 6 SEM values
representing from one of the two experiments involving two mice in
each are shown.
doi:10.1371/journal.pone.0098506.g007
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to the induction of EAE in animals primed with suboptimal doses

of PLP 139–151, point to a possibility that the pre-existing

repertoire of autoreactive T cells as might occur in genetically

susceptible individuals may expand in response to Acanthamoeba

infections leading to CNS autoimmunity. Consistent with this

notion, the clinical EAE was apparent in the animals that received

10 mg of peptide as compared to those that received 2.5 mg. This is

likely because, Acanthamoeba carries a cross-reactive epitope for PLP

139–151, and as such, proportion of cross-reactive T cells are

expected to be more in animals injected with 10 mg than 2.5 mg of

peptide.

In summary, we demonstrate that ACA infection can lead to the

generation of encephalitogenic cross-reactive T cells by antigenic

mimicry, thus establishing a novel disease model to study CNS

autoimmune diseases like MS. ACA is ubiquitously present in the

environment worldwide, having been isolated from wide-range of

sources, including soil, water and eye-wash stations and as

contaminants; and the importance of ACA is increasingly being

recognized in the acquisition of nosocomial infections [21,36].

Although, no associations have been reported between ACA

infection and MS prevalence, MS has been considered in the

differential diagnosis of Acanthamoeba encephalitis [57]. Further-

more, serologic evidence suggests that, more than 50% of healthy

humans can carry Acanthamoeba-reactive antibodies and seroposi-

tivity occurred in the order of Caucasians followed by Hispanics

and African Americans [19,35,47,58,59]. In addition, T cells from

healthy individuals can react to Acanthamoeba antigens, and

antigen-specific T cell clones capable of secreting IFN-c have

been derived [60]. Likewise, peripheral blood MNC from

rheumatoid arthritis patients show proliferative responses to

Acanthamoeba, and amoebic encephalitis can occur in patients with

systemic lupus erythematosus; the significance of these findings is

not known [35,58,59,61]. Our data may present a compelling

rationale to investigate the role of ACA in MS-predisposition,

which we are currently investigating. Our preliminary results

indicate that cerebrospinal fluid samples obtained from MS

patients, but not from those with other neurological disorders,

show evidence of ACA-genomic material as evaluated by PCR

(unpublished observations). Further as we reported previously

[16], by deriving homology model for NAD 104–118 complexed

with human leukocyte antigen-DR2 molecule, NAD 104–118 has

the potential to induce cross-reactive T cells for human MBP 85–

99, which is recognized as one of the major immunodominant

epitopes in MS patients [62]. Demonstrating that CNS pathogens

of humans like ACA have a role in MS predisposition may create

opportunities to target the inciting agents of MS therapeutically.

Supporting Information

Figure S1 Analysis of endogenously derived PLP-reac-
tive T cells in naı̈ve SJL mice. (A) Proliferative response.
Splenocytes were prepared from naı̈ve SJL mice aged 3 to 4 weeks,

and the cells were stimulated with PLP 139–151 and TMEV 70–

86 (control) for two days. After pulsing with 3[H]-thymidine for 16

hours, proliferation was measured as cpm. Mean 6 SEM values

from three individual experiments involving two mice in each are

shown. (B) Dextramer staining. CD3+ T cells enriched from

naı̈ve mice were stained with PLP 139–151 or TMEV 70–86

(control) dextramers, anti-CD4 and 7-AAD. After acquiring the

cells by FC, frequencies of dextramer-positive cells were

determined in the live (7-AAD2) CD4 subset. Top panels,

representative FC plots. Bottom panel, mean 6 SEM values from

six experiments each involving one to three mice are shown.

(TIF)

Figure S2 PCR analysis of ACA genome in the brains of
naı̈ve recipients of cells derived from mice infected with
A. castellanii. Total DNA was extracted from the brains of mice

that received Con-A- or PLP 139–151-stimulated cells, generated

from animals infected with A. castellanii. After subjecting the DNA

for PCR analysis using A. castellanii-specific primers, the PCR

products were resolved in 1% agarose gel electrophoresis and

stained with ethidium bromide (n = 9).

(TIF)

Figure S3 Analysis of autoreactive T cells in mice
chronically infected with A. castellanii. SJL mice infected

with ACA trophozoites (206103) were euthanized 12 weeks

postinfection, and CD4 T cells were enriched. After stimulating

the cells with the indicated peptides in the presence of irradiated

APCs for two days, cells were pulsed with 3[H]-thymidine for 16

hours, and proliferation was then measured as cpm. TMEV 70–86

(control). Mean 6 SEM values from three individual experiments

are shown.

(TIF)
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