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RESEARCH ARTICLE
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Science and Technology, Department of Statistics, University of Nebraska, Lincoln, Nebraska, 68588, United
States of America

*nayad@med.miami.edu

Abstract

Patient specific therapy is emerging as an important possibility for many cancer

patients. However, to identify such therapies it is essential to determine the

genomic and transcriptional alterations present in one tumor relative to control

samples. This presents a challenge since use of a single sample precludes many

standard statistical analysis techniques. We reasoned that one means of

addressing this issue is by comparing transcriptional changes in one tumor with

those observed in a large cohort of patients analyzed by The Cancer Genome Atlas

(TCGA). To test this directly, we devised a bioinformatics pipeline to identify

differentially expressed genes in tumors resected from patients suffering from the

most common malignant adult brain tumor, glioblastoma (GBM). We performed

RNA sequencing on tumors from individual GBM patients and filtered the results

through the TCGA database in order to identify possible gene networks that are

overrepresented in GBM samples relative to controls. Importantly, we demonstrate

that hypergeometric-based analysis of gene pairs identifies gene networks that

validate experimentally. These studies identify a putative workflow for uncovering

differentially expressed patient specific genes and gene networks for GBM and

other cancers.
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Introduction

Glioblastoma multiforme (GBM) is the most common malignant adult brain

tumor, comprising 15.6% of all central nervous system tumors [1]. The median

two-year survival is 13.7%, and disease remission following standard therapy

occurs within 6.9 months. [1, 2] Treatment includes surgical resection followed by

radiation and temozolomide (TMZ) administration. However, TMZ resistance is

nearly universal, suggesting that we need to understand the genetic landscape of

GBM tumors more extensively in order to uncover more effective therapies [3].

Recent developments in oncogenomics point to a highly heterogeneous

genomic landscape in GBM [4, 5]. Importantly, this heterogeneity necessitates

genome and transcriptome analyses of each tumor individually in the hopes of

discovering patient specific therapies [6]. However, discovering patient–specific

transcriptional alterations is difficult given the low patient sample size (n51).

This is especially true when using RNA sequencing given the discordance of

different RNA-Seq alignment and analysis algorithms when sample size is small

[7].

One possibility to increase the available sample size is to utilize transcriptome

data in publicly available databases as a reference. For instance, The Cancer

Genome Atlas (TCGA) has performed gene expression microarray analysis in over

400 GBM patients examining them using two different platforms (Agilent and

Affymetrix). Thus, it is possible to use these data as a reference set, to compare the

RNA sequencing results from a single tumor sample and identify differentially

expressed genes and gene networks. Utilizing a novel bioinformatics pipeline we

were able to perform a patient-specific analysis of the GBM transcriptome based

on the overlap between our RNA-Seq data and the TCGA GBM data. This

approach allowed us to identify and filter out potential artifacts due to low sample

size.

In this report we identified a patient specific list of differentially expressed genes

(DEGs), which can be used as input for multiple types of analyses including gene

co-expression networking. Genes that co-express across multiple samples are often

implicated in similar functions [8] and many disease-associated genes have been

discovered through co-expression network analysis [9]. Most methods used in

previous studies are based on the calculation of correlation coefficients (usually

Pearson) of gene pairs as an indication of co-expression. Furthermore, either

weighted [10] or unweighted [11] processes involving the proposed connections

between genes are used to determine the significance thresholds for assigning a

connection between any two nodes (i.e., genes) in the resulting network. Our

studies suggest that utilizing correlation and hypergeometric tests identifies

experimentally validated gene connections, which can potentially assist in

discovering patient specific therapies.

Patient Specific GBM Gene Networks
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Materials and Methods

RNAseq quality control and genome mapping

We performed whole transcriptome sequencing on two GBM tumors (GBM17

and GBM31) and two control samples from epileptic patients using the Illumina

HiSeq sequencing platform. Preliminary screening was performed in FastQC

(FASTQC 2012) and BLAST [12] to assess the sequence read quality and to filter

for potential adapter contamination. Low quality reads were trimmed and

adapters were removed in downstream analysis. Remaining reads from each

sample were mapped to the human genome using TopHat Version 2.0.4 [13],

[14].

After read trimming, samples GBM17, GBM31, Control16, and Control34 had

87.18%, 78.56%, 86.79%, and 92.31%, reads mapped, respectively. For each

sample, we also assessed the distribution of genes that mapped to the human

genome in order to gauge the quality of the experiment. GBM17, GBM31, and

Control 34 yielded approximately 15,000 genes with nearly 100% transcript

coverage in the reference human genome. Control16 had only 8,085 mapped

genes. Only the common 8,085 genes were used in the 4 differential expression

analyses that followed.

RNAseq Differential Expression Evaluation

Four differential expression analysis tools, rather than one single tool, were

applied to the data and the results from all four tools were compared. This yielded

results that are relatively robust to both varying tool approaches to sequencing

depth normalization and statistical tests employed, as well as to inherent

variability in the RNA-Seq data. The four methods used were: baySeq 1.10.0 [15],

DESeq 1.8.3 [16], edgeR 2.6.12 [17], and Cuffdiff 2 [13].

TCGA Microarray Expression Data

Two expression datasets were collected from The Cancer Genome Atlas (TCGA)

in 07/02/2014 (https://tcga-data.nci.nih.gov/tcga/). The first dataset contained

tumor specific expression data from 433 glioblastoma patients (P1-P433) and the

second dataset contained brain tissue expression data from 10 epileptic patients.

All samples were analyzed with both the AgilentG4502A Microarray Platform and

the Affymetrix HG-U133 Microarray Platform. The Level 3 (processed) data for

these samples were downloaded and further analyzed. The data processing and

quality control were performed by The Broad Institute’s TCGA workgroup. The

AgilentG4502A Level 3 data consisted of the lowess normalized log2 expression

values [18]. The Affymetrix HG-U133 Data were RMA normalized and hence are

on a log2 scale [19].

Differentially expressed (DE) genes between glioblastoma patients and epileptic

controls were identified by using the limma package in R [20] (moderated t-

statistic and also the Benjamini and Hochberg’s method to control for FDR). Out

of the 17,814 genes detected by the AgilentG4502A Platform, 6,889 genes were

Patient Specific GBM Gene Networks
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found to be differentially expressed (FDR adjusted p-value,0.05). Out of the

12,042 genes detected by the Affymetrix HG U133 Platform, 7,503 genes were

differentially expressed (FDR adjusted p-value,0.05). Filtering for genes that had

a minimum fold change was not performed at this step, as it would only depict the

gene expression tendency according to the average of all the patients and may

conceal any gene expression patterns that characterize particular subgroups of

patients. Minimum fold change filtering was performed at a later stage of the

analysis. Patient specific gene expression fold change was calculated for each

patient relative to the average gene expression in the TCGA tissue specific

controls.

Hypergeometric Test

A hypergeometric-based test was used to assess the significance of co-expression

across samples between two genes of a gene pair. The rationale behind using the

hypergeometric test was that if 2 genes had any biological and/or functional

association, they would be found co-expressed in a higher number of samples

than expected by chance. We tested under the null hypothesis that the property of

a gene to be DE in one sample is independent of the property of another gene to

be DE in the same sample. The p-value was derived from the hypergeometric

function below where f: total number of patients, d: number of patients for which

Gene1 is DE, g: number of patients for which Gene2 is DE, n: number of patients

for which both Gene1 and Gene2 are DE

p{value~
Xmin(g,d)

k~n

g

k

� �
f {g

d{k

� �

f

d

� �

Our pipeline and the scripts for calculating the Pearson Correlation Coefficient

and the Hypergeometric test can be found in (S4 Fig., S1 File).

Creating Networks

Networks from the selected gene pairs were created using the open source

Cytoscape 3.1.0 as described in [21]. Further, the STRING9.1 Protein-Protein

Interaction Platform [22] was employed to verify the functional relevance of the

discovered networks.

Results

Identifying genes differentially expressed in GBM via RNA

sequencing and TCGA enrichment

We performed RNA sequencing on 2 GBM tumors (GBM17 and GBM31) and 2

epilepsy control tissues (Control16 and Control34) using the Illumina HiSeq

Patient Specific GBM Gene Networks
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platform. Focusing on patient specific transcriptionally expressed genes, we

compared the transcriptome of each tumor individually with the two controls. In

order to ameliorate the increased uncertainty of the different algorithms due to

low sample size [7], we used four, rather than one, differential expression tools

(baySeq, Cuffdiff, EdgeR and DESeq), as described in the Materials and Methods

Section. As expected, the four algorithms yielded mostly non-overlapping lists of

differentially expressed genes. We defined a given gene as ‘differentially expressed

(DE)’ if at least three of the four algorithms called the gene as differentially

expressed. By performing this type of analysis, we identified 1,081 DE genes for

GBM17 and 967 genes for GBM31, respectively (Fig. 1, S1 Fig.).

In order to assess whether these results represent the phenotype of interest

(GBM) or individual sample variability, we compared our RNA sequencing results

to results from a greater number of samples, namely, the TCGA microarray

dataset. Previous studies have shown that RNA-Seq results can be compared to

those derived from microarrays [23, 24, 25]. We created a TCGA DE gene list by

comparing TCGA patients and TCGA controls. In order to avoid any platform

specific biases, we selected only TCGA patients (n5433) and controls (n510) that

were analyzed with both microarray platforms (Agilent and Affymetrix). When we

examined these data, we found that 5,200 genes were found by both platforms to

be DE and concordant, i.e, not upregulated in one platform and downregulated in

another platform. Of these 5,200 DE genes, we found that 585 are DE in GBM17

and 514 are DE in GBM31 (S1 Fig.). In S2 Fig. we can see that when using the

consensus of at least 3 algorithms, the number of common DE genes between our

RNAseq data and the TCGA data remains relatively the same. On the other hand,

when only one algorithm was taken into account, the number of overlapping

genes (between RNAseq and TCGA) was greatly dependent on the fold change

threshold selection. Therefore, we opted for the 1.2 fold change threshold, in an

attempt to obtain a high and significantly relevant number of genes.

Identifying Gene Pairs and Networks Using Hypergeometric Test

Analysis

As acquired drug resistance is one of the main reasons for the ineffectiveness of

current glioblastoma treatment, the identification and simultaneous inhibition of

multiple therapeutic targets is essential for identifying effective combination

therapies. However, the large genetic variation among glioblastoma tumors

necessitates a more patient-specific approach when identifying potential

therapeutic targets. For this, we tried to create gene networks based only on genes

that were DE in that specific RNA-Seq sample. After determining the DE genes for

each sample, and ‘filtering’ or selecting those that are also DE in the TCGA data,

we searched for any significant co-expression among these patient-specific DE

genes in the TCGA data. Our hypothesis was that if there were any functional

association between gene pairs, then this association could be observed based

upon their co-expression in the TCGA population. We utilized two methods to

identify co-expression. First, the Pearson Correlation Coefficient (PCC) was used

Patient Specific GBM Gene Networks
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Fig. 1. Pipeline for identifying patient-specific gene association in GBM. Our first step in our pipeline is to identify Differentially Expressed (DE) genes
that are represented in 3 out of 4 algorithms. Next, we filter this DE gene list for those genes that overlapped with DE genes in the TCGA GBM Database. We
then calculate the Correlation Coefficient and a hypergeometric p-value for every gene pair. Finally, by selecting the gene pairs with the highest correlation
values we create a patient specific gene correlation network, which can be experimentally verified. As a starting point for our experiments, we can use the
sub-networks in which, already verified connections exist in the literature.

doi:10.1371/journal.pone.0115842.g001

Patient Specific GBM Gene Networks
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to determine if the expression level of one gene could be indicative of the

expression level of the second gene. Next, a hypergeometric test was used to

calculate the probability of a pair of genes being both DE in a specific number of

patients by chance. Gene pairs with a low p-value indicate the tendency of these

genes to be DE together in a higher number of patient samples than we would

expect by chance. For every gene pair, we plotted both its PCC and its

hypergeometric probability in the TCGA population (S1 Fig.). Our results

indicate that pairs of genes that are DE in a larger proportion of patient samples

also have more highly correlated expression values across the total TCGA GBM

cohort. Finally, as outliers heavily influence the PCC, we calculated the Spearman

Correlation Coefficient for every gene pair as well. As shown in S3 Fig. we found

that gene pairs with high PCC also have a very high Spearman Correlation

Coefficient, indicating that the PCCs we calculated were generally not the

byproduct of outliers.

As our aim was to define patient-specific and glioblastoma-relevant gene

networks, we used the most statistically significant gene pairs in each RNA-Seq

sample in order to reconstruct the networks. Our most significant gene pairs (S1

Table) consisted of the ones that had a PCC above 0.7 and were in the lowest 40%

of the range of the hypergeometric log10 scale ([246.15, 227.69] for GBM17 and

[244.72, 226.83] for GBM31). These gene pairs were selected for each patient

sample separately and were imported to Cytoscape [26] where the network was

created. In order to verify the functional relevance of these networks, we employed

the STRING9.1 Protein-Protein Interaction Platform [22]. STRING 9.1 can take

into account a variety of sources in order to reconstruct networks out of a given

gene list. For our study, we only chose the conservative options of searching in

Databases, Experiments and Text-mining. To ensure the accuracy of the text-

mining algorithm, we manually verified the text mining output. As shown in

Fig. 2, there is overlap between the networks created from our pipeline and gene

associations indicated by STRING 9.1. To examine whether the hypergeometric

test yielded greater experimentally verified interactions, we kept the PCC filter

(.0.70) constant but varied the hypergeometric test p-values. As before, we

compared our gene networks with curated interaction data via STRING 9.1. As

shown in Fig. 3 and S2 Table, fewer experimental data validated the gene network

connections created by these gene pairs when we only used a PCC filter. Thus, our

studies suggest that a hypergeometric distribution test can potentially enrich more

experimentally verified gene pairs.

Identifying Epigenetic-Signaling Pathway Interactions Based on

Hypergeometric Test Analysis

Several studies suggest that epigenetic and signaling pathways control GBM

progression [27]. We therefore reasoned that the gene networks robustly

uncovered by the bioinformatics pipeline described above would potentially

include the interactions of DE genes involved in signaling or epigenetic pathways.

To test this, we created a discrete gene list consisting of 464 genes (through KEGG

Patient Specific GBM Gene Networks
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Fig. 2. Correlation networks created by using the top gene pairs for each patient. The number of connections we identified were compared to those
previously described in the literature (red). Yellow indicates connections, which were identified in protein-protein interaction databases.

doi:10.1371/journal.pone.0115842.g002

Fig. 3. Gene Networks created by Pairs with high PCC (greater than 0.7) and high hypergeometric p-value yield less experimentally verified
interactions. The number of connections identified was calculated for gene pairs with high PCC and high hypergeometric p-values. These connections
were then compared to those identified in the literature. Note that few connections were found to be experimentally validated.

doi:10.1371/journal.pone.0115842.g003

Patient Specific GBM Gene Networks

PLOS ONE | DOI:10.1371/journal.pone.0115842 December 31, 2014 8 / 14



Pathways) (S3 Table) that encoded for either epigenetic modulators, or genes

implicated in the Notch, Shh and Wnt Pathways. Out of the 464 Epigenetic/

Pathway (E/P) related genes, 418 genes were differentially expressed in the TCGA

GBM data from the Agilent Microarray Platform. In order to find the non-

random co-expression of E/P genes together with genes that were differentially

expressed on each patient, we employed our pipeline. As shown in Fig. 4, the

more statistically significant gene pairs have a higher expression correlation in the

whole population of 433 GBM patients. These studies yielded potential

interactions of signaling pathways or epigenetic regulators with GBM patient

specific DE genes.

Discussion

Combination therapies that effectively disrupt multiple pathways are likely to

reduce GBM recurrence. However, identifying these therapies is contingent upon

uncovering patient-specific genomic and transcriptomic alterations. One major

issue is how to generate robust analytical results from gene expression data when

sample size is low. To circumvent this problem, we elected to employ multiple

different RNA-Seq algorithms and compare the results common to most

algorithms with results based on the transcriptional profile of over 400 GBM

tumors analyzed by TCGA. With this approach, we identified genes that not only

were differentially expressed in our patient specific sample but also were

differentially expressed in a significant number of TCGA patient samples. These

true positive genes were subsequently used to create gene co-expression networks

to identify any potential functional similarity. By using a hypergeometric test in

addition to the PCC, we identified experimentally validated gene-gene

interactions.

One gene network that has been experimentally verified in multiple biological

contexts is the highly conserved MCM (Mini-Chromosome Maintenance)

network containing the DNA replication licensing factors MCM2, MCM3, and

MCM7. We identified this network as overexpressed in GBM sample 31. With the

hypergeometric test, we detected a high probability of the MCM subunits to be

overexpressed in the same patient samples in the TCGA dataset and were able to

distinguish them from other gene pairs that only showed a high correlation

coefficient (but little co-occurrence within patients). Importantly, the MCM

pathway has been implicated in multiple cancers including GBM [28, 29]. Thus,

our pipeline can be utilized to identify DE gene-gene interactions and networks in

GBM that have a higher likelihood of validation relative to interactions and

networks identified by correlation alone.

The stringency of our filtering of the DE genes from any given patient, however,

is likely to also yield false negatives. For instance, we chose to only explore DE

genes that were detected in at least 3 out of 4 RNA-Seq algorithms, which may

have excluded some true positives. It may be informative to use other statistical

methods in addition to the hypergeometric test to determine whether there are

Patient Specific GBM Gene Networks
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alternative approaches that would also yield results that are enriched for

experimentally verified gene networks. In addition any proposed pipeline will

involve subjective choices of thresholds and criteria for significance. We have

made reasonable choices, but it is possible that moving to nonparametric and

permutation-based results to establish a more systematic approach to threshold

selection could lead to pipeline improvements. Nonetheless, our studies identify a

robust method for identifying patient-specific gene networks, which can inform

the design of effective combination therapies.

We implemented this method to identify potential targets for combination

therapies involving epigenetic pathways and the Notch, SHH, and WNT

pathways. Our recent studies and those from other laboratories suggest that

epigenetic pathways contain attractive new therapeutic targets in GBM [30, 31].

Similarly, the Notch, SHH, and WNT pathways are implicated in GBM cell

growth and have been linked to epigenetic pathways [27]. Thus, we reasoned that

identifying interaction nodes between either signaling pathways or epigenetic

modulators and DE genes could lead to potential synergy in reducing tumor

growth. We identified possible nodes of interaction among epigenetic and

signaling pathways using our pipeline. Interestingly, we identified possible

interaction of the DNA methyltransferase DNMT1 with the MCM proteins

(Fig. 4). However, these interactions have not been experimentally verified

according to STRING 9.1. Nonetheless, they may exist in some GBM patients as

DNMT1 has been shown to be a potential GBM therapeutic target whose

inhibition leads to an increase of several tumor suppressor genes [32, 33, 34].

Future studies will experimentally verify whether drug combinations that target

these gene-gene networks are useful clinically for treating GBM.

Supporting Information

S1 Fig. Overlap of DE genes calculated by 4 RNAseq Algorithms (EdgeR,

Bayseq, Cufflinks, DEseq). We analyzed genes that were shown to be DE by at

least 3 out of the 4 algorithms (* symbol). We then filtered for genes that were

shown to be DE by both Microarray Platforms in the TCGA GBM cohort and also

were shown to have a |fold change| .1.2. The Pearson Correlation Coefficient and

the p-value of the hypergeometric test were then plotted for every gene pair.

doi:10.1371/journal.pone.0115842.s001 (TIF)

S2 Fig. Fold Change dependent overlap of DE genes calculated by 4 RNAseq

Algorithms and the TCGA Database. The fold change threshold did not change

the number of overlapped genes between the RNAseq and the TCGA analysis,

when the consensus of 3+ RNAseq algorithms was used.

Fig. 4. Correlation networks identified that intersect epigenetic pathways/signaling pathways with patient specific DE genes. Connections were
calculated for gene-gene pairs emanating from epigenetic pathways or genes in the Notch, SHH, or WNT pathways and genes that were Differentially
Expressed in each patient.

doi:10.1371/journal.pone.0115842.g004
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doi:10.1371/journal.pone.0115842.s002 (TIFF)

S3 Fig. Comparison between two Correlation Coefficients. The Pearson and the

Spearman Correlation Coefficients were calculated for every gene pair. In both

patients gene pairs with high Pearson Correlation Coefficient show also high

values for the Spearman Correlation Coefficient.

doi:10.1371/journal.pone.0115842.s003 (TIF)

S4 Fig. Pipeline for calculating the Hypergeometric Distribution and the

Pearson Correlation Coefficient for every gene pair.

doi:10.1371/journal.pone.0115842.s004 (TIFF)

S1 Table. Gene pairs consisting of the ones that had a PCC above 0.7 and were

in the lowest 40% of the range of the hypergeometric log10 scale.

doi:10.1371/journal.pone.0115842.s005 (XLSX)

S2 Table. Gene pairs with a PCC above 0.7 and the highest hypergeometric

log10 scale values.

doi:10.1371/journal.pone.0115842.s006 (XLSX)

S3 Table. Gene list containing 464 genes are either epigenetic modulators, or

genes implicated in the Notch, Shh and Wnt Pathways (though KEGG

Pathways).

doi:10.1371/journal.pone.0115842.s007 (XLSX)

S1 File. Perl scripts used in the pipeline.

doi:10.1371/journal.pone.0115842.s008 (TXT)
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